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STRUCTURE VS. PROPERTIES USING CHEMICAL GRAPH

THEORY

by

TABITHA WILLIFORD

(Under the Direction of Hua Wang)

ABSTRACT

Chemical graph theory began as a way for mathematicians to bring together the

areas of the Physical Sciences and Mathematics. Through its use, mathematicians are

able to model chemical systems, predict their properties as well as structure-property

relationships. In this dissertation, we consider two questions involving chemical graph

theory and its applications. We first look at tree-like polyphenyl systems, which form

an important family of compounds in Chemistry, particularly in Material Science. The

importance can be seen in LEDs, transmitters, and electronics. In recent years, many

extremal results regarding such systems under specific constraints have been reported.

More specifically are the sub-categories of such systems with extremal Wiener indices.

We provide a labeling of the vertices on each hexagon, which facilitates the illustration

of a tree-like polyphenyl system with its corresponding tree structure. This approach

helps to characterize the extremal tree-like polyphenyl systems with respect to the

Wiener index (ones that minimize or maximize the Wiener index). This method can

also be used to order these systems and the results will aid in predicting the physical

properties of compounds. We further compare the study between tree-like polyphenyl

systems that resulted from different tree structures. We then focus on the application

of a general weighted distance-based indexing system, similar to but more complicated

than the Wiener index, to devise a way to determine the binding of proteins in



biochemical systems. Proteins, composed of amino acids, are important biological

molecules that dictate a wide range of functions on a cellular level. Although proteins

have various basic sequences, proteins can be created to have similar functions. We

compare peptide sequences that govern protein binding to methylated DNA. We do

this by first devising an index for each amino acid and compare the overall index of

a peptide sequence in order to characterize the binding capability between original

proteins and mimics.

Key Words : Chemical Graph Theory, Wiener Index, tree structures, polyphenyl,

topological indices, protein binding

2009 Mathematics Subject Classification: 05C05, 05C78, 92E10

ii



STRUCTURE VS. PROPERTIES USING CHEMICAL GRAPH

THEORY

by

TABITHA WILLIFORD

B.S. in Biology

B.S. in Mathematics

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment

of the Requirement for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2014



c©2014

TABITHA WILLIFORD

All Rights Reserved

iv



STRUCTURE VS. PROPERTIES USING CHEMICAL GRAPH

THEORY

by

TABITHA WILLIFORD

Major Professor: Hua Wang

Amanda Stewart

Committee: Emil Iacob

Electronic Version Approved:

May 9, 2014

v



ACKNOWLEDGMENTS

I wish to acknowledge and thank my advisors, Drs. Wang and Stewart, whose en-

couragement, guidance, and support have not only helped me professionally, but also

in my personal development as I have conducted my research. I appreciate their flex-

ibility and willingness to work in between departments that allowed me to combine

two of my passions, mathematics and chemistry. I would so like to thank my other

committee member, Dr. Emil Iacob, for guidance on this project.

I also wish to acknowledge all those who have had a major influence on my life in

regards to my growth as a student in love with mathematics and the sciences. This

list includes but is not limited to: Dr. Argene Claxton, Mrs. Mary Gentry, and Mrs.

Emily Heath, who helped to cultivate my love for science and mathematics, push

me to excellence, and copious amounts of encouragement early in my educational

career. Drs. Alina Iacob, Lissa Leege, and William Irby from my undergraduate

career at Georgia Southern, who provided support and gave me my first love of

higher educational learning. I would also like to thank all those in the Mathematics,

Chemistry, and Biology Departments, who supported and encouraged me through my

time here at Georgia Southern obtaining two undergraduate degrees and a Masters

degree, although countless others considered the task ’crazy’.

Next, I would especially like to thank my family for their continued emotional

support and encouragement. I specifically like to acknowledge my parents and my

grandmother, who early on instilled in me the love of learning and who I owe so much

to for making me the person I am today. I would also like to thank my sisters, for

their support, they were always there, even for late-night phone calls or rants, during

my studies even if they had no idea what I was talking about at the time. I also thank

my Georgia Southern friends and family for all their motivation, help with research,

and for providing so much happiness over the past six years. I would not be where I

vi



am today, especially with my sanity intact, without them.

Last and certainly not least, I would like to thank my Heavenly Father who has

made everything possible.

Partial funding was provided through the Sims Foundation (# 245307).

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Chemical Graph Theory . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Tree Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Polyphenyl Compounds . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Tree-like Polyphenyl Systems . . . . . . . . . . . . . . . . . . 4

1.2.3 Wiener Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Amino Acids, Proteins, and their Binding . . . . . . . . . . . . 6

1.3.1 Proteins and Amino Acids . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Methylated DNA and MBD Proteins . . . . . . . . . . . . . . 7

1.4 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Tree-like Polyphenyl systems and their Wiener indices . . . . . . . . . . 11

2.1 Labeling of hexagonal vertices . . . . . . . . . . . . . . . . . . . 11

2.2 Tree-like polyphenyl system with a given tree structure . . . . . 12

2.3 Between Adjacent hexagons . . . . . . . . . . . . . . . . . . . . 18

2.4 Comparison with physical properties . . . . . . . . . . . . . . . 19

viii



2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Using Distance-based Topological Indices to Study Protein Binding . . 24

3.1 MBD2 protein . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Calculations for Mathematical Binding . . . . . . . . . . . . . . 26

3.2.1 Amino Acid Index . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Calculation of Topological Index for MBD2 and mimic . . . . 30

3.2.3 Comparison of Indices . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Concluding remarks and Future Research . . . . . . . . . . . . 34

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



LIST OF TABLES

Table Page

2.1 Predicted Properties of Polyphenyl Compounds (Data Provided from
Advanced Chemistry Development Labs http://www.acdlabs.com) . . 21

3.1 Shortest Distance Calculations for Carbon and Oxygen Atoms in 20
Common Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Shortest Distance Calculations for Nitrogen and Sulfur Atoms in 20
Common Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Index for 20 Common Amino Acids . . . . . . . . . . . . . . . . . . . . 29

