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Oxidative damage to deoxyribonucleic acids (DNA) caused by the direct and 

indirect effect of ionizing radiation and endogenously produced reactive oxygen species 

(ROS) can lead to mutations, carcinogenesis and cell death. Damage from ionizing 

radiation is partially produced by secondary low energy electrons (LEEs) that form along 

the ionization track. Although it has been established that LEEs can result in the 

formation of single and double strand breaks, the mechanism of formation of these 

associated lesions has not been established. It has been shown that addition of low energy 

electrons to DNA components leads to the formation of transient radical anions that 

undergo bond cleavage by dissociative electron attachment.  The formation of these 

reactive intermediates causes the generation of carbon-centered radicals on the sugar 

moiety. Therefore, it is believed that carbon-centered radicals play a fundamental role in 

this process. One of the intermediates formed is the C2',3'-dideoxythymidinyl radical 

(102). The goal of this project is to investigate the fate of the C2',3'-dideoxy-C3'-

thymidinyl radical in DNA, an intermediate of DNA-LEE interactions. Synthesis of α- 

and β-C3'-deoxy-3'-pivaloylthymidine (101 and 103, respectively) as radical precursors 
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of this intermediate has been completed and their efficiencies in radical generation has 

been evaluated. Through photolysis (λ ≥ 320 nm) of these modified thymidines under 

anaerobic conditions, the radical of interest (102) was generated in the case of α-C3'-

deoxy-3'-pivaloylthymidine (103). These findings contribute to the elucidation of the 

mechanistic pathways of oxidative damage to DNA by LEEs.  

Oxidative damage caused by reactive oxygen species, generated from the 

ionization of water molecules surrounding DNA or from endogenous sources, result in 

formation of single and double strand breaks. The hydroxyl radical is capable of 

damaging the sugar phosphate backbone by abstracting hydrogen atoms from the 

deoxyribose moiety of DNA leading to formation of single and double strand breaks. 

These strand breaks are associated with the formation of electrophilic fragments capable 

of reaction with local nucleophiles to form DNA adducts. Since the 5'- hydrogens of 

deoxyribose in B-form DNA are the most accessible to solvent, they are highly 

vulnerable to abstraction. This event leads to the formation of the C5'-radical. Under 

aerobic conditions and in the presence of thiol the radical forms strand breaks terminated 

with a 5'-aldehyde moiety and a 3'-phosphate moiety. Oligonucleotides containing a 5'-

aldehyde moiety such as 36, are unstable and undergoe elimination to deliver the 

aromatic compound furfural (67). It was shown that furfural can form an adduct with 

adenine in DNA. The goal of this project is to investigate the stability and reactivity of 

oligonucleotides containing a 5'-aldehyde lesion and its degradation products under 

physiological conditions. The half-life of oligonucleotides containing a 5'-aldehyde lesion 

was determined to be 96 hours in single-stranded DNA. The half-life of 3',4'-didehydro-

2',3'-dideoxy-5'-oxothymidine (66)  was determined to be 13 hours under physiological 
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conditions. These experiments help to explain the types of adducts that form as a result of 

oxidative damage. These adducts can be used as biomarkers for early detection of disease 

such as cancer.  
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1 CHAPTER ONE: Introduction and Background 

1.1 Ionizing Radiation (IR) 

Ionizing radiation (IR) is composed of particles or waves that have enough energy 

to liberate electrons from atoms or molecules. IR arises from both natural and man-made 

sources. Natural sources include cosmic rays, radon gas, generated from the decay of 

radium; and radioactive elements found in the earth’s crust such as uranium, thorium, 

potassium and their radioactive decay products; and various radionuclides found naturally 

in food and drinks. Man-made sources include medical diagnostics and therapies such as 

X-rays in diagnostic radiology or the use of radiation in cancer treatments, and industrial 

sources such as those found at research and teaching institutions, nuclear reactors; and 

radio active waste.1  

 The most common types of radiation emitted from natural sources or man-made 

radionuclides are alpha particles, beta particles, gamma rays, x-rays, cosmic radiation, 

and neutron radiation. 

1.1.1 Alpha particles (α)  

Alpha particles are highly energetic (3-7 MeV), positively charge particles 

consisting of two protons and two neutrons bound together forming a particle identical to 

a helium nucleus. Alpha particles are emitted during radioactive decay of the heaviest 

radioactive elements such as uranium-238, radium-226, and polonium-210. Alpha 
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particles move slowly through the air due to their high mass and can be stopped by a 

sheet of paper. Therefore, external exposure is considered not harmful because the alpha 

particles lack the energy to penetrate the outer dead layer of skin. However, alpha 

particles are very harmful when alpha particle emitting isotopes are ingested or inhaled.2  

1.1.2 Beta particles (β) 

 Beta particles are high-energy, fast moving electrons or positrons emitted from 

radioactive nuclei such as potassium. Beta particles can be generated from both natural 

and man-made sources, and are smaller than alpha particles. Beta particles are more 

penetrating than alpha particles into tissues or materials, but can be absorbed by plastic 

sheets, glass, aluminum, or layers of clothing. Beta particles are less damaging than alpha 

over equally traveled distances. Beta particles are most hazardous when they are inhaled 

or ingested.1,2 

1.1.3 Gamma rays (γ) 

Gamma rays are very high-energy photons ( > 100 keV) that are emitted from 

radioactive nuclei along with alpha and beta particles. Gamma rays can be emitted from 

natural sources as well as man-made sources. Gamma rays have no charge and no mass 

and therefore they are very penetrating and require several inches of lead to be stopped.  

Gamma rays are hazardous to the entire body since they can be easily absorbed by 

internal organs and tissues.1,2                                                   

1.1.4 X-rays 

X-rays are high-energy photons (100 eV-100 keV), but are lower in energy than 

gamma rays and are produced by the interaction of charged particles with matter. X-rays 

are less penetrating than γ-rays and a few millimeters of lead can stop X-rays. X-rays are 
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considered to be the largest source of man-maid radiation exposure due to their use in 

medicine and industry for examinations and inspections.1  

1.1.5 Cosmic rays 

Cosmic rays are energetic particles from deep space. They are a mixture of 

different types of radiation including alpha particles, electrons, protons and positrons.  

They can have energies above 1020 eV.1 

1.1.6 Neutron (n) 

The neutron is emitted by unstable nuclei and has no electric charge. It can be 

very penetrating. It interacts with matter causing emission of gamma and beta radiation 

and require heavy shielding to reduce exposure.1  

1.2 Interaction of IR with Biological Systems 

Ionizing radiation causes damage to all biological systems with DNA being one of 

the most important targets. IR induces mutagenicity, genotoxicity and cell death by 

damaging DNA. This damage includes base and sugar modifications, base release, single 

and double strand breaks (SSB, DSB), and clustered damage.3 This damage is produced 

from the energy deposition of the primary particles in cellular medium as well as the 

secondary species, i.e., ions, radicals and low energy electrons (LEEs) generated along 

the radiation track.4,5 These phenomena are called the direct and indirect effects of IR on 

DNA. In the direct effect, energy from IR deposits in the various nucleic acid 

components, whereas in the indirect effect energy deposition occurs in water molecules 

surrounding the DNA. It has been estimated that the direct effect contributes about 40% 

to cellular DNA damage, while water radiolysis products contribute about 60%.3 The 
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chemistry involved in the interaction of ionizing radiation with DNA in the direct and 

indirect effect will be discussed in the following sections.  

1.2.1 Direct Effect 

1.2.1.1 Interaction of IR with DNA 

When high-energy particles or fast charged particles produced by primary 

radiation such as photoelectrons or Compton electrons pass near DNA molecules, the 

result is DNA perturbation by rapid change of the electromagnetic field produced by the 

moving charge.4 Energy transfer from IR to DNA occurs within femtoseconds of the 

initiating events and are divided into three groups: primary, secondary and reactive. 

 In primary events (Figure 1-1)4,  deposited radiation ionizes and excites DNA 

constituents (reaction 1 and 2, Figure 1-1). For simplification, AB represents simple 

hypothetical diatomic molecule located in the cell. 
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Figure 1-1: Reactions induced by primary ionizing radiation and secondary electrons4  

During primary events 80% of the energy deposited leads to reaction 1 producing 

radical cations and secondary electrons (SE). The radical cation either dissociates into 
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in the case of DNA base-OH adduct radicals or can release protons from the sugar moiety 

to form neutral radicals.3 SE generated in reaction 1 and 4 have energies less than 30 eV 

with a most likely energy between 9 and 10 eV.6-7 These  SE are generated in large 

numbers (i.e., ~ 3 x 104/ MeV of deposited energy) and represent a large portion of 

primary radiation energy. The rest of the absorbed radiation energy (20%) produces 

excited molecules (reaction 2, Figure 1-1), which dissociate to produce neutral species 
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autoionize if there is enough energy for its own ionization to generate more SE (reaction 

3, Figure 1-1). 

The formation of secondary electrons is responsible for the secondary events 

shown in Figure 1-1. Secondary electrons interact with other molecules found in the 

cells, before their thermalization, and induce more damage, which is referred to as the 

indirect effect of IR on biological systems. This will be discussed later in this chapter. All 

reactive species formed during primary and secondary events react with all biological 

molecules to generate new damage products. 

1.2.2 Indirect Effect 

1.2.2.1 Interaction of LEE with DNA 

As mentioned above, secondary low energy electrons (LEEs) with kinetic 

energies of 0-30 eV are generated in large amounts by ionizing radiation. The interaction 

of LEE with DNA results in the formation of single and double strand breaks5,8-9as well 

as base release.10 Secondary LEEs with energies below ~ 30 eV produced from the direct 

effect and the ionization of water molecules interact with DNA by two pathways, 

resonant and nonresonant scattering.4,5 In the nonresonant scattering mechanism, LEEs 

interact with DNA resulting in the reproduction of some or any of the reactions 1-6 

(vertical arrow in Figure 1-1),4 depending on their energies. The outcome of  

nonresonant scattering is single (SSB) and double (DSB) strand breaks as well as 

multiple double (MDSB) strand break formations through ionization, excitation and 

dissociation of DNA components. In the resonant scattering, LEEs cause DNA strand 

breaks only through the formation of transient anions (reaction 8, Figure 1-1) leading to 

resonance stabilization (reaction 9, Figure 1-1), dissociative electron attachment (DEA) 
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(reaction 10, Figure 1-1), and vibrational and electronic excitation (reaction 11, Figure 

1-1), which undergoes dissociation to provide neutral and ionic atoms (reaction 12 and 

13, respectively, Figure 1-1). In addition, geminate recombination (reaction 14, Figure 

1-1) is another way to produce excited molecules and can lead to degradation via reaction 

5 and 6 in, Figure 1-1).4,5  

1.2.2.2 Interaction of IR with Water 

When IR interacts with the water layers surrounding DNA, ionization and 

electronic excitation occur in about 10-16 seconds resulting in the formation of radical 

cations and subexcitation electrons (reaction 1, Figure 1-2). Subexcitation electrons have 

sufficient energy to ionize or excite further water molecules until its energy is no longer 

enough to cause ionization or excitation of other water molecules. In addition to 

ionization, excitation of water molecules by the absorption of energy from IR is another 

pathway leading to the formation of water molecules in their electronic excited state 

(reaction 2, Figure 1-2). 
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Figure 1-2: Events induced by absorption of energy by water11 

After formation of water radical cations (H2O•+), subexcitation electrons (e-
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Figure 1-3: Reactions occurring after absorption of energy by water11 

Subexcitation electrons can either undergo dissociative attachment to water 

resulting in the generation of hydroxyl radical, hydrogen gas and hydroxide (reaction 3, 

Figure 1-3), or can thermalize and become solvated electrons on a time scale of 10-12 sec. 

(reaction 4, Figure 1-3). Collectively, the interaction of IR with water molecules results 

in formation of radical cations, excited water molecules, and subexcitation electrons that 

further react with each other or with water molecules to produce water radiolysis 

products (hydrogen atom, hydroxyl radical and solvated electrons) which are capable of 

causing damage to all cellular components with DNA being a primary target. 
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1.3 DNA Damage by Hydroxyl Radicals (HO•) 

1.3.1 Base Damage in DNA by Hydroxyl Radicals (HO•) 

Hydroxyl radicals are generated exogenously as the result of exposure of water to 

IR as explained above, or endogenously through cellular metabolism, oxidative stress, 

chronic infection and inflammation.12,13,14 The hydroxyl radical is a small, highly 

diffusible, highly reactive species with electrophilic properties that are capable of 

damaging the nucleobase and the sugar moiety of DNA.15 The hydroxyl radical can add 

to the C-C and C-N double bonds of purines in DNA or C-C double bonds of 

pyrimidines. The addition of the hydroxyl radical to the double bonds of nucleobases is 

regioselective due to its electrophilic nature. For instance, the hydroxyl radical favors 

addition to the more electron rich C5 position of thymine over the less electron rich C6 

position.15,16 The hydroxyl radical can also abstract hydrogen atoms from the methyl 

group of thymine.3,15    

1.3.2 Sugar Damage in DNA by Hydroxyl Radicals (HO•) 

Hydroxyl radicals are highly reactive oxygen species and are capable of hydrogen 

atom abstraction from the five positions of the 2'-deoxyribose moiety of DNA. The 

resulting species are carbon-centered radicals whose reactivity depends on their 

environment.17,18 The order of reactivity of HO• toward each hydrogen atom of the 2-

deoxyribose moiety was proposed based on  solvent accessibility of the sugar hydrogen 

atoms in B-form DNA (H5' > H4' > H3' ≈ H2' ≈ H1').19 The chemistry of each of these 

sugar radicals is discussed in the following sections. 
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1.3.2.1 C1'-Radical 

 The C1'-deoxyribosyl radical is an N-glycosyl radical that is generated through 

the abstraction of the C1'-hydrogen of the 2'-deoxyribose moiety in DNA by hydroxyl 

radicals generated from exogenous and endogenous sources. The fate of this radical was 

investigated through the independent generation of 2'-deoxyuridin-1'-yl (1) in single and 

double stranded DNA (ssDNA, dsDNA).20,21 Upon reduction with β-mercaptoethanol 

(BME) under anaerobic conditions, the 2'-deoxyuridin-1'-yl (1) radical gives rise to a 

mixture of β- and α- deoxyuridines (2 and 3 respectively, Scheme 1.1). The β:α ratios 

are (4.1:1) in ssDNA and (6.2:1) in dsDNA with the restoration of the naturally occurring 

β-anomer dominate over the premutagenic α-anomer.21 In addition to reduction products, 

the 2-deoxyribonolactone (7, Scheme 1.1) is formed in small amounts under these 

conditions. In the presence of oxygen, 2'-deoxyuridin-1'-yl (1) radical is trapped by 

oxygen at a diffusion-controlled rate to generate peroxyl radical 4. Reduction of 4 by 

thiol produces ribonolactone 7. In the absence of thiol, the peroxyl radical undergoes 

superoxide release to generate a carbocation which reacts with water to deliver 

ribonlactone 7.22,23,24 Under physiological conditions, the ribonolactone undergoes β-

elimination to form  butenolide species 9 which has a half-life of 20 hours in ssDNA and 

32-54 hours in dsDNA.25 Lesion 9 can undergo a second elimination to release 5-

methylene-2-furanone (10), which is a strong electrophile that has the ability to react with 

cellular nucleophiles. 2-Deoxyribonolactone 7 can induce formation of crosslinks with 

DNA repair proteins such as polymerase β and endonuclease III, in which the lysine at 

the active site of these enzymes undergoes nucleophilic attack on the lactone to produce 

an amide linkage. Normally, during excision of an unmodified abasic site, the lysine 
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forms a Schiff’s base with the C1-aldehyde in the open form of the native abasic site. The 

formation of an amide linkage results in the inhibition of DNA repair enzymes (12, 

Scheme 1.2).26,27 Lesion 9 acts as a Michael acceptor that has been shown to be reactive 

toward sulfur and nitrogen nucleophiles.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme  1.1: Fate of the 2'-deoxyuridin-1'-yl (1) radical 
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Scheme  1.2: 2-Deoxyribonolactone induced cross-link formation with human DNA 
polymerase β27 

1.3.2.2 C2'-Radical 

Oxidation at the C2'-deoxyribose moiety in DNA occurs through the abstraction 

of either one of the two hydrogen atoms. This carbon centered radical has been generated 

by γ-irradiation and by the abstraction of a 2'-hydrogen by the photochemically generated 

5-uridinyl radical.29 Trapping of C2'-radical 13 with oxygen leads to the formation of 

peroxyl radical 14, (Scheme 1.3).30 The fate of 13 depends on the conformation of DNA 

when its formed. For example, when 13 is formed in B-form DNA the erythrose abasic 

site 16 is the major product, while in Z-form DNA the primary product is ribonucleotide 

17.30,31The erythrose abasic site 16 is stable to hydrolysis in comparison to other abasic 

sites, with a half-life of 3 h in 0.1 M NaOH at 37 °C.32 
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Scheme  1.3: Fate of the C2'-deoxyguanyl radical33 

1.3.2.3 C3'-Radical 
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decomposition leads to the formation of base propenoate 29, 5'-Phosphate 8, and 3'-

phosphoglycolaldehyde (3'-PGA, 30) (Scheme 1.4).37  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme  1.4: Fate of C3'-deoxyribosyl radical proposed by Stubbe et.al.37,34 
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It was shown by Bryant-Friedrich that in the presence of thiol and in the absence 

of oxygen, the C-3' radical in single stranded DNA is reduced to give the repaired 2'-

deoxyribose 31, and possibly the pseudorepair 2-deoxyxylose 32 in oligomers (Scheme 

1.5).38 Under aerobic conditions, trapping of 18 results in formation of isomeric peroxyl 

radicals 33 and 34 which subsequently degrade to give rise to strand breaks 8 and 11 as 

the major products.39 Lesions 30, 3'-phosphoglycolate (3'-PG) 35, and 5'-aldehyde 36 

were also detected from experiments performed under aerobic conditions and confirmed 

by mass spec analysis. Formation of 30 can be explained, as mentioned above, through 

molecular rearrangement of the peroxyl radical formed at the C3'-position, while 

formation of 35 and 36 can be explained by oxidation of the C4' radicals of the same 

nucleotide and the oxidation of C5' radicals of the 3'-adjacent nucleotide, respectively. 

