
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Summer 2015

Solutions of Inequality Constrained Spline Optimization
Problems with the Active Set Method
Joshua A. Holloway

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Other Applied Mathematics Commons

Recommended Citation
Holloway, Joshua A., "Solutions of Inequality Constrained Spline Optimization Problems
with the Active Set Method" (2015). Electronic Theses and Dissertations. 1308.
https://digitalcommons.georgiasouthern.edu/etd/1308

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N.
Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1308?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

SOLUTIONS OF INEQUALITY CONSTRAINED SPLINE

OPTIMIZATION PROBLEMS WITH THE ACTIVE SET METHOD

by

JOSHUA HOLLOWAY

(Under the Direction of Scott Kersey)

ABSTRACT

We solve the problem of finding a near-interpolant curve, subject to constraints, which

minimizes the bending energy of the curve. Using B-splines as our tools, we give a

brief overview of spline properties and develop several different cases of inequality

constrained optimization problems of this type. In particular, we develop the active

set method and use it to solve these problems, emphasizing the fact that this algorithm

will converge to a solution in finite iterations. Our solution will solve an open problem

regarding near-interpolant spline curves. Furthermore, we supplement this with an

iterative technique for better choosing data sites so as to further minimize the bending

energy of the spline curve, offering an easy solution to the problem of free data sites.

Key Words : Spline Curve, B-Spline, Constrained Optimization, Quadratic

Programming, Active Set Method

2009 Mathematics Subject Classification: 41A15, 65D07, 65K10, 90C20

SOLUTIONS OF INEQUALITY CONSTRAINED SPLINE

OPTIMIZATION PROBLEMS WITH THE ACTIVE SET METHOD

by

JOSHUA HOLLOWAY

B.S., Mercer University, 2013

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment

of the Requirement for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

©2015

JOSHUA HOLLOWAY

All Rights Reserved

iii

SOLUTIONS OF INEQUALITY CONSTRAINED SPLINE

OPTIMIZATION PROBLEMS WITH THE ACTIVE SET METHOD

by

JOSHUA HOLLOWAY

Major Professor: Scott Kersey

Committee: Xiezhang Li

Hua Wang

Electronic Version Approved:

July 2015

iv

DEDICATION

This thesis is dedicated to my wonderful partner Drake Stancill, who keeps me

grounded, happy, and who inspires me to work hard and dream big.

v

ACKNOWLEDGMENTS

I wish to acknowledge first and foremost my committee members who have pushed

me to be a better student, teacher, and mathematician. In particular I would like to

acknolwedge Dr. Scott Kersey, who has perhaps taught me the most, and has inspired

me to think differently and helped me to solve more complicated problems. I would

like to thank him for spending so many hours with me, and for being an excellent

mentor. I would also like to acknolwedge the many friends I have made during my

studies. With the aid of people such as Ryan Morley, I was able to accomplish

something much greater than alone. Lastly I would like to acknowledge my good

friend Kamila Gabka, who has struggled with me for many years on this journey, and

who has inspired me to become a better person.

vi

TABLE OF CONTENTS

Page

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

2 SPLINES . 3

2.1 B-Spline Basics . 3

2.2 Spline Interpolation . 8

3 OPTIMIZATION THEORY . 10

3.1 Quadratic Programming 10

3.2 Active Set Method . 14

3.3 Convergence . 16

4 INEQUALITY CONSTRAINED SPLINE OPTIMIZATION FOR
SPLINE FUNCTIONS . 18

4.1 Function Value Constraints 18

4.2 Convergence . 22

4.3 Derivative Constraints and Shape Preserving Constraints . 23

4.4 Choosing Data Sites . 24

5 INEQUALITY CONSTRAINED SPLINE OPTIMIZATION FOR
SPLINE CURVES . 27

vii

5.1 Set-up and Constraints . 27

5.2 Convergence . 30

5.3 Choosing Data Sites . 31

5.4 Concluding Remarks . 32

REFERENCES . 33

A MATLAB CODE . 34

A.1 Active Set Method . 34

A.2 Spline Code . 37

viii

LIST OF FIGURES

Figure Page

2.1 B2
0(t) on the interval [2, 5] with knot sequence T = [3, 3, 5, 5] . . . 4

2.2 Various different B-Splines . 5

2.3 B3
0 and derivatives with knots (0, 1, 2, 3, 4) 7

2.4 Comparison of Polynomial and Spline interpolation 8

4.1 Increasingly relaxed function value constraints 20

4.2 Example 3.5 . 21

4.3 Spline Curve with Derivative Constraints 24

4.4 Spline Curve with Shape Preserving Constraints 25

4.5 Iterating Data points . 26

5.1 Parametric Spline Curves . 29

5.2 Cardioid . 30

5.3 Iterations to reduce bending energy 31

ix

CHAPTER 1

INTRODUCTION

A parametric curve f : [a, b] → Rn is called near-interpolant if, given data zi,j and

tolerances εi,j at data sites ti if the curve satisfies |f (j−1) − zi,j| ≤ εi,j for i = 1, ..., n

and for j = 1, ...,m. Furthermore, this is called the best near-interpolant curve

if the curve minimizes the bending energy,
b∫
a

|f (m)|2. This problem is discussed in

[6], and smoothing problems, with obstacles, of this type are solved in [8] using a

method of adding and removing knots, from another unpublished source. Solving

spline problems with obstacles, or constraints, is also discussed in [2], [1], and [10].

However, Leetma shows that the method of adding and removing knots can create a

cycle, and that it is still an open problem to find an algorithm to solve this problem

in finite steps. In this thesis, we solve this open problem. We focus on the univariate

case, and apply methods of quadratic programming to solve a similar problem. In

particular, we develop the active set method, and apply this method on functions with

various types of constraints. We then generalize to the parametric case, and highlight

convergence of the method in finite iterations in both cases. Also, we develop an

iterative technique for solving the problem of free data sites. This is a simple technique

that can be used to solve very complicated, non-linear problems. We begin by giving

a brief survey of splines and their properties.

Given a data set {(xi, yi), i = 1, ..., n}, several techniques exist to find a curve

that matches each data point. This is the notion of interpolation. Polynomial inter-

polation is well studied in applicable in a variety of situations. However, there are

several disadvantages to polynomial interpolation. Give n points, we interpolate with

a polynomial of degree n−1. Not only could this possibly yield to numerical error, it

is also difficult to explain phenomena that are modeled with such high degree poly-

nomials. Further, polynomial interpolation exhibits the Runge error phenomenon.

2

While there exist methods to reduce this error, it is a natural question to wonder how

else we might fit a curve through a given set of points. one answer to this question is

to use the notion of spline curves. The main points of the thesis are as follows:

• Properties of B-splines, and how we can use these properties and spline curves

as a tool in answering optimization questions.

• Basic optimization theory, including the Karush-Kuhn-Tucker conditions, and

developing in detail the Active-Set method for quadratic programming. In

particular, we highlight its application to spline optimization questions.