3.4 Atom Distances for MBD2 Mimic Regions . . . . . . . . . . . . . . . . 31

3.5 Indices for MBD2 Mimic . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Atom Distances for MBD2 . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Indices for MBD2 Mimic . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Index Comparison for MBD2 and MBD2 Mimic . . . . . . . . . . . . . 33

x



LIST OF FIGURES

Figure Page

1.1 Examples of Tree Structures . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A tree-like polyphenyl system and the corresponding tree . . . . . . . . 4

1.3 Example of structure that is not a tree-like polyphenyl system . . . . . 5

1.4 A different polyphenyl system . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 20 Common Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 MBD region consistent throughout MBD proteins [19] . . . . . . . . . . 9

2.1 Labeling of an aromatic ring in a tree-like system . . . . . . . . . . . . 11

2.2 Labeling and tree representation with edge labels for Figure 1.2 . . . . 11

2.3 A different edge labeling pattern for Figure 1.4 with same tree-like
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Z, represented by a hexagon and the resulted components . . . . . . . 13

2.5 An extremal polyphenyl system that minimizes the Wiener index . . . 17

2.6 Adjacent hexagons and the resulting components . . . . . . . . . . . . 18

2.7 Examples of Polyphenyl Structures . . . . . . . . . . . . . . . . . . . . 20

3.1 Structure of MBD2 Mimic Sequence . . . . . . . . . . . . . . . . . . . . 25

xi



CHAPTER 1

INTRODUCTION AND BACKGROUND

Chemical Graph Theory is an area of mathematics that spans both the mathematical

and chemical worlds in their scope and application. In this dissertation, we address

two questions concerning both structures of chemicals and their properties, in particu-

lar tree-like polyphenyl systems and peptide binding. In order to discuss this research,

We first need to introduce various topics that are essential to its understanding and

application. We begin with a brief history of chemical graph theory, followed by

preliminary information on tree structures, polyphenyl compounds, and the Wiener

index. We then introduce the concepts involving proteins and their formation, along

with MBD Proteins and their binding to methylated DNA.

1.1 Chemical Graph Theory

Chemical Graph Theory began as a way to combine the natural sciences with math-

ematics. Chemical graphs were first used in the later eighteenth century as the basic

understanding of matter and particles were being discovered. A Scottish chemist,

William Cullen, first termed them as affinity diagrams in lecture notes to represent

forces between pairs of molecules in chemical reactions [26]. In Cullens work, as well

as later chemical graph theorists, numbers or symbols were used between interacting

atoms to denote different magnitudes, whether it be gravitational or attraction forces

[14]. However, the lines between pairs were not placed as bonds until later in the 19th

century when the atom began to be studied more in depth. Some early structural

formula for chemical graphs was constructed by Arthur Cayley and James Sylvester

[4, 25]. Cayley used kenograms, or alkane tree graphs, to identify different isomers

and is most likely the first to publish results on molecular graphs. Molecular graphs

are also called chemical graphs and are a structural representation of a chemical com-



2

pound, where vertices are used to represent atoms and edges to represent chemical

bonds. Sylvester then looked at chemicographs and the conditions for the existence

of chemical graphs themselves. In the years after, the area of chemical graph theory

has had periods of great interest followed by periods of abandonment. The idea of

topological indices used for hydrocarbons, began with Hermann Kopp, who summed

atoms of different types in molecules to determine volumes and densities of molecules

[15]. Later, Harry Wiener used a special distance-based index to discover a relation-

ship between physical properties of alkenes and their boiling points. He first termed

this as path number and defined it as the sum of the distances between any two

carbon atoms in the molecule, in terms of Carbon-Carbon bonds. This index was

later known as the Wiener Index and is one of the most widely known indices used

to characterize tree structures [30].

1.2 Tree Structures

Tree structures were first studied by Sir Arthur Cayley in 1857, who also termed

kenograms. Tree structures are defined as a connected, acyclic graph or graphs with

no cycles. Each point, or vertex, on the graph is called a node and segment is termed a

branch (edge in mathematical graph theory). Due to the acyclic nature of the graphs

each node is connected to at least one other node by only one edge. Therefore, a tree

with n nodes has n-1 edges. In some texts, the points of connection can also be known

as forks [13]. The final nodes on each of the branches are known as leaves. One of

the most well known formulas concerning tree structures was Cayley’s Formula. This

formula identifies the number of different trees that can be constructed for n vertices.

The simplest version of the formula is

|Tn| = nn−2

For each of these systems, no two nodes share more than one branch and no
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Figure 1.1: Examples of Tree Structures

one branch is attached to one node and no more than two nodes share a branch

(i.e. simple graphs). Tree structures are very often used to represent hierarchical

data. One example would be in computer science, such as an R-tree for spatial access

methods, or in biology, such as evolutionary trees or cladograms.

1.2.1 Polyphenyl Compounds

Polyphenyl compounds are synthetically or naturally derived compounds composed

of multiple phenyl/benzene rings. These compounds can be hard to isolate and char-

acterize due to the high variability and probability of impurities associated with their

synthesis [27]. Therefore, the properties that have been reported are usually deter-

mined in large batches or are a mixture of the various formations. These compounds

have been known to be useful in the area of Material Science, which include organic

light emitting diodes, catalysts, and transmitters, along with some biological appli-

cations [17]. They have also been used in molecular models of graphene as well as

discotic liquid crystals due to their higher solubilities, high thermal stability and

lowered melting points [9]. The integration of polyphenyl compounds to polymer

backbones have been shown in various studies to increase the high glass transition

temperature (Tg), lower the degree of molecular association, and even create a trans-
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parent film all the while conserving the properties of the original polymer [9]. It will

be helpful to be able to predict properties of these compounds due to the associated

applications, costly nature of synthesis, and purification techniques as well as the

wide ranges of properties and conformations. Topological indices have been used as

a convenient abstraction of chemical structures and have shown strong correlations

with the chemicals physical properties. However, we are more concerned with tree-like

polyphenyl systems which are very common in this group of compounds.

