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ABSTRACT

In this thesis we discuss different SVM methods for multiclass classification and introduce

the Divide and Conquer Support Vector Machine (DCSVM) algorithm which relies on data

sparsity in high dimensional space and performs a smart partitioning of the whole train-

ing data set into disjoint subsets that are easily separable. A single prediction performed

between two partitions eliminates one or more classes in a single partition, leaving only a

reduced number of candidate classes for subsequent steps. The algorithm continues recur-

sively, reducing the number of classes at each step, until a final binary decision is made

between the last two classes left in the process. In the best case scenario, our algorithm

makes a final decision between k classes in O(log2 k) decision steps and in the worst case

scenario DCSVM makes a final decision in k − 1 steps.
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CHAPTER 1

INTRODUCTION

Support Vector Machines (SVMs) belong to the class of supervised learning methods in

machine learning and artificial intelligence. They learn from data and recognize patterns

which are useful for classification and regression. The SVMs are widely used as a reliable

tool for data mining, pattern recognition, and predictive analytics in medicine, engineering,

and business.

In the 1960’s the statistical learning theory was mostly developed for learning algo-

rithms of nonlinear functions through the seminal work by Vapnik and Chervonenkis [12].

The statistical learning theory deals with the following fundamental problems about learn-

ing from data: what conditions help a model learn from examples? and how does the

performance measured on selected of examples lead to the bounds on generalization in

(2.3)? There is still ongoing research in this area and the conditions for theories to be valid

are almost impossible to check for most practical problems [24]. The same researchers pro-

posed the restoration of linear separability methods, with additional ingredients intended to

improve generalization, with the name of Support Vectors Machines (SVM).

In 1992, Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik developed a method

for nonlinear classification by introducing the kernel trick to maximum-margin SVM [9].

A later extension of SVM was found with soft margin classification contributing to doc-

ument classification where preference solution was to better separate the bulk of the data

while ignoring a few outliers. Further, multiclass SVMs were developed to handle a mul-

ticlass classification problem by decomposing the original problem into a series of binary

problems so that the standard SVM could be directly applied to each problem. The mul-

ticlass classification with SVM is still an ongoing research problem (see, for example,

[13, 18, 19, 21] for some recent work). In this study, we especially focus on a novel SVM

designed for the classification of multiclass and high dimensional datasets [24].
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Due to recent technological advances, a large amount of high-throughput data can

be collected simultaneously and at relatively low-cost [25]. Classification of such data

raises new challenges, for instance, deterioration in the accuracy of learning algorithms

with the dimension of data. The reason is that the data becomes sparse at high dimensions

making training of the learning algorithms problematic due to large regularization error or

computational complexity. These phenomena referred to as the curse of dimensionality set

the motivation for our research [27].

We observed that a binary SVM decision boundary might separate more than two

classes of data in multiclass settings (Fig 5.2). The observation can be repeated until all the

classes are eliminated. This concept is even more persistent when the data becomes sparse

as their dimension increases. Our method utilizes a decision tree approach to investigate

this property for a given dataset. The first step is similar to One-Vs-One method where a

pool of SVM classifiers are built considering any pair of classes. We grade them according

to their impurity, balance, and score (see the definitions 5.3 and 5.4). The best classifier is

selected to be the top node of the decision tree (Fig 5.4). Then the selection procedure is

repeated on a reduced pool of SVM to figure out the other nodes of the decision tree until

all the classes are separated [24].

The performance of DCSVM is tested against classifying some real datasets found in

the UCI machine learning repository. We implemented tenfold cross-validation and aver-

aged the results to compare the DCSVM with the classic One-Vs-One method in terms of

the prediction accuracy, number of support vectors, number of binary decisions, and predic-

tion time. The DCSVM has several advantages over the One-Vs-One method including but

not limited to less predicting time, and less computational complexity while maintaining

the same prediction accuracy.
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CHAPTER 2

STATISTICAL LEARNING THEORY

Let us consider the basic model of a learning machine.

Figure 2.1: Block diagram of the basic model of a learning machine

Suppose we have a learning machine whose task is to learn the mapping xi 7→ yi for

i = 1, . . . , n where xi ∈ X , a m dimensional vector and yi ∈ Y = {−1, 1}, a set of labels.

The machine is actually defined by a set of possible mappings X 7→ f(X,α), where the

function is governed by an adjustable parameter α referred to its representational power

which is a measure of the complexity of the learning machine. There is an important set

of bounds controlling the relationship between the performance of a learning machine and

it’s representational power [8]. The usual trade-off in this case is that more power results

in over-fitting while the less power might end up in under-fitting.

2.1 VAPNIK CHERNONKIS (VC) DIMENSION

In order to characterize the representational power of a learning task assigned to a machine

or its hypothesis class, we consider the VC dimension.

Definition 2.1. Given that A is a set and C is a collection of sets. C is said to shatter A if

for each a ⊂ A, there exists c ∈ C such that,

a = c ∩ A
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Definition 2.2. VC dimension of a hypothesis class is the maximum number of data points

that can be arranged so that the learning machine can shatter them.

Consider the following hypothesis class. i.e., linear classifier in 2-dimensional space.

Figure 2.2: Shattering of linear classifier in 2-dimensional space

It is clear that the VC dimension of this particular hypothesis class is three as the given

configuration of four data points in the last block of Figure 2.2 cannot be shattered.

Theorem 2.1. (proof is omitted) Consider some set of m points in R
n. Choose any one of

the points as origin. Then the m points can be shattered by oriented hyperplanes if and

only if the position vectors of the remaining points are linearly independent.

Corollary 2.2. The VC dimension of the set of oriented hyperplanes in R
n is n+ 1.

Proof. We can always choose n+1 points, and then choose one of the points as origin, such

that the position vectors of the remaining n points are linearly independent, but can never

choose n+ 2 such points (since no n+ 1 vectors in R
n can be linearly independent).
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2.2 STRUCTURAL RISK MINIMIZATION

It is assumed that there exists some unknown cumulative probability distribution P (X, Y )

from which the data are drawn i.e., the data assumed to be independently drawn and iden-

tically distributed (iid). The expectation of the test error for a trained machine is therefore

(using Lebesgue integration):

R(f) =
1

2

∫

|Y − f (X, θ)| dP (X, Y ) (2.1)

Where, R (f) is called the expected risk or true risk. Given that the number of training

instances is n, the empirical risk Remp (f) is defined to be the measured mean error on the

training set.

Remp(f) =
1

2n

n
∑

i=1

|Y − f (X, θ)| (2.2)

The quantity 1

2
|Y − f (X, θ) | is called the loss. For this case, it can only take the

values 0 and 1. Now choose some η such that 0 ≤ η ≤ 1 . Then for losses taking these

values, with the probability 1− η the following bounds hold [8].

R (f) = Remp(f) +

√

h (log (2n/h) + 1)− log (η/4)

n
(2.3)

Where h is VC dimension. The second term on the right hand side is called VC

confidence. If we know h, we can easily compute the right hand side of (2.3). Thus we

consider several different learning machines, for sufficiently small η. Then choosing the

machine that minimizes the right hand side of (2.3), we find the machine which gives the

lowest upper bound on the true risk as shown in Figure 2.3. This gives a principle method

for choosing a learning machine for a given task, and it is the essential idea of Structural

Risk Minimization (SRM) [8].
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Figure 2.3: Structural risk minimization of a learning machine

Also notice that the VC confidence of (2.3) may be ignored for very large n. In prac-

tice, we will not have infinitely many instances in the training dataset. If h is too large with

respect to n, then there is a risk of over-fitting the training data. Hence, the SRM plays an

important role in implementing supervised learning machines. The SRM is an inductive

principle for model selection from finite training datasets. The goal of this principle is to

govern the generalization error of the learning machine by limiting the flexibility of the

set of decision functions, measured by the VC dimension. Instead of utilizing a decision

function f by minimizing the training error on a selected data set, f is selected to minimize

an upper bound on the test error given by (2.3) as outlined below.

1. Using a prior knowledge of the domain, choose a class of functions and divide it into

a hierarchy of nested subsets in order of increasing complexity.

2. Perform empirical risk minimization on each subset (this is essentially parameter

selection).

3. Select the model ( h∗ ) in the series whose sum of empirical risk and VC confidence

is minimal.
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CHAPTER 3

INTRODUCTION TO SUPPORT VECTOR MACHINE

3.1 HARD MARGIN SUPPORT VECTOR MACHINE

The simplest version of SVM is the learning machine that classify m-dimensional linearly

separable data into two classes C1 and C2 depending on the labels yi.

Definition 3.1. A set of m-dimensional binary class data is linearly separable if there exists

at least one m − 1 dimensional vector space called hyperplane with all the data points of

C1 on one side of the hyperplane and all the data points of C2 on the other side.

The gap between the linearly separable data is known as margin. The hyperplane is

made in such a way that the margin is maximized. Suppose that we randomly select some

vectors xi for the training set. Our goal is to find the optimal hyperplane that classifies all

the training data into two classes. Figure 3.1 shows a 2-dimensional feature space, however

the following method can be applied to the general case.

Figure 3.1: Binary classification problem: building up support vector machine

Suppose a given xi is on the hyperplane. w is a normal vector called weight which

controls the direction of the hyperplane and b is a scalar called bias that controls the position
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of the hyperplane [10]. Then the equation of the hyperplane is wTxi + b = 0 as it linear.

Then the SVM is a learning machine with a decision rule of the form:

f(xi, α) = sign(wTxi + b) (3.1)

Suppose for an arbitrary xi we have

f(xi, α) = wTxi + b > 1, if xi ∈ C1

= wTxi + b < −1, if xi ∈ C2;

(3.2)

Now for each xi and w we choose yi ∈ Y, set of class labels such that

yi =

{ 1, if xi ∈ C1

−1, if xi ∈ C2

Both (3.2) relationships imply that

yi(w
Txi + b)− 1 ≥ 0; w ∈ R

n, b ∈ R (3.3)

Definition 3.2. Support vectors are the data points of the classes C1 and C2 that are at the

boundary of the maximum margin as shown in Figure 3.2.

To find the width of the margin, consider the xi and xj shown in Figure 3.2

Figure 3.2: Hard margin support vector machine



18

The width of the margin is (xj − xi)w/ ‖w‖

By (3.2),

The width of the margin =
2

‖w‖ (3.4)

Our goal is to maximize the margin, i.e., to minimize ‖w‖.

Now the quadratic programing problem is

min
w∈Rm

1

2
‖w‖2

subject to (3.3)

The solution to the above problem is a global minimum satisfying the Karush−Kuhn−Tucker

(KKT) conditions.

Definition 3.3. KKT conditions for the optimization problem with the objective function

f : Rn 7→ R and constraint functions gj : R
n 7→ R and hk : Rn 7→ R such that f, g, and h

are continuously differentiable at a local optimum x∗ for constants αj (j = 1,...,m) and βk

(k = 1,...,l) are given below.

Condition 1 (Stationarity)

For maximizing f(x): ▽f (x∗) =
∑m

j=1
αj ▽ gj (x

∗) +
∑l

k=1
βk ▽ hk (x

∗)

For minimizing f(x): −▽ f (x∗) =
∑m

j=1
αj ▽ gj (x

∗) +
∑l

k=1
βk ▽ hk (x

∗)

Condition 2 (Primal Feasibility)

gj (x
∗) ≤ 0 for j = 1,...,m and hk (x

∗) = 0 for k = 1,...,l

Condition 3 (Dual Feasibility)

αj ≥ 0 for j = 1,...,m

Condition 4 (Complementary Slackness)

αjgj (x
∗) = 0 for j = 1,...,m

To apply the KKT conditions, it is customary to write our optimization problem in the

form of following auxiliary function (similar to Lagrangian) using the primal feasibility.

Lp(w, b, αj) =
1

2
‖ w ‖2 −

n
∑

j=1

αj[yj(w
Txj + b)− 1] (3.5)
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To find the solution, first we minimize (3.5) with respect to w and b and subject to

(3.3). Hence this optimization is known as the primal problem.

Let us write (3.5) in the following way.

Lp(w, b, αj) =
1

2
‖ w ‖2 −

n
∑

j=1

αjyjw
Txj −

n
∑

j=1

αjyjb+
n
∑

j=1

αj

Considering the stationarity; ∂Lp/∂b = 0 and ∂Lp/∂w = 0, it follows that:

n
∑

j=1

αjyj = 0 (3.6)

w =
n
∑

j=1

αjyjxj (3.7)

To obtain the minimum solution of the primal problem, we substitute (3.6) and (3.7)

in (3.5) with new indexing to obtain the dual problem (3.8).

Ld(αi) =
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(xixj) (3.8)

Considering dual feasibility, we can maximize (3.8) with respect to αi. and subject

to (3.6) Assume the solution of the dual problem is found by using Sequential Minimal

Optimization [28] which is commonly used in practice. An appropriate quadratic program-

ing package can also be used in this case if the dual problem is set for a minimization.

The corresponding maximizers are considered to be the non-zero Lagrange multipliers α∗

associated with the support vectors.

If xj is a support vector, then from (3.7)

w =
∑

j∈SV

α∗

jyjxj (3.9)

After the dual problem is solved, the bias is calculated by using (3.10) [22]

b =
1

#SV

(

∑

j∈SV

(

yj − wTxj

)

)

(3.10)
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By substituting (3.9) and calculated (3.10) in (3.1), we modify our decision rule on

testing data xi as in (3.11). This is the essential procedure of training the hard margin

SVM. w and α are called SVM classification parameters. Note that the hard margin SVM

is suitable for linearly separable data [10].

f(xi, α) = sign

(

∑

j∈SV

α∗

jyj(xjxi) + b

)

(3.11)

3.2 SOFT MARGIN SUPPORT VECTOR MACHINE

Figure 3.3: Soft margin support vector machine

If the data is nearly linearly separable (e.g., due to noise), the condition for the optimal

hyper-plane can be relaxed by including an extra term: slack variable ξi as shown in Figure

3.3. This idea will result in an efficient classifier know as soft margin SVM.

From (3.3)

yj(w
Txj + b) ≥ 1− ξj; for j = 1, 2, . . . . . . , n and ξj ≥ 0 (3.12)
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Then the quadratic programming problem becomes;

minw∈Rm

1

2
‖ w ‖2 + C

n
∑

j=1

ξj (3.13)

subject to (3.12)

Here, C is a regularization parameter called the cost of the SVM that controls the

trade-off between maximizing the margin and minimizing the training error by imposing

a penalty on the objective function for misclassification. Small C tends to emphasize the

margin while ignoring the outliers in the training data as Figure 3.4 (A), while large C may

tend to over fit the training data as Figure 3.4 (B).

Figure 3.4: Trade-off between maximum margin and minimum training error

As in the hard margin case, using KKT conditions, the primal form of (3.13) can be

expressed as,

Lp(w, b, ξj, αj, λj) =
1

2
‖w‖2+C

n
∑

j=1

ξj−
n
∑

j=1

αj[yi(w
Txj+b)−1+ξj]−

n
∑

j=1

λjξj (3.14)

subject to (3.12)

We write (3.14) in the following way

Lp ≡
1

2
‖w‖2 + C

n
∑

j=1

ξj − wT

n
∑

j=1

αjyjxj − b
n
∑

j=1

αjyj +
n
∑

j=1

αj −
n
∑

j=1

αjξj −
n
∑

j=1

λjξj
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considering the stationarity; ∂Lp/∂w = 0, ∂Lp/∂b = 0, and ∂Lp/∂xij = 0, it follows

that:

w =
n
∑

j=1

αjyjxj (3.15)

n
∑

j=1

αjyj = 0 (3.16)

C − αj − λj = 0 (3.17)

respectively. Substitute (3.15), (3.16), and (3.17) in (3.14), to obtain the dual problem

which is similar to (3.8) and subject to (3.16) and (3.17). The only significant difference

between the two dual problems is the soft margin dual problem has a Lagrange multiplier

bounded above.

