
Georgia Southern University 

Digital Commons@Georgia Southern 

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of 

Summer 2015 

Bayesian Inference of the Weibull-Pareto Distribution 
James Dow 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd 

 Part of the Applied Statistics Commons 

Recommended Citation 
Dow, James, "Bayesian Inference of the Weibull-Pareto Distribution" (2015). Electronic 
Theses and Dissertations. 1313. 
https://digitalcommons.georgiasouthern.edu/etd/1313 

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack 
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia 
Southern. For more information, please contact digitalcommons@georgiasouthern.edu. 

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1313?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


BAYESIAN INFERENCE OF THE WEIBULL-PARETO

DISTRIBUTION

by

JAMES DOW

(Under the Direction of Arpita Chatterjee)

ABSTRACT

The Weibull distribution can be used to model data from many different subject

areas such as survival analysis, reliability engineering, general insurance, electrical

engineering, and industrial engineering. The Weibull distribution has been further

extended by the Weibull-Pareto distribution. A desirable property of the Weibull-

Pareto distribution is its ability to model skewed data. This is especially useful

for developing models in human longevity and actuarial science. In this work a

hierarchical Bayesian model was developed using the Weibull-Pareto distribution.
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CHAPTER 1

INTRODUCTION

The Weibull distribution is one of the most widely used distributions in reliabil-

ity and survival analysis. The Weibull distribution is a versatile and can take on

the characteristics of many different types of distributions, based on the value of its

shape parameter. This has made it extremely popular among engineers and quality

control practitioners, who have made it the most commonly used distribution for

modeling reliability data. Various extensions of the Weibull distribution has been de-

veloped by many researchers, including the generalized Weibull distribution by Mud-

holkar and Kollia (1994)[8], the exponentiated-Weibull distribution by Mudholkar et

al. (1995)[9], and the beta-Weibull distribution by Famoye et al. (2005)[3]. In recent

past Alzaatreh et al. (2013)[2] introduced a new generalization of Weibull distribu-

tion based on a family of distributions called “Transformed-Transformer” family (T-X

family), named Weibull-Pareto distribution. This distribution has higher skewness as

compared to a Weibull distribution and therefore is more suitable to model a heavily

skewed data often arise in reliability and survival analysis.

Alzaatreh et al. (2013)[1] mentioned that when the shape parameter of WPD is

less than 1, the MLE for both the shape and scale parameters does not exist. Hence

they introduced two alternative methods of parameter estimation, namely alternative

maximum likelihood estimation (AMLE) and modified maximum likelihood estima-

tion (MMLE). However, the AMLE procedure often results in large bias and the

implementation of MMLE is computationally expensive. These methods are briefly

discussed in Section 2.1.1. In this research we introduced a Bayesian counterpart of

Weibull-Pareto model. Unlike frequentist approach, Bayesian approach assumes the

model parameters to be randomly distributed following some probability distribution.

This distribution is commonly referred as prior distribution and intend to capture the
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researcher’s prior belief about the parameter, before collecting these relevant data. As

we gather data we would like to update the prior belief in the face of reality, through

the posterior distribution.

In recent years there have been several papers written on Bayesian estimation of

model parameters. Some of these references are: Martin and Perez (2009)[7] which

estimated the generalized lognormal distribution, Singh et al (2013)[14] estimated

the inverse Weibull distribution, and Noor and Aslam(2013)[10] studied the inverse

Weibull mixture distribution using Type-I censoring.

Weibull distribution and its counterparts have been used very effectively for an-

alyzing lifetime data, particularly when the data are censored, which is very common

in survival. For example, in many cancer studies, the main outcome is the time to

an event of interest, which is commonly known as survival time. However, it can

also be referred as to the time from complete remission to relapse or progression as

equally as to the time from diagnosis to death. Moreover, it is usual that at the end

of follow-up some of the individuals have not had the event of interest, and thus their

true time to event is unknown. Hence these are considered as censored obervations.

When we censor an observation, we truncate the observation since the event has not

been observed due to random factors. The failure of an event to occur given the time

interval is an example of this truncation. In Section 4.2 we implemented our proposed

model to a cutaneous melanoma survival data.

The rest of this thesis is sectioned as follows. In Section 2 we will describe

our Bayesian model and discuss the details of the Weibull-Pareto distribution. Our

simulation study will be covered in Section 3. The application of the Bayesian model

and survival model will be presented in Section 4 and we will conclude the paper in

Section 5.



CHAPTER 2

BAYESIAN MODEL PARAMETER ESTIMATES

2.1 Weibull Pareto Distribution

Overall lifetimes are an example of positively skewed data that occur in survival

and reliability analysis. For example, breast cancer data as studied by Khan et al.

(2014)[5] is right skewed. The Weibull and lognormal distributions are commonly

used to model this type of data. Depending on the choices of parameters these

distributions can model right skewed data; however, when the data is heavily skewed

these models fail to capture the heavy right tail as they drop-off at a much faster

rate.

The Weibull-Pareto distribution was developed by Alzaatreh et al. (2013)[1]. It

is derived from a family of distributions called “Transformed-Transformers” family

(T-X family), defined as follows:

Definition 2.1. (T-X family) Let F(x) be the cumulative distribution function (cdf)

of any random variable X and r(t) be the probability density function (pdf) of a random

variable T defined on [0,∞]. The cdf of the generalized family is given by

G(x) =

∫ −log(1−F (x))

0

r(t)dt.

If a random variable T follows Weibull distribution with parameters c and γ,

r(t) = (c/γ)(t/γ)c−1e(t/γ)
c
, t ≥ 0 then we have Weibull-X family with pdf

g(x) =
c

γ

f(x)

1− F (x)

{
−log(1− F (x))

γ

}c−1

exp

{
−

(
−log(1− F (x))

γ

)c}
.