• Solutions of inequality constrained spline optimization problems with various

different types of constraints. Moreover, we develop a generalization of this

problem to parametric curves.

• A brief discussion on an iterative technique to choose optimal data sites for a

better solution to inequality constrained spline optimization questions.

CHAPTER 2

SPLINES

2.1 B-Spline Basics

A spline can be thought of as a piecewise polynomial. Here, splines are thought of

as linear combinations of B-splines, or basis splines. B-splines are defined by using

a non-decreasing sequence of real numbers, T = {t0, t1, ...}, called a knot sequence,

which provides information about continuity of the curve and its derivatives. We say

a knot has multiplicity m if it appears m times in the knot sequence. It is important

to note that the knot sequence entirely determines the B-Spline.

Definition 2.1. A B-spline is defined recursively as the following:

B0
i (t) :=


1, t ∈ [ti, ti+1)

0, otherwise.

Bd
i (t) :=

t− ti
ti+d − ti

Bd−1
i (t) +

ti+d+1 − t
ti+d+1 − ti+1

Bd−1
i+1 (t)

provided d ≥ 1, 0
0

:= 0.

Definition 2.2. A spline space, S, is a pair (d, T) where d ∈ N is a particular

degree and T is a fixed knot sequence.

Definition 2.3. A spline function, s(t), is a linear combination of B-splines,
n−d−1∑
i=0

ciB
d
i (t), where n is the length of the knot sequence.

4

Figure 2.1: B2
0(t) on the interval [2, 5] with knot sequence T = [3, 3, 5, 5]

The knot sequence is very important in regards to a B-spline. A given knot

sequence will determine the shape of a B-spline, where it is continuous at, and at

where it is differentiable. Depending on the type of knot sequence, we get different

types of spline curves:

• Uniform: ti+1 − ti is constant.

• Open: The multiplicity of the first knot and last knot is d + 1. This will

interpolate end points and derivatives.

• Closed and Periodic: When tn+i = tn+i−1 + (ti − ti+1).

For this paper, we typically use open, interpolatory knots unless otherwise spec-

ified.

B-Splines typically have low degree and can incorporate smoothness. Further-

more, B-splines have numerous properties that are useful in solving interpolation

problems.

• A B-spline is a polynomial between knots, and can only possibly lose continuity

at knots.

5

(a) B3
1(t) with T = 0, 1, 2, 3, 4 (b) B3

1(t) with T = 0, 0, 2, 3, 4

(c) B3
1(t) with T = 0, 0, 0, 3, 4 (d) B3

1(t) with T = 0, 0, 0, 0, 4

Figure 2.2: Various different B-Splines

• Bd
i (t) = 0 for t outside of [ti, ti+d+1]

• Bd
i (t) > 0 for t ∈ [ti, ti+d+1]

Since a B-spline can be thought of as a polynomial, it is useful to consider taking

its derivative. This formula will prove useful in formulating inequality constrained

optimization problems.

Theorem 2.4. The derivative of a B-Spline is given by:

Bd
i (t)′ =

d

ti+d − ti
Bd−1

i (t)− d

ti+d+1 − ti+1

Bd−1
i+1 (t)

Proof. We will proceed by mathematical induction on d. First, it follows from defini-

tion 2.1 that B0
i (t)′ = 0 everywhere except at ti, ti+1, where the derivative is undefined.

6

Furthermore, consider the case where d = 1. Again, by definition 2.1, the first degree

B-spline is given by

B1
i (t) =

t− ti
ti+1 − ti

B0
i (t) +

ti+2 − t
ti+2 − ti+1

B0
i+1(t)

Using product rule, we arrive at

B1
i (t)′ =

1

ti+1 − ti
B0

i (t)− 1

ti+2 − ti+1

B0
i+1(t)

This agrees with the derivative formula. Now, assume that the formula holds up

to degree d.

Observe, by definition, that

Bd+1
i (t) =

t− ti
ti+d+1 − ti

Bd
i (t) +

ti+d+2 − t
ti+d+2 − ti+1

Bd
i+1(t)

We can calculate the derivative again using the product rule.

Bd+1
i (t)′ =

t− ti
ti+d+1 − ti

Bd
i (t)′ +

1

ti+d+1 − ti
Bd

i (t)

+
ti+d+2 − t
ti+d+2 − ti+1

Bd
i+1(t)

′ − 1

ti+d+2 − ti+1

Bd
i+1(t) (2.1)

By the induction hypothesis, we have that

Bd
i (t)′ =

d

ti+d − ti
Bd−1

i (t)− d

ti+d+1 − ti+1

Bd−1
i+1 (t)

Bd
i+1(t)

′ =
d

ti+d+1 − ti+1

Bd−1
i+1 (t)− d

ti+d+2 − ti+2

Bd−1
i+2 (t)

Substitute these formulas into 2.1 gives:

Bd+1
i (t)′ =

t− ti
ti+d+1 − ti

[
d

ti+d − ti
Bd−1

i (t)− d

ti+d+1 − ti+1

Bd−1
i+1 (t)] +

1

ti+d+1 − ti
Bd

i (t)

+
ti+d+2 − t
ti+d+2 − ti+1

[
d

ti+d+1 − ti+1

Bd−1
i+1 (t)− d

ti+d+2 − ti+2

Bd−1
i+2 (t)]

− 1

ti+d+2 − ti+1

Bd
i+1(t) (2.2)

7

We can simplify the terms containing Bd−1
i+1 (t) in the following way:

dBd−1
i+1 (t)(

ti − t
(ti+d+1 − ti)(ti+d+1 − ti+1)

+
ti+d+2 − t

(ti+d+2 − ti+1)(ti+d+1 − ti+1)
)

= dBd−1
i+1 (t)(

titi+d+2 − titi+1 − tti+d+2 + tti+1 + ti+d+2ti+d+1 − ti+d+2ti − tti+d+1 + tti
(ti+d+1 − ti)(ti+d+1 − ti+1)(ti+d+2 − ti+1)

)

= dBd−1
i+1 (t)(

ti+d+2ti+d+1 − tti+d+2 − ti+1ti+d+1 + tti+1

(ti+d+1 − ti)(ti+d+1 − ti+1)(ti+d+2 − ti+1)
)

+ dBd−1
i+1 (t)(

ti+1ti+d+1 − tti+d+1 − titi+1 + tti
(ti+d+1 − ti)(ti+d+1 − ti+1)(ti+d+2 − ti+1)

)

= dBd−1
i+1 (t)(

(ti+d+2 − ti+1)(ti+d+1 − t) + (ti+d+1 − ti)(ti+1 − t)
(ti+d+1 − ti)(ti+d+1 − ti+1)(ti+d+2 − ti+1)

)

= dBd−1
i+1 (t)(

ti+d+1 − t
(ti+d+1 − ti)(ti+d+1 − ti+1)

− t− ti+1

(ti+d+1 − ti+1)(ti+d+2 − ti+1)
)

Substituting this back into 2.2 implies that the d + 1 case holds. Hence, by

mathematical induction, it follows that the derivative formula holds.