It is clear that λj is a Lagrange multiplier and hence nonnegative. If λj = 0, then from

(3.17) it follows that αj = C. If λj > 0, then from (3.17) it follows that αj < C. Hence

the dual problem for (3.14) that needs to be maximized with respect to αj and subject to

0 ≤ αj ≤ C is given below.

Ld(αj) =
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(xixj) (3.18)

The solution to (3.18) can be obtained by using the same techniques used to solve

(3.8). Then the decision rule of the soft margin SVM is similar to (3.11).

To find the type of support vectors of the soft margin SVM, we consider the comple-

mentary slackness for the optimization problem as follows.

αj[yj(w
Txj + b)− 1 + ξj] = 0 (3.19)

λjξj = 0 (3.20)

It follows that for a support vector αj 6= 0. Then from (3.19) we observe the following.

yj(w
Txj + b) = 1− ξj (3.21)
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There are two types of support vectors associated with the training of soft margin

SVM. If λj > 0, then from (3.20) ξj = 0 and from (3.21) it follows that this data point is

at the boundary of the margin. From (3.19) we have αj < C. If λj = 0, then from (3.20)

ξj > 0 and from (3.21) it follows that this data point is over the margin. From (3.17) we

have αj = C. The choice of an appropriate value for C is an essential part of tuning an

SVM and is discussed in chapter 3.4.

3.3 KERNEL TRICK

Let us consider the problem with hard margin. If the data is not linearly separable, the

optimization of (3.8) can be performed on a higher dimensional vector space. In this case,

the data is mapped from input-space to feature-space by a mapping Φ and the optimal

separating hyperplane is found. Then the separation is mapped back down to input-space,

where it results in a non-linear decision boundary as shown in Figure 3.5.

Figure 3.5: Nonlinear classification

Let U and V be vector spaces such that dim(V) > dim(U) and Φ be a function given

by Φ: U → V. For xi, xj ∈ U (input space), from (3.8) the corresponding optimization in
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V (feature space) is,

max
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjΦ(xi)Φ(xj) (3.22)

with respect to αi and subject to (3.6). Calculation of Φ(xi)Φ(xj) is very expensive

in both computation and memory consumption as the dimension of feature space could be

very large or even infinity. Kernel trick allows us to perform the above task without actually

transforming the training data into the high dimensional feature space.

Example 3.1. Let x and y be two dimensional vectors such that x ≡ (x1, x2) and y ≡

(y1, y2) and Φ be a transformation such that Φ : R2 7→ R
3 given by Φ(s, t) = (s2, t2,

√
2st);

s, t ∈ R. We can show that the dot product of x and y can be obtained using a certain func-

tion k know as the kernel function.

< Φ(x),Φ(y) > = (x2

1, x
2

2,
√
2x1x2)(y

2

1, y
2

2,
√
2y1y2)

T

= ((x1, x2)(y1, y2)
T )2

=< x, y >2

= k(x, y)

Note that not all kernel functions can perform a sort of calculation in the example

above. A kernel function that legitimately behaves as in the example above is called a

Mercer kernel k introduced in Mercer’s theorem.

Theorem 3.2. Mercer’s Theorem (Proof is omitted) Let X ∈ R
n. For any symmetric con-

tinuous function k: X×X 7→ R such that k ∈ L2(X) (square integrable in X×X) satisfying,
∫

X,X

f (x′) k (x, x) f (x) dxdx′ ≥ 0 (3.23)

for all f ∈ L2(X)

There exist functions Φi: X 7→ H and constants λi ≥ 0 such that

k (x, x′) =
∞
∑

i=1

λiΦi(x)Φi(x
′) (3.24)

for all x, x’∈ X
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Definition 3.4. The kernel trick is the relationship in (3.25) where k is a Mercer kernel.

It can be used to avoid the mapping needed for linear learning algorithms to learn a non-

linear function or decision boundary by implicitly calculating the inner products between

the feature vectors.

k(xi, xj) = Φ(xi).Φ(xj) (3.25)

It is clear that (3.22) will result in the following decision rule.

f(xi, α) = sign

(

∑

j∈sv

α∗

jyjΦ(xj)Φ(xi) + b

)

(3.26)

To apply the kernel trick in the nonlinear decision rule, we substitute (3.25) in (3.26)

f(xi, α) = sign

(

∑

j∈sv

α∗

jyj k(xi, xj) + b

)

(3.27)

There are several different kernel functions used in SVM. Table 3.1 shows some com-

mon kernels. Radial Basis Function (RBF) kernel is the most popular kernel function for

SVM. Not all RBF kernels are Mercer kernels. The Gaussian kernel is an ideal example for

both RBF and Mercer kernels. In Gaussian RBF kernels, γ = 1

2σ
where σ is the determi-

nant of the covariance matrix which needs to be tuned properly. If overestimated (σ is very

small), the exponential will behave almost linearly and the higher-dimensional projection

will start to lose its non-linear power. If underestimated (σ is very large), the function will

lack regularization and the decision boundary will be highly sensitive to noise in training

data [7].
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Table 3.1: Some common kernels

Kernel

Type

Kernel Function and Dimension Remarks

Linear k (xi, xj) = xT
i xj + c

For dim(x) = n, dim(k) = n

The simplest kernel function.

A SVM built with the linear

kernel is generally equivalent

to its non-kernel counterpart.

c is an arbitrary constant.

Polynomial k (xi, xj) = (αxT
i xj + c)d

For dim(x) = n, dim(k) =
(

n+d

d

)

A non-stationary kernel func-

tion. It is suitable for prob-

lems in which the training is

normalized [7]. α is the slope.

d is the degree of the polyno-

mial and c is an arbitrary con-

stant.

RBF k (xi, xj) = exp(−γ ‖xi − xj‖2)

For dim(x) = n, dim(k) =∞

A versatile and efficient ker-

nel function. It can be com-

putationally expensive for a

high dimensional input space.

γ is an adjustable parameter.

3.4 IMPLEMENTATION

In this project we focus on implementations of SVM in classification through selection of

parameters, training, and measure of performance. The R programing language is exten-

sively used in our experiments which primarily included the package e1071. The other R
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packages used are presented in the following subsections.

By construction, the SVM classifier works only on dichotomous data. A practical

SVM combines the kernel trick with the soft-margin classifier to enhance its generalization

ability making the SVM one of the most sophisticated supervised learning algorithms. The

SVM is accurate and robust in nonlinear classification and the emphasis can be extended

to multiclass classification in Chapters 4 and 5. The generalization ability of these multi-

class SVMs is fully dependent on that of their binary SVM classifiers and determined by

selection of correct parameters.

Example 3.3. The following synthetic dichotomous dataset generated by a bivariate nor-

mal distribution (x∼ N(5, 1.5), y∼ N(4, 1), and ρ= 0.07) with 100 instances. The dataset

is called synthetic1 and used to demonstrate the implementation of SVM in nonlinear clas-

sification.

Figure 3.6: Scatter plot of synthetic1

We randomly divide the dataset into two parts: training and testing. 70% of the total
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instances are used for training purpose. Recall (Section 2.2) that there is no upper bound

for this value as more training instances yield better generalization. Real datasets often

require normalization and feature reduction before undergoing classification. Since the

SVM classifier is sensitive to distances in Hilbert space, this step is very important when

dealing with attributes of different units and scales.

Normalization scales all numeric attributes in the range [0, 1] using the formula given

below.

xnew =
x− xmin

xmax − xmin

(3.28)

For the purpose of feature reduction or selecting a subset of relevant features in model

building, Principal Component Analysis (PCA) has become a widely used technique. The

PCA is a statistical procedure in which an orthogonal transformation is used to convert a

set of observations of potentially correlated variables into a set of values of linearly un-

correlated variables called principal components. Depending on the amount of variability

captured by each component, the final model ends up with a fewer number of features.

3.4.1 SELECTION OF PARAMETERS

The selection of an appropriate kernel is regarded as a rule in classification experiments. We

chose efficient and versatile RBF kernel to construct required SVM classifiers to standard-

ize our experiments. In parameter selection, appropriate values for regularization parame-

ters C and γ of the SVM classifier is found. In general, determination of these parameters

are based on so called grid search. The range of value of parameters required for the search

algorithm is arbitrary. In our example, the parameter values for C are 1, 10, 100, 1000,

10000, and 100000. The parameter values for γ are 0.00001, 0.0001, 0.001, 0.01, 0.1, and

1. The following output file corresponds to the grid search of the regularization parameters

in classifying synthetic1.
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Parameter tuning of svm:

- sampling method: 10-fold cross validation

- best parameters:

gamma cost

0.01 1e+05

- best performance: 0.01428571

- Detailed performance results:

gamma cost error dispersion

1 1e-05 1e+00 0.28571429 0.21295885

2 1e-04 1e+00 0.28571429 0.21295885

3 1e-03 1e+00 0.28571429 0.21295885

4 1e-02 1e+00 0.28571429 0.21295885

5 1e-01 1e+00 0.28571429 0.21295885

6 1e+00 1e+00 0.04285714 0.06900656

7 1e-05 1e+01 0.28571429 0.21295885

8 1e-04 1e+01 0.28571429 0.21295885

9 1e-03 1e+01 0.28571429 0.21295885

10 1e-02 1e+01 0.28571429 0.21295885

....................................

....................................

34 1e-02 1e+05 0.01428571 0.04517540

35 1e-01 1e+05 0.02857143 0.09035079

36 1e+00 1e+05 0.10000000 0.11761037

c@FancyVerbLinee.10000000 0.11761037

The R package e1071 has a built-in function for the grid search of SVM learning parameters

that minimizes the training error to figure out the optimal values of the parameters. In this
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case, the minimum training error is known as the best performance. Fig 3.9 illustrates the

performance of the grid search in which the darker regions imply better accuracy.

Figure 3.7: Performance of SVM - grid search of learning parameters

3.4.2 TRAINING

The optimal learning parameters directly go into the training model of the SVM classifier.

In general, the training procedure of the SVM requires cross validation using training data

to determine the bias and support vectors. In our example, 10 fold cross validation is

used. In nonlinear classification, training occurs in the high dimensional feature space and

the resulting classification is mapped to the original lower dimensional space as in Fig

3.10 where the support vectors (cross sign) and nonlinear decision boundary for the whole

dataset can be identified.
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Figure 3.8: SVM classification plot of synthetic1

3.4.3 EVALUATION OF PERFORMANCE

Testing data is used to conclude the performance of the SVM and there are several metrics

such as accuracy, precision, sensitivity, specificity, and F1 score. In more detailed analysis,

average training time, number of support vectors, and Receiver Operating Characteristic

(ROC) curve can be considered. The first set of metrics can be obtained through the con-

fusion matrix similar to Figure 3.9. The confusion matrix in itself is not a performance

measure, but several useful performance metrics are based on the confusion matrix and the

numbers inside it. For our case in Figure 3.9, ’Red’ refers to a positive subject and ’Blue’

refers to a negative subject.
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Figure 3.9: The format of confusion matrix for synthetic1

1. Accuracy

The accuracy in classification problems is the number of correct predictions made

by the model over all the predictions made. The accuracy is a strong metric if the

classes in the dataset are nearly balanced.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.29)

2. Precision

The precision a measures of the conditional probability of making a true positive

decision given that the decision made is positive.

Precision =
TP

TP + FP
(3.30)

3. Sensitivity
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The sensitivity also referred as recall is a measure of the probability at which the

actual positive subject is classified as positive.

Sensitivity =
TP

TP + FN
(3.31)

4. Specificity

The specificity is the exact opposite of the sensitivity. It is a measure of the probabil-

ity at which the actual negative subject is classified as negative.

Specificity =
TN

TN + FP
(3.32)

5. F1 Score

The F1 Score is designed to represent both precision and sensitivity, hence the har-

monic mean of precision and sensitivity.

F1Score =
2× Precision× Sensitivity

Precision+ Sensitivity
(3.33)

The following output file corresponds to the confusion matrix for classification of syn-

thetic1.

Confusion Matrix and Statistics

Reference

Prediction blue red

blue 14 3

red 1 12

Accuracy : 0.8667

95% CI : 0.6928, 0.9624

No Information Rate : 0.5
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P-Value [Acc > NIR] : 2.974e-05

Kappa : 0.7333

Mcnemar’s Test P-Value : 0.6171

Sensitivity : 0.9333

Specificity : 0.8000

Pos Pred Value : 0.8235

Neg Pred Value : 0.9231

Prevalence : 0.5000

Detection Rate : 0.4667

Detection Prevalence : 0.5667

Balanced Accuracy : 0.8667

’Positive’ Class : blue

c@FancyVerbLinee’ Class : blue

The ROC curve is a fundamental tool for evaluation of binary classification. In a ROC curve

the true positive rate (Sensitivity) is plotted against the false positive rate (1 - Specificity)

for different cut-off points in classification. Each point on the ROC curve represents an

ordered pair (sensitivity, specificity) corresponding to a particular decision threshold. The

area under the ROC curve (AUC) is a measure of how well a classification can distinguish

between two classes. The AUC measures the quality of the model’s predictions irrespective

of what classification threshold is chosen.
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Figure 3.10: Receiver Operating Characteristic (ROC) curve for synthetic1
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CHAPTER 4

MULTICLASS SUPPORT VECTOR MACHINES

SVMs are originally designed for binary classification [11]. However, it can be effectively

extended to multiclass classification by breaking down the multiclass classification problem

into a series of binary classification problems. This technique is known as divide and

conquer in computer science and still an active research area.

The three most popular multiclass SVM methods: One Vs Rest, One Vs One and

Directed Acyclic Graph Support Vector Machine will be discussed in this section.

4.1 ONE VERSUS REST SUPPORT VECTOR MACHINE

The one-vs-rest method construct k number of SVM models where k is the number of

classes.

Figure 4.1: One versus rest method: classification between 3 classes

The rth SVM is trained with all of the instances in the rth class with positive labels

while the rest of instances with negative labels. Thus, given n training data (x1, y1), . . . ,(xn,
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yn); where, xi ∈ R
n, i = 1,. . . ,n and yi ∈ {1,. . . ,k} is the class of xi. The rth SVM solves

the following quadratic optimization problem [2]:

min
1

2
(wr)Twr + C

n
∑

i=1

ξri (4.1)

subject to

(wr)TΦ(xi) + br ≥ 1 − ξri ; if yi = r,

(wr)TΦ(xi) + br ≤ −1 + ξri ; if yi 6= r.

Where, ξri ≥ 0, and i = 1, . . . ,n. Solving (4.1), leads to k decision functions.