If we let X be Pareto random variable with distribution with pdf f(x) = kθ/xk+1, x >

θ we have

g(x) =
kc

γx

{
k

γ
log
(x
θ

)}c−1

exp

{
−

(
k

γ
log
(x
θ

))c}
, x > θ.
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Letting β = k/γ, we have the pdf of the Weibull-Pareto distribution with pa-

rameters c, β, θ,

g(x) =
βc

x

{
β log

(x
θ

)}c−1

exp

{
−

(
β log

(x
θ

))c}
, x > θ, c, β, θ > 0. (2.1)

The Weibull-Pareto distribution is denoted by WPD(c, β, θ).

The cdf is given by

G(x) = 1− exp
{
− (β log(x/θ))c

}
. (2.2)

We found the following lemma to be very useful in Section 3.2. Lemma 2.2 shows

the relation between WPD and Weibull distribution. The transformation can be im-

plemented in generating random samples from WPD. Therefore, we can start with

generating random observations from Weibull distribution and apply this transfor-

mation to get realizations from Weibull-Pareto distribution.

Lemma 2.2. If a random variable Y follows the Weibull distribution with parameters

c and 1/β, the random variable X = θeY follows WPD(c, β, θ).

Figure 2.1 shows that the WPD is capable to cover a wide range of probability

distributions depending on its parameter choices. The graph in the upper left of

Figure 2.1 how the shape of the distribution changes if we let β varies while keeping c

and θ fixed. We see that as β increases, the graph becomes more steep. The graph in

the upper right shows β and θ are fixed and c is changing . We can see that the shape

becomes more symmetric as c increases. Note that, in this research we are mainly

interested in WPD with a small c, as it results in heavy right skewed data. The graph

in lower left θ is fixed and c and β are changing. The graph in lower left reveals that

as c increases (c > 1) the WPD looks more and more symmetric. However, as the

rate (β) decreases it becomes more and more flat. Similarly the graph on the lower

right corner depicts that changing the value of θ shifts the probability distribution to

the right.



5

Figure 2.1: PDF of WPD
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2.1.1 Estimation

Our goal with any probability distribution is to estimate the model parameters. One

obvious choice is the method of maximum likelihood estimation (MLE). However,

Alzaatreh et al (2013)[1]. explains there are two issues we must consider in using this

method. One is when c < 1 the likelihood function increases to infinity as θ approaches

to the minimum observed value, which we will denote as x(1). When c < 1 and θ is

estimated by x(1), the MLE does not exist for β and c. Smith (1985) [15] studied this

issue and introduced alternative method called the alternative maximum likelihood

estimation (AMLE), that assumes θ to be x(1). Even though this method reduces

computational cost, it doesn’t work well when c >> 1. Figure 2.1 shows that when

c < 1, x(1) can give an accurate estimate for θ as pdf maximized at the minimum data

value. However, as c increases, the WPD appears more symmetric and as a result

x(1) fails to capture the estimate through AMLE. The modified maximum likelihood

estimate proposed by Smith (1985) [15] is more applicable and will be introduced
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later in this section. Alzaatreh et. al. (2013)[1] implement AMLE to estimate the

parameters of WPD. He considered probability densities of the form

f(x; θ, φ) = (x− θ)c−1q(x− θ;φ), for x > θ, (2.3)

where θ and the parameter vector φ are unknown. For AMLE, φ = (β, c) and he

proposed to let θ equal x(1) and them remove the sample minimum from the observed

data. The AMLE function for WPD is given by

L∗ =
∑
x6=x(1)

log g(xi; c, β, x(1))

=
∑
x 6=x(1)

{
c log β + log c− log xi + (c− 1) log(log(xi/x(1)))− (β log(xi/x(1)))

c

}
.

Taking the derivative with respect to β and c we have

∂L∗
∂β

=
∑

xi 6=x(1)

{
c/β − cβc−1

(
log(xi/x(1))

)c}

∂L∗
∂c

=
∑

xi 6=x(1)

{
c+ log β + log(log(xi/x(1))− log β(βlog(xi/x(1)))

c

−(β log(xi/x(1)))
c log(log((xi/x(1)))

}
Setting the previous equations to zero we have

β =

{
(n− n′)/

∑
x1 6=x(1)

(log(xi/x(1)))
c

}1/c

(2.4)

c−1 +
∑

x1 6=x(1)

log

(
log

(
xi
x(1)

))
−
∑

xi 6=x(1)(log(xi/x(1)))
clog(log(xi/x(1)))∑

xi 6=x(1)(log(xi/x(1)))c
= 0. (2.5)

n′ in Equation (2.4) is the count of the occurrence minimum. AMLE is a consis-

tent estimator, but it is unclear how it performs with relatively small samples. Alza-

atreh et al.(2013)[1] conducted a simulation with 36 parameter combinations and two
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sample sizes. They let β and θ equal .5 , 1, and 3 and for c they chose .5, 1, 3, and 7.

The two sample sizes were n=100 and n=500. For each parameter combination they

used the previously discussed transformation; generated a random sample y1, y2, ..., yn

from Weibull with parameters c and 1/β. Then, xi = θexp(yi), which is a random

sample from Weibull-Pareto. The results of the simulation showed that the AMLE

had large bias when c > 1. Also if θ̂ = x(1) is greater than θ by a small amount, it

gives large bias for c. The bias is explained by the fact that ĉ is a solution for (2.5) .

The term log[log(xi/θ̂)] causes the large bias. An example described by Alzaatreh et

al.(2013)[1] is as follows; suppose the true parameter θ = 1, the estimated parameter

θ̂ = 1.3, and the observation xi = 1.3001. Then log[log((xi/θ̂)] = −9.4727 while the

actual value log[log(xi/θ)] = −1.3377. They note from their simulation that as c

increases θ̂ = x(1) overestimates θ.

