
Georgia Southern University 

Digital Commons@Georgia Southern 

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of 

Summer 2015 

Enumerating Graphs Using Integrals From Quantum 
Field Theory 
William A. Coggins 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd 

 Part of the Other Applied Mathematics Commons 

Recommended Citation 
W. Coggins, `Enumerating Graphs Using Integrals from Quantum Field Theory`, M.S. 
Thesis, (2015) 

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. 
Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia 
Southern. For more information, please contact digitalcommons@georgiasouthern.edu. 

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


ENUMERATING GRAPHS USING INTEGRALS FROM QUANTUM

FIELD THEORY

by

ANTHONY COGGINS

(Under the Direction of Jimmy Dillies)

ABSTRACT

Enumerating graphs is a relatively new subfield of mathematics. In this thesis, we

will discuss a enumerative method that derives from Quantum Field Theory. We

begin with the basic ideas of Calculus and extend them into a enumerative method

that will allow us to classify graphs embedded on surfaces.
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CHAPTER 1

COUNTING PATHS OF A PLANAR GRAPH

In this section, we will give a brief overview of graphs and their adjacency ma-

trices. We will then use these matrices to analyze paths through the graph, from one

vertext to any other.

1.1 Graphs

Our first definition is the word graph. A graph is a set of points, or nodes, that

are connected by line segments, more commonly called edges. Figure 1, is a simple

example of a graph.

1

2

3

4

Figure 1: Example of a directed graph.

In the example above, it is important to notice that the edges have arrows.

This is what makes the graph directed. In this chapter, we would like to answer

the following question: How many possible paths are there, say from node 1 to 4?

While we simply count to arrive at the answer, there are usually far more complicated

graphs, and in that case, what should we do?
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1.2 Matrices and the Adjacencey Matrix

To answer the question of how many possible paths there are in a graph from one

node to another, we need to introduce matrices. A matrix is an array of numbers,

letters, symbols, commonly called elements. Matrices are used in almost every

subfield of mathematics and physics, the most common being linear algebra. An

adjacency matrix is a matrix whose elements are the number of paths of length one

from each node to any other. More precisely, if Ai,j is the element in row i, column

j, then Ai,j is the number of paths from i to j.

Here we will form an adjacency matrix from the following graph.

1

3

2

Figure 2: Graph

The first element of the matrix, is the number of paths of length one from 1 to 1.

So we put a 0 in that spot. For the number of paths of length one between 1 and 2,

we put a 2, since there are two paths.Continuing this labeling convention, we obtain

the adjacency matrix

A =


0 2 1

0 0 1

0 0 0

.
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What we are most interested in though, is how many possible paths are there

from node 1 to node 3? Since the graph is directed, we are limited in our choices.

Here we should note that if there are any loops, or backwards directed edges, that

this question is very easy to answer because we could loop infinitely many times. So

what should we do?

1.3 Counting paths

With a graph like the one given in section 2, it is quite manageable to count all

the paths from 1 to 3. However, this could easily become a much greater task just by

adding, say two or three additional edges or more nodes to the graph between 1 and

3. So let’s think about the problem for a moment. If we wanted to find all paths from

one node to another, we would want all possible paths of length one, length 2, length

3, etc., and add all of those paths together. Let’s take a look at what the adjacency

matrix for paths of length 2 look like. Again, this can easily be done by hand for a

small graph. Here we will introduce a conventional notation, A[2], to represent the

matrix for paths of length two. In general, we will write A[n] for the matrix whose

elements are paths of length n, where n ∈ N. So this time, we obtain

A[2] =


0 0 2

0 0 0

0 0 0

 .
Here, we can see that A[2] is actually formed by multiplying A by A.

Lemma 1.3.1. A[n] = An.

Proof. It is easy to see that A1 = A[1], by definition. So let’s assume now that our

statement holds for some natural number k, that is, Ak = A[k]. But to prove that

this claim is true for k + 1, we need to get a picture of what’s going on here.
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1

2i

...

n

j

Figure 3: Graph of n nodes

In Figure 3, we are counting paths from i to any other node between i and j. On

the right side, we are counting paths of length one from each node 1 through n to j

Here we can multiply to number of paths to get the total number of possible paths,

thus

(A[k + 1])ik =

Ak︷ ︸︸ ︷
(A[k])i1 ·

A︷ ︸︸ ︷
(A[1])1k

+(A[k])i2 · (A[1])2k

+ · ··

=
n∑
µ=1

(An−1)iµ · (A)µj = (An)ij

This completes the proof.

1.4 General formula for counting paths

Since we have developed an understanding of how the powers of a nilpotent

matrix relate to that of a planar graph, we can now show how to count paths in any
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such graph. In the previous section, it is important to note that as the powers of the

matrix increase, we begin to see more zero’s in the matrix. There is a name for this;

Definition: A nilpotent matrix is a matrix A such that An = 0 for some n ∈ N.

We know now almost everything that we need to derive the general formula.

Let’s take some time to revisit the geometric series. A geometric series is simply a

sum of powers, called the common ratio. For example, the sum of 1 + 1
2

+ 1
4

+ · · ·

converges to 2. This is easy to see using the formula below, given that x = 1
2
, which

is called our common ratio. In general, a geometric series will converge provided that

x < 1.

∞∑
i=0

xi =
1

1− x
(1.1)

Proof. Let

s = 1 + x+ x2 + x3 + · · .

xs = x+ x2 + x3 + · · .

So taking the difference give us

s− xs = 1, thus s =
1

1− x
.

Notice here that we have something similar to what I mentioned earlier, about

the matrices. We are adding up powers of a matrix that tends to the zero matrix.

Why does this matrix tend to the zero matrix? As the powers of the matrix increase,

i.e, as the length of the path goes up, we are going to run out of paths since there

are only a finite number of edges. An example of where this would not occur, is

an adjacency matrix of a graph without loops. It is very important that the graph
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does not have loops, otherwise the adjacency matrix would not be nilpotent. Once

the number of paths exceeds the number of edges, we will have arrived at the zero

matrix.

Modifying equation (1.1) for matrices, we obtain

A(total) :=
∞∑
i=1

Ai = (I − A)−1 − I, (1.2)

where I is the identity matrix. Here, (I − A)−1 simply means to take the inverse of

the matrix, (I − A). Let’s see the proof of this.

Proof. Let A be a nilpotent, nxn matrix. If we add I to each side of (1.2), we obtain

I + A+ A2 + A3 + · · · = (I − A)−1

If we let s equal the left hand side of the above equation and multiply by A, we get

As = A+ A2 + A3 + · · ·.