Compound 37 can undergo a second elimination step to release 3'-phosphate 11, and 

small sugar fragment (22) (Scheme 1.5). 
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Scheme  1.5: Products of the degradation of the C3'-thymidinyl radical under anaerobic 
and aerobic conditions39 
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in DNA to form the diasteromeric 1,N2-glyoxal adducts of dG (41 and 42, Scheme 

1.6).40 

 

 

 

 

 

 

 

 

Scheme  1.6: DNA adducts derived from phosphoglycolaldehyde40 
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give 3'-phosphate containing oligonucleotide 11 and radical cation 46. Radical 45 can 

abstract a hydrogen from GSH to generate 47.44 In the presence of GSH, there is 

competition between heterolytic cleavage of the C4'-deoxyribosyl radical (43) and 

hydrogen abstraction from GSH. Trapping of 43 with GSH occurs at a rate  of 1.9 × 106 

M-1s-1 giving rise to a mixture of repaired (48) and “pseudorepaired” (49) nucleotides.44,45 

The hydrogen trapping reaction is stereoselective in dsDNA  resulting in formation of 

natural 2'-deoxyribonucleotides (ratio 48:49 = 9) while in ssDNA trapping is 

nonselective, producing 48 and 49 in a ratio of 1.5.44  

Under aerobic conditions and in the presence of GSH, C4'-radical 43 is trapped by 

oxygen to form isomeric peroxyl radicals 50 with a rate constant of 2 × 109 M-1s-1. This 

reaction was found to be reversible. Peroxyl radicals (50) abstracts a hydrogen atom from 

GSH to form hydroperoxide 51.45,46 The hydroperoxide undergoes a Criegee-type 

rearrangement to generate intermediate 52 which subsequently decomposes to yield base 

propenal 55, 5'-phosphorylated oligonucleotide (8), and 3'-phosphoglycolate (3'-PG) 35 

(Scheme 1.7).  
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Scheme  1.7: Fate of C4'-thymidinyl radical 
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Base propenal 55 can react with deoxyguanosine in DNA to form the DNA 

adduct M1dG (56) (Scheme 1.8).47,48 

 

 

 

 

 

Scheme  1.8: M1dG adduct of base propenal with guanine  

1.3.2.5 C5'-Radical 

The C5'-deoxyribosyl radical (57) is an α-phosphatoxyalkyl radical generated by 

the abstraction of one C5'-hydrogen.  Under anaerobic conditions, the C5' radical (57) 

attacks the C8-N7 double bond in purine bases of the same nucleoside leading to 
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with GSH results in formation of 58 and occurs at a rate of 4.9 × 107 M-1s-1.52 In the 

presence of oxygen, C5' radical 57 reacts with oxygen at a diffusion-controlled rate (~1.9 

× 109 M-1s-1) to form peroxyl radical 61.  The peroxyl radical decomposes by two 

pathways (Scheme 1.9), one yielding strand breaks with 3'-phosphate (11) and 5'-
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aldehyde (63) end groups,53 while the other delivers 5'-(2-phosphoryl-1,4-dioxobutane) 

64 along with 3'-formyl oligonucleotide (65).54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme  1.9: Fate of C5 '-deoxyadenosyl radical 
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The 5'-aldehyde can undergo β-elimination to form unsaturated aldehyde 66 and 

5'-phosphorylated oligonucleotide 8. Unsaturated aldehyde 66 undergoes base 

elimination to deliver furfural 67 and ree base 23 (Scheme 1.10).55,56  

 

 

 

 

 

 

Scheme  1.10: Fate of 5'-thymidinylaldehyde  

It was shown that furfural can form an adduct with adenine residues in DNA. This 

adduct subsequently undergoes deglycosylation to form kinetin (68) and an abasic site 

(69) (Scheme 1.11).57 

 

 

 

 

 

Scheme  1.11: Adduct formation between furfural and an adenine residue in DNA 
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nucleophiles in DNA to form stable oxadiazabicyclo (3.3.0)octamine adducts of dC, dA, 

and dG under biological conditions (reaction with dC, Scheme 1.13).58,59 

 

 

 

 

 

Scheme  1.12: Fate of 5'-(2-phosphoryl-1,4-dioxobutane)  

 

 

 

 

 

 

 

Scheme  1.13: Adduct formation by trans-1,4-dioxo-2-butene with deoxycytidine 
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64

O

O

P O

OR

O

HO OH

64

O

P O

OR

O

O

O
O

O

+

O

PO

OR

O

870

O

O

7071

+

O

OH

HO
N

N

NH2

O

72

O

OH

HO
N

N

N

O

O

H

H

OH



 25 

1.5 DNA Damage by Solvated Electrons (e−aq) 

Solvated electrons are generated from radiolysis of water molecules and are 

stronger reducing agents than the hydrogen atom.3 Solvated electrons are highly reactive 

and damage biological molecules by one-electron transfer.11 Hydrated electrons add to 

the nucleobases of DNA forming radical anions (73, Figure 1-4) that are easily 

protonated resulting in the formation of neutral radicals (74 and 75).3 

 

 

 

 

 

 

Figure 1-4: Reaction of a solvated electron with uracil61  
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NH

N
H

O

O

+ eaq
NH

N
H

O

O

NH

N
H

OH

O

NH

N
H

O

O

H

H
H

H

H

H

H

H

H

6
73

75

74

+ H



 26 

1.6.1 Significance of the Investigation of the C-3' dideoxy Radical Generated by LEE-

DNA interaction. 

It has been established that DNA damage is mostly produced by secondary 

species generated along the radiation track. LEEs are produced in large quantities and 

have been established to induce both single and double strand brakes as well as base 

release.9,66 This was supported through the investigation of the basic interaction of LEE 

with ribose derivatives,67,68 nucleobases,10,69,70 oligonucleotides,71,72 and plasmid 

DNA.5,73,74 It was determined that electrons below 15 eV break DNA bonds through a 

resonance process called dissociative electron attachment (DEA) producing stable anions 

and radicals fragments.75 Although this process induces DNA strand breaks, the chemical 

steps leading to the formation of the final DNA modification remain to be established. 

 One proposed mechanism to explain the mechanism of LEE-induced strand 

breaks in DNA which involves dissociative electron attachment is seen in Figure 1-5.66 It 

is believed that LEE are captured first by the π∗ orbital of the nucleobases in DNA (76)9 

followed by electron transfer to the π∗ orbital of the phosphate group resulting in the 

formation of transient molecular anions at the phosphate group (77), which dissociate via 

two possible pathways: Path A involves homolytical cleavage of the C-O σ bond at the 3' 

and/or 5' positions resulting in the formation of carbon-centered radicals 78 and 83, 

respectively along with the corresponding phosphorylated oligonucleotides 79 and 82 

(Figure 1-5), whereas path B involves homolytic cleavage of the P-O σ bond at the 3' 

and/or 5' positions resulting in the formation of phosphoryl radicals 81 and 84, 

respectively along with the corresponding alkoxyl anions 80 and 85 (Figure 1-5).66,4 It is 

believed that cleavage of the phosphodiester bond takes place primarily via C-O σ bond 
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cleavage as shown in pathway A. The formation of reactive intermediates 78 and 83 was 

confirmed through the identification of the dephosphorylated C3' sugar radical through 

electron spin resonance (ESR) studies of argon ion and γ- irradiated hydrated DNA.76 

Investigation of the reactivity and fate of this sugar radical intermediate will facilitate the 

elucidation of the structure of the final DNA lesions and establish the mechanism of 

DNA damage resulting from LEE. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-5: Proposed pathways for phosphodiester bond cleavage of DNA via LEE66  
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complicated due to the generation of multiple reactive intermediates (nucleobase and 

sugar radicals) through random attack at biopolymers.77 To facilitate the mechanistic 

investigation of DNA damage, reactive intermediates have been independently generated 

in a controlled manner at defined sites in DNA.38,78 This strategy has allowed for the 

elucidation of reaction mechanisms and uncovered reaction pathways while improving 

the overall understanding of biologically important chemistry.79,80,81  Independent 

generation of reactive intermediates involved in DNA damage facilitate separation of the 

chemical processes that generate this species from the effect of a damaging agent on the 

reactivity of the intermediate.82 The use of photolabile groups such as phenylselenyl83 or 

acyl groups36,84 to generate the radical of interest at specific sites has been very 

successfully applied to the generation of pyrimidine nucleobase84 radicals and sugar 

radicals at various positions in nucleosides20 and nucleotides.85 Acyl derivatives of 

modified nucleosides and oligonucleotides have been utilized as excellent radical 

precursors, undergoing Norrish Type I photocleavage processes at wavelengths above 

those that usually damage DNA. In Norrish Type I photocleavage, photoactivation of 

acyl groups (isopropyl, acetyl, or pivaloyl) result in excitation of electrons to the singlet 

state followed by bond scission at either side of the carbonyl group (Figure 1-6). 

Photocleavage of acyl derivatives of oligonucleotides (86) can undergo bond scission by 

two pathways: Path A, in which the homolytic cleavage occurs between the C-CO bond 

between ketone and 2'-deoxyribose moiety of the nucleotide resulting directly in 

formation of sugar radical 87 and acyl radical 88 fragment. Acyl radical 88 undergoes 

decarbonylation to deliver carbon monoxide (89) and a second alkyl radical (90).  In path 

B, homolytic cleavage of R-CO results in formation of the acyl sugar radical 91 and alkyl 
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radical 90. Compound 91 subsequently decarbonylate to release carbon monoxide 89 and 

sugar radical 87.86   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6: Norrish Type I photocleavage of oligonucleotide containing acyl groups  
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hand, methyl and isopropyl ketones were shown to produce side products and cause 

lower yields. The pivaloyl group has been used successfully to site-specifically generate 

the radical of interest at a predetermined position on the base and sugar moieties of 

nucleosides and oligonucleotides. Figure 1-7 shows examples of pivaloyl radical 

precursors (92-100) that have been used to efficiently generate nucleobase and sugar 

radicals in nucleosides and oligonucleotides.89,90,91,92 These radical precursors helped in 

the elucidation of mechanisms involved in the fate of radicals induced from IR. 
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Figure 1-7: Pivaloyl radical precursors designed to generate radicals at different positions 
in nucleosides and nucleotides 
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1.7 Relevance of the Investigation of the Oxidative Damage to C-5' 

ROS, with hydroxyl radical being one of the most reactive species, can abstract 

hydrogen atoms from the deoxyribose moiety of DNA causing the formation of sugar 

radicals that degrade frequently to strand breaks accompanied by end modified DNA 

fragments.17,53 Those fragments can degrade to small electrophilic fragments capable of 

reacting with cellular nucleophiles such as nucleobases and side chains of proteins 

forming DNA adducts and/or DNA-protein crosslinks. DNA adduct formation can be 

toxic, mutagenic, and carcinogenic. Therefore identification of adducts formed through 

2'-deoxyribose oxidation in DNA has the potential to reveal biomarkers suitable for early 

detection of many diseases with cancer being one of the most important. Biomarker 

discovery will aid in the early detection of cancer and its treatment.  

Several DNA adducts were found to form as a result of oxidative damage to the 

sugar moiety in DNA (Figure 1-8). The formation of these adducts were explained in the 

above sections. Oxidation at the C5' position of 2'-deoxyribose results in formation of 

strand breaks terminated with a 5'-aldehyde group (36).17,77 Degradation of this lesion 

results in formation of furfural (67), a compound known to form adducts with adenine to  

give kinetin (68).55,57 Investigation of the ability of 5'-aldehyde containing 

oligonucleotides and its degradation products 66 and 67 to form adducts with DNA at 

physiological conditions will be conducted. These investigations may reveal biomarkers 

to be used for early detection of diseases. 

Although  oxidative stress causeses damage to DNA components resulting in the 

formation of modified nucleobases and 2-deoxyribose lesions as seen above, but most of 

this damage can be repaired by DNA repair enzymes such as base excision repair 
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enzymes (BER) which can remove modified nucleotides including various types of 

abasic sites whereas bulkier lesions and cross-links are removed by nucleotide excesion 

repair enzymes (NER). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-8: DNA adducts derived from 2'-deoxyribose oxidation 
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2 CHAPTER TWO 

2.1 RESULTS and DISCUSSION: Synthesis and Photolysis of C3'-Modified 

Nucleosides 

 DNA damage caused by ionizing radiation and DNA damaging agents is a 

complex process involving the generation of multiple reactive intermediates through 

random attack at biopolymers.77 In order to overcome multiple radical formation and a 

lack of control over the site of radical generation, organic chemistry has been used to 

independently generate reactive intermediates in a controlled manner at defined sites in 

biopolymers.82 This approach has clarified reaction mechanisms and identified new DNA 

damage pathways.38,78 These studies often use photolabile groups such as phenylselenyl83 

or acyl groups36 to generate the radical of interest. Pivaloyl derivatives of modified 

nucleosides82,84 and oligonucleotides39,28 have been utilized as precursors for site-specific 

generation of nucleobase and sugar radicals. With the goal to investigate the fate of the 

C2',3'-dideoxy-C3'-thymidinyl radical in DNA, a proposed intermediate of DNA-LEE 

interactions,66 C2',3'-dideoxy-C3'-pivaloyl modified thymidines (101 and 103) were 

synthesized and their suitability as precursors of the C2',3'-dideoxy-C3'-thymidinyl 

radical (102) investigated (Figure 2-1). 
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Figure 2-1: Photochemical generation of C2',3'-dideoxy-C3'-thymidinyl radical (102) 
from precursors 101 and 103 

2.2 Design and Synthesis of Photochemical Precursors for the C2',3'-Dideoxy-C3'-

thymidinyl Radical (102). 

Designing efficient photoactive or photolabile radical precursors requires 

consideration of a set of factors. The stability of photolabile groups during synthesis, and 

the ability of these groups to generate the radical of interest upon exposure to ultraviolet 

(UV) light must be utilized. Norrish Type I photochemical reactions have proven to be 

very effective for generating DNA radicals at different positions at the monomer and 

polymer levels.38, 78, 84 The pivaloyl moiety was chosen as a photolabile group based upon 

its demonstrated successes in the generation of nucleoside-based radical intermediates.93-

90 The pivaloyl group has  a carbonyl moiety that absorbs light outside the range that 

usually damages DNA and subsequently undergoes Norrish Type I photocleavage. This 

photochemical process involves the generation of a tert-butyl and an acyl radical. The 

acyl radical subsequently undergoes decarbonylation to form a second alkyl radical. The 

tert-butyl radical is belived to diffuse away from the site of radical generation without 

participating in secondary reactions.45 To investigate the mechanistic pathway of DNA 

damage through the formation of the C2',3'-dideoxy-C3'-thymidinyl radical (102), α- and 
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β-C2',3'-dideoxy-C3'-pivaloylthymidines (101 and 103) were synthesized. The isomeric 

precursors were synthesized to investigate the effect of the stereochemistry of the C3'-

radical precursors on product formation.  

 The synthesis β-C2',3'-dideoxy-C3'-pivaloylthymidine (101) started with the 

conversion of commercially available thymidine (104) to C3'-methylene thymidine (107) 

according to published literature procedures (Scheme 2.1).94  

 

 

 

 

 

 

 

 

Scheme  2.1: Synthesis of compound 10794 
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the 5'-hydroxyl with THF/TFA/H2O (8:1:1) afforded nucleoside 101 in 91% yield. 

(Scheme 2.2).95   

 

 

 

 

 

 

 

 

 

 

 

 

Scheme  2.2: Synthesis of β-C2',3'-dideoxy-C3'-pivaloylthymidine 10195 
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C5' bulky protecting group that stericly blocks the top face of the nucleoside forcing the 

incoming styryl group to approach from the least hindered α-face of the C3'-radical.                                                                                                                  

 

 

 

 

 

 

 

Scheme  2.3: Synthesis of compound 11596,97 

 Conversion of compound 115 to tert-butyl alcohol 116 as a diasteromeric mixture 

employing the same synthetic strategic as used in the case of the β-isomer proceeded in 

low yield (13%). Extending the reaction time to 8 hours, however increased the yield to 

30%. The lower yield of this reaction compared to the same reaction for the β-isomer 

may be due to the presence of the bulky 5'-tert-butydiphenylsilyl protecting which 

decreases the reactivity of the formyl group to nucleophilic addition. Oxidation of 116 

using the Dess-Martin periodinane delivered the desired ketone (117) in 100% yield. 

Removal of the TBDPS with TBAF resulted in the formation of α-isomer 103 in 44% 

yield (Scheme 2.4).95 The absolute configuration of these substrates was confirmed 

through Nuclear Overhauser Effect Spectroscopy (NOESY NMR) analysis. In NOESY 

experiments the correlation between nuclei that are physically close to each other in 

space regardless of whether there is a bond between them are detected. Thus, atoms that 

O

OH

HO N

NH

O

O

O

PhOCSO

TBDPSO N

NH

O

O
O

OH

TBDPSO N

NH

O

O

O
TBDPSO N

NH

O

O

Ph

TBDPSCl, DMAP

Pyridine

76%

O-phenylchlorothionoformate

pyridine, CH2Cl2,

4 oC (overnight)

 99%

!-tributylstannylstyrene

AIBN, Benzene

37%

104 112 113

114

O
TBDPSO N

NH

O

O

H

OsO4, NMO, H2O

1,4-dioxane, NaIO4, rt

70%
115

O



 39 

are in close proximity to each other display an NOE effect. In our experiments, a strong 

NOE effect between the 3'-H, 4'-H and 2'-H were used to determine the absolute 

configuration of these modified substrates. Spectral  data for (108-111) and (115-103) is 

available in (Figure 1-14, Appendix C), and NOESY spectra is available in supporting 

information of the cited reference.95 

 

 

 

 

 

 

 

 

 

Scheme  2.4: Synthesis of α-C2',3'-dideoxy-C3'-pivaloylthymidine (103)95 
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anaerobic conditions and in the presence of different hydrogen atom donors was 

explored. 

