
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Summer 2016

Geometric-Based Algorithm for a Full Row-Rank System

Matrix Along Multiple Directions in DT

Igor Lutsenko

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Other Applied Mathematics Commons

Recommended Citation

Lutsenko, Igor, "Geometric-Based Algorithm for a Full Row-Rank System Matrix Along

Multiple Directions in DT" (2016). Electronic Theses and Dissertations. 1453.

https://digitalcommons.georgiasouthern.edu/etd/1453

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N.

Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in

Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia

Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1453?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

GEOMETRIC-BASED ALGORITHM FOR A FULL ROW-RANK

SYSTEM MATRIX ALONG MULTIPLE DIRECTIONS IN DT

by

IGOR LUTSENKO

(Under the Direction of Jiehua Zhu)

ABSTRACT

Discrete tomography (DT) is an image reconstruction procedure that deals with com-

putational synthesis of a cross-sectional image of an object from either transmission

or reflection data collected by penetrating an object with X-rays from a small number

of different directions, and whose range of the underlying function is discrete. Image

reconstruction using algebraic approach is time consuming and the computation cost

depends on the size of the system matrix. More scanning directions provide an in-

crease in the reconstructed image quality, however they increase the size of the system

matrix dramatically. Deletion of linearly dependent rows of this matrix is necessary

to reduce computational cost, and is sometimes a requirement for certain reconstruc-

tion software. A geometric-based algorithm is derived in this study that will remove

linearly dependent rows of the system matrix generated along an arbitrary number

of scanning directions. Numerical experiments indicate that the proposed algorithm

reduces the system matrix to a full row-rank.

Key Words : Discrete Tomography, Strip-Based Projection, Line-Based Projection,

Full Row-Rank Matrix

2009 Mathematics Subject Classification: 92C55

GEOMETRIC-BASED ALGORITHM FOR A FULL ROW-RANK

SYSTEM MATRIX ALONG MULTIPLE DIRECTIONS IN DT

by

IGOR LUTSENKO

B.S., Valdosta State University, 2013

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment

of the Requirement for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

©

IGOR LUTSENKO

All Rights Reserved

iii

GEOMETRIC-BASED ALGORITHM FOR A FULL ROW-RANK

SYSTEM MATRIX ALONG MULTIPLE DIRECTIONS IN DT

by

IGOR LUTSENKO

Major Professor: Jiehua Zhu

Committee: Xiezhang Li

Yan Wu

Electronic Version Approved:

July 2016

iv

ACKNOWLEDGMENTS

I wish to thank my advisor, Dr. Jiehua Zhu, for her direction and aid in this project,

and my thesis defense committee members, Dr. Xiezhang Li and Dr. Yan Wu. I also

wish to thank the entire Department of Mathematical Sciences for their support and

help. Finally, I wish to extend my gratitude toward my parents who have provided

me with this opportunity to study abroad.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