Taking the difference,

s− As = I

s(I − A) = I

s = (I − A)−1

If we subtract I from both sides, we complete the proof.

In our example, plugging the matrix A into the general formula above gives us

the following matrix:

A(total) =


0 2 3

0 0 1

0 0 0

 .
A(total) is the matrix that answers the question we asked long ago. How many

possible paths are there from 1 to 3? If we look at the 3rd element on the 1st row,

we can see that the answer is 3.



CHAPTER 2

FEYNMAN INTEGRALS

2.1 Feynman Diagrams

Feynman Diagrams are a way to represent the mathematical expressions de-

scribing interactions of subatomic particles. The diagrams are named for American

physicist, Richard P. Feynman, who first introduced them in 1948 [4]. The Feynman

diagrams allow for a simple visualization of very complex subatomic particle pro-

cesses. When one wants to calculate the scattering cross-section in particle physics,

the interactions can be described by a free form field for the incoming and outgoing

particles, as well as including the interaction Hamiltonian for how the particles de-

flect. One can write down the scattering amplitude by summing over all the possible

interactions of the particles. Instead of writing long, complex expressions for these

interactions, Feynman suggested that one can simply sum over Feynman diagrams,

where at each interaction vertex, both energy and momentum are conserved, but the

length of the energy-momentum four vector is not equal to the mass. The calculations

of the probability amplitudes for particle interactions to occur can be very tedious

and complex (no pun intended). The integrals, however, do have a nice structure,

and can be represented by the diagrams. Within the canonical formulation for Quan-

tum Field Theory, a Feynman diagram represents a term in Wick’s Expansion of a

pertubative S-matrix.

Feynman wrote up a prescription if you will, of how to calculate the probability

amplitude for a particle interaction (i.e diagram) from a Lagrangian. These are the

Feynman rules. Each internal line corresponds to a factor of the virtual particle’s

propagator, each vertex where lines meet gives a factor derived from an interaction

term in the Lagrangian, and incoming and outgoing lines carry an energy, momentum,

and spin. Aside from their mathematical value, these diagrams grant deep insight
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into the nature of particle interactions. Particles will interact in every way possible,

so finding the interaction probability amplitude can be a tricky task. Doing these

calculations without care can often yield infinite probability amplitudes, because short

distance interactions require careful limiting, the so-called renormalization. After

renormalization though, many of the ‘infinities‘ can be eliminated, and the math very

closely matches that of the data from physics experiments.

Figure 1: Electron-Positron Annihiliation

The Figure 1 represents electron-positron annihilation. Time is upwards and

space moves to the right, as shown below in the figure. The arrow points backwards

on the positron because Feynman said the anti-particles move backwards through

time.

As we will see in the coming sections, the probability density of these interactions

are often given by something in the form of

exp{−(quadratic function)− (interaction term)}

which is a Gaussian form. However, we will need to extend the space from RN to

H N , which will be introduced later. Let us now move to discussing several Gaussian

forms on R and extending those to RN .
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2.2 Gaussian Integrals

In this section, we will focus on the combinatorial interpretation of integrals over

a gaussian measure, and prove some identities related to such integrals. On the real

line R, the standard Gaussian measure µ with the measure given by

dµ(x) =
1√
2π
e−

x2

2 dx, x ∈ R

This measure has several properties, all of which we will prove.

1. It is normalized, that is, the measure over the real line is 1:

∫
R
dµ(x) =

1√
2π

∫ ∞
−∞

e−
x2

2 dx = 1

2. The mean is 0:

∫
R
xdµ(x) = 0

3. The variance is 1:

∫
R
x2dµ(x) = 1

4. The characteristic function (or Fourier transform) is

φ(t) =

∫
R
e−itxdµ(x) = e−

t2

2

5. The integral

∫
R
p(x)e−

x2

2 dx
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converges for any polynomial p ∈ Πn(x), where Πn(x) is the space of nth degree

polynomials with real coefficients.

6. For any positive real number b, we have

∫
R
e−

bx2

2 dx =
1√
b

∫
R
e−

x2

2 dx.

Proof. 1.

(∫
R
e−

x2

2

)2

=

∫
R
e−

x2

2 dx

∫
R
e−

y2

2 dy

=

∫
R

∫
R
e−

x2−y2
2 =

∫ ∞
0

∫ 2π

0

re−
r2

2 dφ dr

= 2π

∫ ∞
0

re−
r2

2 dr = 2π

∫ ∞
0

e−
r2

2 d
(
1
2
r2
)

= 2π

2. Since the integrand xe−
x2

2 is an odd function being integrated over symmetric

limits, the value is 0.

3. This integral will be verified using the gamma function along with a change of

variable.

For those not familiar with the gamma function, it is defined as follows:

Γ(n) =

∫ ∞
0

xn−1e−xdx = (n− 1)!

for n ∈ Z. The integral we want to verify is defined as follows:

1√
2π

∫
R
x2e−

x2

2 dx =
2√
2π

∫ ∞
0

x2e−
x2

2 dx

To make our lives easy, we will execute a change of variable, u = x2/2. This

change of variable yields the following integral

2√
2π

∫ ∞
0

2ue−u
du√
2u

=
2√
π

∫ ∞
0

u1/2e−udu =
2√
π

Γ

(
3

2

)
= 1
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4. For this integral, we will use an integral table, namely

Fx[e
−ax2 ](t) =

√
π

a
e−

π2t2

a

A direct application of the formula will give the desired result.

5. For this integral, we will rely on a on a result that has not yet been proved, so

let us prove this first. We need to prove

∫
R
x2ndµ(x) = (2n− 1)!!

where (2n− 1)!! = (2n− 1) · (2n− 3) · · · 3 · 1.

To start this proof, we will simply rewrite the integral using a change of variable,

u = x2/2 again. This give us

2√
2pi

∫ ∞
0

(2u)ne−u
du√
2u

=
2n√
π

∫ ∞
0

un−
1
2 e−udu =

2n√
π

Γ

(
n+

1

2

)
The above gamma function simplifies to (2n−1)!!

2n

√
π. Thus our integral reduces

to (2n− 1)!!.

Going back to the original problem, we want to show that

∫
R
p(x)e−

x2

2 dx

converges for any polynomial p. Any polynomial (with ci ∈ R ∀i ∈ N) can be

written as a linear combination of it’s power basis. So, let p(x) =
∑n

i=0 cix
i.

So now our integral becomes

∫
R

n∑
i=0

cix
ie−

x2

2 dx =
n∑
i=0

∫
R
cix

ie−
x2

2 dx
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(by linearity). Each term of the sum either has an odd integrand, or an even

integrand. If the integrand is odd, we know this goes to 0 by property (2).