Figure 2.3: B3
0 and derivatives with knots (0, 1, 2, 3, 4)

Using B-splines in interpolation is advantageous in that we can construct smooth

curves of relatively low degree. Moreover, these spline curves typically yield less

numerical error and can be easily and efficiently implemented.

8

2.2 Spline Interpolation

Typical polynomial interpolation can be achieved and improved upon in a variety of

waves, but spline curves are much more useful in many cases. Using spline curves to

interpolate can avoid error such as the Runge phenomenon

Consider the following Lagrange interpolation and Spline interpolation of the

Runge function

f(x) =
1

1 + 25x2

(a) Polynomial Interpolation (b) Spline Interpolation

Figure 2.4: Comparison of Polynomial and Spline interpolation

As is evident in Figure 2.4, the spline curve interpolant and the Runge function

are almost indistinguishable. Our goal is to use these interpolant spline curves as

feasible starting points for solving optimization problems, so we need to be able to

guarantee there existence and be able to calculate them easily.

Problem 2.5. Given data points (xi, yi) for i = 1, ..., n and a spline space S, find a

spline curve s(t) such that s(xi) = yi.

This problem is straightforward given certain conditions. First, consider the

system in matrix form

Bc = y

9
Bd

1(x1) · · · Bd
n(x1)

...
. . .

...

Bd
1(xn) · · · Bd

n(xn)



c1
...

cn

 =


y1
...

yn


This system of equations will have a solution provide the B-spline collocation matrix,

A, is nonsingular.

Theorem 2.6. [3] The B-spline collocation matrix, A, is nonsingular if and only if

the diagonal elements are positive for i = 1, ..., n.

This condition is equivalent to the Schoenberg-Whitney Conditions :

ti < xi < ti+d+1, i = 1, 2, ..., n

provided xi = ti if ti = · · · = ti+d.

Thus, we have conditions for the existence and uniqueness of the interpolating

spline curve. Note that the Schoenberg-Whitney conditions imply that the rows

of the B-spline collocation matrix are linearly independent. However, we are more

interested in subjecting these spline curves to some kind of constraints. That is, what

if we allowed the spline curve to achieve values in a type of neighborhood around

certain nodes? Or perhaps we controlled the derivative of the spline curve, or the

shape. In order to answer these questions, we need to utilize optimization tools,

namely the active set method.

CHAPTER 3

OPTIMIZATION THEORY

3.1 Quadratic Programming

Our inequality-constrained spline optimization problem involves minimizing a func-

tion of quadratic form with linear equality constraint, i.e. quadratic programming.

The problem of quadratic programming is as follows:

Problem 3.1. Minimize the function

f(x) =
1

2
xTHx− xT b;

subject to: Ax = B,Ex ≤ F

(3.1)

Here, we refer to Ax = B as equality constraints, and Ex ≤ F as inequality

constraints. While several techniques exist to solve this type of problem, the one we

employ here is the active set method. The idea of the active set method is to solve a

problem with linear equality and inequality constraints by iterations of solutions of

equality-constrained problems with only linear equality constraints.

Definition 3.2. A point, x∗, is called feasible provided it satisfies the constraints.

That is, Ax∗ = B,Ex∗ ≤ F .

Definition 3.3. A constraint Ei is called active if it is either an equality constraint,

or if it is an inequality constraint that achieves equality, at some point xk.

Observe that in problem 3.1, if H is a positive semi-definite matrix, then we

have a convex problem. That is, the function we are minimizing is convex, and

the constraints form a convex set. This is important in that this implies that local

minimizers are in fact global minimizers.

Theorem 3.4. If H is positive semi-definite, then Problem 3.1 is a convex problem.

11

Proof. Assume H is positive semi-definite, and let α ∈ (0, 1). First, define Ω =

{x|Ax = B,Ex ≤ F}. Let x1, x2 ∈ Ω. Then we have Ax1 = B,Ax2 = B. Consider

(1− α)x1 + αx2. Then, it follows that

A((1− α)x1 + αx2) = A(1− α)x1 + Aαx2

= (1− α)B + αB

= B

Similarly, we have E((1 − α)x1 + αx2) ≤ F . Hence, Ω is a convex set. However,

it remains to show that f is a convex function, that is that f((1 − α)x1 + αx2) ≤

(1− α)f(x1) + αf(x2).

f((1− α)x1 + αx2) =
1

2
[(1− α)x1 + αx2]

TH[(1− α)x1 + αx2]− [(1− α)x1 + αx2]
T b

=
1

2
[(1− α)2xT1Hx1 + 2α(1− α)xT1Hx2 + α2xT2Hx2]

− (1− α)xT1 b− αxT2 b

Hence, it follows that

f((1− α)x1 + αx2)− (1− α)f(x1)− αf(x2)

=
1

2
[(1− α)2 − (1− α)]xT1Hx1

+ α(1− α)xT1Hx2 +
1

2
(α2 − α)xT2Hx2

=
1

2
(α2 − α)[xT1Hx1 − 2xT1Hx2 + xT2Hx2]

=
1

2
(α2 − α)[x1 − x2]TH[x1 − x2] ≤ 0

The last line follows since H is positive definite, and since α ∈ (0, 1).

Quadratic programming is also based heavily on the well known Karush-Kuhn-

Tucker (KKT) conditions. These conditions give us criterion by which to decide if

12

during our iterations in the active set method, we are at a solution.

Theorem 3.5. Let x∗ be a local minimizer of (3.1). Then there exist λ̄, µ̄ such that

• µ̄ ≥ 0̄

• Hx∗ − b+ AT λ̄+ ET µ̄ = 0̄

• µ̄T (F − Ex∗) = 0

• Ax∗ = B

• Ex∗ ≤ F

The KKT conditions help provide existence and uniqueness conditions for the

quadratic programming problem. This is discussed in detail in [11], and a theorem

is presented here without proof. The basic idea is that we can ensure that a feasible

point is a local minimizer, and since the problem is convex, this is a unique solution.

This is a necessary and sufficient condition for optimality.

Theorem 3.6. Let x∗ be a feasible point for the problem 3.1. Then x∗ is a local mini-

mizer provided that x∗, λ̄ satisfy the KKT conditions, and also that dTHd ≥ 0, for all

d such that Aid = 0 for equality constraints, Eid ≥ 0 for active inequality constraints,

and Eid = 0 for active inequality constraints with positive lagrange multipliers.

So, first, let us consider the equality constrained case, with no inequality con-

straints. We develop here in detail the generalized variable elimination method, which

is described in [11]

Theorem 3.7. Let Y be a matrix whose columns form a basis of R(AT), and let Z

be a matrix whose columns for a basis for N(A). Assume that A is full row rank, and

13

that ZTHZ is invertible. Suppose x solves problem 3.1 with lagrange multipliers λ̄.