1.2.2 Tree-like Polyphenyl Systems

A polyphenyl system Z is “tree-like” if each vertex of Z lies on exactly one hexagon

and the graph obtained by contracting each hexagon into a vertex is a tree (Fig-

ure 1.2).

Figure 1.2: A tree-like polyphenyl system and the corresponding tree

Two adjacent vertices in the tree structure correspond to the two hexagons joined

by an edge. Each vertex (on a hexagon) is incident to no more than one of the edges

joining hexagons. For instance, Figure 1.3 shows an example of a structure that is

not a tree-like polyphenyl systems. The structure has two vertices that are shared by

more than one hexagon.

Different tree-like polyphenyl systems may be reduced to the same tree. For

instance, Figure 1.4 shows a tree-like polyphenyl system reduced to the same tree
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Figure 1.3: Example of structure that is not a tree-like polyphenyl system

structure (as that in Figure 1.2) after contraction of hexagons.

Figure 1.4: A different polyphenyl system

1.2.3 Wiener Index

Topological indices have been used as a convenient abstraction of chemical struc-

tures and have experimentally shown strong correlations with the chemical’s physical

properties. Throughout the years, numerous such indices are proposed, known as

the chemical indices, for various categories of chemical structures. One of the most

well-known such indices is due to and later named after Wiener [30]. This index is

defined as the sum of the lengths of the shortest paths between all pairs of vertices

in a chemical graph. This topological index can be used to determine how dense a

chemical graph is as well as interactions between atoms in a chemical, for instance

interactions that occur when boiling a substance. A boiling point occurs when the

movement of the atoms in a substance becomes so rapid that the interactions of the

atoms involved change, more specifically the interactions between electrons in the
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electron clouds. As a molecule becomes larger, there are more pairs of interactions.

Therefore the distance is also greater, which in turn increases the boiling point due to

the increase in energy to break those bonds. The Wiener index is a good foundation

for determining if there is a correlation between a molecule’s structure and properties

because it takes into account distances between atoms, more specifically their electron

clouds. So when the molecule increases, the Wiener Index also increases.

In the past decade, many studies have been conducted on the Wiener Index. Both

maximal and minimal Wiener indices have been characterized for trees with a given

number of vertices, degree sequences, and those with a given order with only vertices

of two different degrees [16, 29, 32, 33]. The extremal structures and edge-Wiener

indices have also been studied among polyphenyl chains, along with the maximal and

minimal degree distances [6, 12, 16]. Explicit formulas have also been derived for each

of these [2, 6]. Characterization of spiro and polyphenyl hexagonal chains have also

been computed as well as to establish a relationship between Wiener indices of these

chains to their polycyclic aromatic hydrocarbons to determine the extremal graphs

[16]. In addition to these few studies, there are certainly many more studies on the

Wiener index and related concepts on trees. In recent years, similar studies have

been conducted on some specific tree-like polyphenyl systems (see [2]) and related

questions on such systems have been of interests (see [6, 31]).

1.3 Amino Acids, Proteins, and their Binding

1.3.1 Proteins and Amino Acids

Proteins are biological macro-molecules that dictate nearly every process that occurs

in the cell for life to exist. These macro-molecules exist in various shapes and sizes

and have a wide array of functions. These functions range from the oxygen carrying
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hemoglobin located in blood cells, to the keratin in fingernails, to proteins such as

polymerase that aids in the synthesis of DNA, the basis of our genetic information.

Even though proteins have various functions and structures in nature they are all

created from the same basic unit, amino acids. Amino acids are the basic building

blocks of proteins. There are 20 common amino acids. The first, Asparagine, was

discovered in 1806, while the last, Threonine, was discovered over twenty years later

in 1938. All of the 20 amino acids have the same basic structure, a carboxyl group

(COO−) and an amino group (NH+
3 ) bonded to a Carbon, called the α-Carbon.

Attached to this α-Carbon are the various R groups or side chains that determine the

size, charge, and structure of each amino acid [20]. These R groups are what scientists

use to classify amino acids, whether the side groups are non-polar, aromatic, or polar

(uncharged, positively charged, or negatively charged)(Figure 1.5)

The process for which these amino acids become proteins is called translation,

where peptide bonds are created between two amino acids though a condensation

reaction. This process forms peptides. When these peptides combine, proteins are

formed and take the form of α-helices or β-sheets. A family of proteins containing

β-sheets are Methyl-CpG binding domains, or MBD proteins, that bind to methylated

DNA.

1.3.2 Methylated DNA and MBD Proteins

Methylated DNA occurs when a methyl group is added to cytosine or adenine on

a DNA strand. In humans, DNA is usually modified through cytosine methylation

at CpG sites by DNA methyltransferase (DNMT1) [1]; where Cytosine and Guanine

nucleotides occur next to each other. This modification has been seen to occur in

60% to 90% of all CpG sites [7]. DNA Cytosine methylation has been linked to

the regulation of the X-chromosome, genomic imprinting, carcinogenesis, and gene
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Figure 1.5: 20 Common Amino Acids
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silencing. This methylation has also been shown to occur during embryogenesis and

is highly important for neurological development [8]. Consequently, alterations at

these methylated sites have been linked to various human diseases, such as Retts

Syndrome and Fragile-X [24]. This methylation can affect gene expression though two

mechanisms; direct interference of methyl-CpG sites with the binding of transcription

factors or as a group of proteins that bind methylated CpG sites independently [3]. In

mammals, there are five known MBD proteins that can recognize methylated DNA;

MeCP2, MBD1, MBD2, MBD3, and MBD4. Each of these proteins functions in a

similar way by regulating other complexes, and each contains a similar MBD region

(Figure 1.6).

Figure 1.6: MBD region consistent throughout MBD proteins [19]

In the figure, the MBD regions are highlighted along with other regions included

in these proteins, such as transcriptional repression domains (TRD), Cysteine rich

domains (CxxC), and Glycine and Arginine repeats (GR). Even though these proteins

share similar regions, they do have different regulatory functions including binding to

methylated DNA to inhibit promoter activities of genes during transcription (MeCP2,

MBD1 and MBD2), repressing transcription without specific binding (MBD3), and

repairing DNA (MBD4). The study of these proteins is important because of their
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importance for transcriptional regulation. Due to the link to various neurological

disorders and cancer, these MBD proteins have been the focus of various studies to

understand their mechanism of action and possible ways to prevent the alterations.