If the integrand is even, we know it converges by the proof completed above.

Therefore,

n∑
i=0

∫
R
cix

ie−
x2

2 dx <∞ ∀n ∈ N.

6. For this integral, we will use a change of variable again. As one might suspect

at this point, the change of variable is simply u = bx2

2
. After some basic algebra,

this results in the following integral:

2

∫ ∞
0

e−u
1

b

√
2u

b
du =

2√
2b

∫ ∞
0

e−uu−1/2du

In this case, the integral above is simply Γ
(
1
2

)
, so the integral simplifies to be√

2π
b

, which is what we needed to show.

There are a few other notable integrals worth verifying here, that are of particular

use to us. We will move on to describing Gaussian measures in RN . Consider a point

x = (x1, x2, ..., xN) ∈ RN . By (x, y), we will define the ordinary scalar product in RN ,

that is, (x, y) = x1y1 + ...+ xNyN .

For a postively defined symmetric N × N -matrix A the measure is defined by

the density

dµ(x) = Const x e−
1
2
(Ax,x)dv(x) (2.1)

where dv(x) = dx1...dxN is the volume form on RN . For this measure to be

normalized, we must take the constant to be
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Const = (2π)−N/2(detA)1/2. (2.2)

Lemma 2.2.1. Let A be a symmetric matrix. Then∫
RN
e−

1
2
(Ax,x)dNx = (2π)N/2(detA)1/2

where (Ax, x) = xTAx is the usual inner-product notation.

Proof. For simplicity in the notation, all x’s are understood to be N -dimensional

column vectors. This proof will require diagonalization of A. Let D = OTAO, where

O is an orthogonal matrix, and D is the diagonal matrix consisting of the eigenvalues

of A. This give us the following:

(Ax, x) = xTAx = xT (OOT )A(OOT )x

= (xTO)(OTAO)(OTx)

= (xTO)D(OTx).

By using the orthogonal transformation y = OTx and denoting the eigenvalues

of A by λj for 1 ≤ j ≤ N ,we can write the integral as follows:∫
RN
e−

1
2
xTAxdNx =

∫
RN
e−

1
2

∑N
j=1 λjy

N
j dNy =

N∏
j=1

∫
R
e−

1
2
λjyjdyj

=
N∏
j=1

(
2π

λj

) 1
2

=

(
(2π)N∏N
j=1 λj

) 1
2

=

√
(2π)N

det(A)
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Lemma 2.2.2.

∫
R
e−

ax2

2
+bxdx = e

b2

2a

√
2π

a

Proof. First we will complete the square in the exponent of the integrand.

−ax
2

2
+ bx = −a

2

(
x2 − 2b

a
x

)
= −a

2

(
x2 − 2b

a
x+

b2

a2
− b2

a2

)
= −a

2

((
x− b

a

)2

− b2

a2

)

= −a
2

(
x− b

a

)2

+
b2

2a

Now our integral becomes ∫
R
e−

a
2 (x− ba)

2

e
b2

2adx

Setting u = x− b
a
, we can write

e
b2

2a

∫
R
e−

a
2
u2du

An application of the standard gaussian to the integral will give the desired result

of e
b2

2a

√
2π
a

.

Lemma 2.2.3.

∫
RN
e−

1
2
(xTAx)+bT xdNx =

√
(2π)N

det(A)
e

1
2
bTA−1b

Proof. The idea used to prove this result is identitcal to the previous integral we

proved in Lemma 1. By using the same diagonalization, we arrive at the integral:

∫
RN
e−

1
2
(xTAx)+bT x =

∫
RN
e−

1
2

∑N
j=1 λjy

2
j+

1
2

∑N
j=1 b̃jyjdNy

where b̃ = bTO. Now we can rewrite the integral above as a product of integrals

over R.
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N∏
j=1

∫
R
e−

1
2
λjy

2
j+b̃jyjdyj (2.3)

Now if we let a = λj and b = b̃j, we can use Lemma 2 to simplify (2.4).

N∏
j=1

∫
R
e−

1
2
λjy

2
j+b̃jyjdyj =

N∏
j=1

√
2π

λj
e

˜
b2
j

2λj

=

√
(2π)N

det(A)

N∏
j=1

e
1
2

˜
b2
j
λj

=

√
(2π)N

det(A)
eb
TA−1b

Note that
b̃21
λ1

+
b̃22
λ2

+ · · · +
˜b2N
λj

=
∑N

j=1 b̃
2
jλ
−1
j = bTA−1b. This completes the

proof.

In probability, the inverse matrix C = (cij) = A−1 is called the covariance

matrix, and we have 〈xi〉 = 0, 〈xixj〉 = cij. These properties follow from the fact

that they are satisfied in the case A and C are diagonal because of the properties of

the Gaussian measure on the line. A Gaussian measure is called standard if both A

and C are the identity matrices.

For the remainder of this paper, we will regularly use a notation borrowed from

physics (don’t worry, we asked). For any measure µ on X, and for any function

f : X → R or f : X → C, we will denote 〈f〉 the mean, or the average value, of f

with respect to the measure µ:

〈f〉 =

∫
X

f(x)dx.

The measure µ and the space X will always be clear from the context. For

example, the above formulas can be rewritten as
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〈1〉 = 1, 〈x〉 = 0, 〈x2〉 = 1, 〈eitx〉 = e−
t2

2 .

2.3 M-Point Funtions

The so-called correlation functions contain a lot of information about physical

systems. In particular, they can be used to compute scattering amplitudes of the

Feynman diagrams mentioned earlier.

Let us recall the integral from the last section, and give it a name.

Zb =

∫
RN
e−

1
2
(xTAx)+bT xdNx =

√
(2π)N

det(A)
e

1
2
bTA−1b

Definition Consider the multiset of indices i1, ..., im. We define the m-point

function as

〈xi1 · · ·xim〉 =
1

Z0

∫
RN
e

1
2
xTAxxi1 · · ·ximdNx

The combinatorial nature of the above integrals comes from the fact that the

m-point functions can be obtained through differentiation.

Lemma 2.3.1. 〈xi〉 = 1
Z0

∂Zb
∂bi
|b=0

Proof.