Then

x = Y (AY)−1B − Z(ZTHZ)−1ZT (HY (AY)−1B − b)

λ̄ = (AY)−TY T (b−Hx)

Proof. We begin by partitioning Rn as R(AT) ⊕ N(A). Let Y be a basis for R(AT)

and let Z be a basis for N(A). Then we can say x = Y x̄+ Zx̂, with x̄ ∈ R(AT) and

x̂ ∈ N(A). From the equality constraint, Ax = B, we have that

A(Y x̄+ Zx̂) = B ⇒ AY x̄ = B ⇒ x̄ = (AY)−1B

Note that AY is nonsingular by construction of Y . Hence,

x = Y (AY)−1B + Zx̂ (3.2)

Our goal is to develop a formula for the solution of the the quadratic program. sub-

stituting form of x into our original problem gives:

1

2
xTHx− xT b =

1

2
[Y (AY)−1B + Zx̂]TH[Y (AY)−1B + Zx̂]− [Y (AY)−1B + Zx̂]T b

=
1

2
[BT (AY)−TY T + x̂TZT]H[Y (AY)−1B + Zx̂]− [BT (AY)−TY T + x̂TZT]b

1

2
BT (AY)−TY THY (AY)−1B +

1

2
BT (AY)−TY THZx̂+

1

2
x̂TZTHY (AY)−1B

+
1

2
x̂TZTHZx̂−BT (AY)−TY T b− x̂TZT b

This gives us an unconstrained problem:

Problem 3.8. Minimize the following function, assuming that A has full row rank:

1

2
x̂TZTHZx̂+ x̂TZT (

1

2
HY (AY)−1B − b) (3.3)

14

Assuming that ZTHZ is positive definite, then we have that

x̂ = −(ZTHZ)−1ZT (HY (AY)−1B − b)

Substituting this back into 3.2, we arrive at a solution for this problem:

x = Y (AY)−1B − Z(ZTHZ)−1ZT (HY (AY)−1B − b) (3.4)

Furthermore, from the KKT conditions, we have that

Hx− b+ AT λ̄ = 0

AT λ̄ = b−Hx

Y TAT λ̄ = Y T (b−Hx)

(AY)TAT λ̄ = Y T (b−Hx)

λ̄ = (AY)−TY T (b−Hx) (3.5)

3.2 Active Set Method

Now, with a method for solving equality constrained problems, we can develop the

active set method for solving problems with linear inequality constraints. The idea

is as follows: given an initial, feasible point, we aim to calculate a step direction to

iterate the point. On each iteration the point should remain feasible, and on each

iteration, to calculate this step direction, we solve a subproblem with only equality

constraints. If, after we iterate the point, the point is no longer feasible, then we

need to add constraints to consider. If, however, the point is feasible, then we need

to examine if the KKT conditions are satisfied. If not, then we can drop a constraint

and continue searching for the solution.

15

Let xk be the kth iterate during the active set method. In order to iterate and

find xk+1 = xk+αkdk, we need to find the descent direction dk by solving the following:

Problem 3.9. Minimize the function

1

2
xTk+1Hxk+1 − xTk+1b;

subject to: Axk+1 = B,Exk+1 = F

(3.6)

where we are considering the active inequality constraints.

It is straightforward to verify that equation 3.6 is equivalent to

1

2
dTHd− (b−Hxk)Td

where Ad = 0̄;Ed = 0̄ for active inequality constraints. This is an equality con-

strained optimization problem, and can be solved using the generalized variable elim-

ination method, and equation 3.4. Now, if the step direction is zero, we have a chance

of being at a solution. Using 3.5, we check to see if the lagrange multipliers are all

positive. If so, we have arrived at an answer. If not, then we drop the constraint

associated with the smallest multiplier.

Definition 3.10. The working set Sk is comprised of the equality and active inequality

constraints, at the kth iteration of the active set method.

If dk 6= 0, then we need to continue searching for a solution and add a constraint

into the working set. To do so, we find a j 6= S such that Ej(xk+1) = Fj, where Ej, Fj

represent the jth inequality constraint. This j is chosen according by

min{Fi − Eixk
Eidk

}

where Ei is a row of the matrix E, consisting of the constraints chosen in the working

set. Index j will be the index associated with this minimum value. Moreover, we

16

choose a step length αk by choosing either 1 or this value, whichever is smallest. After

adding this constraint to the working set, the process is repeated until a solution is

reached.

This discussion is summarized in Algorithm 1 and code is provided in appendix

A.1.

Algorithm 3.11 (Active Set Method).

1. Given a feasible starting point x1, initialize the working set S1.

2. Find the step direction by solving the equality constrained sub-problem 3.6.

• If dk = 0, check the Lagrange multipliers.

– If all of the Lagrange multipliers are non-negative in the working set,

stop.

– Otherwise, drop the constraint associated with the negative Lagrange

multiplier.

• If dk 6= 0, then find αk as above.

– If αk = 1, iterate, set xk+1 = xk + αkdk, and return to step 2.

– Otherwise, find j /∈ Sk such that

ET
j (xk + αkdk) = Fj

Then, add this constraint to the working set. Return to step 2.

3.3 Convergence

It is worth mentioning that we focus on the case in which the matrix H is positive

semi-definite, and thus, a convex problem. Other techniques exist for solving problems

that are not of this form, but optimizing inequality constrained splines will satisfy

17

these conditions. In particular we want to ensure this method converges in finite

iterations and that a solution exists. This is discussed in detail in [11].

Theorem 3.12. If, ∀k, the working set Sk is linearly independent, then either the se-

quence generated from the Active Set method converges to a KKT point of the problem

in finite iterations, or the problem is unbounded below.

So, a critical notion is that in order for this method to work on our problems,

we need to have linear independence in the working set. Since the working set is a

subset of all equality and inequality constraints, it is easy to imagine that some of

the constraints could be linearly independent. However, we will show that for our

particular inequality constrained spline optimization problems that this is not the

case.

CHAPTER 4

INEQUALITY CONSTRAINED SPLINE OPTIMIZATION FOR

SPLINE FUNCTIONS

In applying active set method to solving spline optimization problems, we wish to

find a spline curve subject to some constraints, which has minimal “bending energy”.

We will develop several types of constraints, but first consider simple constraints of

bounding the function around data points.

Definition 4.1. Given a function f(x) on an interval [a, b], the bending energy of

the function, E(f), is defined as

E(f) :=

b∫
a

|f ′′(x)|2dx.

4.1 Function Value Constraints

Problem 4.2. Given data (xi, yi) and a spline space S, find a spline curve s(t) such

that ai ≤ s(xi) ≤ bi and minimizes E(s).

To formulate this problem to match the notation of problem 3.1, recall that we

define spline curves in terms of linear combinations of B-splines. So, if we have a

basis Φ and coefficients α, then we have that s = Φα and

∫
|s′′(x)|2 =

∫
(Φ′′α)2 = αT (

∫
Φ′′TΦ′′)α.