The other issue is when c >> 1. When this occurs x(1) is a poor estimate for θ

and AMLE produces large bias. Smith also developed modified maximum likelihood

estimation (MMLE) for densities with form of Equation (2.3) , which can handle this

second issue. Consider the following log-likelihood function

Ln(c, β, θ) =
n∑
i=1

log g(xi; c, β, θ),

which is defined for θ < x(1). As with the traditional MLE method we take

the derivatives with respect to each parameter. We need to show
∂Ln(c, β, θ)

∂θ
exists

whenever θ < x(1). We have

∂Ln(c, β, θ)

∂θ
=

1

θ

n∑
i=1

1− c
log(xi/θ)

+
cβc

θ

n∑
i=1

(log(xi/θ))
c−1.

Since the right hand side of the equation is continuous on the interval 0 < θ < x(1),

∂Ln(c, β, θ)

∂θ
exists. Setting ∂Ln(c,β,θ)

∂θ
,∂Ln(c,β,θ)

∂θ
, and ∂Ln(c,β,θ)

∂θ
equal to zero we have,
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1

θ

n∑
i=1

1− c
log(xi/θ)

+
cβc

θ

n∑
i=1

(log(xi/θ))
c−1, (2.6)

β =

{
n

/
n∑
i=1

(log(xi/θ))
c

}
, (2.7)

c−1 +
n∑
i=1

log(log(xi/θ)−
∑n

i=1(log(xi/θ))
clog(log(xi/θ))∑n

i=1(log(xi/θ))c
= 0. (2.8)

In order to solve Equation (2.6), (2.7), and (2.8) we need to apply numerical

methods. Issues that may arise are slow convergence or our initial guess may cause

the method to not converge. This makes parameter estimation difficult. We propose

an alternative approach based on a hierarchical Bayesian model.

2.2 Introduction to Bayesian Statistics

The estimation procedure described in Section 2.1.1 is based on frequentist method-

ology, which assumes the parameter is fixed but unknown. However, the Bayesian ap-

proach considers the parameters to be random. The random behavior can be modeled

through a known probability distribution, commonly known as a prior distribution.

In order to illustrate Bayesian methods, consider the following example. Suppose

we are giving medication with a high success rate. The data given, which is binary,

would be whether or not the medicine was effective. We can assume the data is coming

from Bernoulli with probability of success p, which we know to be high. This prior

information can be incorporated through a probability model, defined on the interval

(0,1). One obvious choice is the Beta distribution, Beta(αp, βp). By changing αp and

βp, we can cover a wide range of shapes. For example, Beta(5,1) can be used to model

a negatively skewed density, an appropriate choice for our case. A distribution that

models a parameter is known as a prior distribution as it models the researchers prior
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belief about model parameters. Another choice of prior distribution can be uniform

distribution defined on the interval (0, 1). Under uniform prior the parameter p can

take on any value with equal chance with its range (0,1). However the Beta(5,1)

is more informative in order to structure of our prior belief. Therefore, Beta(5,1)

is known as informative prior, where as our Uniform(0,1) is commonly known as

non-informative. Non-informative prior is a prior which is used when we have no

assumptions about the parameter and is usually flat. An informative prior is a prior

which reflects our assumption about the parameter, such as with the Beta distribution

in our example. Figure 2.2 shows the density for prior choices.

Figure 2.2: Informative (left) and Non-informative (right) prior choices

Beta(5,1)

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

As discussed in the earlier paragraph, the prior distribution reflects our prior

belief about the parameter before observing the data. However, after collecting rele-

vant data we should update our prior belief in the face of reality through a posterior

distribution.

The model described in the above example can be written hierarchically as fol-

lows:

Likelihood:

Yi ∼ Bernoulli(n, p), i = 1, ..., n

Prior:

p ∼ Beta(αp, βp),
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where αp, βp are known as hyperparameters and can be chosen appropriately to

capture the prior information. Then we have

Π(p|data) =
f(data|p)g(p|αp, βp)

h(data|αp, βp)
, (2.9)

where f(data|p) and g(p|αp, βp) are the respective likelihood and prior distribution.

By data we denote the observation vector {Y1, Y2, ..., YN}. Moreover, h(data|αp, βp)

is commonly known as the data marginal which can be obtained by,

h(data|αp, βp) =

∫ 1

0

f(data|p)g(p|αp, βp) dp. (2.10)

For notational simplicity we will denote the data marginal h(data|αp, βp) as h(data).

In practice, for more complex models h(data) is difficult to obtain, as it involves

integrals on all model parameters. Therefore, the posterior distribution Π(p|data) can

be obtained through Π(p|data) ∝ f(data|p)g(p|αp, βp) up to a normalizing constant.

In words, this says the posterior is proportional to the likelihood and the prior. Using

this form of Bayes’, we can construct a hierarchical representation starting with the

likelihood function and then gradually adding the priors to the model.

In general the Bayesian Theorem for probability distribution is given by:

Π(η|data) =
f(data|η)g(η)

h(data)

where the Π(η|data) is the posterior for the parameter η. The term f(data|η) is

the likelihood, g(η) is the prior distribution, and as described earlier h(data) is the

data marginal. Finally, likelihood is given by

n∏
i=1

f(xi|η) = L(η|xi), (2.11)

The marginal probability acts as a normalizing constant. When the parameter space

is continuous, h(data) =
∫
η
f(data|η)g(η) dη.

Chapter 4 of Lynch[6] lists the following steps for general Bayesian inference:
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1. Establish the model and obtain a posterior distribution for the parameters.

2. Generate a sample from the posterior distributions.

3. Use discrete formulas applied to the samples from the posterior distribution to

summarize knowledge of the parameters.