∂Zb
∂bi

=
∂

∂bi

∫
RN
e−

1
2
xTAx+bT xdNx

=

∫
RN

∂

∂bi
e−

1
2
xTAx+bT xdNx

=

∫
RN
e−

1
2
xTAx ∂

∂bi
eb
T xdNx

=

∫
RN
e−

1
2
xTAxxie

bT xdNx|b=0

=

∫
RN
e−

1
2
xTAxxid

Nx.
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Multiplying by 1
Z0

, we get the desired result. Here, the result 〈xi〉 is called the

one-point function.

Lemma 2.3.2. 〈xi1 · · · xim〉 = 1
Z0

(
∂
∂bi1
· · · ∂

∂bim
Zb

)
|b=0

Proof. Since we have proven the case for the 1-point function and the partial deriva-

tives are linearly independent operations, the result follows from repeated application

of the derivative (as shown below):

∂2

∂bi1∂bi2
Zb =

∫
RN
e−

1
2
xTAxxi1xi2e

bT xdNx|b=0

=

∫
RN
e−

1
2
xTAxxi1xi2d

Nx

Continuing up to the mth order, the result follows.

2.4 The Wick Formula

A large part of the workings of Quantum Mechanics consists of computing in-

tegrals with respect to a Gaussian measure. The goal of this section is to develop

a technique of integrating polynomials. Knowing that 〈xi〉 = 0, i = 1, ..., n and

〈xixj〉 = cij, i, j = 1, ..., n., we can easily compute the integral of any polynomial

in x1, ..., xn of quadratic degree. For higher degrees, we need to develop some more

advanced techniques, which will be the focus of this section.

Lemma 2.4.1. If f(x) is a monomial of odd degree, then 〈f〉 = 0.

This is easily checked because f is an odd function being integrated over sym-

metric limits. Now, we will introduce a useful formula, the Wick Formula, which

reduces the integration of any degree polynomial to 2.

Theorem 2.4.1. (Wick’s Lemma) Let f1, f2, ..., f2n be a set of (not necessarily dis-

tinct) linear fucntions of x1, ..., xk. Then
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〈f1f2...f2n〉 =
∑
〈fp1fq1〉〈fp2fq2〉...〈fpnfqn〉

where the sum is taken over all permutations of p1q1p2...qn of the set of indices

1, 2, ..., 2n such that p1 < p2 < ... < pn , p1 < q1 ,... , pn < qn.

The number of summands on the right side is equal to (2n− 1)!!. A partition of

the set 1, 2, .., 2n into couples (pi, qi) satisfying the condition of the Wick Formula is

a Wick coupling.

To see this formula in action, let’s take a simple example that we know the answer

to, and compute it using the Wick Formula.

Example Let us apply the Wick Formula to compute the following integral:

1√
2π

∫ ∞
−∞

x6e−
x2

2 dx

We have x6 = f1f2f3f4f5f6, where each fi = x ( for 1 ≤ i ≤ 6). Therefore,

〈f1f2f3f4f5f6〉 = (〈f1f2〉〈f3f4〉〈f5f6〉+ 〈f1f3〉〈f2f4〉〈f5f6〉

+ · · · +〈f1f6〉〈f2f3〉〈f4f5〉) + (〈f2f3〉〈f1f4〉〈f5f6〉

+ · · · +〈f2f6〉〈f1f3〉〈f4f5〉) + · · ·+ 〈f5f6〉〈f1f2〉〈f3f4〉.

Each of these products are equal to 1, so we have a total of 15. According the

formula proved earlier, this is precisely what we expect to get.

A different way to state the Wick Formula, perhaps more useful, is as follows:

∂

∂bi1
· · · ∂

∂bim
e

1
2
bTA−1b|b=0 =

∑
A−1ip1 ,ip2 · · · A

−1
ipm−1 ,ipm

where the sum is taken over all pairings (ip1 , ip2), ..., (ipm−1 , ipm) of i1, ..., im.
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To begin analyzing the statement, it is much easier to write e
1
2
bTA−1b with bTA−1b =∑

A−1i,j b
ibj, where the sum runs from i, j = 1 to d. Rewriting this in terms of the

power series for the exponential function, we arrive at the following expression:

e
1
2
bTA−1b =

d∑
n=0

1

2nn!

(∑
A−1i,j b

ibj
)n

However, as discussed in the lemma, only even terms of this series will appear,

meaning the general term will have the form of

1

2nn!

(∑
A−1i,j b

ibj
)n
.

Note that this is a homogeneous polynomial in bi of degree 2n. If we try to

differentiate this polynomial k-times and evaluate it at 0, we will get 0 unless k = 2n.

So now we have what we are most concerned with. Our next step is to analyze how

2n differentiations will ‘look‘ on 1
2nn!

(∑
A−1i,j b

ibj
)n

Since the coefficients are of no concern to us, we can ignore them for now. The

differentiation we are going to do most here is the following:

∂

∂bk

(
1

2

d∑
i,j=1

A−1i,j b
ibj

)
=

d∑
i=1

A−1i,k b
i

Now let us compute a few terms of this polynomial to get an idea of what it

looks like. From this point on, we will abbreviate ∂
∂bi

as ∂i.

For the case of n = 1, we have

∂2∂1

(
1

2

d∑
i,j=1

A−1i,j b
ibj

)
= ∂2

(∑
j

A−11,jb
j

)
= A−11,2.

Likewise, ∂1∂1

(
1
2

∑d
i,j=1A

−1
i,j b

ibj
)

= A−11,1. Note that (1, 2) and (2, 1) count as the

same pairing here, so we do not double count it.

For the case of n = 2, we have
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∂4∂3∂2∂1
1

2!22

(
d∑

i,j=1

A−1i,j b
ibj

)2

= ∂4∂3∂2

(
1

2

∑
A−11,jb

ibj
)(∑

A−11,jb
j
)

= ∂4∂3

[(∑
A−12,jb

j
) (
A−11,jb

j
)

+ (1/2)
(∑

A−1i,j b
ibj
)
A−11,2

]
= ∂4

[
A−12,3

(∑
A−11,jb

j
)

+
(∑

A−12,j

)
A−11,3 +

(∑
A−13,j

)
A−11,2

]
= A−12,3A

−1
1,4 + A−12,4A

−1
1,3 + A−13,4A

−1
1,2

Similarly, one can use this same method to show that ∂4∂3∂1∂1 gives 2A−11,4A
−1
1,3 +

A−13,4A
−1
1,1, and so on for any other pairing of the indices. It is easy to see that this

process can get very tedious, which is why we need the Wick Formula to help us,

where it becomes a problem of pairing indices as opposed to computing multiple

partial derivatives.

Now we will prove the Wick Lemma.

Proof. Here, we can rewrite the expression for the Wick Lemma as an expansion of

exponential functions [1].