For instance, a mutation in the MeCP2 gene is specifically linked to Rett Syndrome

and MBD2 to the transcriptional silencing of hypermethylated genes in cancer [3, 18].

Learning more about the impacts of the alterations of the methylated sequences, the

genes coding for MBD proteins, and their DNA binding will provide insight into

correcting these imbalances that could cause various neurological diseases.

1.4 Purpose

A simple labeling system of hexagonal vertices will be presented that enables concise

tree representations of tree-like polyphenyl systems. This system provides the explicit

characteristics of the extremal structures that minimize or maximize the Wiener index

among tree-like polyphenyl systems with the same underlying tree structure. The

impact of different tree structures on the polyphenyl systems will be discussed through

the consideration of pairs of adjacent hexagons as well as the results of simple systems

to predicted physical properties.

With the knowledge of these MBD proteins and their binding to methylated

DNA, a peptide mimic sequence can be developed to address the impact on the

regulation of transcription. An index, similar to the Wiener index, will be devised for

each of the 20 amino acids and used to determine a linear expression for a particular

peptide sequence. This expression and the results will serve as a tool for comparing

and quantifing the relationship of an original protein binding sequence and the created

peptide mimic sequence. The information obtained from this study can be used to

justify or improve a predicted sequence.



CHAPTER 2

TREE-LIKE POLYPHENYL SYSTEMS AND THEIR WIENER

INDICES

2.1 Labeling of hexagonal vertices

For the purpose of distinguishing such systems with the same tree structure, we label

the vertices on each hexagon with 1, 2, 4, 6, 5, 3 in the clockwise order as in Figure 2.1.

1 6

2

3

4

5

Figure 2.1: Labeling of an aromatic ring in a tree-like system

Remark 2.1. This labeling of an aromatic ring, although seemingly unusual, em-

phasizes the importance of adjacent and opposite atoms of this aromatic ring in the

tree-like system. The numbering is indeed coherent with the ordering of branching

sizes when the Wiener index is minimized.

For an edge connecting two vertices from different hexagons in a tree-like system,

we label the two end of this edge to denote where is the hexagon connected to this

edge. For instance, the system in Figure 1.2 can now be represented as Figure 2.2.

1 1 2

1

3

1

6 1 6 1

Figure 2.2: Labeling and tree representation with edge labels for Figure 1.2
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We omit an edge label if it does not affect the tree-like system. In particular,

we do not label the leaf-ends of pendant edges. Figure 2.3 shows another example

with such labellings. Note that this example denotes a different system that shares

exactly the same tree structure.

6
2

31
1

4

Figure 2.3: A different edge labeling pattern for Figure 1.4 with same tree-like struc-

ture

2.2 Tree-like polyphenyl system with a given tree structure

For a graph G with vertex set V (G) and edge set E(G), the Wiener index of G is

defined as

W (G) =
∑

u,v∈V (G)

d(u, v)

where d(u, v) denotes the distance between u and v (the number of edges on the

shortest path connecting u and v) and the sum goes over all unordered pairs of

vertices in G.

However, here we consider polyphenyl systems Z with a given underlying tree

structure T . First recall that the Wiener index of a tree T can also be represented by

W (T ) =
∑

(u,v)∈E(T )

n(u)n(v)

where n(u) and n(v) are the numbers of vertices in T that are closer to u or v

respectively.

Following the same idea, we have
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Proposition 2.2. The number of times an edge uv ∈ E(T ) is used as part of a path

in Z is

(6n(u)) · (6n(v)) = 36n(u)n(v).

The sum of these values for all edges in T is

36W (T ).

Consequently,

W (Z) = 36W (T ) + C(Z)

where C(Z), the contribution to W (Z) from hexagonal edges, is the only variable

that we need to consider (since W (T ) is a constant when T is given).

Let the components resulted from removing the edges of a hexagon in Z be

denoted by Z1, . . . , Z6 (Figure 2.4) according to the labeling of the vertices on the

aromatic ring, drawn here and throughout the rest of the article as a hexagon. Each

component contains a polyphenyl system based around a central aromatic ring.

1 6

2

3

4

5

Z1 Z6

Z3

Z2

Z5

Z4

Figure 2.4: Z, represented by a hexagon and the resulted components

Take, for instance, a vertex v2 ∈ Z2 and a vertex v6 ∈ Z6, the contribution of

edges on this hexagon to d(v2, v6) is 2. Hence the total contribution of this hexagon

to distances between vertices in Z2 and Z6 is 2z2z6 where zi = |V (Zi)| for 1 ≤ i ≤ 6.
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Taking all pairs of components into consideration, we have the contribution of this

hexagon to C(Z) as

(z1z2 + z1z3 + z2z4 + z3z5 + z4z6 + z5z6)

+ 2(z1z4 + z1z5 + z2z6 + z3z6 + z2z3 + z4z5)

+ 3(z1z6 + z2z5 + z3z4)

=(z1 + z2 + z3 + z4 + z5 + z6)
2 − (z21 + z22 + z23 + z24 + z25 + z26)

+ (z1z6 + z2z5 + z3z4)− (z1z2 + z1z3 + z2z4 + z3z5 + z4z6 + z5z6).

Note that, with given underlying tree structure and choice of the hexagon under

consideration, both

(z1 + z2 + z3 + z4 + z5 + z6)
2 = |V (Z)|2

and

(z21 + z22 + z23 + z24 + z25 + z26)

are constants. Hence we only need to focus our attention on

(z1z6 + z2z5 + z3z4)− (z1z2 + z1z3 + z2z4 + z3z5 + z4z6 + z5z6) (2.1)

with given values of zi.

We will show that, with given choices of Zi’s but flexibility to rearrange them,

(2.1) is minimized when the components is arranged in a way such that

z1 ≥ z2 ≥ z3 ≥ z4 ≥ z5 ≥ z6, (2.2)

i.e., the “largest” component is attached to the hexagon at “1”, the second largest at

2, etc..