Considering the integration in the perspective of an inner product, then the

matrix given by

H =

∫
Φ′′TΦ′′ (4.1)

is known as the Gramian matrix. This matrix can be shown to be positive semi-

definite. In order to take derivatives of the B-splines, we will use Theorem 2.4. In

19

order to complete the integral, we will use Gaussian quadrature, which can be shown

to be exact for polynomials of certain degree. Since splines are polynomials in-between

knots, we can integrate them over each knot interval using this technique.

Remark 4.3. For a degree 3 polynomial, the Gaussian quadrature rule

1∫
−1

f(x)dx = f(
−
√

3

3
) + f(

√
3

3
)

is exact. For many examples in this thesis, we choose our spline space to consist of

degree 3 B-splines

Remark 4.4. Each spline function is a polynomial in-between knots, so we integrate

over each knot interval and then take a sum. In order to accomplish this with gauss

quadrature, we can use the following coordinate transformation for the sub-interval

[a, b]:

t =
b− a

2
x+

b+ a

2

Code reflecting this process can be found in Appendix A.2.

Now, our goal is to first develop the quadratic program to be solved. First,

consider the function value constraints that we have in this problem: ai ≤ s(xi) ≤ bi.

Considering the right inequality first, we have:

s(xi) < bi ⇒
n∑

j=1

cjB
d
j (xi) < bi


Bd

1(x1) · · · Bd
n(x1)

...
. . .

...

Bd
1(xn) · · · Bd

n(xn)



c1
...

cn

 ≤

b1
...

bn


Similarly, from the left hand inequality, we can conclude that

−Bd
1(x1) · · · −Bd

n(x1)

...
. . .

...

−Bd
1(xn) · · · −Bd

n(xn)



c1
...

cn

 ≤

−a1

...

−an



20

Concatenating these matrices gives us the E and F matrices for the inequality con-

straints of the quadratic programming problem. In the basic problem, we do not

consider having equality constraints, but we could easily impose some in a simi-

lar fashion. Furthermore, we choose to start with the coefficients of the interpolant

spline curve for a feasible starting point for this problem. We typically start with these

coefficients, but given the constraints, a different starting point may be required.

Example 4.5. Consider the data points {(1, 2), (2, 5), (3, 10), (4, 3), (5, 7)} We begin

by finding the interpolating spline, and use this as a starting point in the active set

method. In four different applications of the algorithm, we use increasingly relaxed

constraints to exemplify that the bending energy is indeed decreasing.

(a) s(xi)± 1 (b) s(xi)± 2

(c) s(xi)± 3 (d) s(xi)± 3.5

Figure 4.1: Increasingly relaxed function value constraints

21

Example 4.6. This example is a counter-example to a problem in [8], but we solve

here using the active set method. Consider data points

{(1.5, 1.7), (2, 2.7), (3, 4.2), (4, 5.1), (6, 4.7), (7, 4.8)}

We impose function value constraints of ±.7 around each data point,except at the

last two end points, where we impose equality constraints. In addition to this we wish

to impose that natural end conditions be met. That is, that the second derivative of

the spline curve vanishes at the end points of this interval.

Figure 4.2: Example 3.5

22

4.2 Convergence

By theorem 3.12, we know that the active set method will converge to a solution in

finite time provided that the working set is linearly independent. We achieve linear

independence based on the following:

Lemma 4.7. With function-valued constraints, no two constraints around a single

data point can be active at the same time.

It is clear that a function cannot, of course, achieve two different y values. How-

ever, we want to ensure that the active set method will not choose to add a constraint

at a data point if there is already a constraint for that data point in the working set.

This is achieved by the way that we choose to add constraints to the working set.

Suppose that we have the constraint Ei in the working set. Then Eixk = Fi. The con-

straint on the ”other side” of the point can be written as −Ei. This point, however,

is chosen such that i /∈ Sk and that Eidk < 0. However, since Ei is in the working set

already, we have Eidk = 0⇒ −Eidk = 0. Hence, this constraint will never be chosen

to be added to the working set.

Lemma 4.8. With function valued constraints, constraints around two different data

points will be linearly independent.

This follows directly from the Schoenberg-Whitney conditions. Combining these

two lemmas gives the following theorem:

Theorem 4.9. In applying the active set method to problem 4.2, the working set will

always be linearly independent. Hence, the active set method will converge in finite

time, or the problem is unbounded below.

Proof. We proceed by induction on the iteration, k. The initial working set will consist

of any equality constraints and any active inequality constraints at the initial point,

23

and these constraints must be linearly independent by the previous two lemmas. If at

the kth iteration the working set is linearly independent, then we need only consider

the case in which we add a constraint to generate Sk+1, as removing a constraint will

certainly not alter linear independence. The constraint which will be added will not

be a constraint “opposite” a constraint already existing in the working set, per the

above discussion. Hence, the constraint will be at some other data point, and will

hence be active. Therefore, the working set will always be linearly independent.

4.3 Derivative Constraints and Shape Preserving Constraints

Problem 4.10. Given data (xi, yi) and a spline space S find a spline curve s(t) such

that a′i ≤ s′(xi) ≤ b′i and minimizes E(s).

We can set this problem up in the exact same way as the function value constraint

problem, replacing the B-spline functions with their respective derivatives.

Example 4.11. Consider the data points {(1, 1), (2, 4), (3, 6), (4, 4), (5, 1)}. We fix

our spline space with degree d = 3 and knot sequence T = [1, 1, 1, 1, 3, 5, 5, 5, 5]. First,

we impose function value constraints of ±1 around each data point. Next, we further

add derivative constraints of ±1 at x = [1.3, 1.8, 2.5, 4.5].

Shape preserving constraints are similar in that we can employ a technique of

simply putting an upper and lower bound on some property of the data we are given,

or curve we are starting with. In this case we place a constraint on the second

differences of the curve.

Example 4.12. Consider the data points

{(1, 2), (2, 5), (3, 7.3), (4, 4.5), (5, 1), (6, 3), (7,−4), (8, 10)}

. We fix our spline space with degree d = 3 and knot sequence T = [1, 1, 1, 1, 3, 5, 5, 5, 5].

24

(a) No Derivative Constraints (b) With Derivative Contraints

Figure 4.3: Spline Curve with Derivative Constraints

(a) Bounds on Derivative

Remark 4.13. In applying the active set method to these problems, the working set

is also guaranteed to be linearly independent, for similar reasons as in the function

value constrained problem.

4.4 Choosing Data Sites

In all the examples in this chapter, the active set method converges to a unique

solution which minimizes bending energy, given the initial data points. However, if

we allow ourself to change these points slightly, we can come up with an even better

answer, which might prove useful in some general function approximation sense. The

25

(b) No Shape Preserving Constraints

(c) With Shape Preserving Constraints

Figure 4.4: Spline Curve with Shape Preserving Constraints

idea is as follows: after solving for the spline coefficients which solve an inequality

constrained optimization problem, find which constraints are considered active, except

for the end point constraints. For these, update xi = xi + ∆xi where

∆xi =
−(yi − s(xi))s′(xi)

(yi − s(xi))s′′(xi) + (s′(xi))2
(4.2)

This will cause the derivative to vanish at the active constraints, decreasing the

bending energy.