2.3.1  Photochemical Generation of the C2',3'-Dideoxy-C3' Radical in the Presence of 

tri-nButyltin Hydride. 

 Initial photolysis experiments were carried out in order to determine whether the 

C2',3'-dideoxy-α-C3'-pivaloylthymidine (103) and C2',3'-dideoxy-β-C3'-

pivaloylthymidine (101) are capable of generating the C2',3'-dideoxy-C3'-thymidinyl 

radical (102). Their efficiencies as radical precursors were determined through trapping 

of 102 with a hydrogen atom donor. The formation of reduction product 118 provides 

proof for the suitability of 101 and 103 as precursors of the C2',3'-dideoxy-C3'-

thymidinyl radical (102) Figure 2-2. 
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Figure 2-2: Strategic approach to determine the feasibility of 101 and 103 as 
photochemical precursors of the C2',3'-dideoxy-C3'-thymidinyl radical  

Photolysis of 103 (1 mM) was performed, using a 500 W high pressure mercury 

arc lamp fitted with an IR filter, focusing lens, and 320 nm cutoff filter, in 1:1 

acetonitrile/water containing excess tri-nbutyltin hydride (Scheme 2.5).  

  

  

 

 

Scheme  2.5: Photochemical generation of the C2',3'-dideoxy-C3'-thymidinyl radical 
(102) from 103 in the presence of tri-nbutyltin hydride 
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at 254 nm. The products were isolated and identified by electrospray ionization mass 

spectrometry (ESI-MS) and by comparison with authentic samples. Figure 2-3 shows the 

reversed-phase HPLC chromatogram of the crude photolysate (green), the control (red), 

and the standards (blue). Irradiation of 103 under the above conditions resulted in 62% 

conversion of 103 to reduction product 118 as the sole product. The formation of the 

reduction product indicates that 103 is a viable precursor of radical 102. In order to 

confirm formation of the reduction product, a standard was synthesized95 and injected 

along with the precursor 103 and their retention times were compared to the photolysate 

(blue). In addition, the identities of photoproduct 118 and precursor 103 were confirmed 

with ESI-MS. The mass spectrum shows a molecular weight of 249.2 m/z corresponding 

to the sodium adduct of 118 and a molecular weight of 333.4 m/z corresponding to the 

sodium adduct of 103 (Appendix A, Figure 1 and 2, respectively). A control experiment 

was done in which the precursor (103) was prepared as described with the exclusion of 

exposure to UV light. From the HPLC chromatogram, we see only the presence of 103 

indicating the formation of the reduction product in the photolysate results only from 

trapping of 102 with a hydrogen atom confirming the viability of 103 as a precursor of 

102. 
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Figure 2-3: Reversed-phase HPLC analyses of the photolysate resulting from photolysis 
of 103 (green), Controls (red), Standard 118 along with radical precursors 103 (blue) 
were injected separately 
 

In contrast, β-C3'-pivaloylthymidine (101) was photolyzed under the same 

conditions as used for α-precursor 103 (Scheme 2.6). 

 

 

 

 

Scheme  2.6: Product identification from photochemical generation of the C2',3'-dideoxy-
C3'-thymidinyl radical (102) from 101 in 1:1 acetonitrile/water in the presence of tri-
nbutyltin hydride 
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and 13.740 min were collected together and concentrated. Analysis by MALDI-ToF MS 

indicated m/z values of 249.092 and 265.058 corresponding to the monoisotopic masses 

of the sodium and potassium adducts of 118, respectively, and a monoisotopic mass of 

277.090 corresponding to the sodium adduct of aldehyde 119 (Appendix A, Figure 3). 

Aldehyde 119 is a side product resulting from homolytic cleavage of the tert-butyl-acyl 

bond followed by subsequent trapping with tri-nbutyltin hydride. This implies that there 

is competition between trapping of the acyl radical and liberation of carbon monoxide to 

generate the C2',3'-dideoxy-C3'-thymidinyl radical (102). In addition to MALDI-ToF 

analysis, the retention time of the aldehyde was compared to that of independently 

synthesized aldehyde (119) and both were identical. The major component of the mixture 

eluting at 14.860 min could not be analyzed by either ESI-MS or MALDI-ToF MS. 

Analysis of fractions eluting at 9.900 and 12.787 min with MALDI-ToF also failed. The 

fraction eluting at 20.533 min was confirmed to be the precursor 101 by MALDI-ToF 

MS (333.151 and 349.114 monoisotopic masses of sodium and potassium adducts, 

respectively (Appendix A, Figure 4). 
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Figure 2-4: Reversed-phase HPLC chromatogram of the photolysate resulting from 
photolysis of 101 (1 mM) in 1:1 acetonitrile/water in the presence tri-nbutyltin Hydride 

Since the photolysis of the β-C3'-pivaloylthymidine 101 in 1:1 CH3CN/H2O did 

not afford the reduction product as the major product, the photolysis solvent was changed 

to absolute acetonitrile, as a polar aprotic organic solvent, to determine if elimination of 

solute-solvent hydrogen bonding would have any effect on product distribution. 

Photolysis of β-C3'-pivaloylthymidine 101 was performed in acetonitrile containing an 

excess of tri-nbutyltin hydride for 1 h at 15 ºC after degassing with argon for 20 minutes 

(Scheme 2.7).  

 

 

 

Scheme  2.7: Photochemical generation of the C2',3'-dideoxy-C3'-acylthymidinyl radical 
(120) from 101 in acetonitrile in the presence of tri-nbutyltin hydride 
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The crude sample was analyzed by reversed-phase HPLC (Figure 2-5). The 

chromatogram shows the presence of fractions eluting at 13.887 and 20.593 min which 

were collected, concentrated, and analyzed by MALDI-ToF MS. The MALDI data shows 

monoisotopic masses equal to 255.235 and 277.073 which corresponds to the hydrogen 

and sodium adducts of aldehyde (119), respectively and a monoisotopic mass of 333.109 

which corresponds to the sodium adduct of recovered starting material 101, the potassium 

adduct of 101 was also observed (m/z 349.080) (Appendix A, Figure 5 and 6, 

respectively). This result indicates that acetonitrile as solvent makes trapping of the acyl 

radical (120) by a hydrogen atom faster than decarbonylation. This may be due to the 

formation of a hydrogen bond between the oxygen of the acyl group and the hydrogen of 

the 5'-hydroxyl group forming a seven member ring causing the decarbonylation to be 

slow and the trapping with hydrogen atom donor faster. Additionally, it was reported that 

decarbonylation of acyl radicals decreases with increasing solvent polarity due to a 

decrease in the dipole moment during the bond scission process. This causes the 

exothermicity of the cleavage to decrease. Thus, the activation energy increases which 

cause slower decarbonylation.98   
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Figure 2-5: Reversed-phase HPLC chromatogram of the photolysate resulting from 
photolysis of 101 (1 mM) in acetonitrile in the presence tri-nbutyltin hydride 

 Since acetonitrile resulted in acyl radical trapping, we investigated the 

photochemical reactivity of 101 in the presence of a polar protic solvent. Photolysis of β-

C3'-pivaloylthymidine (101) was performed in water with 0.1 % acetonitrile containing 

an excess tri-nbutyltin hydride for 1 h at 15 ºC after degassing with argon for 20 minutes 

(Scheme 2.8). Additionally, the same experiment was performed in methanol with 0.1 % 

acetonitrile containing an excess tri-nbutyltin hydride for 1 h at 15 ºC after degassing 

with argon for 20 minutes (Scheme 2.9). 

 

 

 

 

Scheme  2.8: Photochemical generation of the C2',3'-dideoxy-C3'-thymidinyl radical 
(102) from 101 in water in the presence of tri-nbutyltin hydride 
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Scheme  2.9: Photochemical generation of the C2',3'-dideoxy-C3'-acylthymidinyl radical 
(120) from 101 in methanol in the presence of tri-nbutyltin hydride 

The crude sample from the photolysis in water was analyzed as described above 

(Figure 2-6). The chromatograph shows no signs of reduction product 118. The 

chromatograph shows the presence of components at 9.967, 14.987, and 20.587 minutes, 

which were collected, concentrated, and analyzed by MALDI-ToF MS. Unfortunately, 

compounds eluting at 9.967 and 14.987 min were not identified using this technique. A 

substance eluting at 20.587 min gave a monoisotopic mass of 333.161 which corresponds 

to the sodium adduct of starting material 101 (Appendix A, Figure 7). 

 

 

Figure 2-6: Reversed-phase HPLC chromatogram of the photolysate resulting from 
photolysis of 101 (1 mM) in water in the presence tri-nbutyltin hydride 
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In contrast, the analysis of the photolysate in methanol indicated the presence of a 

major component at 13.673 min, which was determined to be aldehyde 119 (Figure 2-7). 

These results indicate that both protic and aprotic polar solvents do not facilitate the 

generation of the C2',3'-Dideoxy-C3'-thymidinyl Radical (102) from precursor 101. We 

conclude that organic polar solvents facilitate the trapping of the acyl radical generating 

aldehyde 119 and inorganic solvents result in formation of unidentified products. In the 

case of the photolysis of 101 in water, the unidentified products may be the result of the 

involvement of the Norrish Type II instead of Type I photocleavage in which the excited 

carbonyl compound undergoes intramolecular abstraction of a γ-hydrogen to produce a 

1,4-biradical as a primary photoproduct 121, followed by either intramolecular 

recombination of the two radicals to form cyclic compound 122 or fragmentation to form 

123 which may undergo subsequent degradation to form 124 and 39 (Figure 2-8).  

 

Figure 2-7: Reversed-phase HPLC chromatogram of the photolysate resulting from 
photolysis of 101 (1 mM) in methanol in the presence tri-nbutyltin hydride 
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Figure 2-8: Proposed mechanism for Norrish Type II photocleavage for 101 

Based on the results obtained from the photolysis of both C2',3'-dideoxy-α-C3'-

pivaloylthymidine (103) and C2',3'-dideoxy-β-C3'-pivaloylthymidine (101) in the 

presence of a strong hydrogen atom donor, we conclude that precursor 103 is suitable to 

generate the C2',3'-dideoxy-C3'-thymidinyl Radical (102). In order to fully evaluate these 

precursors, we examined their photochemical conversion in the presence of the more 

biologically relevant hydrogen atom donor glutathione (GSH). 

2.3.2 Photochemical Generation of the C2',3'-Dideoxy-C3'-Radical in the Presence of 

Glutathione. 

Glutathione is a reducing agent produced by cells as a defense mechanism against 

radicals. The physiological concentration of GSH in cells is 6 mM.99 Therefore photolysis 

of precursor 103 (1 mM) in 1:1 acetonitrile/water in the presence of 6 mM GSH as a 

hydrogen atom donor (Scheme 2.10).  
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Scheme  2.10: Photochemical generation of the C2',3'-dideoxy-C3'-thymidinyl radical 
(102) from 103 in 1:1 acetonitrile/water in the presence of GSH 

The crude sample was analyzed directly by HPLC and MALDI-ToF MS as 

described above (Figure 2-9). The chromatogram shows the presence of substances 

eluting at 3.973, 6.647, 8.560, 9.733, 10.367, 12.320, 13.740, and 20.327 minutes. The 

compound with a retention time of 3.973 min corresponds to the sodium adduct of GSH. 

Compounds eluting at 6.647, 9.733, 10.367, 12.320 min could not be identified. The 

component eluting at 8.560 min corresponds to thymine (23). The component eluting at 

13.740 min gives monoisotopic masses of 249.085 and 265.059 corresponding to the 

sodium and potassium adducts of reduction product 118, respectively (Appendix A, 

Figure 8) and that at 20.327 min gives monoisotopic masses of 333.153 and 349.125 

corresponding to the sodium and potassium adducts of starting material 103 (Appendix 

A, Figure 9). 
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Figure 2-9: Reversed-phase HPLC chromatogram of the photolysate resulting from 
photolysis of 103 (1 mM) in 1:1 acetonitrile/water in the presence 6 mM GSH 

In contrast the photolysis of precursor 101 (1 mM) was carried out using the same 

methodology as described for 103 (Scheme 2.11). 

  

 

Scheme  2.11: Photochemical generation of the C2',3'-dideoxy-C3'-acylthymidinyl 
radical (120) from 101 in 1:1 acetonitrile/water in the presence of GSH 
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Figure 2-10: Reversed-phase HPLC chromatogram of the photolysate resulting from 
photolysis of 101 (1 mM) in 1:1 acetonitrile/water in the presence 6 mM GSH 

2.3.3 Photochemical Generation of the C2',3'-Dideoxy-C3'-Radical in the Absence of 

Hydrogen Atom Donor. 

Photolysis of both 103 and 101 was performed using the same method as 

described above except no hydrogen atom donor was added. The crude photolysates were 

injected without any workup and the photoproducts were detected at 254 nm (Figure 2-

11 and 2-12, respectively). 

 

 

Figure 2-11: Reversed-phase HPLC chromatogram of the photolysate resulting from 
photolysis of 103 (1 mM) in 1:1 acetonitrile/water in the absence of hydrogen atom donor 
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The analysis of the crude photolysate 103 (Figure 2-11) indicated the formation 

of the reduction product 118 (13.753 min) (Appendix A, Figure 11, 12), C2',3'-

didehydro-2',3'-dideoxythymidine (125) (12.927 min) (Appendix A, Figure 13, 14) and 

thymine (23) (8.720 min) plus other unidentified peaks (Scheme 2.12).  

 

 

Scheme  2.12: Product identification from photochemical generation of the C2',3'-
dideoxy-C3'-thymidinyl radical (102) from 103 in 1:1 acetonitrile/water in the absence of 
hydrogen atom donor 
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In conclusion, photochemical generation of the C2',3'-dideoxy-C3'-

thymidinylradical (102) from β-C2',3'-dideoxy-C3'-pivaloylthymidine 101 and α-C2',3'-

dideoxy-C3'-pivaloylthymidine 103 precursors were investigated under different 

conditions and based on the results obtained, precursor 103 was found to generate the 

reduction product 118 under all conditions. In the absence of a hydrogen atom donor the 

formation of C2',3'-didehydro-2',3'-dideoxythymidine (125) was detected which indicates 

a radical disproportionation mechanism between two alkyl radicals of either the C2',3'-

dideoxythymidinyl radical 102 and tert-butyl radical or the two C2',3'-dideoxythymidinyl 

radicals to generate compounds 118 and 125 (Scheme 2.13 and 2.14, respectively).84  

 

 

 

 

 

 

 

 

 

 

 

Scheme  2.13: Disproportionation between the C2',3'-dideoxy-C3'-thymidinyl radical 
(102) and tert-butyl radical, a proposed mechanism for formation of the reduction 
product 118 and the unsaturated product 125 in the absence of a hydrogen atom donor 
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Scheme  2.14: Disproportionation between the C2',3'-dideoxy-C3'-thymidinyl radical 
(102), a proposed mechanism for formation of the reduction product 118 and the 
unsaturated product 125 in the absence of a hydrogen atom donor 
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3 CHAPTER THREE: 

3.1  Results and Discussion: Investigation of the 5'-Aldehyde Lesion 

Oxidative damage to DNA caused by the indirect effect of ionizing radiation leads 

to the formation of single and double strand breaks.3 At sites of strand cleavage, oxidized 

electrophilic fragments17 are formed that are capable of reacting with local nucleophiles 

to form adducts.40,58,48 Oxidation of 2-deoxyribose at the 5'-position in DNA leads to the 

formation of strand breaks containing 3'-phosphate (11)  and 5'-aldehyde residues (36) 

under aerobic conditions. Oligonucleotides containing a 5'-aldehyde moiety such as 36 

are unstable and are proposed to undergo β-elimination to form electrophilic fragment 66 

followed by loss of the nucleobase 23 to deliver the aromatic compound furfural and free 

base (67, Scheme 1.10)56 as shown in chapter one. It was shown that furfural can form an 

adduct with adenine in DNA which is undergoes subsequent deglycosylation to deliver 

kinetin (Scheme 1.11).100 With the goal to investigate the stability and reactivity of 

oligonucleotides containing a 5'-aldehyde lesion, and its degradation products, fragments 

believed to be produced upon C5'-oxidation, and oligonucleotides containing the 5'-

aldehyde moiety were independently synthesized.  
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3.2 Overview of DNA synthesis 

Oligonucleotides were synthesized using standard automated solid phase 

techniques. Two types of chemistries are employed in automated DNA synthesis, the 

phosphoramidite and H-phosphonate methods. Automated DNA synthesis is a cyclic, 

stepwise process carried out by the addition of nucleotide residues to the 5'-terminus of 

the growing chain until the desired sequence is assembled. The first step of the synthetic 

cycle is treatment of the derivatized solid support (126) with acid to remove the DMT 

group to yield the 5'-hydroxyl nucleotide (127, step 1, Figure 3-1). The next step is 

coupling the free 5'-hydroxyl group of 127 with the incoming 5'-protected 3'-

phosphoramidite (128) using an activator such as tetrazole or 0.25 M 5-ethylthio-1H-

tetrazole (step 2, Figure 3-1). The phosphite triester linkage (129) usually carries a 

protecting group that prevents any side reactions that could result in branched oligomers, 

which would interfere with coupling yields. A capping step is introduced following the 

coupling reaction to terminate any chains that did not couple (130); therefore it is 

designed to minimize the presence of oligomeric impurities and facilitate the purification 

of the final product (step 3, Figure 3-1). Finally, the phosphite triester linkage in 129 is 

oxidized to a stable phosphate triester (132) using iodine as an oxidizing agent and water 

as the oxygen donor, producing a chain that has been lengthened by one nucleotide 132 

(step 4, Figure 3-1). The 5'-end protecting group of the added nucleotide is then 

removed, and the cycle is repeated until the desired length is achieved. Final deprotection 

of the bases and the phosphate groups and cleavage of the oligonucleotides from the solid 

support liberates the desired oligonucleotide with a DMTr group on its 5'-end 133 (step 5, 

Figure 3-1).  