Ideally we want our priors to be conjugate priors, which results in a posterior

distribution that falls in the same family of distribution as the prior distribution. We

have not found a conjugate prior for the WPD. Since our model is complex, which we

will show later in Section 2.2.1, we will need to employ Markov Chain Monte Carlo

(MCMC) sampling. MCMC sampling allows us to handle multivariate densities by

sampling through multiple dimensions of the posterior distribution and move through

the entire support of the posterior distribution. More specifically a Gibbs sampler is

the most basic method. It is described by Lynch[6] in the following steps:

0. Assign initial values, S, to the parameter vector ηj=0 = {η1, η2, ..., ηk} = S. j

indexes the iteration count.

1.Set j=j+1

2.Sample(ηj1|η
j−1
2 , ηj−13 , ..., ηj−1k )

3.Sample(ηj2|η
j
1, η

j−1
2 , ..., ηj−1k )

...

k.Sample(ηjk|η
j
1, η

j
2, ..., η

j
k−1)

k+1. Return to 1.

2.2.1 Bayesian WPD

Our choice of the likelihood for the Bayesian model is WPD. As in Equation (2.9)

the likelihood depends on three parameters. Our choice of η is the parameter vector
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(c, β, θ). The priors we selected for our model are exponential and gamma for the

parameters.

Likelihood:

X|c, β, θ ∼ WPD(c, β, θ)

Prior:

c|αc, γc ∼ Γ(αc, γc)

β|αβ, γβ ∼ Γ(αβ, γβ)

In the Bayesian version of AMLE we don’t assume that θ has a prior distribution.

Instead, we set θ = x(1) where x(1) is the minimum of the data as discussed in

Section 2.1. In this case there are two parameters two priors for our Gibbs sampler to

estimate. We also consider our version of the MMLE where the prior on θ is specified

and truncated at x(1),

θ|αθ, γθ ∼ Γ(αθ, γθ)I(0,x1)(θ)

Prior selection for θ, β, and c could be any distribution defined on the R+.

If we were directly estimate the parameter c for example, we have:

Π(c|x) =  L(WPD) ∗ Γ(αc, γc) ∗ Γ(αβ, γβ) ∗ Γ(αθ, γθ)

=
1

Γ(αc)γαc
∗ cαc−1 ∗ e−c/γc

∫
β

∫
θ

βc

x

{
β log

(x
θ

)}c−1

exp

{
−

(
β log

(x
θ

))c}

∗ 1

Γ(αβ)γαβ
∗ βαβ−1 ∗ e−β/γβ 1

Γ(αθ)γαθ
∗ θαθ−1 ∗ e−θ/γθ ∗ I(0,x(1))(θ) dβdθ.

(2.12)

We would evaluate β and θ similarly. We can see Equation (2.12) is difficult to

evaluate. For this reason we elected to use Gibbs sampler as described in Section 2.2.

We used melanoma data Section 4.2 to test how well gamma and exponential

prior distributions perform. We used both informative prior and non-informative

priors. We ran the Gibbs Sampler using 100,000 iterations, we removed the first
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50,000 of those 100,000, and then picked every 10th iteration to form our estimates.

Figure 2.3 displays the graphs of the priors used.

Table 2.1: Prior Choices

Exponential Informative Exponential Non-Informative Gamma Informative Gamma Non-Informative

mean sd MC Error mean sd MC Error mean sd MC Error mean sd MC Error

ĉ 9.445 1.328 0.1038 12.91 1.135 0.1245 8.648 0.955 0.06645 17.97 1.501 0.1732

β̂ 0.1861 0.02227 0.001563 0.1411 0.01316 0.001301 0.2009 0.01918 0.001238 0.1031 0.009068 9.928E-4

θ̂ 0.01792 0.01062 6.693E-4 0.003398 0.002748 2.494E-4 0.02519 0.0116 7.28E-4 2.951E-4 3.824E-4 6.492E-4

Figure 2.3: Prior Choices Graph
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From Table 2.1 we can see both informative priors have similar means, standard

deviations, and Monte Carlo error(MC error). We would desire for the MC error to

be small. The non-informative priors performed the same. For the parameter ĉ the

exponential non-informative prior had less MC error than the gamma non-informative

prior. Gamma non-informative had less MC error for θ̂.
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Figure 2.4 and 2.5 give the autocorrelation plots and the history of the prior

choices.

To check the convergence of the Markov chain we can look at the history plot

and the autocorrelation plot of the parameters. These are intuitive ways to check the

convergence and can be easily implemented in OpenBUGS. In a history plot, we plot

the parameter value as a function of sample number. If the model has converged, the

plot will move up and down around the mode of the posterior distribution. A clear

sign of non-convergence occurs when we observe some trending in the history plot. On

the other hand, an autocorrelation plot will reveal whether or not there is correlation

between successive samples. The presence of correlation indicates that the samples are

not effective in moving through the entire posterior distribution, and may need large

iteration or reconstruction of the Bayesian model. As described above, we take every

10th iteration in order to reduce autocorrelation. Figure 2.4 and Figure 2.5 shows the

non-informative priors of gamma and exponential have high autocorrelation and the

history plots show a trend. Therefore the non-informative priors did not converge.

The informative priors in these figures show little autocorrelation and the history plot

appears random. Which suggests the informative priors converged.



15

Figure 2.4: Auto-correlation Plots

(a) Exponential Informative (b) Exponential Non-Informative

(c) Gamma Informative (d) Gamma Non-Informative



16

Figure 2.5: History

(a) Exponential Informative (b) Exponential Non-Informative

(c) Gamma Informative (d) Gamma Non-Informative



CHAPTER 3

SIMULATION

3.1 Simulation

In this section we will describe two simulation studies. The first one was designed to

study the performance of the Bayesian WPD model in terms of bias and MSE of the

model parameters. This study was repeated for various parameter values. For each

parameter choice, we generated 100 data sets each with 100 observations, and 100

data sets with 500 observation. The second simulation study was performed to assess

how well this model can perform while some percentage of the observed values are

censored. In this study we are interested in capturing the true parameter value, for

various censoring percentiles, through the 95% credible interval. The results given

in Tables 3.3 and 3.4 were based on 500 pseudo data each with 100 observations.