Example 4.14. Consider the data points {(1, 5), (2, 1), (3, 0), (4, 2), (5, 10)} with a

spline space with degree d = 3 and knot sequence T = [1, 1, 1, 1, 3, 5, 5, 5, 5]. We

apply equation 4.2 repeatedly and record the bending energy, E =
b∫
a

|s′′(t)|2

i 0 1 2 3 4 5

E 32.5174 26.9026 22.7724 21.0450 20.9198 20.8081

26

(a) Before Iterating (b) After Iterating

Figure 4.5: Iterating Data points

Formula 4.2 is derived as follows: first, consider the function F (xi) = (yi−s(xi))2.

By Taylor’s theorem, we have that

F (xi + ∆xi) ≈ F (xi) + F ′(xi)∆xi + F ′′(xi)
∆x2i

2

We want to minimize the derivative of this expansion. We can do so with a Newton

iteration.

dF (xi)

d∆xi
= F ′(xi) + F ′′(xi)∆xi = 0

⇒ ∆xi = − F
′(xi)

F ′′(xi)

Differentiating the original function, we have that

F ′(xi) = 2(yi − s(xi))(−s′(xi))

= −2yis
′(xi) + 2s(xi)s

′(xi)

F ′′(xi) = −2(yi − s(xi))(s′′(xi)) + 2(s′(xi))
2

= −2yis
′′(xi) + 2s(xi)s

′′(xi) + 2(s′(xi))
2

Substituting these back in for ∆xi gives us the desired formula.

CHAPTER 5

INEQUALITY CONSTRAINED SPLINE OPTIMIZATION FOR

SPLINE CURVES

5.1 Set-up and Constraints

Problem 5.1. Given a data set (xi, yi) and spline space S, generated from a para-

metric curve s(t) = 〈x(t), y(t)〉, find a spline curve

sx(t) =
∑

cx,jB
d
j (t)

sy(t) =
∑

cy,jB
d
j (t)

such that the curve fits inside regular, convex polygons around the data points, and

minimizes
b∫

a

|s′′(t)|2dt =

b∫
a

(s′′x(t))2 + (s′′y(t))2dt

Problem 5.1 is slightly different in that we need to find two sets of coefficients,

but we still want to minimize the bending energy. We can define the bending energy

as follows:

E =

∫
|s′′(t)|2dt =

∫
(s′′x(t))2 + (s′′y(t))2dt

= αT
xHαx + αT

yHαy

=

[
αx αy

]T H 0

0 H


αx

αy


where H is the Gramian matrix as described in 4.1. Since H is positive semi-definite,

the matrix here will be as well, by construction. In this problem we consider inequality

constraints to be normal polygons around each data point. In order to do this, for a

28

polygon of n sides we choose n equally spaced points around a parametrically defined

circle. Each side of the polygon will be a linear constraint. To write these constraints

down rigorously, we loop around the polygon and take dot products of the surface

normals. Suppose v = 〈xi+1 − xi, yi+1 − yi〉, N = 〈yi+1 − yi,−(xi+1 − xi)〉, and

u = 〈x− xi, y − yi〉. We want that u ·N ≤ 0. Hence,

(x− xi)(yi+1 − yi)− (y − yi)(xi+1 − xi) ≤ 0

(yi+1 − yi)x− (xi+1 − xi)y ≤ xi(yi+1 − yi)− yi(xi+1 − xi)

We can then iterate about each point, iterate through each side of the polygon

surrounding the point, and generate n linear constraints. MATLAB code reflecting

this process can be found in appendix A.2. In this regard, the problem is in exactly

the form we need it to be to utilize the active set method.

Example 5.2. Consider the parametric curve

x(t) = t cos(t); y(t) = t sin(t)

and obtain data points from the parameter values t = [0, π/2, π, 3π/2, 2π]. We choose

degree d = 3 and knot sequence T = [0, 0, 0, 0, π, 2π, 2π, 2π, 2π] for our spline space.

29

(a) Three sides (b) Six sides

(c) Fifteen sides

Figure 5.1: Parametric Spline Curves

We demonstrate in Figure 5.2 that any number of sides can be used for the

polygonal constraints, although large values for n will cost more CPU time. In this

way, the constraints in this problem can approach a circle, a non-linear constraint.

Example 5.3. Consider the parametric curve

x(t) = 2 cos(t)(1− cos(t)); y(t) = 2 sin(t)(1− cos(t))

with parameter values t = [0, π/2, π, 3π/2, 2π]. We choose degree d = 3 and knot

sequence T = [0, 0, 0, 0, π, 2π, 2π, 2π, 2π]. We also use regular convex pentagons to

impose constraints.

30

Figure 5.2: Cardioid

5.2 Convergence

Again, in order to claim that the active set method converges on this problem, we

need only show that the working set will be linearly independent, and invoke theorem

3.12. In problem 5.1, the constraints can be viewed as convex polygons surrounding

data points. There are only two possibilities for a point to be considered active -

either only one side of the polygon is active, or the curve hits the polygon at a corner

point, in which two constraints matching that data point will be active at the same

time.

Lemma 5.4. Polygonal constraints around different points will be linearly indepen-

dent.

This follows, again, from the Schoenberg-Whitney conditions.

Lemma 5.5. In applying the active set method to problem 5.1, a linearly dependent

constraint will never be added to the working set.

This follows from a very similar discussion to that of lemma 4.7. Combining

these ideas ensures the converges of the active set method on this problem.

31

Theorem 5.6. In applying the active set method to problem 5.1, the working set will

always be linearly independent, and hence the active set method will converge in finite

time to a solution, or the problem is unbounded below.

5.3 Choosing Data Sites

We can also iterate to choose optimal data sites just as in the function case. Con-

sidering example 5.2 , we iterate to choose optimal data sites. Here, we use a larger

pentagon to emphasize the iteration. As shown in the following table, the bending

energy of the curve does in fact decrease.

(a) Before Iterating (b) After Iterating

Figure 5.3: Iterations to reduce bending energy

32

i 0 1 2 3 4 5 6 7 8

E 48.56 39.57 33.26 28.46 24.53 21.43 20.90 20.87 20.46

In order to derive the formula for this iteration, we follow the same process as

described in deriving 4.2, except we need to utilize a dot product instead of a normal

product. That is to say, F (xi) = 〈yi − s(xi), yi − s(xi)〉, where 〈·, ·〉 represents a dot

product. Here, we have that

F ′(xi) = −2〈yi − s(xi), s′(xi)〉

F ′′(xi) = −2〈yi − s(xi), s′′(xi)〉+ 2〈s′(xi), s′(xi)〉

Substituting gives the desired formula. A MATLAB example of this can be found in

appendix A.2

5.4 Concluding Remarks

Inequality constrained spline optimization problems can be solved very effectively

with the active set method. The method is guaranteed to converge to a solution in

finite time, provided the problem is posed in the correct way and that a solution

exists. Moreover, the method is efficient and easy to implement. In the future, we

would like to further improve on our code so as to be able to solve this problem more

efficiently than general optimization packages. Also, we would like to develop a new

iteration involving the parametric case; that is, to approximate non-linear constraints

using the linear polygonal constraints.