 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Steps involved in solid-phase oligonucleotide synthesis 
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3.3 Oligonucleotides Synthesis 

Syntheses of standard oligonucleotides were carried out using the 

phosphoramidite method as described in Figure 3-1. Modified oligonucleotides were 

partially synthesized with the phosphoramidite method, followed by manual coupling of 

the 5'-modified nucleoside using H-phosphonate chemistry. The feasibility of this 

methodology for incorporation of modified nucleosides into DNA oligomers has been 

demonstrated previously in our laboratory employing modified 3'-H-phosphonate 

derivatives.101 This approach allows the use of two types of chemistries in one synthesis 

providing the flexibility needed for optimization of the synthesis of modified 

oligonucleotides. 

3.3.1 Synthesis of 5'-Modified Thymidine Building Blocks for Oligonucleotide 

Synthesis 

Oligonucleotides containing 5'-aldehyde nucleosides at their 5'-termini are labile 

to alkaline conditions and temperatures normally used to deprotect oligonucleotides 

synthesized on solid supports; therefore, we introduce the aldehyde into the 

oligonucleotide postsynthetically through oxidative cleavage of the diol containing 

oligonucleotides. The 5'-aldehyde moiety in nucleotides is unstable due to its 

electrophilic character and acidic proton at the α-position to the carbonyl group. These 

factors contribute to the ease of β-elimination to form electrophilic fragment 66 followed 

by loss of the nucleobase (23) to deliver the aromatic compound furfural (67). This 

aldehyde is also reactive towards many nucleophiles, therefore, the need to mask its 

reactivity is required. This was achieved by introducing a diol at the 5'-position of the 

nucleoside. The synthesis of oligonucleotides containing a 5'-aldehyde was previously 
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reported by Greenberg102 through the oxidative cleavage of the oligonucleotides 

containing a 5'-diol. Greenberg introduced the 5'-diol nucleoside into oligonucleotides 

using phosphoramidite chemistry.102 In this work, the synthesis of the 5'-diol nucleoside 

was done based on methods developed by Greenberg and introduced into  

oligonucleotides was using the H-phosphonate method (135). We determined that the diol 

was compatibile with the use of this methodology (134). The synthesis of 3'-H-

phosphonate derivative 135 began with the synthesis of compound 134 in 92% using 

published literature protocols.102 Compound 134 was converted to 135 using a published 

procedure101 in which the phosphorus tris(imidazole) was generated in-situ by reacting 

phosphorus trichloride with imidazole and triethylamine in dichloromethane at -10 °C 

(Scheme 3.1). After the completion of the reaction, the product was hydrolyzed using 1 

M triethylammonium bicarbonate to give 135 in 34% yield as a diasteromeric mixture. 

Purity and identity were confirmed by NMR and MS (Appendix B, Figure 1-4). 

 

 

 

 

 

Scheme  3.1: Synthesis of building block 135 for DNA synthesis 
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semi-automated techniques in which the unmodified part of the oligomer was synthesized 

on an Applied Biosystems 391 DNA synthesizer using the phosphoramidite method on a 

0.2 µmol scale, followed by manual coupling of 5'-modified nucleoside 135 using H-

phosphonate chemistry. Scheme 3.2 shows the synthesis of modified oligonucleotide 138 

(TdCTATCTATCT, where Td = 134) as an example of the strategy used in the manual 

incorporation of H-phosphonate 135 into oligonucleotides. The 5'-hydroxyl of 136 was 

deprotected during automated synthesis in order to facilitate coupling with the incoming 

H-phosphonate. Modified nucleoside 135 was then incorporated into oligonucleotides 

using a manual syringe technique. Briefly, 135 was dissolved in a mixture of 

acetonitrile/pyridine (1:1) to a final concentration of 0.1 M. The solution was transferred 

into a 1 mL syringe purged with argon. In another purged syringe was placed 5 µL of 

freshly distilled pivaloyl chloride in 305 µL of acetonitrile/pyridine (1:1). Each syringe 

was then attached to either end of the CPG column containing the polymer-bound 

unmodified oligomer 136. 
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Scheme  3.2: Incorporation of 135 into oligonucleotide using a manual coupling strategy 
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138. Purity and identity of all oligonucleotides was confirmed by analytical ion-exchange 

HPLC (Figure 3-2) and MALDI-MS (Figure 3-3) respectively. 

 

Figure 3-2: Ion-exchange HPLC chromatogram of modified oligonucleotide 138  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: MALDI-ToF MS of modified oligonucleotide 138 
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Attempts to use 1-Adamantanecarbonyl chloride as an activator in manual 

coupling failed to incorporate modified nucleoside 135 into oligonucleotides, which may 

be due to the bulkiness of this activator and the presence of bulky groups on the 5' end of 

135.  

Modified oligonucleotides with different base context were synthesized and 

analyzed by analytical ion-exchange HPLC and MALDI-ToF MS (Table 3.1) (Appendix 

B, Figure 5-14). Quantification of these oligonucleotides was performed using UV 

absorbance (λmax = 260 nm). Collectively, the results from these analyses confirmed the 

formation of the desired modified oligonucleotides with high purity and high coupling 

yields.  

Table 3.1: Modified oligonucleotides containing diol and MALDI-ToF analyses 

Sequence # Sequences Calculated [M+H]+ Measured [M+H]+ nmole 

138 TdCTATCTATCT 3286.588 3286.607 202 

139 TdATCTCTCTCT 3262.577 3262.485 214 

140 TdGTCTCTCTCT 3278.572 3278.403 202 

141 TdATCTCTGTCT 3302.583 3302.449 215 

142 TdTTCTCTCTCT 3253.565 3253.461 213 

143 TdCTCTCTCTCT 3238.566 3238.286 230 

 

3.3.3 Synthesis of Modified Oligonucleotides Containing a 5'-Aldehyde Lesion (144) 

The vicinal diol at the 5'-terminus in oligonucleotide 138 was converted to 

aldehyde 144 via oxidative cleavage using sodium periodate103 (Scheme 3.3). The 5'-

aldehye containing oligomer was isolated by desalting using a G-25 sephadex column. 
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Analyses were performed using analytical ion-exchange HPLC (Figure 3-4) and 

MALDI-ToF MS (Figure 3-5). The product was quantified using UV absorbance 

measurements at λmax  = 260 nm.  

 

 

 

Scheme  3.3: Synthesis of 5'-aldehyde containing oligomer 144 

 

Figure 3-4: Ion-exchange HPLC chromatogram of 5'-aldehyde containing oligomer 144  
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Figure 3-5: MALDI-ToF MS of 5'-aldehyde containing oligomer 144 
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Scheme  3.4: Decomposition of 144 to 145 
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Figure 3-6: Ion-exchange HPLC chromatogram of 5'-aldehyde containing oligomer 144 
after 96 hrs at pH 7.4 and 37 °C 
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3.4 Synthesis of the Nucleoside Resulting from β-Elimination of 5'-Aldehyde 

Containing Oligomers   

Oligonucleotides containing 5'-aldehyde moiety 36 (Scheme 1.10) are unstable 

and can undergo β-elimination to form highly reactive electrophilic fragments 3',4'-

didehydro-2',3'-dideoxy-5'-oxothymidine (66), followed by loss of nucleobase (23) to 

deliver aromatic compound furfural (67, Scheme 1.10) under both basic and acidic 

conditions. Compound 66 was synthesized to investigate its stability and reactivity under 

physiological conditions.  

 

 

 

 

 

 

Scheme 3.3.5: Mechanism for the decomposition of 36 to 67 

3.4.1 Synthesis of 3',4'-Didehydro-2',3'-dideoxy-5'-oxothymidine (66) 

The synthesis of 66 started with the conversion of commercially available 

thymidine (104) to 5'-O-tert-butyldimethylsilyl-3'-O-benzoyl-thymidine (146)104-105 

according to published literature procedures. Although compound 146 was previously 

synthesized, full characterization was not reported. Compound 147 is also known, 

however the synthesis was reported through regioselective acylation of thymidine (104) 

using an enzymatic reaction in the presence of an oxime ester. In our approach, the 

deprotection of the 5'-hydroxyl was done using a modified published literature protocol104 

O

O H

66 67

O

NO H

NH

O

O

O

PO

OR

O

8
N
H

NH

O

O

23

NH

O

ON

O

O

PO

OR

O

O

36

H

H

H

B
B

H-B



 70 

in which THF/TFA/H2O was used to afford 147 in 95% yield compared to the reported 

yield of 59%. The reaction was over night as compared to 72 hours.106 Oxidation of 

primary alcohol 147 with the Dess-Martin Reagent afforded 3'-O-benzoyl-5'-

oxothymidine (148) which was used directly in the next reaction. Subsequent benzoyloxy 

elimination leading to 66 was performed under mildly basic conditions by treatment of 

148 with 4 molar equivalents of triethylamine (TEA) at room temperature to afford 66 in 

21% yield. The lower yield is due to the low solubility of 147 in solvents used for the 

Dess-Martin reaction and the fast elimination of thymine when treating 148 with TEA 

(Scheme 3.5). Compound 148 was obtained in the literature using a modified Moffat 

procedure in higher yield.107 However, due to the convenience  of using the Dess-Martin 

reagent, the reaction was accomplished using this reagent. Purity and identity were 

confirmed by NMR and ESI-MS, respectively (Appendix B, Figure 15-23). 

 

 

 

 

 

 

 

 

Scheme  3.6: Synthesis of 3',4'-didehydro-2',3'-dideoxy-5'-oxothymidine (66) 
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3.4.1.1 Stability of 3',4'-Didehydro-2',3'-dideoxy-5'-oxothymidine (66)  

Modified nucleoside 66 was incubated in 100 mM phosphate buffer (pH = 7.4) at 

37 °C (Figure 3-7). The decomposition of 66 to furfural and thymine was monitored by 

analytical reversed-phase HPLC chromatography (Figure 3-8). 

 

 

 

 

 

 

 

Figure 3-7: Incubation of 66 in 100 mM phosphate buffer pH = 7.4 at 37 °C  
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compared to the elution times of authentic samples. The half-life of 66 was found to be 

13 hours based on the amount of 66 recovered (Figure 3-9) 
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Figure 3-8: Reversed-phase HPLC chromatogram of incubation of 66 in 100 mM 
phosphate buffer pH = 7.4 at 37 °C at 12 hours  

 

Figure 3-9: Incubation of 66 in 100 mM phosphate buffer pH = 7.4 at 37 °C  
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collected and analyzed by MALDI-ToF or ESI MS. MALDI data from compounds 

eluting at 3.320 min shows monoisotopic masses equal to 308.108 and 346.048 which 

corresponds to the protonated and sodium adducts of GSH, respectively (Figure 24, 

Appendix B), while the fraction eluting at 5.380 min has a monoisotopic mass of 127.038 

corresponding to protonated thymine (Figure 25, Appendix B). Unfortunately, all other 

fractions could not be identified by MALDI-ToF MS. The presence of glutathione 

accelerates the degradation of 66 and results in the formation of new compounds. 

Furfural (67) was not a major product although thymine release was observed. This may 

be due either to the formation of adducts between furfural and GSH or the formation of 

adducts between GSH and 66 that also facilitate thymine release. Figure 3-11 shows the 

consumption of more than 75% of 66 in 30 minutes.  

 

Figure 3-10: Reversed-phase HPLC chromatogram after incubation of 66 in 100 mM 
phosphate buffer pH = 7.4 at 37 °C in the presence of 6 mM GSH after 30 minutes  
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Figure 3-11: Incubation of 66 in 100 mM phosphate buffer pH = 7.4 at 37 °C in the 
presence of 6 mM GSH 

3.4.1.2 Reactivity of 3',4'-Didehydro-2',3'-dideoxy-5'-oxothymidine (66) in the Presence 
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Figure 3-12: Reversed-phase HPLC chromatogram after incubation of 66 in 100 mM 
phosphate buffer pH = 7.4 at 37 °C in the presence of excess deoxyadenosine for 3 hours  

 

 

Figure 3-13: Incubation of 66 in 100 mM phosphate buffer pH = 7.4 at 37 °C in the 
presence of excess dA 

 

3.4.1.3 Reactivity of 3',4'-Didehydro-2',3'-dideoxy-5'-oxothymidine (66) in the Presence 

of a dA Containing Oligonucleotide  

To investigate the reactivity of 66 towards adenine in oligonucleotides, the 

incubation of 66 in 100 mM phosphate buffer (pH = 7.4) at 37 °C in the presence of 

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

!" !*'" #" $" %" &" #+" $&" &+"

A
U

C
 m

A
U

*
m

in
 

Time (hour) 

3',4'-unsaturated thymidinal degradation in the presence of dA 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 25.0 

-57 

0 

100 

200 

253 

m
A

U
 

min 

5.380 
10.160 

11.273 

12.053 

WVL:278 nm 

O

N

NH

O

OO H

O

O H
NH

N
H

O

O

N

NN

N

NH2

O

OH

HO

23 67 66 

149 



 76 

excess unmodified oligonucleotide (150) was performed (Figure 3-14). An aliquot of the 

reaction mixture was analyzed by analytical reversed-phase HPLC (Figure 3-15). As was 

the case with dA (149),  the chromatogram shows the decomposition of 66 to furfural 

(67) and thymine (23). The formation of adducts was not observed. 

 

 

Figure 3-14: Incubation of 66 in 100 mM phosphate buffer pH = 7.4 at 37 °C in the 
presence of excess unmodified oligonucleotide 5'-TCTATCTATCT-3' 

 

Figure 3-15: Reversed-phase HPLC chromatogram after the incubation of 66 in 100 mM 
phosphate buffer pH = 7.4 at 37 °C in the presence of an excess of unmodified 
oligonucleotide (TCTATCTATCT) for 24 hours 
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kinetin (Scheme 1.11).100 To investigate the reactivity of furfural toward 2-

deoxyadenosine, incubation of furfural with dA was performrd under non-physiological 

(pH 2 and 50 °C) conditions to mimic the conditions for the proposed mechanism of 

kinetin formation,100 as well as under physiological conditions (pH 7.4 and 37 °C) to 

determine its reactivity toward 2-deoxyadenosine. 

3.5.1 Reactivity of Furfural (67) in the Presence of an Excess of dA at pH = 7.4 and 37 

°C 

To explore the reactivity of 67 toward 2-deoxyadenosine under physiological 

conditions, incubation of 67 in 100 mM phosphate buffer (pH=7.4) at 37 °C in the 

presence of excess deoxyadenosine (dA) (149) was performed. An aliquot of the reaction 

mixture were analyzed by analytical reversed-phase HPLC (Figure 3-16). The 

chromatogram shows no sign of adduct formation under these conditions. 

 

 

Figure 3-16: Reversed-phase HPLC chromatogram after incubation of 67 in 100 mM 
phosphate buffer pH = 7.4 at 37 °C in the presence of excess deoxyadenosine (dA) for 65 
hours  
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3.5.2 Reactivity of Furfural (67) in the Presence of Excess dA at pH = 2 and 37 °C 

To investigate the reactivity of 67 toward 2-deoxyadenosine under acidic 

conditions, 67 was incubated in 100 mM phosphate buffer (pH = 2.0) at 37 °C in the 

presence of excess deoxyadenosine (dA) (Figure 3-17). An aliquot of the reaction 

mixture were analyzed by analytical reversed-phase HPLC (Figure 3-18). The 

chromatogram shows, the deglycosylation of deoxyadenosine (149) resulting in the 

formation of adenine. The formation of adducts was not observed. The same result was 

obtained in the case of incubation of dA with an excess of furfural at the same pH of 2. 

Increasing the temperature of incubation from 37 °C to 50 °C did not yield to any adduct 

formation (Figure 3-19).  