LIST OF FIGURES . viii

CHAPTER

1 Introduction . 1

1.1 Discrete Tomography (DT) 1

1.2 Line-Based Projection Model 3

1.3 Strip-Based Projection Model 5

1.4 Equivalence Between the System Matrices of the Two Models 9

1.5 Full Row-Rank System Matrix Generated Along One
Direction . 11

2 Full Row-rank System Matrix Generated Along Two Directions . 14

2.1 Full Row-Rank System Generated Along Two Scanning
Directions . 14

2.2 Geometric Interpretation for Locating Dependent Rows
Along Two Scanning Directions 16

2.3 Geometric-Based Algorithm for Scanning With Two
Directions . 19

2.4 Example . 24

3 Full Row-Rank System Generated Along Many Directions of the
Same Slope Sign . 26

3.1 All Positive Scanning Directions 26

3.1.1 Three and Four Positive Scanning Directions 26

vi

3.1.2 Many Positive Scanning Directions 30

3.2 All Negative Scanning Directions 33

3.2.1 Three and Four Negative Scanning Directions 33

3.2.2 Many Negative Scanning Directions 36

3.3 Examples . 39

4 Full Row-Rank System Generated Along Multiple Directions of
Various Signs . 42

4.1 Many Directions of Various Signs 42

4.2 Examples . 48

5 Conclusion and Future Work . 50

REFERENCES . 52

A twodir . 53

B ndir . 59

vii

LIST OF FIGURES

Figure Page

1.1 Line-Based Projection Model Scanning 4

1.2 Line-Based Projection Model System Matrix 5

1.3 Strip-Based Projection Model Scanning 7

1.4 Strip-Based Projection Model System Matrix 8

2.1 Scanning With 2 Positive Directions 16

2.2 Scanning With 2 Negative Directions 17

2.3 Scanning With 2 Directions of Different Signs 18

3.1 Scanning With 3 Positive Directions 27

3.2 Scanning With 4 Positive Directions 29

3.3 Scanning With n Positive Directions 32

3.4 Scanning With 3 Negative Directions 34

3.5 Scanning With 4 Negative Directions 35

3.6 Scanning With n Negative Directions 37

4.1 Scanning With n Directions of Different Signs 43

viii

CHAPTER 1

INTRODUCTION

1.1 Discrete Tomography (DT)

Computed tomography (CT) is an image reconstruction procedure that deals with

computational synthesis of a cross-sectional image of an object from either transmis-

sion or reflection data collected by penetrating an object with waves from numerous

different directions. The discovery of CT techniques in 1970s has had a revolutionary

impact in diagnostic medicine, as it enables health providers to view internal organs,

or bone fractures, with groundbreaking precision and safety to the patient. CT′s

ability to take non-invasive photographs has been popular in various industrial ap-

plications, besides medical imaging, where cutting an object may ruin its value. For

example, CT is often used to provide non-destructive evaluations for discovering man-

ufacturing flaws in parts before their use, resulting in greater reliability and greater

safety for workers; to identify the presence and facilitate the recovery/extraction of

natural resources, such as oil, coal, gas, etc; to provide non-destructive testing and

quality control of fresh fruits and vegetable, enhancing the safety of food. Generally,

CT involves X-rays for forming images of tissues based on their X-ray attenuation

coefficient, which we will use in this study. More recent developments in medical

imaging has also been successfully accomplished with radioisotopes, ultrasound, and

magnetic resonance, though the imaged parameter being different in each case [4].

Consider an X-ray source which transmits X-ray photons through an object to-

wards a digital detector that records the amount of photons that have passed through

that object and were not absorbed. The X-ray source moves around the object to

collect transmission data from numerous view points. The fundamental assumption

of CT is that there exists an unknown underlying function f that describes the X-ray

attenuation of the image of an object. The main goal of CT is to reconstruct this

2

function using the projection data collected. Line integrals are the most common

measures for these data, which are collectively know as projections.

The algorithms for reconstruction of the image from these projections are tradi-

tionally developed for a real valued range of the underlying function. However, the

CT reconstruction algorithms are not appropriate in the cases where the underlying

function’s range is discrete, though the domain could be discrete or continuous [3],

hence Discrete Tomography (DT) has been developed. The goals of discrete tomog-

raphy, as we see in the field, have to do with obtaining f , perhaps only partially or

approximately, from weighted sums over subsets of its domain in the discrete case and

from wighted integrals over subspaces of its domain in the continuous case. In many

applications these sums or integrals are known only approximately. Becasue of this,

the most essential aspect of discrete tomography is that knowing the discrete range of

f may allow us to its value points where this could not have been done without this

knowledge. In addition, the knowledge of discrete range of the function may allow for

it to be determined from less data than what are necessary for general functions. DT

is full of interesting questions and has its own theory and reconstruction algorithms in

many fascinating applications [9]. The name, Discrete Tomography, is due to Larry

Shepp, who organized the first meeting devoted to the topic, which was help in 1994.

There are many publications on the development of reconstruction methods in DT,

the first being a reconstruction of binary images proposed by Ryser [8] and Gale [1]

independently. The reconstruction methods are usually reduced to a formulation of

an optimization problem. An important difference between DT and conventional to-

mography, such as CT, is the fact that only few projections are sufficient enough for

a high quality image reconstruction.