Because of the complexity of the WPD model we restrict our simulation study to 100

or 500 generated dated sets. However, in the future we will consider a large number

of iterations. We chose exponential prior on both c and β. Moreover, as discussed in

Section 2.2.1, we considered a truncated exponential prior on θ. Our prior choices are,

θ ∼ exp(0.05)T (0, x(1)), β ∼ exp(0.05), and c ∼ exp(0.05), where x(1) is the minimum

of the sample.

3.2 Data Generation

In this section, we describe the algorithm to obtain pseudo data from the Weibull-

Pareto distribution. We found Lemma 2.2 very useful as it relates the Weibull-Pareto

to the Weibull distribution. We use the following steps in order to generate data.

1. Generate n observations from Weibull with parameters c and 1/β.

2. Use the data in Step 1 and Lemma 2.2 to generate data of size n from the
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Weibull-Pareto distribution.

3. Repeat steps 1 and 2 for a large number of iterations.

4. Repeat steps 1 through 3 to generate data sets with different parameter choices.

3.3 Simulation Study 1: Performance of Bayesian WPD model

This study was designed to examine how well the Bayesian Weibull-Pareto can per-

form in estimating the model parameters. In Table 3.1, we used n = 100 and Table

3.2 we used n = 500. We examine different sizes to see how increasing the number

of observations effects bias and MSE. Our purpose for studying the WPD is to see

how well it works with positively skewed data. In Figure 2.1, we saw that with small

values of c WPD is positively skewed. In Table 3.1 and 3.2 we will see how well WPD

works for small values of c for different sizes of n.
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Table 3.1: Simulation Results for n=100

True value Bias MSE

c β θ ĉ β̂ θ̂ ĉ β̂ θ̂

0.5 0.5 0.5 0.002129811 0.073102786 -0.000002164 0.001761814 0.01895894 2.002612e-07

0.5 0.5 1 0.0099150100 0.0333320080 0.0001145717 0.001593829 0.01199942 2.988987e-06

0.5 0.5 3 0.0091700225 0.0772137927 -0.0002322325 0.002082500 0.01922018 5.380738e-06

1 0.5 0.5 0.006265250 0.013903652 -0.001628796 0.0071278183 0.0027844764 0.0001129739

1 0.5 1 0.015711468 0.010521510 -0.003227082 0.0074881016 0.0030497129 0.0004371173

1 0.5 3 0.0126477950 -0.0001631812 -0.0029130300 0.008015383 0.003231458 0.004849308

1 1 1 0.0181986190 0.0136460478 -0.0008130798 0.0083963957 0.0137898502 0.0001659547

1 1 3 0.01291250 0.01263585 -0.00881712 0.006798370 0.014594735 0.001290123

1 3 1 0.02482298 0.01923111 -0.00134432 0.009365873 0.1196966 1.080989e-05

1 3 3 0.009365939 0.062604910 -0.002626022 0.0077594085 0.1097467409 0.0001132329

1 7 1 0.0183454520 0.0439909200 -0.0006295968 0.008634790 0.6293276 2.560957e-06

4 0.5 0.5 0.15924688 0.02263368 0.03699240 0.786479570 0.008670353 0.026776585

4 0.5 1 0.05652267 0.02837874 0.09484234 0.612100354 0.007922381 0.103516462

4 0.5 3 0.14240777 0.02181913 0.21100991 0.736452697 0.007194806 0.804046570

4 1 0.5 0.4241059525 0.0006509685 -0.0163274190 1.292133717 0.033847635 0.007633421

4 3 1 0.86961504 -0.12338393 -0.04923811 2.702958484 0.403874856 0.009796301

4 3 3 1.1247682 -0.1955078 -0.1776196 4.3029700 0.4265535 0.1068641

4 7 1 1.24921152 -0.53722243 -0.03582712 5.096688635 2.582148315 0.003720049

7 0.5 0.5 -0.1472447 0.1036607 0.1803744 3.84196003 0.03695746 0.10242634

7 0.5 1 -0.30082735 0.09647315 0.33992266 2.77187225 0.02778827 0.33596013

7 0.5 3 -0.3593476 0.1062062 1.1067052 2.68143224 0.03265477 3.49608159

7 1 0.5 0.67829400 0.10219010 0.01170808 5.46684825 0.08569965 0.01383927

7 1 1 0.615419020 0.088010525 0.009819396 5.00692051 0.08421026 0.05392994

7 1 3 0.3153701 0.1493958 0.1614523 4.6895699 0.1284626 0.6313439

7 3 0.5 2.12247436 -0.04913447 -0.03192561 12.255698323 0.673126395 0.003397868

7 3 1 1.22950478 0.30888657 -0.03063851 9.42094087 1.22883087 0.01234657

7 3 3 1.7346162 0.1015389 -0.1577227 12.9595889 0.9568738 0.1449145

The bias was calculated by subtracting the mean estimate from the true pa-

rameter (i.e c − ĉ). The MSE was calculated as variation plus the bias squared (i.e

V ar(ĉ)+bais2c). When c ≤ 1, we see that the model has small bias and MSE through-

out all parameter choices. Suggesting the model works well when we have positively

skewed data. When c > 1, the bias and MSE for c increased greatly. When c > 1

and β > 1, the bias and MSE for β also increases. The parameter θ performed rela-
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Table 3.2: Simulation for results n=500