 

 

 

Figure 3-17: Incubation of 23 in 100 mM phosphate buffer pH = 2.0 at 37 °C in the 
presence of excess deoxyadenosine (dA, 149) 

 

 

 

 

 

 

 

O

O H

67

+

N

NN

N

NH2

O

OH

HO

100 mM Phosphate buffer

pH = 2, 37 °C

N

NN
H

N

NH2

+

O

O H

67149 15



 79 

 

Figure 3-18: Reversed-phase HPLC chromatogram after incubation of 67 in 100 mM 
phosphate buffer pH = 2.0 at 37 °C in the presence of excess deoxyadenosine (dA) for 49 
hours  

 

 

Figure 3-19: Reversed-phase HPLC chromatogram after the incubation of 67 in 100 mM 
phosphate buffer pH = 2.0 at 50 °C in the presence of excess deoxyadenosine (dA) after 2 
hours  
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be under physiological conditions (pH 7.4 and 37 °C) 13 hours.  The presence of GSH 

has a great impact on the stability of 66 and resulted in the formation of new compounds 

that are still under investigation. 2-Deoxyadenosine accelerated the degradation of 66 to 

thymine and furfural with a half-life of 3 hours compared to 13 hours in the absence of 

dA. No adduct formation was observed in the incubation of 66 with unmodified 

oligonucleotides containing dA. Moreover, incubation of furfural with dA did not result 

in adduct formation. 
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4 CHAPTER FOUR 

4.1 Conclusion and Future Research Directions 

4.1.1 Synthesis and Photolysis of C3'-Modified Nucleosides 

Oxidative damage to DNA by IR induces mutagenesity, genotoxicity and cell 

death, which contributes to the development of many diseases with cancer being one of 

the most important. DNA damage has also been implicated in aging.17,108 IR produces 

large amounts of LEEs  with energy < 15 eV. These species have been established to 

cause SSBs and DSBs as well as base release.66 It was determined that LEEs break DNA 

bonds through a resonance process called dissociative electron attachment producing 

stable anions and radical fragments (Figure 1-5). One of the intermediates postulated to 

form is the C2',3'-dideoxy-C3'-thymidinyl radical (102). The goal of this work was to 

synthesize stable and efficient phtolabile radical precursors for the generation of the 

C2',3'-dideoxy-C3'-thymidinyl radical (102) to elucidate the mechanism involved in LEE 

induced DNA damage. In order to understand the mechanisms involved in LEE induced 

damage to DNA, the fate of 102 was determined through its independent generation and 

elucidation of the structures of final DNA damage products. To facilitate this 

investigation, site-specifically modified nucleosides containing acyl photolabile groups 

were synthesized and proven to selectively generate the reactive intermediate of interest 

in a controlled manner at defined sites.39,36
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The synthesis of α- and β-C2',3'-dideoxy-C3'-pivaloylthymidine (103 and 101, 

respectively) was successfully achieved employing organic chemistry. The efficiency of 

103 and 101 for the generation of C2',3'-dideoxy-C3'-thymidinyl radical (102) 

photochemically was investigated under anaerobic conditions using excess tri-nbutyltin 

hydride as a hydrogen atom donor. The formation of reduction product 118 provides 

proof for the suitability of 103 and 101 as precursors of the C2',3'-dideoxy-C3'-

thymidinyl radical (102). The results showed that when α-isomer 103 is photolyzed in the 

presence of excess tri-nbutyltin hydride the reduction product was obtained as the sole 

product, which indicates the suitability of this precursor for radical generation. On the 

other hand, photolysis of the β-isomer in the presence of excess tri-nbutyltin hydride did 

not generate the reduction product 118 but instead resulted in the formation of products 

that could not be identified using our present methods. Attempts of changing the solvents 

in the case of β-isomer 101 were made to determine if the solvent plays any role in 

product formation. When the photolysis was done in absolute acetonitrile, as a polar 

aprotic organic solvent, aldehyde 119 was observed indicating trapping of the acyl radical 

(120) with a hydrogen atom faster than liberating carbon monoxide, this is may be due to 

the formation of a hydrogen bond between the oxygen of the acyl group and the hydrogen 

of the 5'-hydroxyl group forming a seven membered ring causing the decarbonylation to 

be slow and the trapping with a hydrogen atom donor to be faster. A second attempt 

using methanol as a polar protic organic solvent was carried out, Aldehyde 119 was also 

the only product observed. This also can be explained in the same way as seen in the case 

of acetonitrile. Additionally, it was reported that decarbonylation of acyl radicals 

decreases with increasing solvent polarity due to a decrease in the dipole moment during 
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the bond scission process since the exothermicity of the cleavage decreases with 

increasing solvent polarity. Thus the activation energy increases which causes slower 

decarbonylation.98 Using water as a solvent for photolysis was examined and it resulted 

in formation of products that could not be identified which could be due to the 

involvement of a Norrish Type II reaction as seen in Figure 2-8. 

In order to fully evaluate these precursors, we examined their photochemical 

conversion in the presence of the more biologically relevant hydrogen atom donor 

glutathione (GSH). Photolysis of α-isomer 103 was performed in the presence of 6 mM 

GSH and resulted in the formation of reduction product 118 in addition to other products 

that could not be identified using our present methods. In contrast, photolysis of β-isomer 

101 in the presence of 6 mM GSH resulted in the formation of aldehyde 119 as the sole 

product. When the photolysis of both isomers was performed in the absence of a 

hydrogen atom donor, the α-isomer 103 resulted in formation of the reduction product 

118 and 2',3'-didehydro-2',3'-dideoxythymidine (125), which indicates the involvement of 

a radical disproportionation mechanism between two alkyl radicals. These radicals are 

either the C2',3'-dideoxy-C3'-thymidinyl radical (102)  and the tert-butyl radical or two 

C2',3'-dideoxy-C3'-thymidinyl radical (102) to generate compounds 118 and 125 

(Scheme 2.13 and 2.14, respectively). Additional products were formed such as free base 

and small amounts of unidentified products, but in case of the β-isomer 101 the 

photolysis resulted in formation of a very small amount of photoproducts that could not 

be identified. 

Collectively, photochemical generation of the C2',3'-dideoxy-C3'-

thymidinylradical (102) from β-C2',3'-dideoxy-C3'-pivaloylthymidine 101 and α-C2',3'-
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dideoxy-C3'-pivaloylthymidine 103 precursors were investigated under different 

conditions and based on the results obtained, precursor 103 was found to generate the 

reduction product 118 under all conditions. In the absence of a hydrogen atom donor the 

formation of C2',3'-didehydro-2',3'-dideoxythymidine (125) was detected which indicates 

the involvement of a radical disproportionation mechanism as explained. On the other 

hand precursor 101 was unable to generate the reduction product 118 under any 

conditions and resulted in the formation of products that could not identified using our 

present methods in addition to aldehyde 119 resulting from trapping of the acyl radical. 

Therefore, based on the results obtained precursor 103 will be used to investigate the fate 

of the C2',3'-dideoxy-C3'-thymidinyl radical (102) in oligonucleotides.  

In order to incorporate 103 into oligonucleotides, the phosphoramidite or the H-

phosphonate building block of α-C2',3'-dideoxy-C3'-pivaloylthymidine 103 will be 

synthesized and incorporated into DNA using automated reversed DNA synthesis in the 

case of the phosphoramidite building block, or semi-automated synthesis in the case of  

the H-phosphonate building block. In the case of the H-phosphonate monomer the 

unmodified portion of the oligonucleotides will be synthesized using automated reversed 

DNA synthesis. The identity and purity of both modified and unmodified 

oligonucleotides will be established using MALDI-ToF and IEX- and RP-HPLC. 

Quantification will be done using UV-Vis spectroscopy. The photochemical generation 

of the C2',3'-dideoxy-C3'-thymidinylradical (102) in oligonucleotides will be conducted 

under anaerobic and aerobic conditions in the presence of GSH at physiological 

conditions. The identification of the damage products will be performed using MALDI-
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ToF and IEX- and RP-HPLC. This will help elucidate the mechanistic pathway in which 

LEE induce DNA damage. 

Analysis of the unknown products could be carried out by LC-MS spectrometry 

which otherwise were difficult to be observed by ESI and MALDI MS techniques. 

Changing the photolysis conditions for the β-isomer 101 from neutral to  mild basic may 

result in the formation of the radical of interest 102. This prevents the formation of 

intramolecular hydrogen bonding between the acyl and the 5'-hydroxy groups that can 

helps in faster decarbonylation. 

4.1.2 5'-Oxidative Damage 

Oxidative damage to DNA caused by ROS leads to the formation of single and 

double strand breaks.3 Oxidation of 2-deoxyribose at the 5'-position in DNA leads to the 

formation of strand breaks containing 3'-phosphate (11) and 5'-aldehyde residues (36) 

under aerobic conditions. Oligonucleotides containing a 5'-aldehyde moiety such as 36 

are unstable and are proposed to undergo β-elimination to form electrophilic fragment 66 

followed by loss of the nucleobase 23 to deliver the aromatic compound furfural and free 

base (67, Scheme 1.10)56. With the goal to investigate the stability and reactivity of 

oligonucleotides containing a 5'-aldehyde lesion, and its degradation products, fragments 

believed to be produced upon C5'-oxidation, and oligonucleotides containing the 5'-

aldehyde moiety were independently synthesized. The synthesis of the H-phosponate of 

the modified 5'- nucleoside 135 was successfully achieved and used toward the synthesis 

of modified oligonucleotides (138-143) with high coupling yields. The 5'-diol containing 

oligonucleotides were successfully converted to the corresponding 5'-aldehyde through 

oxidative cleavage. Storage of the 5'-aldehyde containing oligonucleotide (144) at 4 °C 
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was stable for 10 days before β-elimination to form a 5'-phosphate oligonucleotide could 

be detected. The half-life of the 5'-aldehyde lesion in single-stranded DNA under 

physiological conditions (pH 7.4, 37 °C) was determined to be 96 hours which is 

agreement to what is reported in the literature102 for ternary complexes (100.7 h). The 

3',4'-didehydro-2',3'-dideoxy-5'-oxothymidine (66), a proposed product resulting from the 

β-elimination of the oligonucleotide containing 5'-aldehyde,  was successfully 

synthesized and the half-life of this lesion was determined to be under physiological 

conditions (pH 7.4 and 37 °C) 13 hours.  The presence of GSH has a great impact on the 

stability of 66 and resulted in the formation of new compounds that are still under 

investigation. 2-Deoxyadenosine accelerated the degradation of 66 to thymine and 

furfural with a half-life of 3 hours compared to 13 hours in the absence of dA. No adduct 

formation was observed in the incubation of 66 with unmodified oligonucleotides 

containing dA. Moreover, incubation of furfural with dA under physiological condition 

(pH 7.4 and 37 °C) did not result in adduct formation. Moreover, incubation of furfural 

with dA under (pH 2 and 37 °C) resulted in deglycosylation of dA. 

In order to investigate stability and reactivity of oligonucleotides containing a 5'-

aldehyde toward cellular nucleophile, incubation with GSH, nucleosides such as dA, dG, 

and dC as well as small DNAs and amino acids such as lysine and arginine and small 

peptides be investigated to determine adduct formation.  

In order to identify electrophilic fragment such as 66, we could try to use 

derivatization methods to convert the aldehyde to more stable compound that can be 

detected by MS or NMR techniques. For example, compound 66 can be reacted with 
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ethyl thiol in the similar way as was performed by stubbe to identify the 2-Methylene-

3(2H)-furanone109.  
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5 CHAPTER FIVE 

5.1 EXPERIMENTAL PROCEDURES 

 All experiments were performed with standard laboratory instruments under an 

argon atmosphere using oven-dried glassware where water and oxygen exclusion were 

necessary.  

5.2 Materials 

 All chemicals, reagents and solvents were purchased from the following 

commercial suppliers: Acros Organics, Sigma-Aldrich, EMD Chemicals, PHARMCO-

AAPER and Fisher Scientific, and used without further purification unless otherwise 

stated. Deuterated solvents for NMR were purchased from Cambridge Isotope 

Laboratories. For chromatographic separation, HPLC grade solvents were used. 

Deionized water was purified with a PURELAB® Ultra Water Purification System. 

Anhydrous THF was dried over activated alumina. Triethylammonium acetate buffer (1 

M) was purchased from Calbiochem. Pivaloyl chloride (Acros Organic) was distilled 

according to standard techniques. The Dess-Martin Reagent was synthesized according to 

published literature.110 β-tri-Butylstannylstyrene was synthesized according to published 

literature.111-112  

5.3 Structural Analysis 
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All synthesized products were characterized by NMR spectroscopy and mass 

spectrometry. 

5.3.1 NMR Spectroscopy 

5.3.1.1 1H-NMR 

 All 1H-NMR spectra were acquired on a Varian VXR-400, Varian Unity Inova-

600 NMR, or Bruker-Avance III-600 Nuclear Magnetic Resonance spectrometer in 

CDCl3, CD3CN, or DMSO. Chemical shifts are reported in parts per million downfield 

from tetramethylsilane (TMS) in CDCl3, residual CD3CN, or DMSO as internal 

references. Coupling constants (J) are reported in hertz (Hz). Multiplicity is as follows: s 

= singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet. The 

protons of the carbons of the furanose ring and the nucleobase thymine are designated as 

shown in Figure 5-1.  

 

 

 

 

Figure 5-1: The proton assignment of the deoxyribose sugar and the nucleobase moieties 
in thymidine  

5.3.1.2 13C-NMR 
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5.3.1.3 31P-NMR 

 31P NMR data was obtained on a Varian VXRS-400 Nuclear Magnetic Resonance 

spectrometer. All chemical shifts were reported in ppm relative to the external reference 

5% H3PO4 in CDCl3. The spectra are 1H-broadband-decoupled. 

5.3.1.4 1H-NOESY-NMR 

1H-NOESY NMR spectra were acquired on a Varian Unity Inova-600 Nuclear 

Magnetic Resonance spectrometer. 

5.3.2 Mass Spectrometry 

Mass spectrometric analyses of the synthesized products were performed using 

ESI and MALDI-ToF MS.  

5.3.2.1 ESI-MS 

 Mass spectra were performed on an Esquire electrospray ionization (ESI) mass 

spectrometer (Bruker Daltonics, Bremen, Germany) operated in the positive ion mode 

and equipped with a quadrupole ion-trap mass analyzer. The samples were dissoved in 

Methanol  to make final concentration of 0.1 µg/µL. The signals obtained correspond to 

the [M+H]+ or [M+Na]+ ions of the analyte. 

5.3.2.2 MALDI-ToF MS 

 MALDI-ToF MS analyses were conducted using a MALDI-TOF UltrafleXtreme 

(Bruker Daltonics, Billerica, MA) operating in  positive-ion, reflectron mode. Ions were 

formed by a pulsed UV laser beam, (Nd-YAG laser, wavelength 355 nm), with pulse 

duration of 1-5 ns. Spectra were recorded by accumulating 500-2500 shots per individual 

measurement. The pulse ion extraction delay was 100 ns. The acceleration voltage was 

varied from 22 to 25 kV. The samples were desalted either by reversed-phase HPLC or 
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by solid phase extraction using C18 ZipTipTM. Sample spotting procedures are as 

follows: 

 A: for small molecules, the matrix solution employed was 2,5-dihydroxybenzoic acid 

(DHB) (20 mg/mL in 30% acetonitrile: 0.1% TFA in H2O). The matrix (1 µL) was 

spotted on the MALDI plate. After evaporation to dryness, 1 µL of sample (1 µL each, 

≥100 pmole) was spotted on top of the matrix and let dry at room temperature. The 

signals obtained correspond to the [M+H]+ or [M+Na]+ ions of the analyte, and isotopic 

peaks were recorded as well.  

B: For oligonucleotides, samples, the matrix solution employed was composed of 90% of 

3-hydroxypicolinic acid (HPA) (50 mg/mL in 50% acetonitrile: H2O) and 10% of 

ammonium citrate (50 mg/mL in H2O). The matrix (1 µL) was spotted on the MALDI 

plate. After evaporation to dryness, 1 µL of sample (1 µL each, ≥30 pmole) was spotted 

on top of the matrix and let dry at room temperature. The signals obtained correspond to 

the [M+H]+ ions of the analyte, and isotopic peaks were recorded as well. Calibration was 

conducted before each measurement using external standards. For small molecules, the 

standard mass range was from 0-500 m/z. The reference mixture contained 1 µL of 10 

µM clonidine, 1 µL of 10 µM propranolol, 1 µL of 10 µM hexamethoxyphosphazene, 1 

µL of 10 µM papaverine, 1 µL of 10 µM verapamil, 10 µL of Electrospray tuning mix 

(Hewlett packard product # G2431A), and 26 µL of H2O. For oligonucleotides the 

standard mass range was from 1000-4000 Da. To calibrate the MALDI-Tof MS 

instrument in this mass range, calibration mixture (Bruker, oligonucleotide calibration 

standard low molecular weight) was used. 
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5.3.2.3 High Resolution Mass Spectrometry 

 High resolution mass spectrometry (HRMS) was performed on a Micromass Q-

ToF II mass spectrometer located at the Mass Spectrometry and Proteomics Facility, The 

Ohio State University. 

5.3.3 Chromatographic Methods 

5.3.3.1 Thin Layer Chromatography 

 Thin layer chromatography (TLC) was used to monitor all organic reactions, and 

to monitor the elution of compounds from flash chromatography. TLC was performed 

using Silicycle silica gel 60 F254 aluminum backed plates. Compound spots were 

visualized by UV light (254 nm) and stained with an anisaldehyde dip composed of the 

following: 180 mL of absolute ethanol, 10 mL concentrated sulfuric acid, 2 mL glacial 

acetic acid, and a few drops of p-anisaldehyde. 

5.3.3.2 Flash Chromatography 

 Purification of all modified nucleosides was performed using an automated flash 

chromatography system unless otherwise stated. Purification was performed on a Biotage 

SP4 chromatography system equipped with an in-line variable wavelength detector. The 

nucleoside products were detected at 254 nm and monitored at 260 nm. TLC was used to 

determine the purity of chromatography eluents, and fractions containing pure compound 

were combined and evaporated under reduced pressure using a Heidolph Collegiate 

Brinkmann rotary evaporator. 

5.3.3.3 HPLC 

 All high performance liquid chromatography (HPLC) analyses were performed on 

a Dionex Ultimate 3000 HPLC system equipped with an in-line variable wavelength 
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detector. Reversedd-phase HPLC was used in the analyses of the modified nucleoside in 

monomer and oligo experiments. The analyses include identification and quantification 

of the products. Two types of reversedd-phase columns were used:  

Column 1: Thermo Hypersil-Keystone BDS Hypersil C-18 column, 4.6 x 250 cm, 5 µm. 

Column 2: Agilent ZORBAX SB-C8 column, 4.6 x 250 cm, 5 µm.  

The solvent systems used were:  

Solvent A: 50 mM TEAA buffer pH = 7.0. 

Solvent B: Acetonitrile. 