Lemma 2.3. The value of

z1z6 + z2z5 + z3z4 (2.3)

is minimized under condition (2.2).
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Proof. Without loss of generality, assume that z1 ≥ zi for any 2 ≤ i ≤ 6. Supposing

(for contradiction) that (2.2) does not hold, we have the following cases:

• If z6 > z4, consider the new system resulted from replacing Z4 with Z6 and

Z6 with Z4. In the rest of this article we will simply refer to this operation as

“switching” the corresponding components. Now the new value for (2.3) is

z1z4 + z2z5 + z3z6. (2.4)

Comparing with the original value yields (2.4)− (2.3) as

z1z4 − z1z6 + z3z6 − z3z4 = (z1 − z3)(z4 − z6) ≤ 0,

showing that the new system bears a value for (2.3) that is at most as large.

• Similarly, if z6 > z5, switching Z6 and Z5 yields the same conclusion.

• If z6 > z2 (or z6 > z3), switching Z2 and Z6 (or Z3 and Z6) will not increase the

value (2.3). The calculation is similar and we leave it to the reader.

Now we may assume that z1 ≥ zi ≥ z6 for any 2 ≤ i ≤ 5. Focusing on zi for 2 ≤ i ≤ 5

and the value of z2z5 + z3z4, through similar argument, it is easy to see that (z2, z5)

and (z3, z4) must be paired such that the largest (i.e., z2) and smallest (i.e., z5) values

are paired together.

Remark 2.4. Note that (2.2) is a stronger condition than what we needed here but

nevertheless minimizes (2.3).

For the second part of (2.1), we have the following through similar but slightly

more complicated analysis.

Lemma 2.5. The value of

z1z2 + z1z3 + z2z4 + z3z5 + z4z6 + z5z6 (2.5)

is maximized if and only if condition (2.2) holds.
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Proof. Without loss of generality, assume that z1 ≥ zi for any 2 ≤ i ≤ 6. Supposing

that (2.2) does not hold:

• If z4 > z2, switching Z2 and Z4 yields a new value of (2.5) that is

z1z4 − z1z2 + z2z6 − z4z6 = (z1 − z6)(z4 − z2) ≥ 0

more than the original.

• If z4 > z3, switching Z3 and Z4, Z5 and Z6 (note that we are essentially “flip-

ping” the portion Z3Z5Z6Z4) yields a new value of (2.5) that is at least as large.

The calculation is similar and we leave it to the reader.

• Similarly, the cases for z5 > z3 or z5 > z2 can be handled in completely analogous

way as the previous two cases.

• If z6 > z2 or z6 > z3, switching Z2 and Z6 or Z3 and Z6 will yield new systems

with non-decreasing (2.5).

Now we can assume that z1 ≥ z2 ≥ z3 ≥ max{z4, z5, z6}. Following the same argu-

ments we have:

• If z6 > z4, switch Z4 and Z6.

• If z6 > z5, switch Z5 and Z6.

Now we can assume that z1 ≥ z2 ≥ z3 ≥ max{z4, z5} ≥ min{z4, z5} ≥ z6.

• If z5 > z4, switch Z4 and Z5.

Note that the value of (2.5) will strictly increase under the above assumptions and

operations unless the corresponding zi’s are of the same value, we conclude that (2.2)

is the necessary and sufficient condition to minimize (2.5).
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Lemmas 2.3 and 2.5 imply that the contribution C(Z) from hexagonal edges are

minimized when (2.2) holds for every hexagon. Together with Proposition 2.2, we

have

Theorem 2.6. With a given tree structure, the corresponding polyphenyl system has

the minimum Wiener index if and only if condition (2.2) holds for every hexagon.

Remark 2.7. Theorem 2.6 asserts that, with a given underlying tree structure, to

minimize the Wiener index of the corresponding polyphenyl system one simply need

to arrange the outgoing edges of every hexagon according to the size of the attached

components (i.e., the values of zi’s).

With Theorem 2.6, one can easily check that Figure 2.3 provides a corresponding

polyphenyl system that has the minimal Wiener index among all systems with the

same underlying tree structure, i.e., Figure 2.5.

Figure 2.5: An extremal polyphenyl system that minimizes the Wiener index

Remark 2.8. Although we focus our attention on the extremal structures in this

section, our approach can be used to effectively compare the value of the Wiener

indices of two isomeric tree-like polyphenyl systems even when they are not extremal.

Examples of such application is shown in Section 2.4.
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2.3 Between Adjacent hexagons

In this section we consider the influence, from interchanging pendant branches of two

adjacent hexagons, on the Wiener index of a tree-like polyphenyl system. First note

that for any two adjacent hexagons as in Figure 2.6, permuting any of the branches

(with the possibility of being empty) Zij (i = 1, 2 and j = 1, 2, 3, 4, 5) will not affect

the contribution to C(Z) from any other hexagons except the two under consideration

in Figure 2.6.

Z11

Z13

Z12

Z15

Z14

Z21

Z25

Z24

Z23

Z22

Figure 2.6: Adjacent hexagons and the resulting components

This contribution (from this pair of adjacent hexagons) can be calculated simi-

larly as that from section 2.2 as:

5

2

(
5∑

j=1

z1j +
5∑

j=1

z2j

)2

−

(
5∑

j=1

z21j +
5∑

j=1

z22j

)

+
2∑

i=1

(zi2zi5 + zi3zi4 − (zi1zi2 + zi1zi3 + zi2zi4 + zi3zi5))

−3

2

(
5∑

j=1

z1j

)2

− 3

2

(
5∑

j=1

z2j

)2

+(z11 − z14 − z15)

(
5∑

j=1

z2j

)
+ (z21 − z24 − z25)

(
5∑

j=1

z1j

)

where zij = |V (Zij)|.
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Examining this expression, we have

1. The first line

5

2

(
5∑

j=1

z1j +
5∑

j=1

z2j

)2

−

(
5∑

j=1

z21j +
5∑

j=1

z22j

)
is a constant;

2. For any pair of adjacent hexagons in the system, one only needs to consider

maximizing or minimizing the expression

f :=
2∑

i=1

(zi2zi5 + zi3zi4 − (zi1zi2 + zi1zi3 + zi2zi4 + zi3zi5))

− 3

2

(
5∑

j=1

z1j

)2

− 3

2

(
5∑

j=1

z2j

)2

+ (z11 − z14 − z15)

(
5∑

j=1

z2j

)
+ (z21 − z24 − z25)

(
5∑

j=1

z1j

)
;

3. Repeating (2), one can continue to increase or decrease the expression of f for

pairs of adjacent hexagons. Note that in every step the value of W (Z) will be

strictly increased or decreased. Hence this process terminates in finite steps.