〈
exp

(
t
N∑
i=1

bixi

)〉
= exp

(
t2

2

N∑
i,j=1

A−1i,j b
ibj

)
From here, expanding both sides in powers of t, the odd powers will vanish (due

to the symmetry). The term on order 2n will yield

1

(2n)!

∑
bi1bi2 · · · bi2n〈xi1xi2 · · ·xi2n〉 =

1

2nn!

(∑
i,j

A−1i,j b
ibj

)n

=
1

2nn!

∑
P

bi1bi2 · · · bi2n 1

(2n)!

∑
P

A−1ip1 ,ip2 ...A
−1
ip2n−1 ,ip2n

Note here that P means a permutation of the indexing. Now if we identify the

coefficients of bi1bi2 · · · bi2n , this completes the proof.
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2.5 Graphs of the M-point Functions

The functions computed in the previous section can be represented graphically.

More explicitly, we’ll associate a 4 point correlation function 〈x1, x2, x2, x4, 〉 to the

graphs with verticles labeled 1, 2, 3, 4 and where the edges correspond to the ordering

of the indices.

In the previous section, we have shown how to compute these m-point func-

tions. Let us, without calculation, write down some and show how to draw their

corresponding graphs.

〈v1, v2〉 = A−11,2

〈v1, v1〉 = A−11,1

〈v1, v2, v3, v4〉 = A−12,3A
−1
1,4 + A−12,4A

−1
1,3 + A−13,4A

−1
1,2

〈v1, v1, v3, v4〉 = 2A−11,4A
−1
1,3 + A−13,4A

−1
1,1

〈v1, v1, v1, v4〉 = 3A−11,4A
−1
1,1

〈v1, v1, v4, v4〉 = 2A−11,4A
−1
1,4 + A−14,4A

−1
1,1

〈v1, v1, v1, v1〉 = 3A−11,1A
−1
1,1

Now, let us represent each of these functions as a graph. There are 2 different

ways to write the graphs down. The first way, is to simply consider your vertices as

the ‘powers‘ of the v’s listed in the fucntion. Each A−1i,j becomes an edge from i to j.

Figure 2 is the graph corresponding to the A−11,2A
−1
3,4 term in the 4-point function

〈v1, v2, v3, v4〉. Another method for writing down these graphs, is to simply consider

each listing of a point in the m-point fucntion has a half edge from that point. Then

the graphs can be formed by all the possible connections of the half edges.
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1 3

2 4

Figure 2: A graph of A−11,2A
−1
3,4

2.6 Calculations with the ‘Feynman Rules‘

In this section, we will discuss in detail how to compute integrals according to

the Feynman rules. The integrals in question, are similar to ones we have previously

discussed, so we will approach them with the developed framework. Our integral of

interest is

ZU =

∫
RN
e−

1
2
vTAv+~U(v)dNv.

If U(v) is a polynomial of the coordinate functions v1, ...vN , then we can use the

methodology developed in the previous section and treat this as an m-point function.

This integral can be rewritten using the formal power series for the exponential

function as follows

ZU =

∫
e−

1
2
vTAve~U(v)dNv

=

∫
e−

1
2
vTAv

∑
n

1

n!
(~U(v))ndNv

We can consider this as an m-point function, and evaluate it by writing it

ZU = Z0e
~U( ∂

∂b)e
1
2
bTA−1b|b=0
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Now we will compute an example. Consider the potential U(v) =
∑

i,j,k ui,j,kv
ivjvk.

We want to analyze

ZU =

∫
exp

(
−1

2
vTAv + ~

∑
i,j,k

ui,j,kv
ivjvk

)
dNv

= Z0exp

(
~
∑
i,j,k

ui,.j,k∂i∂j∂k

)
exp

(
1

2
bTA−1b

)
|b=0.

Using the same abbreviation as last time, we will compute the terms of degree

2 in ~. Since there are 3 variables and we are concerned with order 2, there will be 6

derivatives whose sum is

∑
i,j,k

∑
i′,j′,k′

ui,j,kui′,j′,k′∂i∂j∂k∂i′∂j′∂k′exp

(
1

2
bTA−1b

)
|b=0

By Wick’s Formula, we can rewrite the sum as

∑
i,j,k

∑
i′,j′,k′

∑
A−1i1,i2A

−1
i3,i4

A−1i5,i6ui,j,kui′,j′,k′ ,

where the inner sum is taken over all pairings (i1, i2), (i3, i4), (i5, i6) of the indices

i, j, k, i′, j′, k′.

As we saw in the previous section, there will be 2 vertices, one for ui,j,k and one

for ui′,j′,k′ . Without working out all of the details, we know there will be 6 edges, so

there are only two distinct graphs to be formed from this set. One is the ‘dumbbell‘

and the other is the ‘theta‘ graph, as shown here.

Figure 3: A dumbbell and theta graph
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1,2,3 4,5,6

Figure 4: One possible dumbbell graph

One of the 8 labellings that result to the product A−11,3A
−1
2,5A

−1
4,6u1,2,3u4,5,6 is seen in

Figure 4. Each edge can be permuted, which is where the other 7 graphs are fromed

from.

1,2,3 4,5,6

Figure 5: One possible theta graph

Figure 5 is one of the graphs that appear in the product u1,2,3u4,5,6A
−1
1,4A

−1
2,5A

−1
3,6.

The other 5 graphs, and their reflections, can again be formed by permuting the

edges.

Graphs that have 3 vertices at an edge are called trivalent. The ‘dumbbell‘

graph has an automorphism group of order 8, and the ‘theta‘ graph has an auto-

morphism group of order 12. The order of the automorphism group is the number of

ways to permute the edges of the graph. With this in mind, the coefficient of the ~2

can be written as

∑
G

1

|AutG|
∑

labellings

∏
v

uvertex label

∏
e

A−1edge label,

where |AutG| is the order of the automorphism group. The sum
∑

G is taken over

the set of topologically distinct trivalent graphs with two vertices, the products are

taken over the set of all of the vertices v, and all of the edges e.

Generally speaking, the Feynam rules for computing the coefficient of ~2n in the
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expansion of ZU are done in exactly this way, except the sum is taken over all trivalent

graphs with 2n vertices and 3n edges.

2.7 Correlation Functions

As stated previously in the beginning of the chapter, the manner in which path

integrals are used in QFT is roughly to compute the probability of something going

from point v1 to point v2, as an integral over all possible ways to get from v1 to v2.