We can say that xi belongs to the class that has the greatest value of the decision

function [2]. A well-known drawback of the one-vs-rest method is the highly imbalanced

training set for each binary classifier. Assuming equal number of training instances for

all classes, the ratio of positive to negative instances for each binary classifier is 1/(k −

1). Hence, the original problem loses the symmetry of classification, affecting the results;

especially, sparse classes may suffer seriously [12, 16, 18].

4.2 ONE VS ONE SUPPORT VECTOR MACHINE

The one-vs-one method aims to get rid of the imbalance problem of the one-vs-rest method

by training binary classifiers only with the data belong to two original classes designated

by each classifier. The one-vs-one method constructs k(k−1)/2 given that k is the number

of classes [17, 19, 20].
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Figure 4.2: One against one method: classification between 3 classes

i-vs-j classifier solves the following quadratic optimization problem.

min
1

2
(wij)Twij + C

n
∑

i=1

ξiji (4.2)

subject to

(wij)TΦ(xt) + bij ≥ 1 − ξiji ; if yt = i,

(wij)TΦ(xt) + bij ≤ −1 + ξiji ; if yt = j.

Where, ξijt ≥ 0, and t = 1, . . . ,n

After all classifiers are constructed, we can use the following voting strategy: If the

sign of i-vs-j classifier says that xt is in the ith class, then the vote for the ith class is

increased by 1. Otherwise, the vote for the jth class is increased by 1. Finally, we conclude

that xt is in the class with the highest vote. This type of voting approach is called the ”Max

Wins” strategy. In the case that votes for two classes tie, we simply select the one with the

smaller index [2].



39

4.3 DIRECTED ACYCLIC GRAPH SUPPORT VECTOR MACHINE

The Directed Acyclic Graph Support Vector Machine is constructed by introducing one-

vs-one classifiers into the nodes of a decision Directed Acyclic Graph (DAG).

Figure 4.3: Input space of a 4 class problem

Figure 4.4: Directed acyclic graph support vector machine: 4 class problem
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Definition 4.1. A decision DAG on k number of classes over a set of Boolean functions

F = {f : X 7→ {0, 1}} for a given space X is a function that uses a rooted binary DAG

with k leaves labeled with the classes where each of the k(k-1)/2 internal nodes is labeled

with an element of F. The nodes are setup in triangular shape with a root node at the top

two nodes in the 2nd layer and so on. The final layer has k leaves. The ith node in layer

j < k is joined to the ith and (i+ 1)st node in the (j + 1)st layer [6].

For an input x ∈ X , of a decision DAG, starting at the root node, each node is exited

via the left edge, if the binary function is 0 or the right edge, if the binary function is 1,

until x meets a leaf. The corresponding output of the decision DAG is the value associated

with the leaf. This particular path taken through the decision DAG is called evaluation path

[6]. In the case of the DAGSVM, we use binary values -1 and +1. The DAGSVM has the

following properties.

1. Nodes of the DAGSVM are maximum margin classifiers over a kernel induced fea-

ture space. Hence maximizing the margin of every node of the decision DAG results

in a smaller generalization error bound.

2. It is safe to ignore the losing class at each binary decision, since all of the instances

of the losing class are far away from the decision boundary as shown in Figure 4.3.

3. For the DAGSVM, the order of choosing the binary classifiers is arbitrary. Lim-

ited experimentations show that changing this order does not significantly affect the

accuracy of the algorithm.

4. The DAGSVM is superior to other two multiclass support vector machine algorithms

in both training and evaluation time.
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CHAPTER 5

FAST MULTICLASS CLASSIFICATION

5.1 CURSE OF DIMENSIONALITY

The curse of dimensionality refers to various issues related to analyzing and organizing

data in very high-dimensional spaces. The expression was coined by Richard E. Bellman

in a highly acclaimed article considering problems in dynamic optimization [13, 14]. In

general, as dimensionality increases, the volume of the space increases rapidly and the data

becomes sparser. The sparsity of data is problematic for any method that requires statistical

significance. In order to obtain a statistically sound and reliable result, the amount of data

needed often grows exponentially with the dimensionality, which prevents common data

mining techniques from being efficient; often leading to over-fitting.

Recall that the SRM provides tools to investigate the generalization ability of the SVM

under the curse of dimensionality. Since the VC dimension of the SVM classifier grows

with the dimensionality of the data points, from (2.3) we can assume that the VC confidence

also increases with the dimensionality of the data points. Consider the following example.

Example 5.1. Figure 5.1 shows how the VC confidence varies with VC dimension/number

of training data (h/n). For of 95% confidence level (η = 0.05) and a training sample of size

10,000, the VC confidence is an increasing function of h/n.

Hence, it is clear that when the dimensionality increases relative to the number of

training instances, the upper bound of the true risk increases. As a result, the SVM suffers

from over-fitting.
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Figure 5.1: VC confidence against VC dimension/number of training data

5.2 DIVIDE AND CONQUER SUPPORT VECTOR MACHINE (DCSVM)

In this section we present a SVM-based multiclass classification method called the Divide

and Conquer Support Vector Machine (DCSVM) that exploits the curse of dimensionality

to efficiently perform classification of high dimensional data.

The DCSVM algorithm idea is based on the following simple observation, best de-

scribed using the example in Figure 5.2. The figure shows 6 classes (1 – red, 2 – blue,

3 – green, 4 – black, 5 – orange, and 6 – maroon) of two-dimensional points and a lin-

ear SVM separation of classes 1 and 2 (the line that separates the points in these classes).

It happens that the SVM model for classifying classes 1 and 2 completely separates the

points in classes 4 (which takes class 2 side) and 6 (which takes class 1 side). Moreover,

the classifier does a relatively good job classifying most points of the class 5 as class 2

(with relatively few points classified as 1) and a poor job on classifying the points of class

3 (as the points in this class are classified about half as 1’s and the other half as 2’s). With
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DCSVM we use the SVM classifier for classes 1 and 2 for a candidate of an unknown

class: if the classifier predicts 1, then we next decide between classes 1, 6, 3, and 5; if the

classifier predicts class 2, then we next decide between classes 2, 4, 3, and 5. Notice that

in either case one or more classes are eliminated and we are left to predict a fewer classes.

That is, a multi-class classification problem of a smaller size (less classes). The algorithm

then proceeds recursively on the smaller problem. Given that the number of classes is k, in

the best case scenario, half of the classes will be eliminated at each step and the algorithm

will finish in log2 k steps. Notice that, in the above scenario, classes 2 and 4 are completely

separated from classes 1 and 6, whereas classes 3 and 5 are not clearly on one side or the

other of the separation line. For this reason, classes 3 and 5 are part of the next decision

step, regardless of the prediction of the first classifier.

However, there is a significant difference between classes 3 and 5. While class 3 is

almost divided in half by the separation line, class 5 can be predicted as ”2” with a very

small error. In DCSVM we use a threshold value to indicate the maximum classification

error accepted in order to consider a class on one side or the other of a separation line. For

instance, let us consider that only 2% of the points of class 5 are on the same side as class

1. With the threshold value set to 0.02, DCSVM will separate classes 1, 3, and 6 (when 1 is

predicted) from classes 2, 3, 4, and 5 (when 2 is predicted). A higher threshold value will

produce a better separation of classes (less overlapping) and less classes to process in the

subsequent steps. This comes at the price of possibly sacrificing the accuracy of the final

prediction. Clearly, the method presented in the example above is in general suitable for

multiclass classification using a binary classifier. Our choice of using SVM is based on the

SVM algorithm’s remarkable power in producing accurate binary classification.
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Figure 5.2: Seperation of classess 1 and 2 by a linear SVM classifier

5.2.1 ARCHITECTURE OF DCSVM

Let us first introduce some notations, next we will proceed to the formal description of

the algorithm. Given a data set of k classes (labels) D where each data item x ∈ D has

been assigned a label l ∈ {1, . . . , k}, we want to construct a decision function dcsvm :

D → {1, . . . , k} so that dcsvm(x) = l, where l is the corresponding label of x ∈ D. By

considering a split D = R ∪ T of the data set D into two disjoint sets R (the training set)

and T (the test set), we use the data in R to construct our decision function dcsvm() and

then the data in T to measure its accuracy. Furthermore, we consider R = R1∪R2∪· · ·∪Rk
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as an union of disjoint sets Rl, where each x ∈ Rl has label l, l = 1, . . . , k. (Similarly, we

consider T = T1 ∪T2 ∪ · · · ∪Tk as an union of disjoint sets Tl, where each x ∈ Tl has label

l, l = 1, . . . , k.)

Let svmi,j : D → {i, j}, be a SVM binary classifier created using the training set

Ri∪Rj , i < j and i = 1, . . . , k−1, j = 2, . . . , k. There are k(k−1)/2 such one-versus-one

binary classifiers. It is important to mention that the svm() decision function considered

here is not the ideal one, but the practical one, likely affected by misclassification errors;

that is, for some x ∈ Ri ∪ Ti, we may have that svmi,j(x) = j.

Our goal is to create the dcsvm() decision function that uses a minimal number of bi-

nary decisions for k-classes classification, while not sacrificing the classification accuracy.

Next, we define a few measures we use in the process of identifying the shortest path to a

multi-class classification decision.

Definition 5.1. (Class Predictions Likelihoods) The class predictions likelihoods of a SVM

binary classifier svmi,j(·) for a label l ∈ {1, . . . , k}, denoted respectively as Ci,j(l, i) and

Ci,j(l, j), are:

Ci,j(l, i) =
|{x ∈ Rl | svmi,j(x) = i}|

|Rl|

Ci,j(l, j) =
|{x ∈ Rl | svmi,j(x) = j}|

|Rl|
= 1− Ci,j(l, i) (5.1)

Each class prediction likelihood represents the expected outcome likelihood for i or

j when a binary classifier svmi,j(·) is used for prediction on all data items in Rl. These

likelihoods are computed for each binary classifier and each class in the training data set.

All pairs of likelihood predictions, for every binary classifier svmi,j(·) and classes are

stored in a table, called All-Prediction table.

Definition 5.2. (All-Prediction Table) We arrange all classes predictions likelihoods in

rows (corresponding to each binary classifier svmi,j) and columns (corresponding to each
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class 1, . . . , k) to form a table T where each entry is given by a pair of predictions likeli-

hoods as follows:

T [svmi,j, l] = (Ci,j(l, i), Ci,j(l, j)) (5.2)

Fig 5.2 shows the All-Predictions table computed for the glass dataset [15]. The

dataset contains 6 classes, labeled as 1, 2, 3, 5, 6, and 7. Each row corresponds to a

binary classifier svm1,2, · · · , svm6,7 and columns correspond to each class label. Each ta-

ble cell contains a pair of likelihood predictions (as percentages) for the row classifier and

class column. For instance, C1,2(1, 1) = 100%, C1,2(1, 2) = 0% and C1,6(2, 1) = 91.8%,

C1,6(2, 6) = 8.2%.

Figure 5.3: Prediction plan of glass for threshold = 0.05

Next, we define two measures for the quality of the classification of each svmi,j(·).

The Impurity Index measures how good the binary classifier is for classifying all classes as

i or j for a given likelihood threshold θ. In a nutshell, a class l is classified as ”definitely”

i by svmi,j(·) if Ci,j(l, i) ≥ 1 − θ; as ”definitely” j if Ci,j(l, j) ≥ 1 − θ; otherwise, it

is classified as ”undecided” i or j. The Impurity Index counts how many ”undecided”
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decisions a binary classifier produces. The lower the index, the better the separation. The

Balance Index measures how ”balanced” a separation is in terms of the number of classes

predicted as i and j. The larger the index, the better the separation.

Definition 5.3. (SVM Impurity and Balance Indexes) For an likelihood threshold θ of a

SVM classifier svmi,j(·), we define:

the Impurity Index, denoted as Pi,j(θ), as:

Pi,j(θ) =

(

k
∑

l=1

(χθ(Ci,j(l, i)) + χθ(Ci,j(l, j)))
)

− k (5.3)

the Balance Index, denoted as Bi,j(θ), as:

Bi,j(θ) = min

(

k −
k
∑

l=1

χθ(Ci,j(l, j)), k −
k
∑

l=1

χθ(Ci,j(l, i))
)

(5.4)

where χθ is the step function:

χθ(x) =







1 if x > θ

0 if x ≤ θ

For instance, the Impurity Index for row svm1,6 and threshold θ = 0.05 in Fig 5.2 is:

P1,6(0.05) = ((1 + 0) + (1 + 1) + (1 + 0) + (1 + 1) + (0 + 1) + (1 + 1))− 6 = 3

and indicates that 3 of the classes (namely 2, 5, and 7) are undecided when the required

precision is at least θ = 5%.

For likelihood threshold θ = 0.05, the Balance Index for row svm1,2 in Fig 5.2 is

B1,2 = 1 and for row svm5,6 is B5,6 = 2.

The SVM Score, defined below, is a measure of the sensitivity of the binary classifier

svmi,j(·) for classifying classes i and j. The higher the Score the better the classifier.

Definition 5.4. (SVM Score) The Score of a SVM classifier svmi,j(·) is its sensitivity,

denoted by Si,j , is

Si,j =
Ci,j(i, i) + Ci,j(j, j)

2
(5.5)
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For instance, the table in Fig 5.2 shows that

S1,2 =
C1,2(1, 1) + C1,2(2, 2)

2
=

100% + 100%

2
= 100%.

Algorithm 1 DCSVM training

1: procedure TRAINDCSVM(R1, . . . , Rk, θ) ⊲ Creates DCSVM classifier

2: Input: R = R1, . . . , Rk: data set, θ: likelihood threshold

3: Output: dcsvm()

4: svmi,j ← train SVM with Ri ∪Rj , i = 1, . . . , k − 1, j = 2, . . . , k, i < j

5: T [svmi,j, l] = (Ci,j(l, i), Ci,j(l, j)), for all svmi,j , l = 1, . . . , k

6: //Recursively construct a binary decision tree

7: //with each node associated with a svmi,j binary classifier

8: dcsvm← empty binary tree

9: dcsvm.root← new tree node

10: DCSVM-SUBTREE(dcsvm.root, T , θ)

11: return dcsvm ⊲ Returns the decision tree

12: end procedure

Algorithm 1 and 2 describe DCSVM training and proceeds as follows. In the main

procedure, TRAINDCSVM, the SVM binary classifiers for all class pairs are trained (line

4) and the predictions likelihoods are stored in the predictions table (line 5). The deci-

sion function dcsvm is created as an empty tree (line 8) and then recursively populated

in DCSVM-SUBTREE procedure (line 10). The recursion procedure creates a left and/or a

right node at each step (lines 12 and 19, respectively) or may stop with creating a left and/or

a right label (lines 9 and 16, respectively). Each new node is associated to the binary svmi,j

that is the decider at that node (line 5), or with a class label if an end node (lines 9 and 16).