Ion-exchange HPLC was used in the analyses of the modified oligonucleotides. 

The analytes are separated based on charge. In contrast to RP-HPLC, a n-1 resolution is 

obtained with this method. Ion-exchange column used: Dionex Pac PA-100 (13 µm), 4.6 

x 250 cm.  

The solvent systems used were:  

Solvent A: 25 mM sodium acetate in 5% acetonitrile, pH = 6.0. 

Solvent B: 25 mM sodium acetate in 5% acetonitrile, pH = 6.0, 1 M NaCl.  

5.3.4 Other Equipment and Devices 

Centrifuge - Thermo Electron Sorall Legend Micro21 centrifuge 

High vacuum pump – Edwards RV3 

pH meter – Fisher Accumet Basic AB15 

Pipettes- Eppendorf Series 2100 

Rotary evaporator – Heidolph Collegiate Brinkmann rotary evaporator 

Solvent purification system – Innovative Technology PS-MD-2 Pure Solvent system                        

SpeedVac concentrator – Thermo Electron Savant DNA120  
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Thermal mixer – Eppendorf Thermomixer 

Vortex mixer – Fisher Scientific                                                                 

5.4  Synthesis of Nucleoside Radical Precursors 

5.4.1 Synthesis of 3'-β-(pivaloyl)-3'-deoxythymidine (101) 

5.4.1.1 5'-O-(tert-Butyldimethylsilyl)-3'-deoxy-C-methylenethymidine (107): 

C3'-methylene thymidine was synthesized as reported by Wengel et al.94  

5.4.1.2 1-[(5-O-tert-Butyldimethylsilyl)-3-C-(hydroxymethyl)-2,3-dideoxy-b-D-threo-

pentofuranosyl]thymine (108): 

To a solution of 107 (0.94 g, 2.66 mmol) in anhydrous THF (5.4 mL) under 

nitrogen, was added BH3:1,4-oxathiane (0.33 mL of a 7.8 M solution in oxathiane, 2.87 

mmol) at room temperature. After cooling of this mixture to 0 °C a 2 M solution of 

NaOH (1.5 mL) was slowly added followed by the dropwise addition of 30% aqueous 

H2O2 (0.38 mL).  Stirring was continued for 1 h at room temperature.  The reaction 

mixture was poured into ice-water (68 mL) and extracted with diethylether (80 mL). The 

combined organic phase was washed with water (68 mL) and saturated aqueous NaHCO3 

(2 x 68 mL), dried (Na2SO4) and evaporated to dryness in vacuo.  The product was 

purified on a silica gel column (50:50 ethylacetate:pentane) to give 108 as a clear 

colorless oil.  Yield: 0.88 g (89%).  1H-NMR (CDCl3, 400 MHz) δ: 0.15 (6H, s, 

Si(CH3)2), 0.94 (9H, s, SiC(CH3)3), 1.81 (1H, m, 2'-Hβ), 1.93 (3H, s, CH3), 2.44 (1H, m, 

2'-Hα), 2.72 (1H, m, 3'-H), 3.34 (1H, t, J = 6.4 Hz, OH), 3.73-3.89 (3H, m, CH2OH, 5'-

H), 4.00 (1H, m, 5'-H), 4.16 (1H, m, 4'-H), 6.06 (1H, dd, J = 8.2, 6.2 Hz, 1'-H ), 7.48 (1H, 

s, 6-H), 9.44 (1H br s, NH). 13C (CDCl3, 100 MHz) δ: –5.3, 12.8, 18.4, 26.0, 34.0, 42.6, 
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61.8, 62.6, 79.8, 84.3, 111.0, 135.6, 150.8, 164.2. HRMS [M + H]+: calc. for 

C17H31O5N2Si 371.2002, found 371.2001. 

5.4.1.3 1-[(5-O-tert-Butyldimethylsilyl)-3-C-(formyl)-2,3-dideoxy-β-D-threo-

pentofuranosyl]thymine (109): 

A solution of 108 (0.83 g, 2.24 mmol) in CH2Cl2 (8 mL) was cannulated into a 

solution of Dess-Martin periodinane (1.43 g, 3.37 mmol) in anhydrous CH2Cl2 (16 mL) at 

0 °C.  After stirring overnight at room temperature, diethyl ether (70 mL) was added and 

the solution was poured slowly into a solution of saturated NaHCO3 (45 mL) containing 

Na2S2O3• 5H2O (5.56 g).  The organic layer was removed and the aqueous layer extracted 

with diethyl ether (95 mL).  The combined organic phase was washed with saturated 

NaHCO3 (95 mL) followed by H2O (95 mL), dried (Na2SO4) and evaporated to dryness 

in vacuo.  The product was isolated as a white amorphous solid.  Yield: 0.83 g (100%). 

1H-NMR (CDCl3, 600 MHz) δ: 0.10 (6H, s, Si(CH3)2), 0.91 (9H, s, SiC(CH3)3), 1.94 (3H, 

d, J = 1.2 Hz, CH3), 2.43 (2H, m,  2'-H), 3.27 (1H, m, 3'-H), 3.95 (2H, m, 5'-H), 4.40 (1H, 

m, 4'-H), 6.14 (1H, dd, J = 7.2, 6.60 Hz, 1'-H), 7.44 (1H, d, J = 1.2 Hz, 6-H), 8.27 (1H, br 

s, NH), 9.85 (1H, s, CHO). 13C (CDCl3, 150 MHz) δ: –5.5, 12.7, 18.3, 26.0, 31.4, 51.0, 

61.8, 80.3, 83.8, 111.4, 135.4, 150.9, 164.2, 199.5. HRMS [M + H]+: calc. for 

C17H29O5N2Si calc. 369.1846, found 369.1846. 

5.4.1.4 1-[(5-O-tert-Butyldimethylsilyl)-3-C-(2,2-dimethyl-1-hydroxypropyl)-2,3-

dideoxy-β-D-threo-pentofuranosyl]thymine (110): 

Cerium chloride was dried as described by Kamiya.113 To a suspension of dry 

CeCl3 (16.7 g, 44.8 mmol) in THF (105 mL) at –78 °C was added a 1.6 M solution of t-

butyllithium (28.0 ml, 44.8 mmol) in pentane.  This was allowed to stir for 1.5 h before a 
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solution of 109 (0.83 g, 2.24 mmol) in THF (41 mL) was added dropwise at the same 

temperature.  The reaction stirred at this temperature for 3.5 h, after which it was 

quenched by the addition of aqueous NH4Cl (200 mL) and allowed to warm to room 

temperature.  The product was then extracted with CH2Cl2 (6 x 250 mL), the organic 

layer dried over Na2SO4, and the solvent removed in vacuo.  The crude product was 

purified on a silica gel column (40% ethyl acetate in hexane) to give 110 as a 

diasteromeric mixture of a clear colorless oil. Yield: 0.37 g (67%). 1H-NMR (CDCl3, 400 

MHz) δ: 0.16 (6H, s), 0.94 (18H, 4s), 1.93 (3H, d, J = 1.2 Hz), 2.15 (1H, m), 2.27 (1H, 

m), 2.69 (1H, m), 3.47 (1H, d, J = 3.2), 3.60 (1H, d, J = 2.8 Hz), 3.90 (1H, m), 4.03 (2H, 

m), 6.08 (1H, dd, J = 9.0, 5.8 Hz), 7.50 (1H, d, J = 1.2 Hz), 8.8 (1H, br s). 13C (CDCl3, 

100 MHz) δ: -5.2, 12.8, 18.5, 26.0, 27.0, 31.5, 35.5, 40.8, 63.0, 75.9, 80.5, 83.9, 111.1, 

135.9, 150.8, 163.9. HRMS [M + H]+: calc. for C21H39O5N2Si 427.2628, found 427.2629. 

5.4.1.5 1-[(5-O-tert-Butyldimethylsilyl)-3-C-(2,2-dimethyl-1-oxopropyl)-2,3-dideoxy-β-

D-threo-pentofuranosyl]thymine (111):  

To a solution of Dess-Martin periodinane (0.30 g, 0.71 mmol) in anhydrous 

CH2Cl2 (3 mL) was cannulated a solution of 110 (0.20 g, 0.47 mmol) in CH2Cl2 (2 mL) at 

0 °C. Stirring was continued at 0 ºC for 15 minutes then at room temperature for 4 h. 

Diethylether (14 mL) was added and the solution was poured slowly into a solution of 

(1.16 g, 4.69 mmol) Na2S2O3.5H2O in sat. NaHCO3 (9 mL). The organic phase was 

washed with saturated NaHCO3 (20 mL) followed by H2O (20 mL), and saturated NaCl 

(20 mL), dried with MgSO4 and evaporated to dryness in vacuo.  The product was 

isolated as a white solid.  Yield: 0.19 g (96%). 1H-NMR (CDCl3, 400 MHz) δ: 0.06 (6H, 

s, Si(CH3)2), 0.88 (9H, s, SiC(CH3)3), 1.16 (9H, s, COC(CH3)3), 1.96 (3H, d, J = 0.8 Hz, 
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CH3), 2.06 (1H, m, 2'-Hβ), 2.49 (1H, m, 2'-Hα), 3.68 (2H, m, 5'-H), 3.81 (1H, m, 3'-H), 

4.20 (1H, m, 4'-H), 6.14 (1H, dd, J = 8.0, 6.0 Hz, 1'-H), 7.51 (1H, d, J = 0.8 Hz, 6-H), 

9.23 (1H, br s, NH). 13C (CDCl3, 100 MHz) δ: –5.1, 12.9, 18.7, 26.0, 26.2, 36.7, 44.2, 

45.0, 62.6, 80.8, 84.3, 111.4, 135.6, 150.8, 164.0, 214.1. HRMS [M + H]+: calc. for 

C21H37O5N2Si 425.2472, found 425.2473. 

5.4.1.6 1-[2,3-dideoxy-3-C-(2,2-dimethyl-1-oxopropyl)-2,3-dideoxy-β-D-threo-

pentofuranosyl]thymine (101): 

To a stirred solution of 111 (0.12 g, 0.283 mmol) in THF (3 mL), was added 

aqueous trifluoroaceticacid (0.74 mL, 1:1, TFA/H2O) at 0 °C. After stirring for 2 h at 0 

°C, the reaction mixture was stirred at room temperature until completion. It was then 

neutralized with saturated aqueous NaHCO3 (5 mL) and diluted with 10 mL of ethyl 

acetate. The aqueous layer was then extracted with ethyl acetate. The combined organic 

layers were dried over Na2SO4 and evaporated to dryness in vacuo. The crude product 

was purified on silica gel column (0-2% methanol in dichloromethane) to give 101 as a 

colorless foam. Yield: 0.08 g (91%). 1H-NMR (CDCl3, 400 MHz) δ: 0.99 (9H, s, 

COC(CH3)3), 1.91 (3H, s, CH3), 2.20 (1H, m, 2'-Hβ), 2.40 (1H, m, 2'-Hα), 2.97 (1H, m, 3'-

H), 3.29 ( 1H, s, OH), 4.16 (2H, m, 5'-H), 4.63 (1H, m, 4'-H), 6.14 (1H, t, J = 7.2 Hz, 1'-

H), 7.87 (1H, s, 6-H), 9.66 (1H, br s, NH). 13C (CDCl3, 100 MHz) δ: 12.8, 24.9, 32.3, 

38.6, 47.0, 63.8, 71.3, 83.4, 87.1, 110.0, 110.8, 137.3, 150.9, 164.5, 216.9. ESI [M + 

Na]+: calc. for C15H22O5N2Na 333.1, found 333.2. 
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5.4.2 Synthesis of 3'-α-(pivaloyl)-3'-deoxythymidine (103) 

5.4.2.1 1-[5-(tert-Butyldiphenylsilyl)-2,3-dideoxy-3-C-formyl-β-D-erythro-

pentofuranosyl]thymine (115):  

Compound 115 was synthesized as reported by Sanghvi, et al.97 

5.4.2.2 1-[5-(tert-Butyldiphenylsilyl)-2,3-dideoxy-3-C-(2,2-dimethyl-1-hydroxypropyl)-

β-D-erythro-pentofuranosyl]thymine (116):  

Cerium chloride was dried as described by Kamiya.113 To a suspension of dry 

CeCl3 (8.32 g, 22.34 mmol) in THF (52 mL), was added dropwise 1.7 M t-butyllithium in 

pentane (13.14 mL, 22.34 mmol) at -78 ºC. The solution was allowed to stir at this 

temperature for 1.5 hours. Aldehyde 115 (0.55 g, 1.117 mmol) in THF (20 mL), which 

was co-evaporated with dry THF, was added over 25 min and allowed to stir at the same 

temperature for 8 hours, before quenching by the addition of saturated NH4Cl (101 mL) 

at -78 ºC. The reaction mixture was extracted with dichloromethane (x6), the organic 

layer was dried over Na2SO4, filtered, and the solvent was removed under reduced 

pressure to afford a brownish foam. The crude mixture was purified by column 

chromatography with 1:1 ethyl acetate:hexane to afford 116 as a diastereomeric mixture 

in the form of a colorless foam. Yield: 0.17 g (30%).  1H-NMR (CDCl3, 400 MHz) δ: 

0.88-0.92 (18H, 2s), 1.1 (18H, s), 1.61 (6H, s), 1.85 (1H, m), 2.02 (1H, d, J = 5.6), 2.24 

(1H, m), 2.45 (1H, d, J = 5.6 Hz), 2.71 (2H, m), 3.19 (1H, d, J = 5.2 Hz), 3.33 (1H, t, J = 

4.99 Hz), 3.81, 3.88 (2H, 2 dd, J = 11.4, 2.8 Hz), 3.98 (1H, m), 4.07 (2H, m), 4.33 (1H, 

m), 6.13 (1H, t, J = 6.8 Hz), 6.23 (1H, t, J = 6.4 Hz), 7.36-7.69 (22H, m), 9.08 (1H, br s), 

9.17 (1H, br s). 13C (CDCl3, 100 MHz) δ: 12.3, 19.6, 26.6, 26.7, 27.2, 32.8, 35.8, 36.1, 

38.5, 40.1, 40.6, 63.3, 66.0, 77.4, 82.2, 82.9, 84.3, 85.4, 85.6, 111.0, 128.03, 128.07, 
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128.12, 130.11, 130.15, 130.19, 130.24, 132.74, 132.96, 133.27, 133.34, 135.57, 135.69, 

135.75, 135.81, 150.6, 150.7, 164.2. HRMS [M + Na]+: calc. for C31H42O5N2SiNa 

573.2761, found 573.2760. 

5.4.2.3 1-[5-(tert-Butyldiphenylsilyl)-2,3-dideoxy-3-C-pivaloyl-β-D-erythro-

pentofuranosyl]thymine (117):  

A solution of 116 (0.17 g, 0.309 mmol) in anhydrous CH2Cl2 (1 mL) was added to 

a solution of the Dess-Martin periodinane (0.2 g, 0.472 mmol) in anhydrous CH2Cl2 (2.2 

mL) at 0 ºC. Stirring was continued at 0 ºC for 15 minutes then at room temperature 

overnight. The reaction mixture was diluted with diethyl ether (10 mL), poured into ice-

cold aqueous saturated NaHCO3 (6.2 mL) containing Na2S2O3.5H2O (0.77 g, 3.09 mmol), 

and stirred for 10 minutes. The organic layer was washed with sat. NaHCO3, H2O, and 

sat. NaCl, dried over Na2SO4, and the solvent was removed under reduced pressure to 

afford 117 as a colorless foam. Yield: 0.17 g (100%).  1H-NMR (CDCl3, 400 MHz) δ: 

1.11 (18H, s, SiC(CH3)3 & COC(CH3)3), 1.62 (3H, d, J = 0.8, CH3), 2.24 (1H, m, 2'-Hβ), 

2.43 (1H, m, 2'-Hα), 3.66 (1H, dd, J = 11.8, J = 2.6, 5'-H), 3.84 (1H, m, 3'-H), 4.09 (1H, 

dd, J = 12, J = 2, 5'-H), 4.25 (1H, dt, J = 6.8, J = 2.4, 4'-H), 6.22 (1H, dd, J = 6.8 Hz, J = 

5.2 Hz, 1'-H), 7.37-7.47 (6H, m, Ar), 7.53 (1H, d, J = 0.8, 6-H), 7.64-7.68 (4H, m, Ar), 

8.88 (1H, br s, NH). 13C (CDCl3, 100 MHz) δ: 12.3, 19.6, 26.0, 27.3, 30.5, 39.0, 43.7, 

44.9, 63.5, 83.8, 85.6, 111.1, 128.2, 130.3, 132.8, 135.6, 150.3, 164.1, 215.3. HRMS [M 

+ Na]+: calc. for C31H40O5N2SiNa 571.2604, found 571.2617. 

5.4.2.4 1-(2,3-dideoxy-3-C-pivaloyl-β-D-erythro-pentofuranosyl)thymine (103): 

To a solution of 117 (0.15 g, 0.27 mmol) in THF (2.3 mL) was added a 1M 

solution of TBAF in THF (0.41 mL) at room temperature. Stirring was continued for 1 h. 
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The solvent was removed in vacuo and the crude mixture was purified by column 

chromatography with ethyl acetate to afford 103 as a colorless foam. Yield: 0.04 g (44%).  

1H-NMR (CDCl3, 400 MHz) δ: 1.18 (9H, s, COC(CH3)3), 1.93 (3H, s, CH3), 2.44 (2H, m, 

2'-H), 2.65 (1H, dd, J= 6.2 Hz, J = 3.4, 5'-OH), 3.62 (1H, m, 3'-H), 3.97 (2H, m, 5'-H), 

4.29 (1H, dt, J = 8 Hz, J = 2.4 Hz, 4'-H), 6.0 (1H, dd, J = 7.2 Hz, J = 4.4 Hz, 1'-H), 7.48 

(1H, d, J = 0.8 Hz, 6-H), 8.67 (1H, br s, NH). 13C (CDCl3, 100 MHz) δ: 12.8, 25.8, 38.7, 

43.3, 45.2, 61.9, 84.7, 88.2, 110.9, 137.6, 150.4, 164.1, 215.8. HRMS [M + Na]+: calc. 

for C15H22O5N2Na 333.1426, found 333.1419. 