In the model developed in this chapter, each pathway is represented by a vector v in

RN and the probability measure is

1

ZU
exp

(
−1

2
vTAv + ~U(v)

)
v1v2dNv

So the integral, which is called the 2-point function, is given by

〈v1, v2〉 =
1

ZU

∫
RN

exp

(
−1

2
vTAv + ~U(v)

)
v1v2dNv.

We will now call this the correlation function. Let us continue with our example

of the cubic potential U(v) =
∑

i,j,k ui,j,kv
ivjvk. By our previous calculations, we

know that this will become

〈v1, v2〉 =
1

ZU
∂1∂2exp

(
~
∑
i,j,k

ui,j,k∂i∂j∂k

)(
exp

(
1

2
bTA−1b

))
|b=0.

By using Wick’s Formula and the graph interpretation of the pairings, this will

be

∑
G

~n

|AutG|
∑

laebllings

∏
v

uvetext label

∏
e

A−1edge label,

where the sum is taken over all graphs G with two-single valent vertices labeled

1 and 2 and n trivalent vertices.



26

The k-point correlation functions are similarly defined. The methods developed

in this section can be applied to them for calculations of the graphs and amplitudes.

Figure 6 is a graph that appears in the calculation of the ~2 coefficient of 〈v1, v2, v3, v4〉.

2

1 3

4

Figure 6: ‘Feynman‘ Graph



CHAPTER 3

EMBEDDING GRAPHS ON SURFACES

In this chapter, we will care about graphs embedded on topological surfaces.

That is, graphs will come with a preferred orientation of the edges at each vertex.

3.1 Surfaces

For the remainder of this paper, we will consider compact, oriented 2-dimensional

manifolds without boundary. First, let’s discuss some preliminary definitions that

will help us get a better understanding of what a surface is. A topological space

X is called locally Euclidean is there exists a non-negative integer n such that every

point x ∈ X, there is a neighborhood that is homeomorphic to the Euclidean space

En, or equivalently, the real space Rn. An example of this would be to define a

topology on R. The standard topology for this set generated by open intervals.

A homeomorphism is simply a continuous map that has a continuous inverse.

A topological manifold, or simply manifold, is a locally Euclidean Hausdorff space.

Hausdorff spaces, or T2 spaces, are spaces in which distinct points have disjoint neigh-

borhoods. This is commonly called a separated space. A trivial example of a Hausdorff

space would be the real numbers. Now that we know what a manifold is, we can put

further restrictions on it. We will define a compact surface to be one in which there

are a finite number of triangles in a triangulation of the surface. A triangulation is

simply dividing a surface into triangles with the restriction that each triangle side is

entirely shared by two adjacent triangles.

Finally, a surface is called orientable if a figure cannot be moved along the

surface to where it started, so that it looks like its own mirror image. From this point

on, we will call these mathematical objects surfaces.

The genus of a surface, g ≥ 0, is the number of ’holes’ in it, or the number of
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Figure 1: A triangulation of the contiguous Unites States

’handles’.

Figure 2: Surfaces of genus g = 0, 1, 2.

Mathematicians classify surfaces according to their genus. For a given genus g,

there is only one surface, up to homeomorphism. This means that any surface with

genus 0 looks like a sphere, and any surface with genus 1 looks like a torus, so on and

so forth.

3.2 Maps

A map is a graph drawn on a surface. The differences between a graph and a

map are very subtle. The reason why these differences are subtle, is because whenever

we deal with graphs, we draw them ourselves. Simply drawing a graph is enough to

endow it with some mathematical structure. Here is what we mean:

A map is a graph embedded into a surface in such a way that the edges do no

intersect, and ‘cutting‘ the surace along the edges of the graph will give us a disjoint
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union of sets which are homeomorphic to an open disk. These disjoint sets are called

faces of the map. This ‘cutting‘ condition implies connectedness of the graph. This

simply means that there is a path from every vertext to another along edges. Note

that a graph itself does not have faces, but only edges and vertices. The degree of a

vertex is the number of edges attached to it, and the degree of a face is the number

of boundary edges. Edges adjacent to a face ‘from both sides‘ are counted twice.

The Euler characteristic of a map is given by χ = V − E + F = 2 − 2g, where

g is the genus of the surface, V is the number of vertices, E is the number of edges,

and F is the number of faces. Something that is interesting to note here, is that the

Euler characteristic of a map depends only on the genus of the surface. For example,

the Euler characteristic of any map drawn on a sphere is precisely 2.

Note that sometimes it is necessary to consider non-connected maps. In such a

scenario, the map is drawn on several surfaces, particularly, one for each component of

the graph. When this happens, the Euler characteristic is additive over the surfaces,

meaning that the Euler characteristic for the map is the sum of the Euler character-

istics of each component. This happens because the number of edges, vertices, and

faces are additive, even though the genus of the surface is not.

Let’s see some examples. In the images below, we see the same graph, but two

different maps. We will consider these drawn on the surface of a sphere.

1

2

3

The upper map in Figure 3 has two faces, one of degree 5 (the outer face), and

one of degree 1. The outer face has degree 5 because the edges (1)− (3) and (1)− (2)
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12 3

Figure 3: One graph, but two maps

are counted twice. The lower map in the same figure has two faces of degree 3, where

in either case, the edges (1)− (2) and (1)− (3) are the counted twice.

3.3 A Combinatorial Description of Maps

Now let us examine some other properties of graphs. For instance, what addi-

tional properties does a graph need to be a map? If we consider a small neighborhood

of a vertext in a graph, it will consists of the ‘ends‘ of the edges, or half-edges; if an

edge is a loop, then the neighborhood of the vertext will contain both half-edges of

the loop. In a graph, the ‘set of half-edges‘ is a set, without any structure though.

To get a better description of maps, we will introduce a cyclic order on this set.

If a graph is already drawn on a surface, the cyclic order of the half-edges is

determined by the orientation of the surface. The key fact of this information is

sufficient information to reconstruct the map. This leads us to a proposition: The

cyclic order of the half-edges of a graph (chosen randomly), uniequely determines

the embedding of the graph on the surface. We will take this proof for granted, and

instead, give a geometric construction which will explain how we can reconstruct a

map from the cyclic ordrders.

We begin by consider the edge of a graph to be a ‘two-way‘ street. For example,

if there are two vertices with an edge between them, we will replace it by two directed

edges, as shown in Figure 4.
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1 2

Figure 4: A two-way street

Now we will represent each vertext as a crossroad made up like a ‘roundabout‘,

as seen in Figure 5. This geometric notion of a roundabout corresponds quite nicely

to that of the formal notion of the cyclic order of a vertext. Let us move through the

city following only one rule: At each crossroad, we have to turn right.