An important part of the DCSVM-SUBTREE procedure is choosing the ”optimal”

svm from a current predictions likelihoods table (line 4). For this purpose we use the
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Algorithm 2 DCSVM training (continued)

1: procedure DCSVM-SUBTREE(pnode, T , θ) ⊲ Creates subtree routed at pnode

2: Input: pnode: current parent node, T : current predictions table, θ: likelihood thresh-

old

3: Output: recursively constructs sub-tree rooted at pnode

4: svmi,j ← optimal svm in T , for given θ

5: pnode[svm]← svmi,j

6: listi← classes labeled as i or undecided by svmi,j

7: listj ← classes labeled as j or undecided by svmi,j

8: if length(listi) = 1 then ⊲ reached a leaf

9: pnode.leftnode← tree-node(label in listi)

10: else

11: T .left ← T minus svmm,n,m ∈ listj or n ∈ listj rows, and columns of

classes not in listi

12: pnode.left← new tree node

13: DCSVM-SUBTREE(pnode.left, T .left, θ)

14: end if

15: if length(listj) = 1 then ⊲ reached a leaf

16: pnode.rightnode← tree-node(label in listj)

17: else

18: T .right ← T minus svmm,n,m ∈ listi or n ∈ listi rows, and columns of

classes not in listj

19: pnode.right← new tree node

20: DCSVM-SUBTREE(pnode.right, T .right, θ)

21: end if

22: end procedure
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SVM Impurity Index, Balance Index, and Score from Definitions 9 and 10, respectively.

The order these measures are used may influence the decision tree shape and precision. If

Score is used then the Impurity and Balance Indexes are used to break a tie, the resulting

tree favors accuracy over the speed of decisions (may yield bushier trees). If Impurity and

Balance Indexes are used first, then Score, if a tie, the resulting tree may be more balanced.

The decision speed is favored while possibly sacrificing accuracy.

A dcsvm decision tree for the glass data set is shown in. Clearly, the algorithm may

produce highly unbalanced dcsvm decision trees (when some classes are decided faster

than others) or very balanced decision trees (when most of class labels are leaves situated

at about same depth). Regardless of outcome, the following result is almost immediate.

Proposition 5.2. The dcsvm decision tree constructed in Algorithm 2 has depth at most k.

Proof. The lists of classes labeled i and j (lines 6, 7 in DCSVM-SUBTREE procedure)

contain at least one label each: i and j, respectively. Once a class column is removed from

T at some tree node n, it will not appear again in a node or leaf in the subtree rooted at that

node n. Hence with each recursion the number of classes decreases by at least one (lines

11, 18) from k to 1, ending the recursion with a left or a right label node in lines 9 or 16,

respectively.

Notice that a scenario where each dcsvm decision tree label has depth k is possible

in practice: when no svmi,j binary classifier is a good separator for classes other than

i and j (and therefore at each node only classes i and j are separated, while the other

are undecided and will appear in both left and right branches). We call this the worst

case scenario, for obvious reasons. The opposite case scenario is also possible in practice:

each svmi,j separates all classes into two disjoint lists of about same lengths. The dcsvm

decision tree is also very balanced in this case, but a lot smaller.

Proposition 5.3. The dcsvm decision tree constructed in Algorithm 2 when each svmi,j

produced balanced, disjoint separation between all classes has depth at most ⌈log2 k⌉.
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Proof. Clearly this is a case scenario where at each recursion step a node is created such

that half of the classes are assigned to the left subtree and the other half to the right subtree.

This produces a balanced binary tree with k leaves, hence of depth at most ⌈log2 k⌉.

Algorithm 3 DCSVM classifier

1: procedure DCSVMCLASSIFY(dcsvm, x) ⊲ Produces DCSVM classification

2: Input: dcsvm: decision tree; x: data item

3: Output: Label of data item x

4: node← dcsvm.root

5: while node not a leaf do ⊲ Visits the decision tree nodes towards a leaf

6: svmi,j ← node[svm] ⊲ Retrieves the svm associated to current node

7: label ← svmi,j(x)

8: if label = i then

9: node← node.left

10: else

11: node← node.right

12: end if

13: end while

14: return label of node ⊲ Returns the leaf label

15: end procedure

The DCSVM classifier Algorithm 3 relies on the dcsvm decision tree produced by

Algorithm 1 to take any data item x and predict its label. The algorithm starts at the decision

tree root node (line 4) then each node’s associated svm predicts the path to follow (lines 6–

12) until a leaf node is reached. The label of the leaf node is the DCSVM’s prediction (line

14) for the input data item x. An example of prediction path in a dcsvm tree is illustrated

in Fig 5.4 (b).

Propositions 5.2 and 5.2.1 directly justify the following result.
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Theorem 5.4. The Algorithm 3 performs multi-class classification of any data item x in

at most k binary decisions steps (in the worst case scenario) and at most ⌈log2 k⌉ binary

decision steps (in the best case scenario).

We illustrate next how the dcsvm decision tree is created and how a prediction is

computed using a working example.

5.2.2 A WORKING EXAMPLE

We use the glass dataset [15] to illustrate DCSVM at work. This data set contains 6 classes,

labeled 1, 2, 3, 5, 6, and 7 (notice there is no label 4). Consequently, 6 ∗ (6 − 1)/2 = 15

binary svm classifiers are created and then the All-Predictions table T is computed as

shown in Figure 5.3. Let us choose the likelihood threshold θ = 0, for simplicity. That is,

a class l is classified by an svmi,j as only i if svmi,j predicts that all data items in Rl have

class i; l is classified as only j if svmi,j predicts that all data items in Rl have class j; else,

l is undecided and will appear on both sides of the decision tree node associated to svmi,j .

We follow next the DCSVM-SUBTREE procedure in Algorithm 2 and construct the

dcsvm decision tree. Notice that Si,j = 100% for all svmi,j , so Score does not matter for

choosing the optimal svmi,j in line 4. The choice will be solely based on the Impurity and

Balance indexes. Table 5.1 shows all values for these measures obtained form the initial

All-Predictions table.

It is clear that rows 1, 13, and 14 as candidates with minimum Impurity Indexes. Then

there is a tie between rows 13 and 14 as the winners among these. Row 13 comes first and

hence svm5,6 is selected as the root node. Figure 5.4 (a) shows the full decision tree, with

svm5,6 as the root node. Subsequently, svm5,6 labels classes 1, 2, 3, and 5 as ”5” (left), and

classes 6 and 7 as ”6” (right). The algorithm continues recursively with classes {1, 2, 3, 5}

to the left, and classes {6, 7} to the right. The right branch will be completed immediately

with one more tree node (for svm6,7) and two corresponding leaf nodes (for labels 6 and
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Table 5.1: svm optimality measures for glass dataset and the initial All-Predictions table

svmi,j Pi,j(0) Bi,j(0) Si,j
1. svm1,2 0 1 100%

2. svm1,3 4 1 100%

3. svm1,5 3 1 100%

4. svm1,6 3 1 100%

5. svm1,7 3 1 100%

6. svm2,3 3 1 100%

7. svm2,5 1 2 100%

8. svm2,6 3 1 100%

9. svm2,7 2 1 100%

10. svm3,5 2 1 100%

11. svm3,6 1 1 100%

12. svm3,7 3 1 100%

13. svm5,6 0 2 100%

14. svm5,7 0 2 100%

15. svm6,7 4 1 100%



54

(a) (b)

Figure 5.4: DCSVM decision tree with (a) the decision process for glass dataset (b) the

classification of an unseen instance

7).

For the left branch the algorithm will proceed with a reduced All-Predictions table:

rows 4, 5, 8, 9, 11, 12, 13, 14, and 15 and columns for classes 6 and 7 are removed.

The optimality measures will be subsequently computed for all svm and classes still in

competition (1, 2, 3, and 5) in the left branch. The corresponding measures are given in

Table 5.2 (for an easier identification, the indexes in the first column are kept the same as

the original indexes in the All-Predictions table in Figure 5.3).

There is a tie between svm1,2 and svm2,5, and svm1,2 is being used first. A node is

consequently created, with a leaf as a left child. The rest of the tree is subsequently created

in the same manner.

5.3 EXPERIMENTS

We implemented DCSVM in R v3.4.3 using e1071 library [21], running on Windows 10,

64-bit Intel Core i7 CPU @3.40GHz, 16GB RAM. For testing we used 14 data sets from
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Table 5.2: Optimality measures in the second step of creating the decision tree in Figure

5.3 (b)

svmi,j Pi,j(0) Bi,j(0) Si,j
1. svm1,2 0 1 100%

2. svm1,3 2 1 100%

3. svm1,5 1 1 100%

6. svm2,3 1 1 100%

7. svm2,5 0 1 100%

10. svm3,5 2 1 100%

UCI repository [15] (listed in Table 5.3). For each experiment, we used cross-validation

with 80% data for training and 20% for testing, for each data set. We ran 10 trials and

averaged the results. We ran three sets of experiments: (i) multi-class prediction accuracy,

(ii) prediction performance in terms of speed (time and number of binary decisions) and

resources (number of support vectors), and (iii) DCSVM performance comparisons for

different data sets and accuracy threshold parameter values. For the first set of experiments

we compared three multi-class predictors: build-in multi-class SVM (LibSVM from the

e1071 library), R implementation of One-Vs-One, and R implementation of DCSVM. For a

fair comparison, in the second set of experiments we compared R implementations of One-

Vs-One and DCSVM. The built-in multi-class SVM would benefit of the inherent speed of

native code it relies on. Finally, the third set of experiments focused on the DCSVM’s R

implementation performance and fine tuning.

5.4 RESULTS

This section summarizes the results of the experiments described in the chapter 5.2.2. To

calculate the accuracy of each experiment, the method in (3.29) is used. In graphs, two
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different scales are used to illustrate the maximum disparity of information whenever re-

quired.

5.4.1 COMPARISON OF ACCURACY

The main goal of DCSVM is to improve multi-class prediction performance while not

sacrificing the prediction accuracy. The first experimental results compare multi-class pre-

diction accuracy of: (i) built-in SVM multi-class prediction (in the e1071 package), (ii)

one-versus-one implementation in R, and (iii) DCSVM implementation in R. The results

are displayed in Figure 5.5 and show no significant differences between the three methods.

Figure 5.5: Average prediction accuracy (%)

5.4.2 PREDICTION PERFORMANCE COMPARISON

For this purpose we compared the R implementations of One-Vs-One method and DCSVM.

We analyzed prediction performance on three aspects: the average number of support vec-
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tors, the average number of binary decisions, and average prediction time. The correspond-

ing performance results are presented in Figure 5.6, Figure 5.7 and Figure 5.8 respectively.

The number of support vectors used was computed by summing up all support vectors from

every binary decider, over all steps of binary decisions until the multi-class prediction was

achieved. The number of such support vectors is clearly proportional not only to the num-

ber of decision steps (which are illustrated separately), but also to the configuration of data

separated by each binary classifier. It is clear that DCSVM significantly outperforms One-

Vs-One, clearly being much less computationally intensive (number of support vectors for

prediction) and faster (number of binary decisions and prediction times).

Figure 5.6: Average number of support vectors

5.4.3 DCSVM PERFORMANCE FINE TUNING

In this set of experiments we analyze in close detail DCSVM’s performance in terms of the

likelihood threshold parameter. Figure 5.9 shows the trade-off between accuracy (left) and

the average prediction steps (right) with various threshold values. Clearly, the likelihood

threshold parameter permits a trade-off between accuracy and speed. However, this is

largely data dependent. The more separable the data is, the less influence the threshold
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Figure 5.7: Average number of steps

Figure 5.8: Average prediction time (sec)

has on speed. For less separable data (such as the letter data set), fine adjustment of the

threshold permits trade-off between prediction accuracy and prediction speed. This is not

the case for the vowel dataset, which is highly separable: changes in the threshold influence

neither the accuracy of prediction nor the average number of prediction steps.

Table 5.4 shows side-by-side accuracies of multi-class classification using (i) built-in

(BI), (ii) one-against-one (OvsO), and (iii) DCSVM (for a few threshold values θ). DCSVM

performs very well in terms of accuracy (compared to the other methods) for all data sets,
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Figure 5.9: Accuracy and the average number of prediction steps for different likelihood

thresholds

for threshold values θ ∈ {2%, 1%, 0.1%, 0.01%} (the larger the threshold, the better the

accuracy, in general). A larger threshold θ may increase the prediction speed (Table 5.5)

and reduce the computation effort (Table 5.6). Interesting to notice: Table 5.5 shows that

in all cases displayed in the table the number of decision steps is less than k− 1, where k is

the number of classes in the respective data set. DCSVM outperforms (even for very small

threshold) one-against-one and its improvement DAGSVM [6], which reaches multi-class

prediction after k − 1 steps.

The All-Predictions table in Figure 5.3 collects all information used by DCSVM to

construct its multi-class prediction strategy (the dcsvm decision tree in Algorithm 1 and

2). The same information can be used to predict how much separation can be achieved

for different threshold values. For instance, for the glass dataset All-Predictions table in

Figure 5.3 and for a threshold value θ = 2% there are 58 entries in the table where the

percentage of predicting one class or the other is at least 100 − θ = 98% (out of a total of

15 × 6 = 80 entries in the table). The percentage 58/80 = 72.5% is a good indicator of

purity for DCSVM with threshold θ = 2%: the higher the percentage, the more separation

is produced at each step and hence a shallow decision tree.

Figure 5.10 shows the class separation percentages for threshold values 0 ≤ θ ≤ 5
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and four data sets (letter, vowel, usps, and sensorless). Intuitively, as threshold increases

so does the separation percentage. The letter and usps data sets display an almost linear in-

crease of separation with threshold. sensorless displays a sharp increase for small threshold

values, then it tends to flatten, that is, not much gain for significant increase in threshold

(and hence possibly less accuracy). Lastly, vowel displays a step-like behavior: not much

gain in separation until threshold value reaches approximately θ = 2.3%, a steep increase

until θ approaches 3%, then nothing much happens again. One can use these indicators to

decide the trade-off between speed and accuracy of predictions.

Table 5.3: Prediction accuracies for different split thresholds

DCSVM

No Dataset LibSVM O-V-O θ = 2 θ = 1 θ = 0.1 θ = 0.01

1 artificial1 98.85 98.76 98.70 98.70 98.76 98.76

2 iris 96.97 96.97 96.97 96.97 96.97 96.97

3 segmentation 27.71 27.71 29.44 29.44 29.44 29.44

4 heart 58.82 58.82 59.12 59.12 59.12 59.12

5 wine 96.97 96.97 96.97 96.97 96.97 96.97

6 wine-quality 62.33 62.33 62.39 62.39 62.39 62.39

7 glass 87.55 91.70 91.29 91.29 91.29 91.29

8 covertype 49.95 49.95 49.95 49.95 49.95 49.95

9 svmguide4 57.88 71.21 72.73 72.73 72.73 72.73

10 vowel 94.34 97.26 97.26 97.26 97.26 97.26

11 usps 94.17 93.94 93.89 94.08 94.17 94.17

12 letter 95.25 96.43 95.52 96.00 96.41 96.41

13 poker 55.94 55.96 55.56 55.83 55.96 55.96

14 sensorless 97.46 98.87 98.32 98.60 98.86 98.87
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Table 5.4: DCSVM: average number of steps per decision for different split thresholds

No Dataset θ = 2 θ = 1 θ = 0.1 θ = 0.01

1 artificial1 3.76 3.75 3.67 3.67

2 iris 1.71 1.71 1.71 1.71

3 segmentation 5.63 5.63 5.63 5.63

4 heart 4.00 4.00 4.00 4.00

5 wine 1.69 1.69 1.69 1.69

6 wine-quality 4.85 4.86 4.87 4.87

7 glass 4.09 4.12 4.12 4.12

8 covertype 5.93 5.93 5.93 5.93

9 svmguide4 4.63 4.88 4.88 4.88

10 vowel 5.41 5.41 5.41 5.41

11 usps 7.16 7.29 7.80 7.80

12 letter 17.63 19.56 22.29 22.29

13 poker 8.36 8.40 8.43 8.43

14 sensorless 5.44 5.49 6.28 6.93
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Table 5.5: DCSVM: average support vectors per decision for different split thresholds

No Dataset θ = 2 θ = 1 θ = 0.1 θ = 0.01

1 artificial1 115.17 117.29 127.22 127.22

2 iris 32.47 32.47 32.47 32.47

3 segmentation 305.49 305.49 305.49 305.49

4 heart 270.18 270.18 270.18 270.18

5 wine 66.41 66.41 66.41 66.41

6 wine-quality 1154.49 1155.55 1157.13 1157.13

7 glass 112.14 114.37 114.37 114.37

8 covertype 4528.47 4528.47 4528.47 4528.47

9 svmguide4 236.58 245.71 245.71 245.71

10 vowel 218.36 218.36 218.36 218.36

11 usps 785.21 798.41 846.84 846.84

12 letter 2822.54 3110.42 3307.19 3307.19

13 poker 22166.49 22735.92 22803.01 22807.62

14 sensorless 2977.89 3057.77 3404.91 3735.30
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Figure 5.10: Number of separated classes for different thresholds
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CHAPTER 6

CONCLUSION

This research presents a Divide and Conquer Support Vector Machine (DCSVM), an al-

gorithm for fast multiclass classification using Support Vector Machines. In a nutshell,

DCSVM divides the whole training dataset into two partitions based on a binary separation

between two classes. Then, a prediction between the two classes eliminates one or more

classes at the time. The algorithm continues recursively until a final binary decision is made

between the last two classes left in the process [27].