True value Bias MSE

c β θ ĉ β̂ θ̂ ĉ β̂ θ̂

0.5 0.5 0.5 5.596911e-03 1.384806e-02 -7.328075e-05 1.339933e-03 1.417710e-02 8.451127e-08

0.5 0.5 1 7.531968e-03 7.531968e-03 -4.508175e-05 1.409118e-03 1.573573e-02 8.861059e-07

0.5 0.5 3 0.008797122 0.051014747 -0.000357250 1.929890e-03 1.826296e-02 4.885888e-06

1 0.5 0.5 -0.0012497210 -0.0007515835 0.0002451115 1.223116e-03 6.237983e-04 4.646336e-06

1 0.5 1 0.0028293625 0.0030992490 0.0001162338 1.313297e-03 6.088439e-04 2.161319e-05

1 0.5 3 -0.0017509243 -0.0017509243 -0.0004026875 0.0008745643 0.0006008416 0.0001518166

1 1 1 0.0010709212 -0.0037865287 -0.0000217805 1.377850e-03 2.654785e-03 4.211163e-06

1 1 3 0.006507584 -0.0015396895 -0.0000382000 1.201734e-03 2.535635e-03 4.326752e-05

1 3 3 -0.0030374823 0.0095009975 -0.0001363425 1.187428e-03 1.834478e-02 3.489241e-06

1 3 1 8.154675e-03 -9.874600e-04 1.338901e-03 1.338901e-03 2.154246e-02 1.080989e-05

1 7 1 4.355002e-03 -5.608451e-02 -6.797575e-05 1.184372e-03 1.133858e-01 1.023097e-07

4 0.5 0.5 0.038499715 0.006342355 0.010955393 0.167494824 0.002181525 0.007539611

4 0.5 1 0.077152303 0.077152303 -0.001557034 0.212408305 0.002319323 0.030607729

4 0.5 3 0.030607729 0.007371553 0.071236146 0.170972268 0.001918046 0.243701035

4 1 0.5 0.129761378 -0.012261333 -0.009609649 0.162493926 0.006097347 0.001409241

4 3 1 0.21013405 -0.06566586 -0.01246237 0.33505571 0.09393229 0.00136805

4 3 3 0.15553516 -0.04756925 -0.03447667 0.228879979 0.069509991 0.008803241

4 7 1 0.11262364 -0.07919613 -0.00400735 0.178763771 0.340733447 0.000148442

7 0.5 0.5 0.03657421 0.02086180 0.03820247 1.278143427 0.005969986 0.005969986

7 0.5 1 0.245844248 0.009642056 0.036645576 0.036645576 0.00523846 0.07440450

7 0.5 3 0.11888068 0.01589822 0.17984952 1.612725718 0.006773238 0.849629403

7 1 0.5 0.120854155 0.050013526 0.009339225 1.784286979 0.034474075 0.007168955

7 3 0.5 0.77232087 -0.08332107 -0.01415032 2.807819288 0.207978787 0.001045332

7 1 1 0.67104516 -0.01030971 -0.04057308 3.74455055 0.03429284 0.03429284

7 1 3 0.17691185 0.04321077 0.03092214 2.44122483 0.03696885 0.28205981

7 3 1 0.80810035 -0.04121598 -0.02746845 4.656942717 0.319094556 0.006507584

7 3 3 0.9278334 -0.1150892 -0.1022471 3.7579442 0.2773772 0.0523737
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tively well. The highest bias and MSE for θ occurred when both c and β were large.

We can see from Table 3.2, compared to Table 3.1, when we increase the number of

observations the bias and MSE decrease significantly. If we were to compare the last

three rows of Table 3.1 and 3.2 (WPD(7,1,3), WPD(7,3,1), and WPD(7,3,3)), we see

that the bias and MSE decreases significantly as expected.

3.4 Simulation Study 2: Bayesian WPD under censoring

We will introduce the survival model as follows:

S(x, t) = [g(x)]t ∗ [1−G(x)]t−1 (3.1)

where t = {0, 1} is the censoring variable, g(x) is the pdf and G(x) is the cdf of

the WPD given by Equations (2.1) and (2.2) respectively. Note that the survival

function S(x) = 1 − G(x). From Equation 3.1, if an observation is censored, t = 0,

the value comes from the survival function; if it is not, t = 1, it is coming from the

pdf, g(x). This model will later be used in Section 4.2. We used right censoring

for the simulation. We generated 100 observations in the way described in Section

3.2. We produce the censoring variable by ordering the observations, taking the

jth observation, and censoring everything above it. In this way we have exactly

(100 − j)% censored. We generated 500 different data sets. We wanted to see how

both a symmetric and skewed distribution performed under the censoring model which

is shown in Figure 3.1.

For Table 3.3 and Table 3.4 bias and MSE were calculated as described in Section

3.3. %C is the censoring percentage. The % True Parameter of CI is the number of

times the 95% credible interval captured the true parameter divided by the number of

iteration (iter=500). From Table 3.3, we see that ĉ has relatively high bias and MSE.

For β̂ the bias and MSE were relatively low for 10% and 20% censoring. However,
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Figure 3.1: PDF for parameter choices
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there was a large increase in the 35% and 50% censoring. θ̂ performed well since

both the MSE and bias where relatively low. For all parameters the bias and MSE

increased as the censoring percentage increased. The proportion of the true parameter

captured by the credible interval decreased as the censoring percentage increased.

As we can see in Table 3.4, ĉ had both high bias and MSE. β̂ had large bias and

MSE throughout all censoring choices. θ̂ also had large bias and MSE. Again, the bias

and MSE increased for all parameters as the censoring increased. The proportion of

the true parameter captured by the credible interval decreased as the censoring per-

centage increased, except for the parameter β, where the proportion for β increased.