Figure 5: A Roundabout Crossroad

Then all of the possible routes from a set of disjoint cycles.

By going right, we see that this cycle forms a face (Figure 6). Note here that

the streets at each crossroad are oriented counter-clockwise, but the boundary of the

faces are oriented clockwise. This construction is commonly called a ribbon graph.

Now let’s consider a dual approach to this construction, going in reverse. We can

start with a given number of faces, who boundaries are orientied clockwise, provided

that the total number of edges is even. From here, we will take the edges pair-wise,

and glue them together in an arbitrary (but connected) manner following this rule: If

two edges are to be glued, they must face in opposite directions, as shown in Figure 7.
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Figure 6: A face

Then the cyclic order of a vertex is given by the rule: the next edge is the one that

we may access by the interior of the face.

Figure 7: Gluing Faces

The number of cyclic orders of edges of a graph at a given vertex v and of degree

d is (dv − 1)!. So the total number of orderings of any graph is
∏

v(dv − 1)!, where

the product is taken over all vertices of the graph.

3.4 Building Surfaces from Polygons

We all know from elementary geometry the construction of a torus where we

start with a rectangle and identify its opposite sides. This construction is actually
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more general and is a standard way to build arbitrary topological surfaces. Take a

n-gon, n being even, and identify its sides two by two. If the sides are identified so

that their orientation is opposite (their orientation coming from rotating cyclically

around the polygon), the resulting surface will be oriented.

Figure 8: 3 Gluings of Square

In Figure 8, the edges to be adjoined are marked by a line connecting them. The

first and second ways of gluing the square give a sphere, the third way a torus.

Similarly, there exists a total of 15 glueings of the hexagon. Five of the glueings give

a sphere, while the other 10 yield a torus.

The identification of the sides gives actually more than an oriented surface: the

identified sides of the polygon embed as map on resulting surface. The topology of

the resulting surface and the embedded graph are actually closely related. Indeed,

the topology of a compact surface is essentially determined by its Euler characteristic,

which in turn can be computed from the associated map.

While it is generally difficult to predict a priori the genus of a surface after

gluing, we have the following result:
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Proposition 3.4.1. Consider a surface obtained by gluing the sides of a polygon.

The following statements are equivalent:

(i) The resulting a surface is a sphere;

(ii) The graph formed by the identified sides is a tree;

(iii) Chords connecting pairs of identified sides do not intersect.

Proof. Before we begin, recall that the Euler characteristic

χ = 2− 2g

can be computed as V − E + F , where V , E and F are respectively the number of

vertices, edges and faces of a (suitable)1 embedded graph.

Note that in our case, F is always one, since we deal strictly with one face maps

by construction.

• (i) =⇒ (ii)

This is almost immediate by definition. If the resultant of gluing the polygon

is a sphere, then the genus is precisely 0. This means that 1 = V − E. Since

the edges and vertices differ by one, and the graph must be simply connected,

then the graph must be a tree.

• (ii) =⇒ (iii)

By contradiction. Assume two chords intersect. By stretching them in the

polygon, we obtain two segments which intersect exactly once. Now, on a

sphere two circles cannot intersect with multiplicity 1, a contradiction.

1That is, any two edges intersect at a vertex, there is a vertex at the end of every edge and the

complement of the graph is homeomorphic to a disjoint union of discs.
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• (iii) =⇒ (i)

By induction on the number of sides of the polygon. The case of the square can

be handled by hand. For an n-gon, if no two chords intersect, there must be

two adjoining sides which are identified. We can identify directly by pushing

them ’inside’ the n-gon and obtain a n− 2 gon.

Given the above proposition, we can actually do some counting:

Theorem 3.4.1. Let n = 2k, there are 1
k+1

(
n
k

)
ways of gluing opposite sides so to get

a sphere.

Proof. Since we get a sphere when identified edges are joined with non-intersecting

arcs, what we are actually counting are Dyck words, i.e. words in x and y (e.g. yxyy)

where no initial segment has more x’s than y’s. (the x’s represent here outgoing arcs

and the y’s incoming arcs) It is well known, see [10] e.g., that the number of Dyck

words is the quantity above.

Remark 3.4.1. The number Ck = 1
k+1

(
2k
k

)
is the k-th Catalan number2. See [10]

for a nice introduction to the ubiquituous of Catalan numbers.

If we call εg(k) the number of ways to identify the sides of a polygon with 2k

sides to obtain a surface of genus g, the above result can be rephrased as

ε0(k) = Ck.

It is in general much more difficult to compute εg(k) using classical counting methods.

Nevertheless, we know that for a fixed k we can estimate the total sum of the εg’s.

2Catalan numbers are named after Belgian mathematician Eugène Catalan who studied them

while investigating the Tower of Hanoi game. These numbers appear earlier in the work of Euler.
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Lemma 3.4.1.

bk/2c∑
g=0

εg(k) = (2k − 1)!!.

Proof. From the above discussion it is sufficient to count the number of ways sides of

2k-gon can be identified pairwise.

The first side can be identified with any other of the 2k − 1 remaining sides.

Moving cyclically around the polygon, next free side can be identified with with any

of the 2k − 3 remaining sides. Et caetera.

To determine the numbers εg(k), we will need to resort to our Quantum Field

integrals.

3.5 A Gaussian Measure on the Space of Hermitian Matrices

A matrix H = (hij) is called Hermitian when it satisfies H† = H – † denoting

the conjugate transpose. We denote the space of N ×NHermitian matrices by HN .

It is an N2-dimensional real vector space whose simplest parametrization is

H 7→ (x11 = h11, . . . , xNN = hNN ;xi<j = R(hij); yi<j = I (hij))

Here, the R denotes the real part of a+ bi, and I denotes the imaginary part.

The ordinary volume form (or measure) on HN = RN2
is

dv(H) =
N∏
i=1

dxii
∏
i<j

dxijdyij

While HN
∼= RN2

is not different from any other vector space of the same

dimension, we would like the measure to reflect the matrix properties of its elements.

The space of Hermitian matrices HN comes with a well behaved quadratic form:

tr(HH†).
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In terms of the above coordinates, xij, this quadratic form can be represented by

the matrix B = diag(1, . . . , 1; 2, . . . , 2; 2, . . . ; 2).