5.5 Synthesis of Damage products 

5.5.1 Synthesis of C2',3'-Dideoxythymidine (118) 

 Compound 118 was synthesized as reported by Audat, et al.95  

5.5.2 Synthesis of C2',3'-Didehydro-2',3'-dideoxythymidine (125) 

Compound 125 was synthesized according to published literature.114 

5.6 Photolysis Experiments 

Photolysis experiments were performed in 4x10 mm quartz cuvettes (Sigma 

Aldrich, St. Louis, MO) using an Oriel 500 W High Pressure Mercury Arc Lamp 

(Newport, Irvine CA) fitted with an IR filter, focusing lens, and a 320 nm cut-off filter. 

The temperature of the photoreactions was maintained at 15 0C using a Peltier PTP-1 

single cell temperature controller system (Varian, Palo Alto, CA). The irradiation 

mixtures were analyzed directly without workup by analytical reversed-phase HPLC with 

UV detection at 254 nm. HPLC analyses were carried out on either column mentioned in 

section 5.3.3.3 using solvent systems described in the same section. A stepwise gradient 
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was applied. 0-20% B over 15 min, 20-75% B over 3 min, 75-90% B over 4 min. Flow 

rate, 1.0 mL/min 

5.6.1 Photochemical Generation of the C2',3'-Dideoxy-C3'-thymidinyl Radical from 

103 

5.6.1.1 Photolysis of 103 in the Presence of tri-nButyltin hydride as a Hydrogen Atom 

Donor  

A solution of radical precursor 103 (600 nmole, 1 mM in 1:1 CH3CN/H2O) was 

transferred to a quartz cuvette and degassed by bubbling argon through the solution for 

20 min. tri-nButyltin hydride (1000 equivalents) was added under an argon atmosphere. 

The mixture was immediately photolyzed for 60 min at 15 °C. The irradiation mixture 

was analyzed directly without workup by analytical reversed-phase HPLC with UV 

detection at 254 nm using C18 column and the solvent system described above. Products 

were identified by ESI-MS and by comparison with authentic samples. Product yields 

were determined using standard curves. 

5.6.1.2 Photolysis of 103 in the Presence of Glutathione as a Hydrogen Atom Donor 

A solution of radical precursor 103 (600 nmole, 1 mM) and glutathione (6 mM in 

1:1 CH3CN/H2O) was transferred to a quartz cuvette and degassed by bubbling argon 

through the solution for 20 min. The mixture was immediately photolyzed for 60 min at 

15 °C under an argon atmosphere. After the photolysis was completed, the crude volume 

was adjusted to 600 µL by addition of acetonitrile. The irradiation mixture was analyzed 

directly without workup by analytical reversed-phase HPLC with UV detection at 254 nm 

using C8 column and the solvent system described above. The products were identified 

by ESI-MS and by spiking the photolysate with authentic samples. 
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5.6.1.3 Photolysis of 103 in the Absence of a Hydrogen Atom Donor 

 A photolysis sample containing 103 (600 nmol, 1 mM) in CH3CN/H2O 

(1:1 v/v) was transferred to a quartz cuvette and purged with argon for 20 minutes. The 

sample was immediately photolyzed for 60 min at 15 °C under an argon atmosphere. The 

irradiation mixture was analyzed directly without workup by analytical reversed-phase 

HPLC with UV detection at 254 nm using C8 column and the solvent system described 

above. The products were identified by ESI-MS and by spiking the photolysate with 

authentic samples. 

5.6.2 Photochemical Generation of the C2',3'-Dideoxy-C3'-thymidinyl Radical from 

101 

5.6.2.1 Photolysis of 101 in the Presence of tri-nButyltin hydride as a Hydrogen Atom 

Donor  

5.6.2.1.1 Photolysis of 101 in 1:1 CH3CN/H2O 

A solution of radical precursor 101 (600 nmole, 1 mM in 1:1 CH3CN/H2O) was 

transferred to a quartz cuvette and degassed by bubbling argon through the solution for 

20 min. tri-nButyltin hydride (1000 equivalents) was added under an argon atmosphere. 

The mixture was immediately photolyzed for 60 min at 15 °C under an argon 

atmosphere. The irradiation mixture was analyzed directly without workup by analytical 

reversed-phase HPLC with UV detection at 254 nm using C8 column and the solvent 

system described above. Products were identified by ESI-MS and by comparison with 

authentic samples. 
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5.6.2.1.2 Photolysis of 101 in H2O 

 A solution of radical precursor 101 (600 nmole, 1 mM in H2O containing 0.1% 

acetonitrile) was transferred to a quartz cuvette and degassed by bubbling argon through 

the solution for 20 min. tri-nButyltin hydride (1000 equivalents) was added under an 

argon atmosphere. The mixture was immediately photolyzed for 60 min at 15 °C under 

an argon atmosphere. The irradiation mixture was analyzed directly without workup by 

analytical reversed-phase HPLC with UV detection at 254 nm using C8 column and the 

solvent system described above. Products were identified by ESI-MS and by comparison 

with authentic samples. 

5.6.2.1.3 Photolysis of 101 in CH3CN 

 A solution of radical precursor 101 (600 nmole, 1 mM in CH3CN) was transferred 

to a quartz cuvette and degassed by bubbling argon through the solution for 20 min. tri-

nButyltin hydride (1000 equivalents) was added under an argon atmosphere. The mixture 

was immediately photolyzed for 60 min at 15 °C under an argon atmosphere. The 

irradiation mixture was analyzed directly without workup by analytical reversed-phase 

HPLC with UV detection at 254 nm using C8 column and the solvent system described 

above. Products were identified by ESI-MS and by comparison with authentic samples. 

5.6.2.2 Photolysis of 101 in the Presence of Glutathione as a Hydrogen Atom Donor 

A solution of radical precursor 101 (600 nmole, 1 mM) and glutathione 6 mM in 

1:1 CH3CN/H2O was transferred to a quartz cuvette and degassed by bubbling argon 

through the solution for 20 min. The mixture was immediately photolyzed for 60 min at 

15 °C under an argon atmosphere. After the photolysis was completed, the crude volume 

was adjusted to 600 µL by addition of acetonitrile. The irradiation mixture was analyzed 
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directly without workup by analytical reversed-phase HPLC with UV detection at 254 nm 

using C8 column and the solvent system described above. The products were identified 

by ESI-MS and by spiking the photolysate with authentic samples. 

5.6.2.3 Photolysis of 101 in the Absence of a Hydrogen Atom Donor 

 A photolysis sample containing 101 (600 nmol, 1 mM) in CH3CN/H2O 

(1:1 v/v) was transferred to a quartz cuvette and purged with argon for 20 minutes. The 

sample was immediately photolyzed for 60 min at 15 °C under an argon atmosphere. The 

irradiation mixture was analyzed directly without workup by analytical reversed-phase 

HPLC with UV detection at 254 nm using C8 column and the solvent system described 

above. The products were identified by ESI-MS and by spiking the photolysate with 

authentic samples. 

5.7 Synthesis of C5'-modified thymidine  

5.7.1 1-[5-O-(acetyl)-5-C-((4,4'-dimethoxytrityl)oxymethyl)-2-deoxy-β-D-erythro-

pentofuranosyl]thymine (134) 

Synthesis of 134 was performed as reported by Kodama, et al.115 

5.7.2 1-[5-O-(acetyl)-5-C-((4,4'-dimethoxytrityl)oxymethyl)-3-H-

phosphonateTriethylammonium Salt, 2-deoxy-β-D-erythro-

pentofuranosyl]thymine (135)  

Imidazole (0.30 g, 4.41 mmol) was coevaporated twice with anhydrous 

acetonitrile and dissolved in anhydrous CH2Cl2 (15 mL). While stirring at -10 °C, 

phosphorous trichloride (0.11 mL, 1.26 mmol) followed by a solution of anhydrous 

triethylamine (0.62 mL, 4.45 mmol) in CH2Cl2 (0.62 ml) was added dropwise with 

vigorous stirring. The mixture was allowed to stir for 30 min at this temperature. The 
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modified nucleoside (134) (0.23 g, 0.37 mmol) was coevaporated twice with anhydrous 

pyridine and dissolved in anhydrous CH2Cl2 (9.2 mL). The solution was added to the 

reaction mixture over 30 min. The reaction mixture was slowly warmed to room 

temperature and strirred for 8 hrs. The mixture was then hydrolyzed with 1 M 

triethylammonium bicarbonate TEAB (27 mL). The organic layer was separated and 

washed with an equal volume of 1 M TEAB. The organic layer was then concentrated 

under reduced pressure. The crude mixture was purified by column chromatography 

using a stepwise gradient of methanol (0-10%) in CH2Cl2 containing 1% triethylamine to 

afford 135 as a diasteromeric mixture in the form of a yellow foam. Yield: 0.10 g (34%). 

1H-NMR (CDCl3, 400 MHz) δ: 1.27 (18H, t, J = 7.2 Hz, N(CH2CH3)3), 1.84-1.87 (6H, 

2s, CH3), 1.96-2.04 (2H, m, 2'-H), 2.127-2.13 (6H, 2s, COCH3), 2.52-2.62 (2H, m, 2'-H), 

2.95-3.01 (12H, q, J = 7.2 Hz, N(CH2CH3)3), 3.22-3.51 (4H, m, 3', 5'-H), 3.77 (12H, s, 

OCH3), 4.30-4.33 (2H, m, 4'-H), 4.70-4.86 (2H, m, 6'-H), 5.26-5.41 (2H, m, 6'-H), 6.04 

(1H, d, J = 620.3 Hz, P-H), 6.09 (1H, d, J = 622.7 Hz, P-H), 6.24 (1H, dd, J = 8.4, 5.6 

Hz, 1'-H), 6.31 (1H, dd, J = 7.2, 6.0 Hz, 1'-H), 6.80-7.42 (28H, m, Ar-H and 6-H). 13C 

(CDCl3, 100 MHz) δ: 7.8, 9.1, 12.7, 12.8, 21.2, 21.3, 39.3, 39.6, 45.7, 52.7, 55.3, 62.4, 

62.5, 71.9, 72.5, 73.18, 73.2, 77.4, 84.0, 84.1, 84.17, 84.2, 84.5, 84.7, 86.3, 110.9, 111.2, 

113.15, 113.2, 126.9, 127.87, 127.9, 128.1, 130.0, 134.6, 135.1, 135.7, 135.76, 135.8, 

144.6, 150.6, 158.5, 164.0, 164.1, 169.6, 170.3. 31P NMR (CDCl3, 400 MHz) δ: 3.84, 

4.20. HRMS [M + Et3NH]+: calc. for C46H68O11N4P 883.46, found 883.54. 

5.7.3 5'-O-(tert-Butyldimethylsilyl)-thymidine (105) 

Compound 105 was synthesized according to published procedure.104  
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5.7.4 5'-O-(tert-Butyldimethylsilyl)-3'-O-benzoyl-thymidine (146)105 

To a solution of 105 (4.96 g, 13.91 mmol) in anhydrous pyridine (14.3 mL) was 

added benzoyl chloride (1.9 mL, 16.38 mmol) at room temperature. Stirring was 

continued overnight. The solvent was removed in vacuo and the moist residue was 

triturated with water (100 mL). The resulting precipitate was filtered and air dried. The 

crude product was azeotropically dried with acetonitrile and then recrystallized from 

acetonitrile to afford 146 as white crystals. Yield: 5.77 g (90%). 1H-NMR (CDCl3, 600 

MHz) δ: 0.18 (6H, s, Si(CH3)2), 0.96 (9H, s, SiC(CH3)3), 1.95 (3H, d, J = 0.6 Hz, CH3), 

2.23 (1H, m, 2'-H), 2.60 (1H, dd, J = 13.8, 5.4 Hz, 2'-H), 3.98 (1H, dd, J = 11.4, 1.8 Hz, 

5'-H),  4.04 (1H, dd, J = 11.4, 1.8 Hz, 5'-H), 4.27 (1H, d, J = 1.8 Hz, 4'-H), 5.51 (1H, d, J 

= 6.0 Hz, 3'-H), 6.50 (1H, dd, J = 9.6, 5.4 Hz, 1'-H), 7.48 (2H, t, J = 7.8 Hz, 4-Ph), 7.61 

(2H, m, 3-Ph and 6-H), 8.06 (2H, dd, J = 8.4, 1.2 Hz, 2-Ph),  8.86 (1H, br s, NH). 13C 

(CDCl3, 150 MHz) δ: -5.4, -5.3, 12.6, 18.4, 26.0, 38.2, 63.8, 76.2, 84.9, 85.7, 111.4, 

128.6, 129.3, 129.8, 133.6, 135.2, 150.9, 164.4, 166.3. ESI [M + Na]+: calc. for 

C23H32O6N2SiNa 483.59, found 483.60. 

5.7.5 3'-O-benzoyl-thymidine (147)106  

To a stirred solution of 146 (3.73 g, 8.10 mmol) in THF (37 mL), was added 

aqueous trifluoroacetic acid (13.8 mL, 1:1, TFA/H2O) at 0 °C. After stirring for 30 

minutes at 0 °C, the reaction mixture was stirred at room temperature overnight. It was 

then neutralized with saturated aqueous NaHCO3 (60 mL) and diluted with 46 mL of 

ethyl acetate. The resulting precipitate was formed then filtered to give 147 as white 

powder. Yield: 2.66 g (95%). 1H-NMR (DMSO-d6, 400 MHz) δ: 1.80 (3H, s, CH3), 2.41 

(2H, m, 2'-H), 3.70 (2H, m, 5'-H), 4.16 (1H, m, 4'-H), 5.28 (1H, t, J = 5.4 Hz, 5'-OH), 
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5.48 (1H, m, 3'-H), 6.29 (1H, t, J = 7.2 Hz, 1'-H), 7.56 (2H, t, J = 7.8 Hz, 4-Ph), 7.68 (1H, 

m, 3-Ph), 7.8 (1H, s, 6-H), 8.02 (2H, dd, J = 8.4, 1.2 Hz, 2-Ph), 11.38 (1H, br s, NH). 13C 

(DMSO-d6 100 MHz) δ: 12.4, 36.7, 61.4, 75.7, 83.8, 84.5, 109.8, 128.8, 129.4, 133.7, 

135.9, 150.5, 163.7, 165.3. ESI [M + Na]+: calc. for C17H18O6N2Na 369.33, found 

369.50. 

5.7.6 3',4'-Didehydro-2',3'-dideoxy-5'-oxothymidine (66)107 

To a solution of the Dess-Martin periodinane (0.92 g, 2.169 mmol) in anhydrous 

CH3CN (17 mL) was added 147 (0.3 g, 0.866 mmol) at 0 ºC. Stirring was continued at 0 

°C for 15 minutes then at room temperature overnight. The reaction mixture was diluted 

with diethyl ether (26 mL), filtered through a pad of celite, which was rinsed with 

acetonitrile. The organic layer was dried over Na2SO4, and the solvent was removed 

under reduced pressure to afford 3'-O-benzoyl-5'-oxothymidine (148) as a crude white 

powder 0.22 g. To a solution of the crude sample 148 in anhydrous CH2Cl2 (10 mL) was 

added triethylamine (0.36 mL), the reaction mixture was stirred at room temperature for 

10 minutes, then the solvent was removed under reduced pressure at ambient 

temperature. The crude mixture was purified by column chromatography with ethyl 

acetate to afford 66 as white powder. Yield: 0.04 g (21%). 1H-NMR (CD3CN, 400 MHz) 

δ: 1.82 (3H, d, J = 0.8 Hz, CH3), 2.92 (1H, ddd J = 20.4, 5.2, 3.6 Hz, 2'-H), 3.38 (1H, ddd 

J = 20.4, 10.4, 2.8 Hz, 2'-H), 6.30 (1H, t, J = 2.8 Hz, 3'-H), 6.75 (1H, dd, J = 10.4, 5.2 

Hz, 1'-H), 7.06 (1H, d, J = 0.8 Hz, 6-H), 9.01 (1H, br s, NH), 9.43 (1H, s, CHO). 13C 

(CD3CN 100 MHz) δ: 12.5, 36.7, 86.8, 112.7, 121.3, 136.3, 151.1, 156.2, 164.5, 182.3. 

MALDI-Tof [M + Na]+: calc. for C10H10O4N2Na 245.054, found 245.051 
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5.8 Oligonucleotide Synthesis 

 All oligonucleotide synthesis was carried out on an ABI 391 DNA synthesizer 

(Applied Biosystem, Carlsbad, CA). All reagents for automated oligonucleotide synthesis 

were purchased from Glen Research. Pivaloyl chloride (Acros Organic) was distilled 

according to the standard techniques. All syntheses were performed on a 0.2 µmole scale 

using controlled pore glass (CPG) columns (500 Å pore size). Syntheses of the 

unmodified oligonucleotides were carried out in the 3'→5' direction using the 

phosphoramidite method. Modified oligonucleotides were partially synthesized in the 

3'→5' direction with standard phosphoramidite chemistry, followed by manual coupling 

of the modified nucleoside with H-phosphonate chemistry. Deblocking was accomplished 

using 3% trichloroacetic acid in dichloromethane. 5-Ethylthio-1H-tetrazole (0.25 M) in 

acetonitrile was used as an activator in the coupling steps of unmodified oligonucleotides, 

and pivaloyl chloride was used as an activator for the manual coupling of the H-

phosphonate. Capping of the unreacted nucleotides was performed using acetic anhydride 

in THF/pyridine and 10% 1-methylimidazole in THF. Unmodified oligonucleotides were 

oxidized with 0.02 M I2 in pyridine/THF/H2O, while the oxidation of modified 

oligonucleotides were executed through simultaneous exposure to 4% I2 in 

pyridine/H2O/THF (1:1:8) and THF/H2O/triethylamine (8:1:1) for 20 min. 