Remark 2.9. In terms of the structural change of chemical compounds, the “switch-

ing” of Zij’s is merely breaking and forming bonds (ones that connect some Zij to

one of the two hexagons). Among tree structures, it is known that a complete “chain

decomposition” exists among the partially ordered set (ordered by the value of Wiener

index) of trees of given order, where every pair of “adjacent” trees in a chain differ by

only “breaking and forming” bonds at “adjacent locations”. This offers an intuitive

support for what is discussed above.

2.4 Comparison with physical properties

We compare our theoretical studies with the predictions of physical properties of the

following polyphenyls from hydrocarbons. Note that A, B, C, D are of the same size.
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Figure 2.7: Examples of Polyphenyl Structures
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Our discussions in sections 2.2 and 2.3 implies that

W (A) < W (B) < W (C) < W (D)

with A and D being the extremal cases that minimizes and maximizes the Wiener

index respectively.

Similarly, our discussion in section 2.2 implies that

W (E) < W (F ).

The following table shows some of the properties of these polyphenyls [34]. In

particular, we see a clear correlation between the predicted boiling points, as well as

enthalpy of vaporization and density, to the ordering according to the Wiener index.

Polyphenyls Boiling Point Enthalpy of Vaporization Density

(◦C at 760 Torr or 1 atm) (kJ/mol) (g/cm3)

A 466.7 ± 40 70.0 ± 0.8 1.091

B 508.5 ± 45 74.9 ± 0.8 1.091

C 567.7 ± 30 82.0 ± 0.8 1.091 ± 0.06

D 618.1 ± 35 88.3 ± 0.8 1.091 ± 0.06

E 646.7 ± 40 91.9 ± 0.8 1.102 ± 0.06

F 703.2 ± 45 99.2 ± 0.8 1.102 ± 0.06

Table 2.1: Predicted Properties of Polyphenyl Compounds (Data Provided from Ad-

vanced Chemistry Development Labs http://www.acdlabs.com)

2.5 Concluding remarks

When the underlying tree structure is given, the extremal systems of tree-like polyphenyl

system can be specifically characterized using the Wiener index. When the systems



22

have the same chemical molecular formula, but different structural arrangements (iso-

mers) that possibly provides different tree structures, the study is more complicated.

However, a rough algorithm to study such questions is provided. The computational

results from the study are compared with physical properties of some simple chemi-

cals that test the validity of the method. The natural question of great importance

is to consider the same question for systems that have all possible tree structures.

Being able to characterize these structures provide a method for chemists to predict

properties of tree-like polyphenyl compounds that could be dangerous or difficult to

synthesize. This chemical index, along with various others, also has important ap-

plications as these indices are the foundations of chemical prediction and modeling

software. It would be interesting to experimentally create these polyphenyl com-

pounds to determine the effectiveness of the predictions.

Further research could include exploring other results using the Wiener index of

stars and reduced trees. It is known that among general trees of given order, the star

minimizes the Wiener index. We know the contributions from non-hexagonal edges

to the Wiener index of a polyphenyl system are minimized when the reduced tree

structure is a star. When the order of the reduced tree is at most 7, the star will

indeed produce a feasible polyphenyl system.

As a first step of exploring the minimal Wiener index of such systems, trees

with given order ≤ 7 and their corresponding polyphenyl systems can be explored

through exactly the methods in this note. Note that variations of the tree structure

will change the value of (2.1) for each hexagon. Hence more in-depth study is needed

for more general structures.

A natural conjecture would be that, among tree-like polyphenyl systems of given

order, the minimum (maximum) Wiener index is obtained when the underlying tree

structure is extremal (with corresponding constraints such as maximum degree ≤ 6)
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and condition (2.2) or (??) is satisfied.



CHAPTER 3

USING DISTANCE-BASED TOPOLOGICAL INDICES TO STUDY

PROTEIN BINDING

3.1 MBD2 protein

The entire sequence for MBD2 can be found in the Protein Data Base or PBD [23].

The structure of human MBD2 is very similar to that of MBD1 determined by Ohki

et. al through the isolation of E. coli that was then compared to other sequences

in the MBD family [22]. The common sequence located in each of the MBD family

members and MeCP2, in particular amino acids 147-215 in MBD2.

N-ESGKRMDCPALPPGWKKEEVIRKSGLSAGKSDVY

YFSPSGKKFRSKPQLARYLGNTVDLSSFDFRTGKM-C

Sequence common to all MBD proteins

However, the particular part of the sequence concerned with the actual binding

to methylated DNA are amino acids 162-182,

KKEEVIRKSGLSAGKSDVYYF

MBD Sequence related to binding of Methylated DNA

This peptide sequence forms a loop region in between two beta sheets. These

regions are indicated below, where the red amino acids are residues that interact with

the DNA bases, the blue amino acids are those interacting with the DNA backbone,

the highlighted yellow regions are those that form the beta sheets [22].
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KKEEVI RKSGLSAGK SDVYYF

Regions of MBD2 Binding Sequence

Research currently being conducted in the Stewart Research Lab is studying the

extension of the loop region in a particular sequence can impact its binding capability

through the creation of mimic sequences. Using this idea of loop region extension and

conservation of the binding regions, the following sequence was developed as a mimic

for MBD2 and Figure 3.1 shows the predicted structure.