3

1.2 Line-Based Projection Model

Different algebraic approaches for discrete tomography are used to model the raw

detector reading, or the projection data. The most commonly used model is the line-

based [9] projection model. In this model the projection equations are constructed

along X-rays considered as integral lines, and the equation for each line is defined by

the quantity of pixels along the line.

For the line-based projection model, let Ω be a N × N integer lattice set, with

N2 square cells. It can be described by a set of points Ω = {(i, j) : 1 6 i, j 6 N}.

The index of each cell is identified by the coordinate of the top right corner of the

cell. A binary image is thought of as a binary function f defined on Ω, where f(i, j)

is the value of f for the (i, j)th cell. Suppose that the N2 cells are arranged in the

order from bottom to top column-by-column and the corresponding one-dimensional

vector u representing the unknown image values is given by:

u = [f(1, 1), ..., f(1, N), f(2, 1)..., f(2, N), ..., f(N, 1), ..., f(N,N)]T . (1.1)

A set of directions {(Xd, Yd)}
n
d=1 in the form of (1, 0), (0, 1), (1,±1), (q,±p), or (p,±q),

where p, q are co-prime, s.t. gcd(p, q) = 1 and 1 6 q < p. In addition, N is a multiple

of pq. The parallel lines in a direction (Xd, Yd) can be characterized by:

Xdy = Ydx+ t, t ∈ Z. (1.2)

A system generated by a line-based projection model along a set of directions {(Xd, Yd)}
n
d=1

is denoted by

∑

Xdy=Ydx+t

f(i, j) = hd,t, t ∈ Z, d = 1, 2, ..., n, or Mu = h, (1.3)

where f(i, j) = 0 for (i, j) 6∈ Ω and hd,t is the number of points which are crossed by

the line Xdy = Ydx+ t at exactly top right corner. M is a binary matrix and vector

h is the projection data.

4

As an example for the line-based projection model, consider the scanning of a binary

image with size N = 6 along one direction (X1, Y1) = (3,−2), as shown in Fig. 1.1.

After examining line t = 20, it is evident from the figure that this line crosses cells

(1, 6) and (4, 4) at exactly top right hand corner. Thus the equation for the line

t = 20 becomes

1 ∗ f(1, 6) + 1 ∗ f(4, 4) = h20.

Figure 1.1: Line-Based Projection Model Scanning

A full matrix M in Eq. (1.3), consisting of all 30 equations, generated by the

line-based projection model along this direction, is shown in the Fig. 1.2. Equations

along a positive direction can be achieved in an analogous way.

5

Figure 1.2: Line-Based Projection Model System Matrix

A DT problem here is to find an integer solution f to the system in Eq (1.3). Be-

cause the X-ray beams of finite width are reduced to integral lines, the solution to

this system requires a major approximation when the data {hd,t} is obtained [9].

1.3 Strip-Based Projection Model

The strip-based projection model allows us to work with the actual finite width of

the X-rays, as it takes into account the fractional area of each cell through which the

X-ray beam passes. Thus the strip-based projection model fits the real projection

data and is closer to reality, in some applications, than the line-based projection

model. It avoids the error between the theoretical model and the real projection

data originating in the line-based projection model. The collected data of the X-ray

detector in the strip-based projection model represents the sum of the gray levels

corresponding to square cells belonging to the strip [9].

6

The lattice set Ω can be viewed as a set of unit square cells, indexed by non-

negative integers, where the (i, j)th cell is enclosed between the lines: x = i− 1, x =

i, y = j − 1, and y = j. A binary image can also be viewed as a binary function

f(i, j) defined on the cells of Ω. The two representations of Ω are in one-to-one

correspondance to each other [9]. Let Sd,t be the strip between the consecutive parallel

lines: Xd y = Yd x+t−1 andXd y = Yd x+t. Also let ud,t(i, j) represent the fractional

area between the strip sd,t and the (i, j)th cell. Thus, the system generated by the

strip-based projection model along a set of directions {(Xd, Yd)}
n
d=1 can be expressed

as:
∑

16i,j6N

µd,t(i, j)f(i, j) = kd,t, t ∈ Z, d = 1, 2, ..., n, or Cu = k, (1.4)

where f(i, j) = 0 for (i, j) 6∈ Ω and kd,t is the sum of the areas of the intersection

between the strip sd,t and the cells of Ω. Again, the vector on the right-hand side is

the projection data.