All the experimental results are supportive of the robustness and efficiency of the

DCSVM in classification. Even though the built-in LibSVM would benefit from of the

inherent speed of source code it relies on, with respect to the prediction accuracy, the

DCSVM slightly outperforms it in classifying some datasets. Our experiments suggest that

the novel algorithm is significantly less expensive in computation and faster in classifica-

tion. The average number of support vectors it makes and the average prediction time it

takes is much less than that of the popular One-Vs-One method. Hence, the DCSVM would

be desired in big data classification over other learning algorithms [26]. In future research,

we plan to test the performance of DCSVM in classifying High Dimension Low Sample

Size (HDLSS) datasets.

The SVM based divide and conquer technique we present for multiclass classification

can be easily used with any binary classifier. It is rather a consequence of increasing data

sparsity with the dimensionality of the space, which can be exploited, in general, in favor of

producing fast multiclass classification using binary classifiers. Our experimental results on

a few popular datasets show the applicability of the method and guarantee the classification

in k−1 decision steps while preserving the accuracy. The major shortcoming of the current

DCSVM algorithm is that it has a longer training time. We plan to minimize the training

time by implementing general purpose programing languages such as Python and C.
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Appendix A

DETAILS OF THE DATASETS

Except artificial the rest of the datasets are found at UCI machine learning repository [15].

In some cases, we considered a subset of instances in the original datasets for our experi-

ments. Generation of artificial dataset is presented in Appendix section B.2.

Table A.1: Datasets

No Dataset Classes Features Instances

1. artificial 6 3 3000

2. iris 3 5 150

3. segmentation 7 19 2310

4. heart 5 14 303

5. wine 3 13 178

6. wine-quality 6 12 4898

7. glass 6 11 214

8. covertype 7 55 2000

9. svmguide4 6 21 300

10. vowel 11 11 528

11. usps 10 257 7291

12. letter 26 17 20000

13. poker 10 11 25010

14. sensorless 11 49 58509
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Appendix B

R CODES OF THE EXPERIMENTS

This section includes all R programing language codes used in this study.

B.1 EXAMPLE 3.3 AND PROCEEDINGS

install.packages("e1071")

library(e1071)

#generate random normal distributions

set.seed(101)

x <- rnorm(100, 5, 1.5)

set.seed(110)

y <- rnorm(100, 4, 1)

#genrate and empty vector for categorial attribute

color <- rep(NA, 100)

#assign categorical variables

for (i in 1:100){

if (((x[i] > 4.0) & (x[i] < 6.0)) & ((y[i] > 3.0) & (y[i] < 5.0))){

color[i] = "red"} else {

color[i] = "blue"

}

}

#make a bivariate normal dataset

data <- data.frame(x, y, color)

#plot the dataset

plot(y, x, col=data$color, xlim=c(1,6), ylim=c(1,8))

#make categorical variable a factor type

data$class <- factor(data$color)

data[,3] <- NULL

#randomly divide data into 70% for training, 30% for testing

set.seed(2018)

train <- sample(nrow(data), 0.7*nrow(data))

#store each fragment of data

data.train <- data[train,]

data.test <- data[-train,]

#tune SVMs (selection of parameters)
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set.seed(2018)

best.para <- tune.svm(class˜., data=data.train, kernel="radial",

gamma=2ˆ(-8:6), cost=2ˆ(13:14))

summary(best.para)

#do 10-fold cross validation on the training data to create the SVM

#classifier

svm.data <- svm(class˜., data=data.train, kernel=’radial’, gamma=1,

cost=10, cross=10, probability = TRUE)

#Plot decision boundary

plot(svm.data, data, xlim=c(1,6), ylim=c(1,8))

#plot confusion matrix

library(caret)

svm.prob <- predict(svm.data, type="prob", newdata=data.test,

probability = TRUE)

print(confusionMatrix(svm.prob,data.test$class))

#plot a ROC curve

library(ROCR)

svm.prob.rocr <- prediction(attr(svm.prob,

"probabilities")[,2], data.test$class)

svm.perf <- performance(svm.prob.rocr, "tpr","fpr")

plot(svm.perf, col=4)

B.2 PRECESSING DATASETS

#***********************************************************************

# Artificial data set 1: six petals, one in the middle; some degree of

# overlapping

#***********************************************************************

if (!exists("DATA_GEN")) {

DATA_GEN = "none"

}

if (DATA_GEN == "artificial1") {

discNorm <- function(N, C, R) {

#rho <- rnorm(N, sd = sqrt(R))ˆ2

rho <- runif(N, 0, R)

theta <- runif(N, 0, 2) * pi

x <- rho * cos(theta) + C[1]

y <- rho * sin(theta) + C[2]
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l <- data.frame(x,y)

return (l)

}

N <- 500

R <- 1

centers <- matrix(c(5,2.1, 3.2,3.2, 4.8,4.1, 3.5,5.3, 5.4, 5.9, 6.7,4.0)

,nrow = 6,ncol = 2,byrow = T)

cols <- c("red", "blue", "green", "black", "orange", "maroon")

classs <- c(1, 2, 3, 4, 5, 6)

set.seed(123)

df <- data.frame()

for (row in 1:nrow(centers)) {

C <- centers[row,]

g <- discNorm(N, C, R)

col <- rep(cols[row], N)

class <- rep(classs[row], N)

g <- cbind(g, col, class)

df <- rbind(df,g)

}

# df.inicol <- df$col

# plot(df$x, df$y, xlab = ’x1’, ylab = ’x2’, col = as.vector

(df.inicol))

# legend(x = "topright", NULL,legend = classs,

# lty = rep(1, length(classs)),

# lwd = rep(2, length(classs)),

# col=as.vector(cols))

df$col <- NULL

df$class <- factor(df$class)

}

#***********************************************************************

# Real data set 1: iris

#***********************************************************************

if (DATA_GEN == "iris") {

#library(e1071)

data(iris)

attach(iris)

df <- iris

names(df)[5] <- "class"
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}

#***********************************************************************

# Real data set 2: segmentation

# Source: http://archive.ics.uci.edu/ml/datasets/Image+Segmentation

#***********************************************************************

if (DATA_GEN == "segmentation") {

dsd <- ’data/segment/’ #data source directory

dsf <- ’segmentation.data’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= FALSE, sep=",")

df$class <- df[,1]

df[,1] <- NULL

}

#***********************************************************************

# Real data set 3: heart disease (Cleveland data)

# Source: http://archive.ics.uci.edu/ml/datasets/

#***********************************************************************

if (DATA_GEN == "heart") {

dsd <- ’data/heart-disease/’ #data source directory

dsf <- ’processed.cleveland.data’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= FALSE, sep=",")

names(df)[length(df)] <- "class"

df$class <- factor(df$class)

}

#***********************************************************************

# Real data set 4: wine

# Source: https://archive.ics.uci.edu/ml/datasets/wine

#***********************************************************************

if (DATA_GEN == "wine") {

dsd <- ’data/wine/’ #data source directory

dsf <- ’wine.data’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= FALSE, sep=",")

df$class <- factor(df[,1])

df[,1] <- NULL

}

#***********************************************************************

# Real data set 5: wine quality

# Source: https://archive.ics.uci.edu/ml/datasets/wine+quality

#***********************************************************************
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if (DATA_GEN == "wine-quality") {

dsd <- ’data/wine-quality/’ #data source directory

dsf <- ’winequality-red.csv’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= T, sep=";")

names(df)[length(df)] <- "class"

df$class <- factor(df$class)

}

#***********************************************************************

# Real data set 6: glass

# Source:

#***********************************************************************

if (DATA_GEN == "glass") {

dsd <- ’data/glass/’ #data source directory

dsf <- ’glass.csv’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= F, sep=",")

names(df)[length(df)] <- "class"

df$class <- factor(df$class)

}

#***********************************************************************

# Real data set 7: covertype

# Source:

#***********************************************************************

if (DATA_GEN == "covertype") {

dsd <- ’data/covertype/’ #data source directory

dsf <- ’covertype.csv’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= F, sep=",")

names(df)[length(df)] <- "class"

df$class <- factor(df$class)

}

#***********************************************************************

# Real data set 8: svmguide4

# Source:

#***********************************************************************

if (DATA_GEN == "svmguide4") {

dsd <- ’data/svmguide4/’ #data source directory

dsf <- ’svmguide4_train.csv’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= F, sep=",")

df$class <- factor(df[,1])
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df[,1] <- NULL

#remove constant columns: they are irrelevant

df <- df[,apply(df, 2, var, na.rm=TRUE) != 0]

}

#***********************************************************************

# Real data set 9: vowel

# Source:

#***********************************************************************

if (DATA_GEN == "vowel") {

dsd <- ’data/vowel/’ #data source directory

dsf <- ’vowel_train.csv’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= F, sep=",")

df$class <- factor(df[,1])

df[,1] <- NULL

}

#***********************************************************************

# Real data set 10: usps

# Source: https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

multiclass.html

#***********************************************************************

if (DATA_GEN == "usps") {

dsd <- ’data/usps/’ #data source directory

dsf <- ’usps_test.csv’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= F, sep=",")

df$class <- factor(df[,1])

df[,1] <- NULL

}

#***********************************************************************

# Real data set 11: letter recognition

# Source: http://archive.ics.uci.edu/ml/datasets/

#***********************************************************************

if (DATA_GEN == "letter") {

dsd <- ’data/letter-recognition/’ #data source directory

dsf <- ’letter-recognition.data’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= FALSE,

sep=",")

df$class <- df[,1]

df[,1] <- NULL
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}

#***********************************************************************

# Real data set 12: poker

# Source: http://archive.ics.uci.edu/ml/datasets/

#***********************************************************************

if (DATA_GEN == "poker") {

dsd <- ’data/poker/’ #data source directory

dsf <- ’poker.csv’ #data source file

df <- read.csv(paste(dsd, dsf, sep = ’’), header= FALSE, sep= ",")

class <- factor(df[,1])

df <- df[,-1]

names(df) <- c("S1", "C1", "S2", "C2", "S3", "C3", "S4", "C4", "S5",

"C5")

df$class <- class

rm(class)

}

#***********************************************************************

# Real data set 13: sensorless

# Source: https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/

datasets/multiclass.html

#***********************************************************************

if (DATA_GEN == "sensorless") {

dsd <- ’data/sensorless/’ #data source directory

dsf <- ’sensorless.csv’ #data source file

df <- na.omit(read.csv(paste(dsd, dsf, sep = ’’),header=FALSE, sep=","))

df$class <- factor(df[,1])

df[,1] <- NULL

}

#***********************************************************************

#randomly divide into p% for training, (1-p)% for testing

if (DATA_GEN != "none" && DATA_GEN != "sector") {

set.seed(2017)

p <- .8

train <- sample(nrow(df), p*nrow(df))

tst <- sample(nrow(df[-train,]), nrow(df[-train,]))

#tst <- -train

#store each fragment of data

df.train <- df[train,]
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df.test <- df[tst,]

}

B.3 BUILDING MULTICLASS SVMS

# Performs one vs one voting on a given candidate.

# Input:

# svms: list of one-vs-one svm models as a list of

# an upper triangular matrix;

# the index of i vs j can be computed as:

# idx <- ((i-1) * cls.n - i * (i-1)/2) + j-i

# classes: the list of classes

# it must be the case that: length(svms) = length(classes) *

# (length(classes) - 1) / 2

# candidate: the candidate to be classified;

# must be a dataframe of appropriate size and content returns voting

#results.

onevsone <- function(svms, classes, candidates) {

nclass <- length(classes)

votes <- matrix(0, nrow = nrow(candidates), ncol = length(classes))

colnames(votes) <- classes

idx <- 1

for (i in 1:(nclass-1)) {

for (j in (i+1):nclass) {

p <- predict(svms[[idx]], candidates)

if(is.list(p)) p <- p$class

p <- as.factor(p)

for (k in 1:length(p)) {

votes[k,as.character(p[k])] <- as.numeric(votes[k,as.character(p[k])])

+ 1

}

idx <- idx + 1

}

}

ans <- c()

for (i in 1:nrow(votes)) {

max <- which.max(votes[i,])
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ans[i] <- classes[max]

}

return (ans)

}

#***********************************************************************

# Let all svms vote and collect their votes according to

# expected predictions.

#***********************************************************************

maxpredict <- function(svms, classes, predictp, predictc, candidates,

minconf = 90.0) {

nclass <- length(classes)

votes <- matrix(0, nrow = nrow(candidates), ncol = length(svms))

idx <- 1

for (i in 1:(nclass-1)) {

for (j in (i+1):nclass) {

p <- predict(svms[[idx]], candidates)

if(is.list(p)) p <- p$class

p <- as.factor(p)

for (k in 1:length(p)) {

votes[k,idx] <- as.character(p[k])

}

idx <- idx + 1

}

}

allvotes <- matrix(0, nrow = nrow(candidates), ncol = length(classes))

colnames(allvotes) <- classes

for (i in 1:nrow(candidates)) {

for (j in 1:length(classes)) {

pred <- predictp[,j+1] >= minconf

allvotes[i,j] <- as.numeric((predictc[,j+1] == votes[i,])

%*% (predictp[,j+1] * pred)) / sum(pred)

}

}

ans <- c()

for (i in 1:nrow(allvotes)) {

max <- which.max(allvotes[i,])

ans[i] <- classes[max]

}
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return (ans)

}

#***********************************************************************

# SVMDC related functions

# cls.n = number of classes

# cls.levels = list of classes

# cls.svmp = svm deciders for the plan (for creating the

#decision tree)