33

REFERENCES

[1] M. Atteia, Fonctions “Spline” Avec Constraintes Lineaires de type Inegalite
Congrès de l’AFRIO, Nancy, Mai. 43 – 54 (1967)

[2] M. Atteia, Fonctions “spline” definies sur un ensemble convexe Numer. Math.
12, 192 - 210 (1968)

[3] C. de Boor, Total Positivity of the Spline Collocation Matrix Indiana University
Mathematics Journal (1976)

[4] C. de Boor, A Practical Guide for Splines Springer (New York) (1978)

[5] M. Ignatov and A. Pevnyj, Natural Splines of Several Variables Nauka, Leningrad.
Otdel, Leningrad, (in Russian). (1991)

[6] S. Kersey, Near-Interpolation Numer. Math. 94 523 540. (2003)

[7] S. Kersey, On the problems of smoothing and near-interpolation Math. Comp. 72
1873 - 1885. (2003)

[8] E. Leetma and P. Oja, A Method of Adding-Removing Knots for Solving Smooth-
ing Problems with Obstacles European Journal of Operational Research (2009)

[9] J. Prochazkova, Derivative of B-Spline Function Konference O Geometrii a
Poc̆́ıtac̆oveé Grafice

[10] L. Schumaker and O. Mangasarian, Splines via Optimal Control Applications
with special emphasis on spline functions, ed. J. Schoenberg Academic Press 119
- 156 (1969)

[11] W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Program-
ming Springer (New York) (2006)

Appendix A

MATLAB CODE

Included here is code written in MATLAB to execute the active set method on a

quadratic programming problem. Further, several routines are included for Splines.

A.1 Active Set Method

function [x, lambda, mu, niter,S] = ...

joshactivesetoptim(H,b,A,B,E,F,x)

%A program which uses the active set method in order to solve a convex

%quadratic optimization problem. In other wordse, minimize:

%1/2x'Hx - x'b

%Subject to the equality constraints Ax = B

%Subject to the inequality constraints Ex <= F

%With initial guess x. The initial guess must be feasible.

%%Josh Holloway, Dr. Scott Kersey

%%Georgia Southern University

%%2015

lambda = [];

mu = [];

tol = 10ˆ-10;

%Unconstrained problem

if nargin == 2

if(rank(H) == rank([H,b]))

if(det(H) < tol)

x = pinv(H)*b;

else

x = H\b;

end

35

else

fprint('There is not a solution to this problem');

x = [0;0];

end

end

%Equality Constrained Problem

if nargin == 4

Y = orth(A');

Z = null(A);

x = Y*inv(A*Y)*B -Z*inv(Z'*H*Z)*Z'*(H*Y*inv(A*Y)*B-b); %good

lambda = inv(A*Y)'*Y'*(b - H*x);

end

%Inequality Constrained Probelm

if nargin == 7

S = find(E*x - F > -tol); S = S(:)';

mu = -1;

maxiter = 50;

niter = 0;

lambda = 0;

[m,n] = size(A);

[s,t] = size(E);

while(any((mu)<0)) && (niter < maxiter)

niter = niter + 1;

AA = [A; E(S,:)];

zz = zeros(length(AA(:,1)),1);

bb = b-H*x;

[d,lambda,mu] = joshactivesetoptim(H,bb,AA,zz);

alpha = 1;

if norm(d)<tol

mu = zeros(s,1);

[mm,nn] = size(AA);

36

zz = [B; F(S,:)];

[xx,ll,mu] = joshactivesetoptim(H,bb,AA,zz);

lambda = ll(1:m);

mu(S) = ll(m+1:end);

if any(mu<0)

i = find(mu == min(mu));

S = setdiff(S,i);

end

else

mu = -1;

Sc = setdiff(1:s, S);

dSc = Sc(find(E(Sc,:)*d >0));

alpha = 1;

if ~isempty(dSc)

v = (F(dSc) - E(dSc,:)*x)./(E(dSc,:)*d);

alpha = min(1,min(v));

end

if alpha ~=1

j = dSc(find(v==alpha, 1));

S = sort([S,j]);

end

end

x = x + alpha*d;

end

niter

end

end

37

A.2 Spline Code

function y = bspline(d,i, t, T, b)

%Recursive definition of b-spline

%d is the degree of the ith spline, evaluated at t, with knot vector ...

T and

%b the endpoint of the interval.

%Base-Case. Includes modification to correct for the end-point ...

interpolation

%problem with open splines.

%%Josh Holloway, Dr. Scott Kersey

%%Georgia Southern University

%%2015

y=0;

if d == 0

%4 cases included to correct for issue where 0/0 = 0.

if (t >= T(i) && t < T(i+1)) | | (T(i) < T(i+1) && T(i+1) ==b && t ...

>= T(i) && t <= T(i+1))

y = 1;

end

elseif t>=T(i) && t<=T(i+d+1)

if T(i+d) > T(i)

y = ((t - T(i))/(T(i+d) - T(i)))*bspline(d-1,i,t,T,b);

end

if T(i+d+1) > T(i+1)

y = y + ((T(i+d+1) - t)/(T(i+d+1)-T(i+1)))*bspline(d-1,i+1,t,T,b);

end

end

end

38

function [y] = bsplinederiv(d,i,t,T,b)

%Evaluates the derivative of a b-spline of degree d, at t, with knot

%sequence T.

y = 0;

if(T(i+d) > T(i))

if(T(i+d+1) > T(i+1))

y = (d/(T(i+d)-T(i)))*bspline(d-1, i, t, T, b) - (d/(T(i+d+1) ...

- T(i+1)))*bspline(d-1,i+1,t,T,b);

elseif(T(i+d+1) == T(i+1))

y = (d/(T(i+d)-T(i)))*bspline(d-1, i, t, T, b);

end

elseif(T(i+d+1)>T(i+1))

y = -(d/(T(i+d+1) - T(i+1)))*bspline(d-1,i+1,t,T,b);

end

end

function [y] = bsplinesecondderiv(d,i,t,T,b)

%Calculate the second derivative of a bspline.

%Could code in a recursive way, but currently this is sufficient.

y = 0;

if(T(i+d) > T(i))

if(T(i+d+1) > T(i+1))

y = ((d/(T(i+d)-T(i)))*bsplinederiv(d-1,i,t, T,b) - ...

(d/(T(i+d+1)-T(i+1)))*bsplinederiv(d-1,i+1,t,T,b));

else

y = (d/(T(i+d)-T(i)))*bsplinederiv(d-1,i,t, T,b);

end

else

y = -(d/(T(i+d+1)-T(i+1)))*bsplinederiv(d-1,i+1,t,T,b);

end

39

end

function [c] = splinefinder(x, y, d, T, b)

%Solves the problem Ac = y, where A is a matrix of B-splines of ...

degree d,

%evaluated at xi in x, with respect to the knot vector t. y are the

%corresponding values to the x vector for the data we wish to ...

interpolate.