KKEEVIRKRQYSGLSAGWQKVRSDVYYF

MBD2 Mimic Sequence

Figure 3.1: Structure of MBD2 Mimic Sequence

In comparing the two sequences (seen below), the beta sheet binding region for

the original sequence and the two ends of the mimic are the same. These regions are

conserved in an attempt to maintain similar or improved DNA binding affinities by
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the peptide mimic.

KKEEVI RK SGLSAG K SDVYYF

KKEEVI RKRQY SGLSAG WQKVR SDVYYF

Comparison of MBD2 and MBD2 Mimic

3.2 Calculations for Mathematical Binding

We begin looking into the mathematical binding analysis by first determining the

index for each particular amino acid.

3.2.1 Amino Acid Index

We started these calculations by taking the shortest path from each particular atom

located in each side chain. The number of atoms, Carbon, Nitrogen, Oxygen, Sulfur,

were counted and the distances for each of those atoms were calculated (Table 3.1

and Table 3.2).

The following tables (Tables 3.1 and 3.2) list the number of each atom type

located in each side chain and the distances of each of those atoms. These distances

are then summed up for each atom in Table 3.3.
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Amino Acid No. Carbon atoms distances No. Oxygen atom distances

Glycine (G) 0 0 0 0

Alanine (A) 1 1 0 0

Valine (V) 3 1,2,2 0 0

Leucine (L) 4 1,2,3,3 0 0

Methionine (M) 3 1,2,4 0 0

Isoleucine (I) 4 1,2,2,3 0 0

Phenylalanine (F) 7 1,2,3,3,4,4,5 0 0

Tyrosine (Y) 7 1,2,3,3,4,4,5 1 6

Tryptophan (W) 9 1,2,3,3,4,4,5,5,6 0 0

Serine (S) 1 1 1 2

Threonine (T) 2 1,2 1 2

Cysteine (C) 1 1 0 0

Proline (P) 3 1,2,2 0 0

Asparagine (N) 2 1,2 1 3

Glutamine (Q) 3 1,2,3 1 4

Lysine (K) 4 1,2,3,4 0 0

Arginine (R) 4 1,2,3,5 0 0

Histidine (H) 4 1,2,3,4 0 0

Aspartate (D) 2 1,2 2 3,3

Glutamate (E) 3 1,2,3 2 4,4

Table 3.1: Shortest Distance Calculations for Carbon and Oxygen Atoms in 20 Com-

mon Amino Acids
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Amino Acid No. Nitrogen atoms distances No. Sulfur atoms distances

Glycine (G) 0 0 0 0

Alanine (A) 0 0 0 0

Valine (V) 0 0 0 0

Leucine (L) 0 0 0 0

Methionine (M) 0 0 1 3

Isoleucine (I) 0 0 0 0

Phenylalanine (F) 0 0 0 0

Tyrosine (Y) 0 0 0 0

Tryptophan (W) 1 4 0 0

Serine (S) 0 0 0 0

Threonine (T) 0 0 0 0

Cysteine (C) 0 0 1 2

Proline (P) 0 0 0 0

Asparagine (N) 1 3 0 0

Glutamine (Q) 1 4 0 0

positive

Lysine (K) 1 5 0 0

Arginine (R) 3 4,6,6 0 0

Histidine (H) 2 3,4 0 0

Aspartate (D) 0 0 0 0

Glutamate (E) 0 0 0 0

Table 3.2: Shortest Distance Calculations for Nitrogen and Sulfur Atoms in 20 Com-

mon Amino Acids
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Amino Acid 1-Letter Code C O N S Index Sum

Non-polar

Glycine G 0 0 0 0 0C

Alanine A 1 0 0 0 1C

Valine V 5 0 0 0 5C

Leucine L 9 0 0 0 9C

Methionine M 7 0 0 3 7C + 3S

Isoleucine I 8 0 0 0 8C

Aromatic

Phenylalanine F 22 0 0 0 22C

Tyrosine Y 22 6 0 0 22C + 6O

Tryptophan W 33 0 4 0 33C + 4N

Polar

uncharged

Serine S 1 2 0 0 1C + 2O

Threonine T 3 2 0 0 3C + 2O

Cysteine C 1 0 0 2 1C + 2S

Proline P 5 0 0 0 5C

Asparagine N 3 3 3 0 3C + 3O + 3N

Glutamine Q 6 4 4 0 6C + 4O + 4N

positive

Lysine K 10 0 5 0 10C + 5N

Arginine R 11 0 16 0 11C + 16N

Histidine H 10 0 7 0 10C + 7N

Negative

Aspartate D 3 6 0 0 3C + 6O

Glutamate E 6 8 0 0 6C + 8O

Table 3.3: Index for 20 Common Amino Acids
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The sum of these distances for each atom was then taken and to calculate the

index for each amino acid. This sum is then multiplied by a set value for each type of

atom (shown in Tables 3.3). For convenience, we leave the Carbon, Nitrogen, Oxygen,

Sulfur values are left arbitrary. Using the indices calculated for each amino acid we

can then look at the MBD2 structure to determine the index of entire peptide.

3.2.2 Calculation of Topological Index for MBD2 and mimic

Since the ends of the peptide are conserved and when we compare the original and the

mimic we see a similar sequence of amino acids in the middle loop as well. Therefore

we only need to be concerned with the parts that are different from the original. So

in order to determine the index, we calculate the distances of the two dissimilar parts

to the middle part from each side. (The highlighted regions)

KKEEVI RK SGLSAG K SDVYYF

KKEEVI RKRQY SGLSAG WQKVR SDVYYF

Comparison of structures

We do this in a similar way of calculating the indices for each of the amino acids.

For each amino acid in the sequence on the two sides, we calculate the distances from

each of these amino acids to the middle part.

For example, ook at the first Arginine (R), the distance of the alpha carbon

from the Serine (S) located in the middle part is 18. We determine the distance by

calculating the number of atoms along the backbone between the Nitrate group of

the Serine to the α-Carbon of the Arginine.