# cls.svmc = svm deciders for actual classification

#***********************************************************************

initSVMDC <- function(df.train, cls.n, cls.levels,cls.svmp, cls.svmc,

tshold = 5) {predictvalues <- list()

allpredict <- data.frame(matrix(ncol = length(cls.levels)+1, nrow = 0))

maxpredictp <- data.frame(matrix(ncol = length(cls.levels)+1, nrow = 0))

maxpredictc <- data.frame(matrix(ncol = length(cls.levels)+1, nrow = 0))

colnames(allpredict) <- c(’svm’,cls.levels)

colnames(maxpredictp) <- c(’svm’,cls.levels)

colnames(maxpredictc) <- c(’svm’,cls.levels)

for (i in 1:(cls.n-1)) {

for (j in (i+1):cls.n) {

idx <- ((i-1) * cls.n - i * (i-1)/2) + j-i

svmp <- cls.svmp[[idx]]

svmc <- cls.svmc[[idx]]

ci <- cls.levels[i]

cj <- cls.levels[j]

r <- nrow(allpredict) + 1

allpredict[r,] <- NA

maxpredictp[r,] <- NA

maxpredictc[r,] <- NA

svmname <- paste(ci," vs. ", cj)

allpredict[r,1] <- svmname

maxpredictp[r,1] <- svmname

maxpredictc[r,1] <- svmname

predictvalues[[svmname]] <- list(c(’svm’,ci,cj))

# predictvalues[[svmname]][[’svm’]] <- svmc

predictvalues[[svmname]][[ci]] <- c()

predictvalues[[svmname]][[cj]] <- c()

for (k in 1:length(cls.levels)) {
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cls <- cls.levels[k]

d <- df.train[df.train$class == cls,]

p <- table(predict(svmp, d))

s <- sum(p)/100

pi <- round(p[[1]]/s, 2)

pj <- round(p[[2]]/s,2)

l <- length(predictvalues[[svmname]][[ci]])

predictvalues[[svmname]][[ci]][l + 1] <- pi

l <- length(predictvalues[[svmname]][[cj]])

predictvalues[[svmname]][[cj]][l + 1] <- pj

allpredict[r,k+1] <- paste(ci,"=", pi, "%; ", cj, "=", pj, "%",sep = "")

maxpredictp[r,k+1] <- max(pi, pj)

maxpredictc[r,k+1] <- ifelse(pi >= pj, ci, cj)

}

predictvalues[[svmname]][’score’] <- ((predictvalues

[[svmname]][[ci]][i]) + (predictvalues[[svmname]][[cj]][j])) / 2

}

}

foo <- function(x) {

ci <- names(x)[2]

cj <- names(x)[3]

i <- which(cls.levels == ci)

j <- which(cls.levels == cj)

if (tshold < 0 ) {

ti <- x[[ci]][j]

tj <- x[[cj]][i]

x[[ci]] <- x[[ci]] >= ti

x[[cj]] <- x[[cj]] >= tj

} else {

x[[ci]] <- x[[ci]] > tshold

x[[cj]] <- x[[cj]] > tshold

}

x[[ci]][i] <- T

x[[cj]][j] <- T

x[[ci]][j] <- F

x[[cj]][i] <- F

return (x)

}
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predictnodes <- lapply(predictvalues, foo)

ans <- list()

ans$pnodes <- predictnodes

ans$allpredict <- allpredict

ans$maxpredictp <- maxpredictp

ans$maxpredictc <- maxpredictc

return (ans)

}

#***********************************************************************

# creates an igraph plan

createSVMDCplan <- function(cls.n, cls.levels, pnodes, astree = F,

buildigraph = T) {

SVMDCplan <<- list()

SVMDCplan$N <<- 1

SVMDCplan$V <<- c() #labels

SVMDCplan$E <<- c() #edges

SVMDCplan$EL <<- c() #edges labels

SVMDCplan$svm <<- c()

if (astree) {#tree shaped plan

createSVMDCtreeplan(NULL, rep(T, cls.n), pnodes, cls.n, cls.levels)

} else {#graph shaped plan

createSVMDCgraphplan(NULL, rep(T, cls.n), pnodes, cls.n, cls.levels)

}

SVMDCplan$N <<- SVMDCplan$N - 1

if (buildigraph) {

G <- graph(SVMDCplan$E, directed=TRUE)

G <- set_vertex_attr(G, "label", V(G), SVMDCplan$V)

# G <- set_vertex_attr(G, "svm", V(G), SVMDCplan$svm)

} else {

G <- list()

}

dectree <- createSVMCDdectree2(SVMDCplan$E, SVMDCplan$V, cls.levels)

G$dectree <- dectree

return (G)

}

#creates plan as a graph; this function produce the list of edges (name

= label)

createSVMDCgraphplan <- function (p, m, pnodes, cls.n, cls.levels) {
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min <- cls.n + 1

maxscore <- 0

dec <- NULL

idx <- 0

for (i in 1:length(pnodes)) {

x <- pnodes[[i]]

ci <- names(x)[3]

cj <- names(x)[4]

ii <- which(cls.levels == ci)

ij <- which(cls.levels == cj)

if (!m[ii] || !m[ij]) {

next

}

left <- x[[3]] & m

if (sum(left) == 0) {

next

}

right <- x[[4]] & m

if (sum(right) == 0) {

next

}

u <- sum(left & right)#seeks minimum intersection (faster)

sc <- unlist(x[’score’])#seeks max score (precision)

if (sc > maxscore) {#first criterion: precision

maxscore <- sc

dec <- x

idx <- i

} else if (sc == maxscore) {

if (u < min) {#second: faster

min <- u

dec <- x

idx <- i

}

}

#another possible approach: faster then precise if (u < min) {#faster

# min <- u

# dec <- x

# idx <- i
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# } else if (u == min) {

# if (sc > maxscore) {#precision

# maxscore <- sc

# dec <- x

# idx <- i

# }

# }

}

if (idx > 0) {

#prevent using same decider again

#pnodes[[idx]][[3]] <- rep(F,length(pnodes[[idx]][[3]]))

#pnodes[[idx]][[4]] <- rep(F,length(pnodes[[idx]][[4]]))

pnodes[[idx]] <- NULL

svm <- dec[2]

#create a new vertex with label "l" and id=vertex.id

cvid <- paste(names(dec)[3],names(dec)[4],sep = ’˜’)

nobranching <- F

if (!(cvid %in% SVMDCplan$V)) {

SVMDCplan$V[length(SVMDCplan$V) + 1] <<- cvid

SVMDCplan$svm[length(SVMDCplan$svm) + 1] <<- svm

SVMDCplan$N <<- SVMDCplan$N + 1

} else {

#print("this was already created: link to it")

nobranching <- T

}

if (!is.null(p)) {#not root node

G <- G + edge(p,vertex_attr(G,"name", length(V(G))))

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- p

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- cvid

}

if (nobranching) {

return

}

if (sum(dec[[3]] & m) <= 1) {#branch to the left

ll <- names(dec)[3]

if (!(ll %in% SVMDCplan$V)) {

SVMDCplan$V[length(SVMDCplan$V) + 1] <<- ll

SVMDCplan$svm[length(SVMDCplan$svm) + 1] <<- NA
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SVMDCplan$N <<- SVMDCplan$N + 1

}

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- cvid

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- ll

} else {

pnodesL <- pnodes

createSVMDCgraphplan(cvid, dec[[3]] & m, pnodesL, cls.n, cls.levels)

}

if (sum(dec[[4]] & m) <= 1) {#branch to the right

lr <- names(dec)[4]

if (!(lr %in% SVMDCplan$V)) {

SVMDCplan$V[length(SVMDCplan$V) + 1] <<- lr

SVMDCplan$svm[length(SVMDCplan$svm) + 1] <<- NA

SVMDCplan$N <<- SVMDCplan$N + 1

}

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- cvid

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- lr

} else {

pnodesR <- pnodes

createSVMDCgraphplan(cvid, dec[[4]] & m, pnodesR, cls.n, cls.levels)

}

}

}

#creates plan as a tree; this function produce the list of edges and

#vertices labels

createSVMDCtreeplan <- function (p,m,pnodes, cls.n, cls.levels) {

min <- cls.n + 1

maxscore <- 0

maxb <- 0

dec <- NULL

idx <- 0

for (i in 1:length(pnodes)) {

x <- pnodes[[i]]

ci <- names(x)[2]

cj <- names(x)[3]

ii <- which(cls.levels == ci)

ij <- which(cls.levels == cj)

if (!m[ii] || !m[ij]) {
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next

}

left <- x[[2]] & m

if (sum(left) == 0) {

next

}

right <- x[[3]] & m

if (sum(right) == 0) {

next

}

u <- sum(left & right)#seeks minimum intersection (faster)

sc <- unlist(x[’score’])#seeks max score (precision)

b <- min(sum(left), sum(right))

if (i == 1) {

maxscore <- sc

min <- u

minb <- b

dec <- x

idx <- i

next

}

if (sc > maxscore) {#first criterion: precision

maxscore <- sc

dec <- x

idx <- i

} else if (sc == maxscore) {

if (u < min) {#second: faster

min <- u

dec <- x

idx <- i

} else if (u == min) {#thid: balance

if (b > minb) {

minb <- b

dec <- x

idx <- i

}

}

}



85

#another possible approach: faster then precise if (u < min) {#faster

# min <- u

# dec <- x

# idx <- i

# } else if (u == min) {

# if (sc > maxscore) {#precision

# maxscore <- sc

# dec <- x

# idx <- i

# }

# }

}

if (idx > 0) {

#prevent using same decider again

#pnodes[[idx]][[3]] <- rep(F,length(pnodes[[idx]][[3]]))

#pnodes[[idx]][[4]] <- rep(F,length(pnodes[[idx]][[4]]))

pnodes[[idx]] <- NULL

#svm <- dec[2]

#create a new vertex with label "l" and id=vertex.id

l <- paste(names(dec)[2],names(dec)[3],sep = ’˜’)

cvid <- SVMDCplan$N

SVMDCplan$V[length(SVMDCplan$V) + 1] <<- l

#SVMDCplan$svm[length(SVMDCplan$svm) + 1] <<- svm

SVMDCplan$N <<- SVMDCplan$N + 1

if (!is.null(p)) {#root node

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- p

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- cvid

}

if (sum(dec[[2]] & m) <= 1) {#branch to the left

ll <- names(dec)[2]

SVMDCplan$V[length(SVMDCplan$V) + 1] <<- ll

#SVMDCplan$svm[length(SVMDCplan$svm) + 1] <<- NA

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- cvid

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- SVMDCplan$N

SVMDCplan$N <<- SVMDCplan$N + 1

} else {

pnodesL <- pnodes

createSVMDCtreeplan(cvid, dec[[2]] & m, pnodesL, cls.n, cls.levels)
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}

if (sum(dec[[3]] & m) <= 1) {#branch to the right

lr <- names(dec)[3]

SVMDCplan$V[length(SVMDCplan$V) + 1] <<- lr

# SVMDCplan$svm[length(SVMDCplan$svm) + 1] <<- NA

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- cvid

SVMDCplan$E[length(SVMDCplan$E) + 1] <<- SVMDCplan$N

SVMDCplan$N <<- SVMDCplan$N + 1

} else {

pnodesR <- pnodes

createSVMDCtreeplan(cvid, dec[[3]] & m, pnodesR, cls.n, cls.levels)

}

}

}

#************************SVMCD method***********************************

# Creates a binary decision tree (as an array) out of the decision plan

# graph.

#***********************************************************************

createSVMCDdectree <- function (G, svms, classes) {

dectree <- rep(list(list()), length(V(G)))

treenodes <- c()

#alledges <- get.edgelist(G)

treeedges <- E(G)

#traverse the tree from root to a leaf

node <- V(G)[1]

ni <- 1

treenodes[length(treenodes)+1] <- node

while (ni <= length(treenodes)) {

node <- treenodes[ni]#retrieve current

ni <- ni + 1#move to next node in the list

dec <- strsplit(toString(vertex_attr(G, "label", node)),"˜")[[1]]

#svm <- vertex_attr(G, "svm", node)[[1]]

i <- which(classes == dec[1])

j <- which(classes == dec[2])

idx <- ((i-1) * cls.n - i * (i-1)/2) + j-i

dectree[[node]]$idx <- idx

dectree[[node]]$dec <- c(dec[1], dec[2])

dectree[[node]]$cld <- c(NA,NA)
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#children <- alledges[alledges[,1]==toString(node),2]

children <- treeedges[.from(node)]

if (length(children) > 0) {

children <- ends(G, children)[,2]

#compute children indexes

dec <- strsplit(toString(vertex_attr(G,"label", children[1])), "˜")[[1]]

if (length(dec) > 1) {

treenodes[length(treenodes)+1] <- children[1]

#i <- which(classes == dec[1])

#j <- which(classes == dec[2])

#idx1 <- ((i-1) * cls.n - i * (i-1)/2) + j-i

#dectree[[node]]$cld[1] <- idx1

dectree[[node]]$cld[1] <- children[1]

}

dec <- strsplit(toString(vertex_attr(G, "label",children[2])), "˜")[[1]]

if (length(dec) > 1) {

treenodes[length(treenodes)+1] <- children[2]

#svm <- vertex_attr(G, "svm", node)[[1]]

#i <- which(classes == dec[1])

#j <- which(classes == dec[2])

#idx2 <- ((i-1) * cls.n - i * (i-1)/2) + j-i

#dectree[[node]]$cld[2] <- idx2

dectree[[node]]$cld[2] <- children[2]

}

}

}

return (dectree)}

createSVMCDdectree2 <- function (E, V, classes) {

dectree <- rep(list(list()), length(V))

ni <- 1

while (ni <= length(E)) {

node <- E[ni]#retrieve current

node2 <- E[ni+1]

if (length(strsplit(V[node2], "˜")[[1]]) < 2) {

node2 <- NA

}

ni <- ni + 2#move to next node in the list if (is.null(dectree[[node]]

$idx)) {
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dec <- strsplit(V[node], "˜")[[1]]

#svm <- vertex_attr(G, "svm", node)[[1]]

i <- which(classes == dec[1])

j <- which(classes == dec[2])

idx <- ((i-1) * cls.n - i * (i-1)/2) + j-i

dectree[[node]]$idx <- idx

dectree[[node]]$dec <- c(dec[1], dec[2])

dectree[[node]]$cld <- c(node2,NA)

} else {

dectree[[node]]$cld[2] <- node2

}

}

return (dectree)

}

#**********************SVMDC method ************************************

# data stored in svmdc.plan structure (an igraph tree) each node stores

# the decision svm in the "svm" attribute the node "label" attribute =

#’class1 - class2’; if a leaf, "label" = class

#***********************************************************************

svmdc.predict <- function (G, svms, classes, candidate) {

alledges <- get.edgelist(G)

#traverse the tree from root to a leaf

node <- V(G)[1]

istree <- sum(alledges[,1]==toString(node)) > 0

totnSV <- 0

totsteps <- 0

#children <- alledges[alledges[,1]==toString(vertex_attr(G,"label", node)

#),2] #children

children <- alledges[alledges[,1]==ifelse(istree, toString(node),

node$label),2] #children

while (length(children) > 0) {

dec <- strsplit(toString(vertex_attr(G, "label", node)),"˜")[[1]]