%b is the endpoint of the interval.

m = length(x);

n = length(T)-d-1;

A = [];

for i= 1:m

for j = 1:n

A(i,j) = bspline(d,j,x(i),T,b);

end

end

c = A\y';

%Natural spline end conditions with second derivative equal to zero.

% for j = 1:n

% A(m+1,j) = bsplinesecondderiv(d,j,x(1),T,b);

% A(m+2,j) = bsplinesecondderiv(d,j,x(end),T,b);

% end

% y = [y 0 0];

% c = A\y';

function [H] = splinegaussquad(d, T, n)

%d - degree

40

%T - knot sequence

H = zeros(n);

if d == 3

for i = 1:n

for j = 1:n

sum = 0;

for k = 1:(length(T)-1)

if T(k) < T(k+1)

s = T(k);

t = T(k+1);

num = .5*((t-s) * (sqrt(3)/3) + (t+s));

num2 = .5*((t-s) * (-sqrt(3)/3) + (t+s));

Wi1 = bsplinesecondderiv(d,i,num,T,T(end));

Wj1 = bsplinesecondderiv(d,j,num,T,T(end));

Wi2 = bsplinesecondderiv(d,i,num2,T,T(end));

Wj2 = bsplinesecondderiv(d,j,num2,T,T(end));

sum = sum + Wi1*Wj1 + Wi2*Wj2;

end

end

H(i,j) = sum;

end

end

end

if d == 4

for i = 1:n

for j = 1:n

sum = 0;

for k = 1:(length(T)-1)

if T(k) < T(k+1)

s = T(k);

41

t = T(k+1);

num = .5*((t-s) * (sqrt(3/5)) + (t+s));

num2 = .5*((t-s) * (-sqrt(3/5)) + (t+s));

num3 = .5*((t-s) * (0) + (t+s));

Wi1 = bsplinesecondderiv(d,i,num,T,T(length(T)));

Wj1 = bsplinesecondderiv(d,j,num,T,T(length(T)));

Wi2 = bsplinesecondderiv(d,i,num2,T,T(length(T)));

Wj2 = bsplinesecondderiv(d,j,num2,T,T(length(T)));

Wi3 = bsplinesecondderiv(d,i,num3,T,T(length(T)));

Wj3 = bsplinesecondderiv(d,j,num3,T,T(length(T)));

sum = sum + (5/9)*(Wi1*Wj1)ˆ4 + (5/9)*(Wi2*Wj2)ˆ4 ...

+ (8/9)*(Wi3*Wj3)ˆ4;

end

end

H(i,j) = sum;

end

end

end

end

function [polygons,E,F] = polyCon2(t,x,y,n,d,T)

%t - parameter ,x - x(t), y - y(t)

%n - number of sides

%d - degree

%T - knots

polygons = cell(2*length(x), 1);

for i = 1:length(x)

polyx = [];

polyy = [];

for j = 1:n

42

%find the point on the circle we want

tbar = (2*pi/n)*(j-1);

polyx(j) = x(i) + .5*cos(tbar);

polyy(j) = y(i) + .5*sin(tbar);

end

polygons{2*i-1} = polyx;

polygons{2*i} = polyy;

end

num = length(T)-d-1;

E = zeros(n*length(t),2*num);

F = zeros(n*length(t), 1);

tcount = 0;

for i = 1:2:length(polygons)

tcount = tcount + 1; %which polygon are we on?

polyx = polygons{i};%xvalues for polygon

polyy = polygons{i+1};%yvalues for polygon

for k = 1:length(polyx)%for each point, we will have a constraint

if(k == length(polyx))

xi = polyx(k); xi1 = polyx(1);

yi = polyy(k); yi1 = polyy(1);

else

xi = polyx(k); xi1 = polyx(k+1);

yi = polyy(k); yi1 = polyy(k+1);

end

row= k + n*(tcount - 1);

F(row) = xi*(yi1-yi) - yi*(xi1-xi);

for col = 1:num%x-constraints

E(row, col) = (yi1 - yi)*bspline(d,col, t(tcount), T, T(end));

end

for col = num+1:2*num%y-constraints

43

E(row, col) = -(xi1 - xi)*bspline(d,col-num,t(tcount),T, ...

T(end));

end

end

end

end

%Iterate in the paramateric case

%Sprial Example

%Assuming pentagonal constraints

clear; clc; clf; format compact; close all;

t = 0:pi/2:2*pi;

x = t.*cos(t);

y = t.*sin(t);

T = optknt(t,4);

[xcoeff,ycoeff,S] = solveParaIEQSpline(t,x,y,T);

for iter = 1:10

toremove = [];

count = 0;

for i = 1:length(S)

if(S(i) <= 5 | | S(i) >=21)

count = count + 1;

toremove(count) = S(i);

end

end

S = setdiff(S, toremove);

for i = 1:length(S)

if (S(i) >= 6 && S(i) <= 10)

S(i) = 2;

elseif (S(i) >= 11 && S(i) <=15)

44

S(i) = 3;

elseif(S(i) >= 16 && S(i) <=20)

S(i) = 4;

elseif((S(i) >= 21 && S(i) <= 25))

S(i) = 5;

end

end

S = unique(S);

if (~isempty(S))

for i = 1:length(S)

cix = x(S(i));

ciy = y(S(i));

ci = [cix, ciy];

rx = 0;

ry = 0;

for j = 1:length(T)-3-1

rx = rx + xcoeff(j)*bspline(3,j,x(S(i)), T, T(end));

ry = ry + ycoeff(j)*bspline(3,j,y(S(i)), T, T(end));

end

r = [rx,ry];

rprimex = 0;

rprimey = 0;

rdprimex = 0;

rdprimey = 0;

for j = 1:length(T)-3-2

rprimex = rprimex + xcoeff(j)*bsplinederiv(3,j,x(S(i)), T, ...

T(end));

rprimey = rprimey + ycoeff(j)*bsplinederiv(3,j,y(S(i)), T, ...

T(end));

rdprimex = rdprimex + ...

xcoeff(j)*bsplinesecondderiv(3,j,x(S(i)), T, T(end));

45

rdprimey = rdprimey + ...

ycoeff(j)*bsplinesecondderiv(3,j,y(S(i)), T, T(end));

end

rprime = [rprimex, rprimey];

rdprime = [rdprimex, rdprimey];

delta = (dot(ci-r, rprime))/(1+dot(rprime, rprime));

t(S(i)) = t(S(i)) + delta;

end

x = t.*cos(t);

y = t.*sin(t);

figure(iter+1)

[xcoeff,ycoeff,S] = solveParaIEQSpline(t,x,y,T);

end

end

	Solutions of Inequality Constrained Spline Optimization Problems with the Active Set Method
	Recommended Citation

	tmp.1437596816.pdf.VVlEj