Table 3.5 provides the parameter estimates for 35% and 50%. We see β at 35% is

higher than β at 50% , and therefore the censoring may have caused the credible

interval to over estimate the parameter β.
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Table 3.3: Right Censoring for WPD(2,2,2)

Bias(MSE) %True Parameter Captured by CI

%C ĉ β̂ θ̂ ĉ β̂ θ̂

10 -0.26939507 0.01421504 0.02632264 0.744 0.946 0.87

(0.11441356) (0.03343525) ( 0.00457954)

20 -0.49162637 -0.07831612 0.04394210 0.0302 0.946 0.804

(0.269685739) (0.028299786) (0.004787532)

35 -0.75643641 -0.34672244 0.06169448 0.026 0.502 0.634

(0.59125417 ) ( 0.13150875 ) (0.00665626)

50 -0.95687543 -0.75339821 0.06558217 0 0.006 0.534

(0.927656797) (0.574439426) 0.007724839

Table 3.4: Right Censoring for WPD(5,2,2)

Bias(MSE) %True Parameter Captured by CI

%C ĉ β̂ θ̂ ĉ β̂ θ̂

10 -1.3463562 0.4909197 0.1709286 0.662 0.802 0.778

2.43496554 0.45633039 0.05693664

20 -1.9829797 0.5566727 0.2347656 0.302 0.696 0.622

4.29508220 0.48576893 0.07609605

35 -2.6791479 0.4747181 0.3001660 0.04 0.578 0.38

7.4101037 0.3472820 0.1083566

50 -3.13417537 0.09953852 0.31507083 0.008 0.95 0.3

9.99747159 0.06539004 0.11810655

Table 3.5: WPD(5,2,2) Parameter Estimate for 35% and 50%

Mean Sd

%C ĉ β̂ θ̂ ĉ β̂ θ̂

35 2.320852 2.474718 2.300166 0.4540593 0.2550084 0.0914429

50 1.865825 2.099539 2.315071 0.37754154 0.23091182 0.07767302



CHAPTER 4

APPLICATION

4.1 Tribolium Confusum and Tribolium Casteneum

In this section,we use the WPD to model data from two different studies on adult

numbers of Tribolium Confusum. We used these data sets to investigate how well

WPD performs for different shapes of applied data. The data in Table 4.1 is ap-

proximately symmetric and the data in Table 4.2 has a very long tail with left tail

characteristics.

The data is from Park et al. (1964)[12] and Park (1954)[11]. One sample was

kept at a temperature of 29◦ and the other is at 24◦. We will compare how the

WPD compares with generalized Weibull (GW), exponentiated-Weibull (EW), and

the Weibull distribution. Table 4.1 and Table 4.2 contain the observed and expected

frequency of the two sets of data. Figure 4.1 and Figure 4.2 correspond to Table 4.1

and Figure 4.3 and Figure 4.4 correspond to Table 4.2.

For our data, we should expect our models to capture the tails of the data. In

Table 4.1, we see the first observed value is five and the expected frequency for Weibull

is 11.3131. The WPD comes closest for x values 35-40 with expected frequency

5.12015. GW and EW also estimated the first value well. All models seem to perform

well for the middle of the data distribution, which is expected. For the last three

observations, Weibull does not do well in capturing the tail of the data. The values for

Weibull dropped off faster compared to the other models. WPD and EW performed

about the same, capturing the tail of the data. GW values dropped faster than WPD

and EW, but not as quickly as Weibull.

Table 4.2 shows Weibull provided poor estimates poorly for all x-values. EW

and WPD seem to estimate the tails of the data about the same while GW did not

seem to capture the tails. EW, WPD, and GW seem to perform about the same for
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the middle x-values.

We constructed histograms of the observed data with overlays of the curves for

both tables to provide a clear picture of how they performed. Figure 4.1 demonstrates

how well each model estimates the data. In the upper right of Figure 4.1 we can see

the Weibull tail drops of quickly compared to the other models. In the rest of the

graphs in Figure 4.1 we see the models capture the tails of the data. Figure 4.2 shows

the overlay of the curves; we do not see a clear distinction between EW,GW, and

WPD.

Again, Figure 4.3 shows that Weibull right tail drops off quickly and does not

provide an precise estimate of the data. GW provides better estimates of the middle

x-values than WPD and EW. Figure 4.4 shows the models perform about the same

in capturing the tails of the data.

Figure 4.1: Histogram and Curves
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Table 4.1: Observed and expected frequencies of Confusum 29◦

x-value Observed Weibull Generalized Weibull Exponentiated Weibull Weibull-Pareto

35-40 5 11.3121 6.58432 3.12327 5.12015

40-45 5 18.5436 10.8356 8.54702 12.2578

45-50 14 27.8444 16.5835 18.3373 22.734

50-55 33 38.2767 23.726 31.7221 35.0143

55-60 40 47.8314 31.7438 45.2372 46.2852

60-65 49 53.6348 39.5699 54.1866 53.3184

65-70 44 52.9734 45.6122 55.4484 53.8479

70-75 52 44.9804 48.0683 49.2368 47.7321

75-80 44 31.8667 45.5942 38.4942 37.0826

80-85 28 18.1731 38.1322 26.8443 25.1793

85-90 29 7.99975 27.3789 16.8824 14.8929

90-95 13 2.5899 16.3023 9.65709 7.64642

95-100 9 0.583621 7.69315 5.054 3.39628

100-105 1 0.0860152 2.70823 2.42802 1.30088

105-110 1 0.00772955 0.654471 1.07209 0.42846

110-115 1 0.000391392 0.0964364 0.434938 0.121039

Total 368 356.704 361.284 366.706 366.358

Parameter Estimates v=5.316 α = .1928 α = 2.795 c = 6.694

λ = 1.93 ∗ 10−10 λ = 0.395 σ = 52.74 β = .798

φ = 141 θ = 4.502 θ = 20.06
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Table 4.2: Observed and expected frequencies of Confusum 24◦