#svm <- vertex_attr(G, "svm", node)[[1]]

i <- which(classes == dec[1])

j <- which(classes == dec[2])

idx <- ((i-1) * cls.n - i * (i-1)/2) + j-i

svm <- svms[[idx]]

p <- predict(svm, candidate)
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totsteps <- totsteps + 1

totnSV <- totnSV + svm$tot.nSV

if(is.list(p)) p <- p$class

p <- as.factor(p)

#left <- strsplit(toString(vertex_attr(G, "label", node)), "˜")[[1]][1]

if (p == dec[1]) {

node <- ifelse(istree, children[1], vertex_attr(G, "label",children[1]))

} else {

node <- ifelse(istree, children[2], vertex_attr(G, "label",children[2]))

}

#children <- alledges[alledges[,1]==toString(vertex_attr(G,"label",

node)),2]

children <- alledges[alledges[,1]==ifelse(istree,

toString(node), toString(vertex_attr(G, "label", node))),2]

}

pred <- list()

pred$vote <- toString(vertex_attr(G, "label", node))

pred$totnSV <- totnSV

pred$steps <- totsteps

return (pred)

}

#this is faster, based on binary decision tree

svmdc.predict2 <- function (dectree, svms, candidate) {

tidx <- 1

#traverse the tree from root to a leaf

totnSV <- 0

totsteps <- 0

while (!is.na(tidx)) {

dec <- dectree[[tidx]]$dec

svm <- svms[[dectree[[tidx]]$idx]]

p <- predict(svm, candidate)

totsteps <- totsteps + 1

totnSV <- totnSV + svm$tot.nSV

if(is.list(p)) p <- p$class

p <- as.factor(p)

#left <- strsplit(toString(vertex_attr(G, "label", node)), "˜")[[1]][1]

if (p == dec[1]) {

tidx <- dectree[[tidx]]$cld[1]
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} else {

tidx <- dectree[[tidx]]$cld[2]

}

}

pred <- list()

pred$vote <- as.character(p)#toString(vertex_attr(G, "label", node))

pred$totnSV <- totnSV

pred$steps <- totsteps

return (pred)

}

#***********************************************************************

# Creates a radial SVM model with tunning.

#***********************************************************************

createSVMradial <- function(data, gammar, costr, eps, wts = NULL) {

tuned <- tune.svm(class˜., data=data, kernel=’radial’, gamma=gammar,

cost=costr, class.weights = wts)

g <- tuned$best.parameters$gamma

c <- tuned$best.parameters$cost

e <- eps

s <- svm(class˜., data=data, kernel=’radial’, gamma=g, cost= , epsilon=

e, cross=10, class.weights = wts)

return (s)

}

saveLetterSVMparam <- function() {

svms <- cls.svmr

param <- matrix(0,nrow = length(svms), ncol = 3)

eps <- 0.1

for (i in 1:length(svms)) {

s <- svms[[i]]

g <- s$gamma

c <- s$cost

e <- eps

param[i,] <- c(g,c,e)

}

write.table(param, file="data/letter-recognition/svmtune.txt", row.names

=FALSE, col.names=FALSE)

}

createLetterSVMs <- function() {
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param <- read.table(file="data/letter-recognition/svmtune.txt")

svmrs <- list()

idx <- 1

for (i in 1:(cls.n-1)) {

for (j in (i+1):cls.n) {

g <- param[idx,1]

c <- param[idx,2]

e <- param[idx,3]

c1 <- cls.levels[i]

c2 <- cls.levels[j]

#select data only for these classes

cls.both <- df.train[df.train$class == c1 | df.train$class == c2,]

cls.both$class <- factor(cls.both$class)

svmrs[[idx]] <- svm(class˜., data=cls.both, kernel=’radial’, gamma=g,

cost=c, epsilon = e, cross=10)

idx <- idx + 1

}

}

return (svmrs)

}

B.4 EXPERIMENTAL RESULTS: SECTION 5.4.1 AND 5.4.2

# Experimental results: comparison of built in 1vs1, computed 1vs1, and

# DCSVM for ALL data sets using rbf kernel Each comparison is run 10

# times (for each set, cross-validation approach) and average accurracies

# are computed

# Results:

# - accurracies for each trial and mean accurracy

# - no. of SVM comparisons, on average, for all data samples

# - no. of support vectors used for dot products, on average

#set memory limit

memory.limit(6410241024*1024)

library(e1071)

library(igraph)

#load functions

source("utils.R")
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THRESHOLD <- 2 #for dcsvm: error percentage for separation generate data:

#run with one option for a specific data set

#DATA_GEN <- "artificial1"

#DATA_GEN <- "iris"

#DATA_GEN <- "segmentation"

#DATA_GEN <- "heart"

#DATA_GEN <- "wine"

#DATA_GEN <- "wine-quality"

#DATA_GEN <- "glass"

#DATA_GEN <- "covertype"

#DATA_GEN <- "svmguide4"

#DATA_GEN <- "vowel"

#DATA_GEN <- "usps"

#DATA_GEN <- "letter"

DATA_GEN <- "sector"

#DATA_GEN <- "poker"

#DATA_GEN <- "sensorless"

alldatasets <- c(#"artificial1","iris","segmentation","heart","wine",

#"wine-quality", "glass","covertype", "svmguide4","vowel", "usps",

#"letter", "poker", "sensorless")

#store results summaries in a data frame

allresults <- data.frame(No=NA,

Dataset=NA,

N.Classes=NA,

BIacc=NA,

OVOacc=NA,

OVOdp=NA,

OVOsteps=NA,

OVOavt=NA,

DCSVMacc=NA,

DCSVMdp=NA,

DCSVMsteps=NA,

DCSVMavt=NA)

dsno <- 0

for (DATA_GEN in alldatasets) {

dsno <- dsno + 1

if (dsno > 1) {

allresults <- rbind(allresults, rep(NA,ncol(allresults)))
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}

allresults[dsno,1] <- dsno

allresults[dsno,2] <- DATA_GEN

print(paste0(’Loading data: ’, DATA_GEN))

print(Sys.time())

source("datagen.R")

print(’Data was loaded!’)

print(Sys.time())

## perform classification 10 times and display information

seeds <- c(1234, 2411, 2038, 9391, 2090, 5781, 4526, 191919, 78213,

46712, 6072)

p1vs1in.true <- c()

p1vs1in.false <- c()

p1vs1co.true <- c()

p1vs1co.false <- c()

p1vs1co.time <- c()

dcsvm.true <- c()

dcsvm.false <- c()

dcsvm.time <- c()

totnSV <- 0

dcsvm.totnSV <- c()

dcsvm.totsteps <- c()

tot.samples <- 0

trials <- 1:1

if (DATA_GEN == "letter") {

trials <- 1:4

}

for (trial in trials) {

#create a list of all classes pairs in the training data set store in a

#list

# if (trial > 1) {

# rm(cls.all) #clear some memory

# gc()

# }

# cls.all <- list()

cls.levels <- levels(factor(df.train$class))

cls.n <- length(cls.levels)

# idx <- 1
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# for (i in 1:(cls.n-1)) {

# for (j in (i+1):cls.n) {

# c1 <- cls.levels[i]

# c2 <- cls.levels[j]

# cls.all[[idx]] <- df.train[df.train$class == c1 | df.train$class

#== c2,]

# cls.all[[idx]]$class <- factor(cls.all[[idx]]$class)

# idx <- idx + 1

# }

# }

#barplot(summary(df.train$class))

#create linear svm models for all pairs of classes

#svmkernel <- ’linear’

svmkernel <- ’radial’

set.seed(1234)

gammar <- 10ˆ(-6:-1)

costr <- 10ˆ(-1:2)

eps <- 0.1

if (trial > 1) {

rm(cls.svmr) #clear some memory

gc()

}

cls.svmr <- list()

# if (DATA_GEN == "letter") {

# #can run this for "letter" if parameters were saved

# cls.svmr <- createLetterSVMs()

# } else {

idx <- 1

for (i in 1:(cls.n-1)) {

for (j in (i+1):cls.n) {

c1 <- cls.levels[i]

c2 <- cls.levels[j]

#select data only for these classes

cls.both <- df.train[df.train$class == c1 | df.train$class == c2,]

cls.both$class <- factor(cls.both$class)

wts <- NULL#100 / table(cls.both$class)

#cls.svmr[[idx]] <- createSVMradial(cls.both, gammar, costr, eps, wts)

#default parameters
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cls.svmr[[idx]] <- svm(class˜., cls.both)

rm(cls.both)

totnSV <- totnSV + cls.svmr[[idx]]$tot.nSV

idx <- idx + 1

}

}

# }

#create built in 1vs1 model

cls.1vs1svm <- svm(factor(df.train$class)˜., df.train)

print(’All SVMs created:’)

print(Sys.time())

#***********************************************************************

# built in 1vs1 prediction

#***********************************************************************

sample <-df.test

p1vs1 <- predict(cls.1vs1svm, sample)

#print(paste(’built in 1vs1 prediction results for: "’, DATA_GEN,’"’,sep

= ""))

ans <- sum(sample$class == p1vs1)

p1vs1in.true[trial] <- ans

p1vs1in.false[trial] <- nrow(sample) - ans

#print(ans)

#print(sprintf("Accuracy: %2.2f%%", (ans[2]/(ans[1]+ans[2]))*100))

print(Sys.time())

#***********************************************************************

# 1vs1 prediction wifh computing votes

#***********************************************************************

#sample <-df.test

#p1vs1c <- onevsone(cls.svmr, cls.levels, sample)

p1vs1co.time[trial] <- Sys.time()

p1vs1c <- 0

for (i in 1:nrow(sample)){

# Pick a single observation for the one-vs-one classifiers to vote on

candidate = sample[i,]

pred <- onevsone(cls.svmr, cls.levels, candidate)

p1vs1c[i] <- pred

}

p1vs1co.time[trial] <- Sys.time() - p1vs1co.time[trial]
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#print(paste(’1vs1 prediction results for: ",DATA_GEN,’"’,sep = ""))

ans <- sum(sample$class == p1vs1c)

p1vs1co.true[trial] <- ans

p1vs1co.false[trial] <- nrow(sample) - ans

#print(ans)

#print(sprintf("Accuracy: %2.2f%%", (ans[2]/(ans[1] + ans[2]))*100))

print(Sys.time())

#***********************************************************************

# DCSVM prediction

#***********************************************************************

#initialize

info <- initSVMDC(df.train, cls.n, cls.levels, cls.svmr, cls.svmr, tshold

= THRESHOLD)

print(Sys.time())

allpredict <- info$allpredict

svmdc.plan <- createSVMDCplan(cls.n, cls.levels, info$pnodes,

astree = T, buildigraph = F)

#print(Sys.time())

#svmdc.dectree <- createSVMCDdectree(svmdc.plan, cls.svmr, cls.levels)

print(’DCSVM initialization completed:’)

print(Sys.time())

#predict and print

dcsvm.totnSV[trial] <- 0

dcsvm.totsteps[trial] <- 0

psvmdc <- 0

dcsvm.time[trial] <- Sys.time()

for (i in 1:nrow(sample)){

# Pick a single observation for the one-vs-one classifiers

# to vote on

candidate = sample[i,]

#pred <- svmdc.predict(svmdc.plan, cls.svmr, cls.levels, candidate)

#pred <- svmdc.predict2(svmdc.dectree, cls.svmr, candidate)

pred <- svmdc.predict2(svmdc.plan$dectree, cls.svmr, candidate)

psvmdc[i] <- pred$vote

dcsvm.totnSV[trial] <- dcsvm.totnSV[trial] + pred$totnSV

dcsvm.totsteps[trial] <- dcsvm.totsteps[trial] + pred$steps

}

dcsvm.time[trial] <- Sys.time() - dcsvm.time[trial]
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dcsvm.totnSV[trial] <- dcsvm.totnSV[trial] / nrow(sample)

dcsvm.totsteps[trial] <- dcsvm.totsteps[trial] / nrow(sample)

#print(paste(’SVMDC prediction results for: "’,DATA_GEN,’"’, sep = ""))

ans <- sum(sample$class == psvmdc)

dcsvm.true[trial] <- ans

dcsvm.false[trial] <- nrow(sample) - ans

#print(ans)

#print(sprintf("Accuracy: %2.2f%%", (ans[2]/(ans[1]+ans[2]))*100))

#print(Sys.time())

#***********************************************************************

#compute errors per each class and how classes were mis-classified (the

#confusion table)

#res <- data.frame(orig = sample$class, p1vs1 = p1vs1, p1vs1c = p1vs1c,

#psvmdc = psvmdc)

#print(’Confusion Table 1vs1 builtin’)

#print(table(res$orig, res$p1vs1, dnn = c("Original","built-in 1vs1")))

#print(’Confusion Table 1vs1 computed’)

#print(table(res$orig, res$p1vs1c, dnn = c("Original","computed 1vs1")))

#print(’Confusion Table DCSVM’)

#print(table(res$orig, res$psvmdc, dnn = c("Original","DCSVM")))

tot.samples <- tot.samples + nrow(sample)

#split again training/test

set.seed(seeds[trial])

p <- .9

train <- sample(nrow(df), p*nrow(df))

#store each fragment of data

df.train <- df[train,]

df.test <- df[-train,]

}

print("")

#******************print the results************************************

print(sprintf("Number of classes: %d", cls.n))

allresults[dsno,3] <- cls.n

print(paste(’Built in 1vs1 prediction results for: "’, DATA_GEN,’"’,sep

= ""))

s <- sprintf("%2.2f%% ", (p1vs1in.true/(p1vs1in.true + p1vs1in.false))

*100)

print(sprintf("Trials accuracy: %s", paste(s, collapse = "")))
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print(sprintf("Mean Accuracy: %2.2f%%", (sum(p1vs1in.true)

/sum(p1vs1in.true + p1vs1in.false))*100))

allresults[dsno,4] <- (sum(p1vs1in.true)/sum(p1vs1in.true +

p1vs1in.false))*100

print("")

print(paste(’Computed 1vs1 prediction results for: "’,DATA_GEN,’"’,sep

= ""))

s <- sprintf("%2.2f%% ", (p1vs1co.true/(p1vs1co.true + p1vs1co.false))

*100)

print(sprintf("Trials accuracy: %s", paste(s, collapse = "")))

print(sprintf("Mean Accuracy: %2.2f%%",

(sum(p1vs1co.true) /sum(p1vs1co.true+p1vs1co.false))*100))

print(sprintf("Dot products (average SVs):%.2f", totnSV/length(trials)))

print(sprintf("Average steps: %d", (cls.n * (cls.n - 1))/ 2))

print(sprintf("Average time: %.4f", (sum(p1vs1co.time)/length(trials))))

allresults[dsno,5] <- (sum(p1vs1co.true)/sum(p1vs1co.true +

p1vs1co.false))*100

allresults[dsno,6] <- totnSV/length(trials)

allresults[dsno,7] <- (cls.n * (cls.n - 1)) / 2

allresults[dsno,8] <- sum(p1vs1co.time)/length(trials)

print("")

print(paste(’DCSVM prediction results for: "’,DATA_GEN,’" with threshold

= ’, THRESHOLD,sep = ""))

s <- sprintf("%2.2f%% ", (dcsvm.true/(dcsvm.true + dcsvm.false))*100)

print(sprintf("Trials accuracy: %s", paste(s, collapse = "")))

print(sprintf("Mean Accuracy: %2.2f%%", (sum(dcsvm.true)/sum(dcsvm.true+

dcsvm.false))*100))

s <- sprintf("%2.2f ", dcsvm.totnSV)

print(sprintf("Dot products (average SV used):%s",paste(s,collapse="")))

print(sprintf("Mean SVs used:%2.2f",(sum(dcsvm.totnSV)/length(trials))))

s <- sprintf("%2.2f ", dcsvm.totsteps)

print(sprintf("Average steps for all trials:%s",paste(s,collapse = "")))

print(sprintf("Average steps: %2.2f", (sum(dcsvm.totsteps)/

length(trials))))

print(sprintf("Average time: %.4f", (sum(dcsvm.time)/length(trials))))

print(Sys.time())

allresults[dsno,9] <- (sum(dcsvm.true)/sum(dcsvm.true+dcsvm.false))*100

allresults[dsno,10] <- (sum(dcsvm.totnSV)/length(trials))
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allresults[dsno,11] <- (sum(dcsvm.totsteps)/length(trials))

allresults[dsno,12] <- (sum(dcsvm.time)/length(trials))