Proof. We write down the case the two dimensional case, the other cases being similar.

tr(HH†) = tr


 x11 x12 + iy12

x12 − iy12 x22

 ·
 x11 x12 − iy12

x12 + iy12 x22




= x211 + +x222 + 2x212 + 2y212 (3.1)

From Lemma 2.2.1 in Chapter 2, this means that∫
HN

etr(HH
†) dv(H) = (2π)−

N2

2 det(B)
1
2 = (2π)−

N2

2 2
N2−N

2

i.e., we need to multiply our measure 3.5 by a factor of (2π)−
N2

2 2
N2−N

2 to nor-

malize it. We will call dµ(H) the normalized Gaussian measure :

dµ(H) = (2π)−
N2

2 2
N2−N

2 etr(HH
†) dv(H)

Let us compute a few 2-point functions with this measure. Recall that hij denote

the entry of a generic Hermitian matrix H and that it is a linear map in the xij

coordinates.

Lemma 3.5.1. The two point function in h takes the following values3

〈hijhkl〉 = δilδjk

Proof. The proof is a straight application of the Gaussian integrals seen in the pre-

vious chapter.

3The symbol δij is called the Kronecker symbol and it is equal to 1 when i = j and 0 otherwise.
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3.6 Geometric interpretation of a Gaussian integral

Consider a 2k gone with vertices labelled cyclically as i1, . . . , i2k. An edge of the

polygon is defined by a pair of consecutive indices such as i5i6. Let us associate to

each edge a linear map (or matrix entry) : i5i6 ↔ hi5i6

A pairwise identification of the sides of the polygon can be encoded unequivocally

by a 2 point function. For example, 〈hi5i6hi1i2〉 represents the identification of edges

i5i6 and i1i2.

Example 3.6.1. Here are two examples of surfaces encoded by products of 2 point

functions.

1. Consider the octagon as in Figure 9. The gluing is encoded by the product

〈hi1i2hi4i5〉〈hi2i3hi5i6〉〈hi3i4hi8i1〉〈hi6i7hi7i8〉

Figure 9: Identifications of the side of an octagon

2. The gluing of a square into a torus is represented by the product 〈hi1i2hi3i4〉〈hi2i3hi4i1〉.

Proposition 3.6.1. The 2k point function

〈tr(H2k)〉 =

∫
HN

tr(H2k)dµ (3.2)
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can be expanded topologically as

〈tr(H2k)〉 = Nk+1

bk/2c∑
g=0

εg(k)

(
1

N2

)g
. (3.3)

Proof. The matrix tr(H2k) is polynomial of degree 2k whose terms are of the form

hi1i2hi2i3hi3i4 . . . hi2ki1 . Hence, by Wick’s Lemma, the 2k point function can be ex-

panded as a sum of (2k − 1)!! Wick couplings (products of 2-point functions). By

the above discussion, the non-zero couplings correspond to genus g surfaces. Using

Euler’s formula for trees, i.e. one faced maps, we see that 2g = k + 1 − V . More-

over, a Wick coupling with V vertices has NV different combinations corresponding

to equivalent gluing. This means that the contributions of each such polygon gluing

is Nk+1−2g : it is graded by genus.

Example 3.6.2. As an appetizer, let us consider two simple applications

1. Case k = 1. We start with the trivial example of a 2-gon. Its two sides can only

be identified in a unique way to generate a sphere. Expanding Equation 3.3 for

k = 1 we get,

〈tr(H2)〉 = N2ε0(1)

Let N = 1, i.e. let us work on the set of one dimensional hermitian matrices,

that is the set of real numbers. We have see in Chapter 2 that 〈(x2)〉 = 1 and

thus that ε0(1) = 1 as we expected.

2. Case N = 1. Let k be arbitrary and N = 1. We will recover Lemma 3.4.1.

Indeed, Equation 3.3 for N = 1 becomes

bk/2c∑
g=0

εg(k) = 〈x2k〉 = (2k − 1)!!

where the second equality was derived in Chapter 2.
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Example 3.6.3.

Let us now study the case k = 2. This is the example we discussed extensively in the

beginning where we identify the sides of a square. The surface we obtain after gluing

is either a sphere or a torus.

For k = 2, Equation 3.3 becomes

〈tr(H4)〉 = N3

(
ε0(2) + ε1(2)

1

N2

)
Again, let us focus for a moment on N = 1. From Chapter 2 we know that

〈x4〉 = 3 and we see that ε0(2) + ε1(2) = 3 . This is exactly the observation made in

Figure 8.

Note that this equality alone does not determine ε0(2) and ε1(2). We need a

second relation which we will obtain from considering the case of 2 × 2 Hermitian

matrices. Equation 3.2 becomes

(2π)−
N2

2 2
N2−N

2

∫
RN2

tr(H2k)e−
1
2
tr(H2)dxN

2

(3.4)

Consider a Hermitian matrix H ∈H2, it can be written as H =

 a b+ ci

b− ci d


where a, . . . , d are real. The traces of its square and fourth power are respectively:

tr(H2) = a2 + 2(b2 + c2) + d2

and

tr(H4) = a4 + d4 + 4(a2 + d2)(b2 + c2) + 4ad(b2 + c2) + 2(b2 + c2)2.

Now, using the above parametrization, Equation 3.4 becomes
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1

2π2

∫∫∫∫
R4

(
a4 + d4 + 4(a2 + ad+ d2)(b2 + c2) + 2(b2 + c2)2

)
e−

1
2(a2+2(b2+c2)+d2) da db dc dd (3.5)

To compute this integral we pass to polar coordinates in the (a, d) plane as well

as in the (b, c) plane:



a = s cos(φ)

b = r cos(θ)

c = r sin(θ)

d = s sin(φ)

.

Our integral now becomes

1

2π2

∫ ∞
s=0

∫ ∞
r=0

∫ 2π

θ=0

∫ 2π

φ=0

(
s4 − 2s4 cos2(φ) sin2(φ) + 4s2r2 + 4s2r2 sin(φ) cos(φ)

+2r4
)
e−

1
2
(s2+2r2)rs dφ dθ dr ds (3.6)

The integral with respect to θ is trivial and, with respect to φ it boils down to two

elementary integrals; we obtain thus:

2

∫ ∞
s=0

∫ ∞
r=0

(
3

4
s4 + 4s2r2 + 2r4

)
e−

1
2
(s2+2r2)rs dr ds (3.7)

We can now leisurely split the integral and solve three elementary Gaussian in-

tegrals to get as final result

18.

In our situation, the right hand side of Equation 3.3 is 8ε0(2) + 2ε1(2) and we

get thus the system
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 ε0(2) + ε1(2) = 3

8ε0(2) + 2ε1(2) = 18

Whose solution is obviously ε0(2) = 2 and ε1(2) = 1 as could be seen from

Figure 8. Mille viae ducunt homines per saecula Romam.
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