x Observed Weibull Generalized Weibull Exponentiated Weibull Weibull-Pareto

20-30 0 4.08727 3.81726 0.0706614 0

30-40 0 9.95255 9.05459 0.871671 0

40-50 3 19.2467 17.1896 4.93156 6.16691

50-60 9 32.1385 28.3509 16.6664 21.8221

60-70 39 48.2017 42.2456 38.9595 45.9356

70-80 53 66.232 58.0376 69.0166 73.1826

80-90 77 84.1816 74.2854 98.5644 97.3012

90-100 105 99.3362 89.0104 118.655 113.191

100-110 135 108.814 99.9526 124.529 118.255

110-120 114 110.347 105.026 116.965 112.746

120-130 113 103.112 102.891 100.38 99.159

130-140 92 88.2405 93.4732 80.0228 81.0757

140-150 59 68.6524 78.187 60.0404 61.9983

150-160 54 48.1565 59.6824 42.8357 44.5553

160-170 38 30.1769 41.1235 29.2925 30.2142

170-180 22 16.7261 25.2413 19.3165 19.4014

180-190 17 8.11328 13.5805 12.3391 11.8332

190-200 6 3.40556 6.27936 7.66069 6.87419

200-210 10 1.22242 2.4348 4.63371 3.81306

210-220 3 0.370604 0.767591 2.7354 2.02419

220-230 2 0.0936773 0.189087 1.57792 1.03055

230-240 0 0.0194784 0.0345429 0.890258 0.50416

240-250 1 0.00328556 0.00436008 0.491594 0.237433

250-260 0 0.000443128 0.000344343 0.265816 0.107824

260-270 0 0.0000470792 0.000014711 0.140805 0.0472914

Total 952 931.583 950.858 951.852 952.476

Parameter Estimates v=3.711 α = 0.2757 α = 1.75 c=5.324

λ = 1.827 ∗ 10−8 λ = 0.03658 σ = 70.2 β = 0.6845

φ = 318 θ = 5.935 θ = 28.12
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Figure 4.2: Overlay of Graphs
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Figure 4.3: Histogram and Curves
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Figure 4.4: Overlay of Graphs
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4.2 Melanoma data with Censoring

In this section, the data used was part of a study on cutaneous melanoma in order

to evaluate a certain drug administered post operation. The study was from 1991 to
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1995, and followups were conducted until 1998. The sample contains 417 patients; the

observed time is the patient time of death or the time of censoring. The patients age is

included[13]. We constructed a survival model using the Weibull-Pareto distribution

and applied it to right censored data. From Equation (2.2), our survival function is

given by :

S(x) = 1− F (x) = exp
{
−
(
βlog

(x
θ

))c}
,

where t is the censoring indicator. Then following Section 3.4 we can write the

likelihood as:

Likelihood:

[f(x)]t ∗ [S(x)]1−t.

In this example we would like to model one of the Weibull-Pareto parameters through

the available covariate age. One obvious choice is to model the log(scale) through a

linear function involving the covariate or in other words: 1\β = eψage∗xage (used ψ as

regression coefficient to prevent confusion). We chose β to model the co- variate since

c and θ would be difficult to interpret. Moreover, in the Bayesian model the prior on

θ is truncated at x(1), this restriction may not hold if we model the covariate through

θ. On the other hand, the model will become computationally expensive if we chose

the parameter c instead. The next step involves the prior specification on the model

parameters c, θ and ψage. For the priors on c and θ, we used a flat gamma prior. For

ψage we used a normal prior. Our priors are as follows:

Prior:

c ∼ Γ(0, 0.1)

θ ∼ Γ(1, 0.1)I(0,x(1)(θ)

ψage ∼ N(0, 0.1).

Our estimation for the parameters are given:
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Figure 4.5: Graph of Survival Function

• ĉ = 1.778

• ψ̂age = 0.0299

• θ̂ = 0.1381

Finally we turn our attention to the role of the covariate in estimation the sur-

vival function. The positive estimate of the regression parameter shows that as age

increases the rate parameter of WPD (β) decreases, i.e, the tail of the distribution

will drop at a much smaller rate results in a flat curve. Therefore the survival func-

tion will drop at a much faster rate. This fact can be supported by Figure 4.5 which

shows our survival curves for ages 25, 40, and 65. We can see someone at age 25 has

an overall better chance of surviving than someone at age 65. For example, when

t = 0.25, the survival curve for 65 is zero and the survival curve for 25 there is about

20% chance of surviving.



CHAPTER 5

CONCLUSION

We explored how Bayes estimates performed for the parameters of the

Weibull-Pareto Distribution through simulations. The simulation showed the model

performed well for c ≤ 1, which is when the distribution is positively skewed. Issues

arise when both c and β > 1, there is large bias among the parameters. The right

censoring simulation gave us an idea how precisely the model works for censored

data for a symmetrically shaped and skewed shaped Weibull-Pareto distribution. As

the censoring increased, the bias increased and decreased number of times our

credible interval captured the true parameter for WPD(2,2,2). For WPD(5,2,2), we

saw how β was overestimated at 35% censoring which caused the credible interval to

fail to capture β. For the application of the Tribolium Confusum, WPD Bayesian

estimates were comparable to EW and GW. In the application to survival data we

see that the covariate age shows that as age increases the chance of survival

decreases. The software used for data analysis were R 3.1.2, OpenBUGS, and

Wolfram Mathematica 10.

For our future research we will investigate other loss functions such as the Linex

loss. We will also investigate WPD under other censoring methods such as Type I,

Type II, and progressive. Additionally, we will apply the model to more relevant

data sets with a heavy tail. Further we will see the performance of Bayesian WPD

under small data sizes.
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