5.8.1 Purification of Oligonucleotides 

Oligonucleotides were deprotected and cleaved from the solid support by treating 

the resin with 1 mL of concentrated ammonium hydroxide (28-30% in H2O) for 15-18 hrs 

at 55 °C, followed by purification. 
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5.8.1.1 Oligonucleotide Purification Cartridges (OPC) (Trityl-on Method) 

 Oligonucleotides sequences were synthesized with trityl on at the 5' end in order 

to use OPC purification. Columns were activated by flushing with 2 mL acetonitrile, 

followed by 2 mL 2 M triethylammonium acetate (TEAA) buffer. The ammonia solution 

of the crude oligonucleotide was diluted (1:3) and applied directly to the column. All 

impurities and failure sequences were eluted with 3 mL of (1:20) ammonium hydroxide. 

Excess ammonium hydroxide was then removed with 2 mL water. Direct detritylation on 

the column occurred by passing 2 mL of 3% TFA through the cartridge. Excess acid is 

then removed with 2 mL water. The pure oligonucleotide is eluted with 1 ml 20% 

acetonitrile in water containing 0.5% ammonium hydroxide. 

5.8.1.2 Desalting of Oligonucleotide  

 Oligonucleotides were desalted using either OPC or size exclusion G-25 

Sephadex columns.  

5.8.1.2.1  Oligonucleotide Purification Cartridges (OPC)  

The OPC column was activated by flushing with 2 mL acetonitrile, followed by 2 

mL 2 M TEAA buffer. The oligonucleotide sample was loaded onto the column followed 

by flushing the column with 3 mL of 0.1 M TEAA to remove the salt from the cartridge. 

The desalted oligonucleotide was then eluted using 1 mL 50% aqueous acetonitrile.  

5.8.1.2.2 Size Exclusion G-25 Sephadex columns. 

G-25 Sephadex columns were manually prepared through packing the Macro Spin 

column with activated G-25 Sephadex. The column was then equilibrated with water (x 

4). Centrifuging at 800 x g for 3 min to remove the storage solution. The oligonucleotides 
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were then loaded onto the column. The desalted oligos were eluted by centrifugation at 

the same speed and time.  

5.8.2 Quantification of Oligonucleotides 

 Oligonucleotide quantification was performed on an Agilent 8453 UV-Vis 

spectrometer. The oligonucleotides were diluted with water and transferred into a quartz 

cuvette and the absorbance was measured at λmax = 260 nm. The millimolar extinction 

coefficient at λmax = 260 nm for each oligo was obtained from the online oligonucleotide 

properties calculator. Modified oligonucleotides were attributed the extinction coefficient 

of the corresponding unmodified oligos. Using Beer’s law, the concentration of the 

solutions and the absolute quantity of the oligos was calculated.  

5.8.3 Synthesis of Modified Oligonucleotides  

5.8.3.1 Modified Oligonucleotides Containing monomer (134) 

A CPG-bound unmodified oligonucleotide was first synthesized on an ABI 391 

DNA synthesizer using the phosphoramidite method on a 0.2 µmole scale. Incorporation 

of modified nucleoside 135 was achieved manually using H-phosphonate chemistry. 

Modified H-phosphonate 135 was coevaporated in anhydrous pyridine three times then 

dissolved in a mixture of acetonitrile: pyridine (1:1) to a final concentration of 0.1 M. 

This was transferred into a 1 mL syringe purged with argon. In another 1 mL purged 

syringe was placed a solution of 5 µL freshly distilled pivaloyl chloride in 305 µL 

acetonitrile: pyridine (1:1). Each syringe was then attached to either end of the CPG 

column containing the polymer-bound unmodified oligonucleotide. The activator was 

delivered first followed by the monomer and after repetitive mixing for 20 minutes, the 

reagents were then removed and the column was washed with 5 mL anhydrous 
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acetonitrile. The H-phosphonate linkage was oxidized to the corresponding more stable 

phosphodiester linkage by exposing the column to two 1 mL purged syringes, one 

containing 300 µL of 4% I2 in pyridine/H2O/THF (1:1:8) and the other contained 300 µL 

of THF/H2O/triethylamine (8:1:1) for 20 min. The column was then washed with 10 mL 

anhydrous acetonitrile. Oligonucleotides were deprotected and cleaved from the solid 

support by treating the resin with 1 mL of concentrated ammonium hydroxide (28-30% in 

H2O) for 15-18 hrs at 55 °C, followed by purification of oligonucleotides using OPC to 

afford the 5'-vicinal diol oligonucleotides (138-143). 

5.8.3.2 Modified Oligonucleotides 144 

 To a solution of oligonucleotides containing either one of (138-143) (10 nmol) in 

100 µL H2O was added 13.58 µL of 0.2 M sodium periodate (NaIO4) at 0 ºC. The 

reaction mixture was stirred for 3 hours at this temperature. The reaction was then 

quenched at 0 ºC by addition of methionine (0.2 M, 19.56 µL) and stirred for an 

additional 30 minutes. The oligonucleotides were desalted using a G-25 Sephadex 

column as described above. The oligomers were quantified as described in section 5.8.2. 

The purity of the 5'-aldehyde oligos was determined using analytical ion-exchange (IEX) 

and reversed-phase (RP) HPLC.  

5.9 Stability of Modified Oligonucleotides 144 

Oligonucleotides 144 (1 nmol) were incubated in (500 µL) of 100 mM phosphate 

buffer pH = 7.4 at 37 ºC. Aliquots of the reaction mixture of equal amounts were 

removed at specific time intervals and injected onto the IEX chromatography. 

Decomposition of the 5'-aldehyde to the 5'-phosphorylated ODNs was monitored to 

determine the half-life of the lesion. 
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5.10 Stability of 3',4'-Didehydro-2',3'-dideoxy-5'-oxothymidine (66) at pH = 7.4 at 37 ºC 

Modified nucleoside 66 (1008 nmol) was incubated in 1000 µL of 100 mM 

phosphate buffer pH = 7.4 at 37 ºC. Aliquots of the reaction mixture of equal amounts 

were removed at specific times and analyzed by analytical RP-HPLC. Decomposition of 

3',4'-Didehydro-2',3'-dideoxy-5'-oxothymidine was monitored to determine the half-life 

of the lesion. 

5.11 Stability and Reactivity of 66 in Presence of GSH 

Modified nucleoside 66 (4000 nmol) and 6 mM GSH were incubated in 1000 µL 

of 100 mM phosphate buffer pH = 7.4 at 37 ºC. Aliquots of the reaction mixture of equal 

amounts were removed at specific times and analyzed by analytical RP HPLC.  

5.12 Reactivity of 3',4'-Didehydro-2',3'-dideoxy-5'-oxothymidine (66)  

5.12.1 Reactivity of 66 in Presence of deoxyadenosine 

Modified nucleoside 66 (12000 nmol) and deoxyadenosine (18000 nmol) were 

incubated in 1000 µL of 100 mM phosphate buffer pH = 7.4 at 37 ºC. Aliquots of the 

reaction mixture of equal amounts were removed at specific times and analyzed by 

analytical RP HPLC.  

5.12.2 Reactivity of 66 in Presence of Oligonucleotides Containing dA 

Modified nucleoside 66 (1008 nmol) was incubated in presence of (20 nmol) of 

unmodified oligonucleotide (TCT ATC TAT CT) in 1000 µL of 100 mM phosphate 

buffer pH = 7.4 at 37 ºC. Aliquots of the reaction mixture of equal amounts were 

removed at specific times were analyzed by analytical RP-HPLC.  
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5.13 Reactivity of Furfural 

5.13.1 Reactivity of Furfural in Presence of dA at pH = 7.4 and 37 ºC 

Furfural (4000 nmol) and deoxyadenosine (8000 nmol) were incubated in 1000 

µL of 100 mM phosphate buffer pH = 7.4 at 37 ºC. Aliquots of the reaction mixture of 

equal amounts were removed at specific times and analyzed by analytical RP HPLC. 

5.13.2 Reactivity of Furfural in Presence of Excess dA at pH = 2 and 37 ºC 

Furfural (4000 nmol) and deoxyadenosine (8000 nmol) were incubated in 1000 

µL of 100 mM phosphate buffer pH= 2 at 37 ºC. Aliquots of the reaction mixture of equal 

amounts were removed at specific times and analyzed by analytical RP HPLC.  

5.13.3 Reactivity of Excess Furfural in Presence of dA at pH = 2 and 37 ºC 

Furfural (8000 nmol) and deoxyadenosine (4000 nmol) were incubated in 1000 

µL of 100 mM phosphate buffer pH = 2 at 37 ºC. Aliquots of the reaction mixture of 

equal amounts were removed at specific times and analyzed by analytical RP HPLC. 
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Figure 1: ESI-MS analysis of 118 from photolysis of 103 in presence of excess tri-
nbutyltin hydride under anaerobic conditions in 1:1 acetonitrile/water for one hour at 15 
ºC 
 

 

 

 

 

 

 

 

Figure 2: ESI-MS analysis of 103 from photolysis of 103 in presence of excess tri-
nbutyltin hydride under anaerobic conditions in 1:1 acetonitrile/water for one hour at 15 
ºC 
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Figure 3: MALDI-ToF mass spectrum analysis of compounds eluted at 13.580 and 
13.740 min from photolysis of 101 in presence of excess tri-nbutyltin hydride under 
anaerobic conditions in 1:1 acetonitrile/water for one hour at 15 ºC 
 
 

 

 

 

 

 

 

 

 

 

Figure 4: MALDI-ToF mass spectrum analysis of compound eluted at 20.533 min from 
photolysis of 101 in presence of excess tri-nbutyltin hydride under anaerobic conditions 
in 1:1 acetonitrile/water for one hour at 15 ºC 
 

265.058 
249.092 

256.213 

277.090 

0 

25 

50 

75 

100 

125 

150 

In
te

ns
. [

a.
u.

] 

245 250 255 260 265 270 275 280 
m/z 

Calculated [M+Na]+ 249.085 

Measured [M+Na]+ 249.092 

Calculated [M+K]+ 265.059 

Measured [M+K]+ 265.058 

Calculated [M+Na]+ 277.080 

Measured [M+Na]+ 277.090 

O

HO
N

NH

O

O

118 

O

HO N

NH

O

O

H
O

119 

333.151 

349.114 

355.141 

351.121 

0.0 

0.5 

1.0 

1.5 

2.0 

4 
x10 

In
te

ns
. [

a.
u.

] 

325 330 335 340 345 350 355 
m/z 

Calculated [M+Na]+ 333.143 

Measured [M+Na]+ 333.151 

Calculated [M+K]+ 349.117 

Measured [M+K]+ 349.114 

O

HO N

NH

O

O

O

H

101 



 117 

 

 

 

 

 

 

 

 

 

 
Figure 5: MALDI-ToF mass spectrum analysis of compound eluted at 13.887 min from 
photolysis of 101 in presence of excess tri-nbutyltin hydride under anaerobic conditions 
in acetonitrile for one hour at 15 ºC 
 
 

 

 

 

 

 

 

 

 

 

Figure 6: MALDI-ToF mass spectrum analysis of compound eluted at 20.593 min from 
photolysis of 101 in presence of excess tri-nbutyltin hydride under anaerobic conditions 
in acetonitrile for one hour at 15 ºC 
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Figure 7: MALDI-ToF mass spectrum analysis of compound eluted at 20.587 from 
photolysis of 101 in presence of excess tri-nbutyltin hydride under anaerobic conditions 
in water for one hour at 15 ºC 
 

 

 

 

 

 

 

 

 

 

 
Figure 8: MALDI-ToF mass spectrum analysis of peak 13.740 from photolysis of 103 in 
presence of 6 mM GSH under anaerobic conditions in 1:1 acetonitrile/water for one hour 
at 15 ºC 
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Figure 9: MALDI-ToF mass spectrum analysis of peak 20.327 from photolysis of 103 in 
presence of 6 mM GSH under anaerobic conditions in 1:1 acetonitrile/water for one hour 
at 15 ºC 
 

 
 
Figure 10: Reversed-phase HPLC chromatogram of spiking the photolysate sample with 
aldehyde 119 resulted in enhancement of peak at 13.680 min from photolysis of 101 in 
presence of 6 mM GSH under anaerobic conditions in 1:1 acetonitrile/water for one hour 
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Figure 11: ESI-MS analysis of 118 from photolysis of 103 in absence of hydrogen atom 
donor under anaerobic conditions in 1:1 acetonitrile/water for one hour at 15 ºC 
 
 

 
 
Figure 12: Reversed-phase HPLC chromatogram of spiking the photolysate sample with 
reduction product 118 resulted in enhancement of peak at 13.833 min from photolysis of 
103 in presence of 6 mM GSH under anaerobic conditions in 1:1 acetonitrile/water for 
one hour at 15 ºC 
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Figure 13: ESI-MS analysis of 125 from photolysis of 103 in absence of hydrogen atom 
donor under anaerobic conditions in 1:1 acetonitrile/water for one hour at 15 ºC 
 

 

 
Figure 14: Reversed-phase HPLC chromatogram of spiking the photolysate sample with 
2',3'-didehydro-2',3'-dideoxythymidine (125) resulted in enhancement of peak at 12.953 
min from photolysis of 103 in presence of 6 mM GSH under anaerobic conditions in 1:1 
acetonitrile/water for one hour at 15 ºC. 
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Figure 1: 1H-NMR of compound 135 in CDCl3 (400 MHZ)  

 

 

 

 

 

 

 

 

 

 

Figure 2: 13C-NMR of compound 135 in CDCl3 (100 MHZ)  
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Figure 3: 31P-NMR of compound 135 in CDCl3 (400 MHZ)  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: HRMS of compound 135 
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Figure 5: Ion-exchange HPLC chromatogram of modified oligonucleotide 139 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: MALDI-ToF MS of modified oligonucleotide 139 
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Figure 7: Ion-exchange HPLC chromatogram of modified oligonucleotide 140 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: MALDI-ToF MS of modified oligonucleotide 140  
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Figure 9: Ion-exchange HPLC chromatogram of modified oligonucleotide 141 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: MALDI-ToF MS of modified oligonucleotide 141  
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Figure 11: Ion-exchange HPLC chromatogram of modified oligonucleotide 142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: MALDI-ToF MS of modified oligonucleotide 142  
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Figure 13: Ion-exchange HPLC chromatogram of modified oligonucleotide 143 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: MALDI-ToF MS of modified oligonucleotide 143
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Figure 15: 1H-NMR of compound 146 in CDCl3 (600 MHZ)  

 

 

 

 

 

 

 

 

 

 

Figure 16: 13C-NMR of compound 146 in CDCl3 (100 MHZ) 
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Figure 17: ESI-MS of compound 146 

 

 

 

 

 

 

 

 

 

Figure 18: 1H-

NMR of compound 147 in DMSO (400 MHZ) 
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Figure 19: 13C-NMR of compound 147 in DMSO (100 MHZ) 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: ESI-MS of compound 147 
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Figure 21: 1H-

NMR of compound 66 in CD3CN (400 MHZ) 

 

 

 

 

 

 

 

 

 

 

Figure 22: 13C-NMR of 

compound 66 in CD3CN (100 MHZ) 
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Figure 

23: MALDI-ToF MS of compound 66 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24: MALDI-ToF MS of compound eluted at 3.320 min after incubation of 66 in 
100 mM phosphate buffer pH = 7.4 at 37 °C in presence of 6 mM GSH after 30 minutes 
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Figure 25: MALDI-ToF MS of compound eluted at 5.380 min after incubation of 66 in 
100 mM phosphate buffer pH = 7.4 at 37 °C in presence of 6 mM GSH after 30 minutes 
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Figure 1: 1H NMR spectrum of 108 in CDCl3 (400 MHz) 

 

 

 

 

 

 

 

Figure 2: 13C NMR spectrum of 108 in CDCl3 (100 MHz) 
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Figure 3: 1H NMR spectrum of 109 in CDCl3 (600 MHz) 

 

 

 

 

 

 

 

 

Figure 4: 13C NMR spectrum of 109 in CDCl3 (150 MHz) 
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Figure 5: 1H NMR spectrum of 110 in CDCl3 (400 MHz) 

 

 

 

 

 

 

 

Figure 6: 13C NMR spectrum of 110 in CDCl3 (100 MHz) 
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Figure 7: 1H NMR spectrum of 111 in CDCl3 (400 MHz) 

 

 

 

 

 

 

 

Figure 8: 13C NMR spectrum of 111 in CDCl3 (100 MHz) 
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Figure 9: 1H NMR spectrum of 101 in CDCl3 (400 MHz) 

 

 

 

 

 

 

 

Figure 10: 13C NMR spectrum of 101 in CDCl3 (100 MHz) 
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Figure 11: 1H NMR spectrum of 116 in CDCl3 (400 MHz) 

 

 

 

 

 

 

 

 

Figure 12: 13C NMR spectrum of 116 in CDCl3 (100 MHz) 
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Figure 13: 1H NMR spectrum of 117 in CDCl3 (400 MHz) 

 

 

 

 

 

 

 

 

Figure 14: 13C NMR spectrum of 117 in CDCl3 (100 MHz) 
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Figure 15: 1H NMR spectrum of 103 in CDCl3 (400 MHz) 

 

 

 

 

 

 

 

Figure 16: 13C NMR spectrum of 103 in CDCl3 (100 MHz) 
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