For instance, Arginine has 4 Carbon atoms and 3 Nitrogen atoms. Looking at

each particular atom, the distances from the α-Carbon of each Carbon is 1, 2, 3 and
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5 and those for Nitrogen are 4, 6 and 6 (From Table 3.1 and 3.2). So when we add

18 to each of these distances, we have 19, 20, 21 and 23 for the Carbon atoms and

22, 24 and 24 for the Nitrogen atoms. Therefore the sum of these would be

83C + 70N. (3.1)

However, we also add the distance of α-Carbon to the number of Carbons because

it was not added previously for each amino acid. Therefore, we arrive at the total

distance between the Arginine to the Serine to be

101C + 70N. (3.2)

We continue the process in this fashion for each of the amino acids in both parts of the

sequence to the middle part and arrive at the results in Tables 3.4 and 3.5. We then

do the same calculations with the original MBD sequence Table 3.6 and Table 3.7.

Amino Acid α-Carbon Carbon Oxygen Nitrogen

R 18 19,20,21,23 0 22,24,24

K 15 16,17,18,19 0 20

R 12 13,14,15,17 0 16,18,18

Q 9 10,11,12 13 13

R 6 7,8,9,11 0 10,12,12

Y 3 4,5,6,6,7,7,8 9 0

W 3 4,5,6,6,7,7,8,8,9 0 7

Q 6 7,8,9 0 10

K 9 10,11,12,13 10 10

V 12 13,14,14 0 0

R 15 16,17,18,20 0 19,21,21

Table 3.4: Atom Distances for MBD2 Mimic Regions
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Amino Acid Sum Carbon Sum Oxygen Sum Nitrogen Index

R 101 0 70 101C+70N

K 85 0 20 85C+20N

R 71 0 52 71C+52N

Q 42 13 13 42C+13O+13N

R 41 0 34 41C+34N

Y 46 9 0 46C+9O

W 63 0 7 63C+7N

Q 30 0 10 30C+10N

K 55 10 14 55C+10O+14N

V 53 0 0 53C

R 86 0 61 86C+61N

Table 3.5: Indices for MBD2 Mimic

Amino Acid α-Carbon Carbon Oxygen Nitrogen

R 3 4,5,6,8 0 7,9,9

K 6 7,8,9,10 0 11

K 3 4,5,6,7 0 8

Table 3.6: Atom Distances for MBD2

Amino Acid Sum Carbon Sum Oxygen Sum Nitrogen Index

R 26 0 25 26C+25N

K 40 0 11 40C+11N

K 25 0 8 25C+8N

Table 3.7: Indices for MBD2 Mimic
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leftside right side

MBD2 66C + 36N > 25C + 8N

MBD2 Mimic 386C+22O+189N > 287C+10O+92N

Table 3.8: Index Comparison for MBD2 and MBD2 Mimic

3.2.3 Comparison of Indices

We begin our comparison of the two sequences by comparing the indices of parts.

When we sum up the distances of each amino acid on the two sides of the MBD

protein we get that the left side equals

66C + 36N. (3.3)

and the right side equals

25C + 8N. (3.4)

For the MBD Mimic, we see that the left side equals

386C + 22O + 189N (3.5)

and the right side equals

287C + 10O + 92N. (3.6)

In both cases we see that the left side is greater than the right side.

Therefore, the indices for the MBD2 and MBD2 Mimic sequences follow a similar

mathematical pattern. This relationship can not only be seen in the comparison of

the binding site, but also the comparison of the other regions. The similarity of the

two sequences mathematically suggests the sequences will have also have a similar

binding affinity. Synthesis of both MBD2 and MBD2 Mimic peptides with analysis

using fluorescence binding studies will determine their binding affinity for methylated

DNA. A comparison between the theoretical and experimental results can then be



34

conducted to provide invaluable information to the understanding and application in

the prevention of neurological disorders.

We will also do a similar study concerning other original and mimic sequences:

NF-κB p50-1

N-QRGFRWRYVCEGPSHGGLPG-C

NF-κB p50-2

N-QRGFRFRWVCEGPSHGGLPG-C

Each of these original/mimic pairs bind to a similar substrate, like MBD2 and the

MBD2 Mimic. This allows for the further testing of these peptides and the method

devised in the application to protein binding.

One of the above, Nuclear Factor-kappa B (NF-κB), is a transcription factor in-

volved in many physiological processes and protein expression, including those linked

to a variety of neurological diseases. Peptides will not be designed and synthesized to

mimic the binding site of the NF-κB protein, which will act as an inhibitors for this

protein and aid in the regulation of protein expression that have implications in the

prevention of epilepsy as well as many other neurological disorders.

3.3 Concluding remarks and Future Research

The development of this method, similar to the Wiener index, allows for one to take

a peptide sequence or other chemical structure and transform it into a linear expres-

sion. Calculating this index turns the atoms composing the amino acids in a peptide

sequence into variables, which can then be used to determine the relationship between

original sequences and mimics. This method can be used to determine this mathemat-

ical relationship prior to synthesis to guide chemist in the process of designing peptide

mimics. Ultimately, the perfection of this approach adds a mathematical foundation
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to the creation of peptides, not only in the prevention of neurological disorders, but

the scientific community as a whole.

Further work, specifically to MBD2, would be to adjust the topological index

after more research into the structure after synthesis. As some bonds are not only

formed between adjacent amino acids, but also in other locations in a protein due to

secondary structure. To do this we would need more information into the construc-

tion, formation, and interaction of the amino acids on either side of the loop region

as well as the binding site.

Further study regarding the mathematical model could be to look at the atoms,

not only as single variables, but as variables with powers. The inclusion of powers

would turn our linear equations into higher order polynomials that could be compared

to the idea of Graphic Polynomials, such as Matching and Characteristic Polynomials

in Graph Theory. These polynomials have applications in molecular orbital theory,

resonance theory, and statistical physics. The coefficients and zeros of characteristic

and matching polynomials have been shown to be related to extent of branching in a

molecule. A polynomial expression would create a model that could take into consid-

eration the actual 3D structure of a protein and a better, more accurate prediction

of the binding.
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