}

#save to file

now <- Sys.time()

allresultsfilename <- paste0("output/allresults-tshold", THRESHOLD, ’_’

,format(now, "%Y%m%d_%H%M%S"), ".csv")

#write.csv(allresults, allresultsfilename, row.names = F)

B.5 COLLECTING SPLIT PERCENTAGES

library(e1071)

library(igraph)

#load functions

source("utils.R")

THRESHOLD <- 2 #for dcsvm: error percentage for separation generate data:

#run with one option for a specific data set

#DATA_GEN <- "artificial1"

#DATA_GEN <- "iris"

#DATA_GEN <- "segmentation"

#DATA_GEN <- "heart"

#DATA_GEN <- "wine"

#DATA_GEN <- "wine-quality"

#DATA_GEN <- "glass"

#DATA_GEN <- "covertype"

#DATA_GEN <- "svmguide4"

#DATA_GEN <- "vowel"

#DATA_GEN <- "usps"

#DATA_GEN <- "letter"

DATA_GEN <- "sector"

#DATA_GEN <- "poker"

#DATA_GEN <- "sensorless"

alldatasets <- c("artificial1","iris","segmentation","heart","wine",

"wine-quality", "glass","covertype","svmguide4", "vowel", "usps",

"letter","poker","sensorless")

THRESHOLD <- 95
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#store percentages in a list

allpercentages <- list()

for (DATA_GEN in alldatasets) {

print(paste0(’Loading data: ’, DATA_GEN))

print(Sys.time())

source("datagen.R")

print(’Data was loaded!’)

print(Sys.time())

## perform classification 10 times and display information

seeds <- c(1234, 2411, 2038, 9391, 2090, 5781, 4526, 191919,78213, 46712,

6072)

#create a list of all classes pairs in the training data set store in a

#list if (trial > 1) {

# rm(cls.all) #clear some memory

# gc()

# }

# cls.all <- list()

cls.levels <- levels(factor(df.train$class))

cls.n <- length(cls.levels)

# idx <- 1

# for (i in 1:(cls.n-1)) {

# for (j in (i+1):cls.n) {

# c1 <- cls.levels[i]

# c2 <- cls.levels[j]

# cls.all[[idx]] <- df.train[df.train$class==c1|df.train$class==c2,]

# cls.all[[idx]]$class <- factor(cls.all[[idx]]$class)

# idx <- idx + 1

# }

# }

#barplot(summary(df.train$class))

#create linear svm models for all pairs of classes

#svmkernel <- ’linear’

svmkernel <- ’radial’

set.seed(1234)

gammar <- 10ˆ(-6:-1)

costr <- 10ˆ(-1:2)

eps <- 0.1

cls.svmr <- list()
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idx <- 1

for (i in 1:(cls.n-1)) {

for (j in (i+1):cls.n) {

c1 <- cls.levels[i]

c2 <- cls.levels[j]

#select data only for these classes

cls.both <- df.train[df.train$class == c1 | df.train$class == c2,]

cls.both$class <- factor(cls.both$class)

wts <- NULL#100 / table(cls.both$class)

#cls.svmr[[idx]] <- createSVMradial(cls.both, gammar, costr, eps, wts)

#default parameters

cls.svmr[[idx]] <- svm(class˜., cls.both)

rm(cls.both)

idx <- idx + 1

}

}

#***********************************************************************

# DCSVM prediction

#***********************************************************************

#initialize

info <- initSVMDC(df.train, cls.n, cls.levels, cls.svmr, cls.svmr,tshold

= THRESHOLD)

print(Sys.time())

allpercentages[[DATA_GEN]] <- sort(as.matrix(info$maxpredictp[,-1]))

}

B.6 PLOTTING GRAPHS

#read summary table

#allresults <- read.csv("output/results-tshold2.csv", header = T)[-12,]

#allresults <- read.csv("output/allresults-tshold2_20180408_063047.csv"

, header = T)

#latest results

allresults2 <- read.csv("output/allresults-tshold2_20180408_063047.csv"

, header = T)

allresults1 <- read.csv("output/allresults-tshold1_20180411_233531.csv"

, header = T)
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allresults01 <- read.csv("output/allresults-tshold0.1_20180410

_195358.csv", header = T)

allresults001 <- read.csv("output/allresults-tshold0.01

_20180412_233641.csv", header = T)

allresults <- allresults2

#plots

par(mar=c(7,4,4,2)+0.1)

cnames <- colnames(allresults)

#- bar plot of triplets (build-in, one-vs-one, dcsvm) for their

# accuracies for all data sets

cols <- c(4,5,9)

# Grouped barplot

data <- t(as.matrix(allresults[,cols]))

colnames(data) <- allresults[,2]

rownames(data) <- c("Builtin", "1 vs. 1", "DCSVM")

barplot(data, col=colors()[c(28,139,100)] , border="white",font.axis=2,

beside=T, legend=rownames(data), ylab="Accuracy", ylim=c(0,140),

font.lab=2, las = 2)

#- bar plot of doubles (one-vs-one, dcsvm) for averages SVs, for all

# data sets

cols <- c(6,10)

# Grouped barplot

group2 <- c(8, 11, 12, 13, 14)

group1 <- -group2

data <- t(as.matrix(allresults[group1,cols]))

colnames(data) <- allresults[group1,2]

rownames(data) <- c("1 vs. 1", "DCSVM")

barplot(data, col=colors()[c(139,100)] , border="white", font.axis=2,

beside=T, legend=rownames(data), ylab="Average SVs", font.lab=2, las = 2)

par(mar=c(7,5,4,2)+0.1)

data <- t(as.matrix(allresults[group2,cols]))

colnames(data) <- allresults[group2,2]

rownames(data) <- c("1 vs. 1", "DCSVM")

barplot(data, col=colors()[c(139,100)] , border="white",font.axis=2,

beside=T, legend=rownames(data), ylab="", font.lab=2, las = 2)

title(ylab="Average SVs", line=4, font.lab=2, family = ’sans’)

par(mar=c(7,4,4,2)+0.1)

#- bar plot of doubles (one-vs-one, dcsvm) for average number of steps,
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# for all data sets

cols <- c(7,11)

# Grouped barplot

group2 <- c(10, 11, 12, 13, 14)

group1 <- -group2

data <- t(as.matrix(allresults[group1,cols]))

colnames(data) <- allresults[group1,2]

rownames(data) <- c("1 vs. 1", "DCSVM")

barplot(data, col=colors()[c(139,100)] , border="white", font.axis=2,

beside=T,legend=rownames(data),ylab="Average steps", font.lab=2, las = 2)

data <- t(as.matrix(allresults[group2,cols]))

colnames(data) <- allresults[group2,2]

rownames(data) <- c("1 vs. 1", "DCSVM")

barplot(data, col=colors()[c(139,100)] , border="white", font.axis=2,

beside=T, legend=rownames(data),ylab="Average steps",font.lab=2, las = 2)

#- bar plot of doubles (one-vs-one, dcsvm) for average time of

# predictions, for all data sets

cols <- c(8,12)

# Grouped barplot

group2 <- c(11, 12, 13, 14)

group1 <- -group2

data <- t(as.matrix(allresults[group1,cols]))

colnames(data) <- allresults[group1,2]

rownames(data) <- c("1 vs. 1", "DCSVM")

barplot(data,col=colors()[c(139,100)],border="white",

font.axis=2,beside=T, legend=rownames(data),ylab="Average time [sec]",

font.lab=2, las = 2)

#group2

data <- t(as.matrix(allresults[group2,cols]))

colnames(data) <- allresults[group2,2]

rownames(data) <- c("1 vs. 1", "DCSVM")

barplot(data,col=colors()[c(139,100)],border="white",

font.axis=2,beside=T, legend=rownames(data),ylab="Average time [sec]",

font.lab=2, las = 2)

#***********************************************************************

# aggregate info for different thresholds

#***********************************************************************

allresultsbythsold <- data.frame(No = allresults$No, Dataset =
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allresults$Dataset, BIacc = allresults$BIacc, OVOacc = allresults$OVOacc)

#add threshold specific info

allresultsbythsold$DCSVMacc2 <- allresults2$DCSVMacc

allresultsbythsold$DCSVMdp2 <- allresults2$DCSVMdp

allresultsbythsold$DCSVMsteps2 <- allresults2$DCSVMsteps

allresultsbythsold$DCSVMavt2 <- allresults2$DCSVMavt

allresultsbythsold$DCSVMacc1 <- allresults1$DCSVMacc

allresultsbythsold$DCSVMdp1 <- allresults1$DCSVMdp

allresultsbythsold$DCSVMsteps1 <- allresults1$DCSVMsteps

allresultsbythsold$DCSVMavt1 <- allresults1$DCSVMavt

allresultsbythsold$DCSVMacc01 <- allresults01$DCSVMacc

allresultsbythsold$DCSVMdp01 <- allresults01$DCSVMdp

allresultsbythsold$DCSVMsteps01 <- allresults01$DCSVMsteps

allresultsbythsold$DCSVMavt01 <- allresults01$DCSVMavt

allresultsbythsold$DCSVMacc001 <- allresults001$DCSVMacc

allresultsbythsold$DCSVMdp001 <- allresults001$DCSVMdp

allresultsbythsold$DCSVMsteps001 <- allresults001$DCSVMsteps

allresultsbythsold$DCSVMavt001 <- allresults001$DCSVMavt

#dump this table in LaTeX format

library(xtable)

sink("output/tables/tables.Rnw")

cat("

\\documentclass{article}

\\usepackage{Sweave}

\\begin{document}

")

# Print a lot of tables

#invisible(

# lapply(allresultsbythsold,

# function(x)

# print(xtable(table(x),caption=names(x)),table.placement="!htp"))

#)

#accuracies table

tcols <- c(2, 3, 4, 5, 9, 13, 17)

xtable(allresultsbythsold[,tcols])

#avg. steps table

tcols <- c(2, 7, 11, 15, 19)

xtable(allresultsbythsold[,tcols])
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#avg. SVs table

tcols <- c(2, 6, 10, 14, 18)

xtable(allresultsbythsold[,tcols])

cat("

\\end{document}

")

sink()

cdir <- getwd()

setwd(paste0(cdir,’/output/tables/’))

Sweave("tables.Rnw")

#compilePdf("tables.Rnw")

setwd(cdir)

#plot some results

#I. accuracies for a few datasets

cols <- c(5,9,13,17)

thsholds <- c(2,1,0.1,0.01)

group <- c(10, 11, 12, 14)

colors <- colors()[c(28, 139, 100, 641)]

x <- matrix(thsholds)

y <- t(as.matrix(allresultsbythsold[group,cols]))

#colnames(data) <- allresults[group1,2]

#rownames(data) <- c("1 vs. 1", "DCSVM")

matplot(x, y, lty = 15:18, ylim = c(93,100),pch=15:18,

col= colors, xlab = "Threshold", ylab = "Accuracy") #plot

matlines(x, y, lty = 1, ylim = c(93,100),pch=15:18,col= colors, lwd = 2)

legend("topright", legend = allresultsbythsold[group,2], col=colors,

pch=15:18)

#II. accurracies for "letter", for all thresholds and all methods

cols <- c(5,9,13,17)

thsholds <- c(2,1,0.1,0.01)

group <- c(12)

colors <- colors()[c(28, 139, 100)]

tmpdf <- allresultsbythsold[group,cols]

tmpdf[2,] <- rep(allresultsbythsold[12,3],4)

tmpdf[3,] <- rep(allresultsbythsold[12,4],4)

legendlist <- c("letter", "BI", "OvsO")

x <- matrix(thsholds)

y <- t(as.matrix(tmpdf))
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#colnames(data) <- allresults[group1,2]

#rownames(data) <- c("1 vs. 1", "DCSVM")

matplot(x, y, lty = 15:17, ylim = c(95,97),pch=15:17,

col= colors, xlab = "Threshold", ylab = "Accuracy") #plot

matlines(x, y, lty = 1, ylim = c(95,97),pch=15:17,col = colors, lwd = 2)

legend("topright", legend = legendlist, col=colors, pch=15:17)

#III. average steps for a few datasets

cols <- c(7,11,15,19)

thsholds <- c(2,1,0.1,0.01)

group <- c(10, 11, 12, 14)

colors <- colors()[c(28, 139, 100, 641)]

x <- matrix(thsholds)

y <- t(as.matrix(allresultsbythsold[group,cols]))

#colnames(data) <- allresults[group1,2]

#rownames(data) <- c("1 vs. 1", "DCSVM")

matplot(x, y, lty = 15:18, ylim = c(0,25),pch=15:18,col= colors, xlab =

"Threshold", ylab = "Average steps") #plot

matlines(x, y, lty = 1, ylim = c(0,25),pch=15:18,col= colors, lwd = 2)

legend("topright", legend = allresultsbythsold[group,2],col=colors,

pch=15:18)

#iV. distribution of splits in allresults table

# (must have run #experim-results-alldata2.R)

# data must be already stored in allpercentages[[DATA_GEN]]

range <- c(0, 5)

dataset <- ’letter’

dataset <- ’vowel’

dataset <- ’usps’

dataset <- ’sensorless’

x <- seq(from = range[1], to = range[2], by = 0.01)

y <- x

for (i in 1:length(x)) {

y[i] <- length(allpercentages[[dataset]][allpercentages[[dataset]] >=

(100-x[i])])

}

plot(x,y, col = colors, main = paste0("’",dataset," ’ dataset"), xlab =

’Threshold’, ylab = ’Separated classes’)

#V. distribution of splits in allresults table

# (must have run experim-results-alldata2.R)
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# data must be already stored in allpercentages[[DATA_GEN]]

# (same as above, but as percentages)

range <- c(0, 5)

dataset <- ’letter’

dataset <- ’vowel’

dataset <- ’usps’

dataset <- ’sensorless’

x <- seq(from = range[1], to = range[2], by = 0.01)

y <- x

for (i in 1:length(x)) {

l <- length(allpercentages[[dataset]])

y[i] <- length(allpercentages[[dataset]][allpercentages[[dataset]] >=

(100-x[i])]) / l * 100

}

plot(x,y, col = colors, main = paste0("’",dataset," ’ dataset"), xlab =

’Threshold’, ylab = ’Classes separation [%]’)

#***********************************************************************

# Last update: 11/05/2018

#***********************************************************************
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