As an example for the strip-based projection model, consider the same setting as in

the previous example, with N = 6 lattice set and one negative scanning direction

(X1, Y1) = (3,−2). The 20th strip between the lines t = 19 and t = 20 is shown in

Fig. 1.3.

7

Figure 1.3: Strip-Based Projection Model Scanning

Once the areas of intersection of this strip and each intersecting cell is calculated,

an equation for the 20th strip can be written as follows:

1
12
f(1, 6) + 1

3
f(2, 6) + 1

4
f(3, 5) + 1

12
f(3, 6) + 1

12
f(4, 4)

+1
4
f(4, 5) + 1

3
f(5, 4) + 1

4
f(6, 3) + 1

12
f(6, 4) = k20. (1.5)

Concatenating vertically equations of all 30 strips results in a 30× 36 system matrix,

shown in Fig. 1.4.

8

Figure 1.4: Strip-Based Projection Model System Matrix

A DT problem for the strip-based projection model is to find an integer solution f to

the system in Eq. (1.4).

For each integer t with −np + 1 6 t 6 nq, let two disjoint and complementary

subsets of N = {1, 2, 3, ..., n} : St,1 = {l ∈ N, (ql − t) mod (p) > q} and St,2 = {l ∈

N, (ql−t) mod (p) < q}. The strip-based projection equations from the tth strip along

the directions (Xd, Yd) = (q, p) and (Xd, Yd) = (q,−p) are in the forms presented in

Eqs. (1.6) and (1.7), respectively:

∑

l∈St,1

1

p
f([w] + 1, l) +

∑

l∈St,2

(

(

1
p
− 1

2pq
− 1

q
{w}

)

f([w], l)

+
(

1
2pq

+ 1
q
{w}

)

f([w] + 1, l)

)

= hd,t, (1.6)

∑

l∈St,1

1

p
f([w] + 1, l) +

∑

l∈St,2

(

(

1
p
− 1

2pq
− 1

q
{w}

)

f([w], l)

+
(

1
2pq

+ 1
q
{w}

)

f([w] + 1, l)

)

= hd,t, (1.7)

9

where in Eq. (1.6) w = ql−t

p
and in Eq. (1.7) w = ql+Np−t

p
with 1 6 t 6 N(p+ q)

[9].

In order to build an efficient algorithm to reconstruct the function f , it is im-

portant to note the rank and the dimension of the system matrix C given in Eq.

(1.4), generated along one direction (Xd, Yd), where N is a multiple of Xd|Yd|, and

Xd|Yd| 6= 0. Then, by [2],

C ∈ R(ad+|bd|)N×N2

and rank(C) = (ad + |bd|)N − ad|bd|. (1.8)

1.4 Equivalence Between the System Matrices of the Two Models

Consider the two systems Cu = k and Mu = h generated by the strip-based pro-

jection in Eq. (1.3) and the line-based projection in Eq. (1.4), respectively, along

one direction (Xd, Yd) = (q,−p). Furthermore, 1 6 q < p, gcd(p, q) = 1, and N is a

multiple of pq. The equivalence between system matrices C and M is studied in a

theorem by Zhu and Li in [9] and is summarized as follows. The system matrix C, is

in the form of

C = [C1 C2 ... CN] ∈ R(p+q)N×N2

, (1.9)

where

Ci = [c
(i)
1 c

(i)
2 ... c

(i)
N] ∈ R(p+q)N×N , 1 6 i 6 N, (1.10)

where

c
(i)
j =

0(i−1)p+(j−1)q

y

0(N−i)p+(N−j)q

, 1 6 i, j 6 N, (1.11)

where

y = [
1

2pq

3

2pq
...

2q − 1

2pq

1

p
...

1

p

2q − 1

2pq

2q − 3

2pq
...

1

2pq
]T ∈ Rp+q. (1.12)

10

Similarly, the system matrix M is in the form of

M = [M1 M2 ... MN] ∈ R(p+q)N×N2

, (1.13)

where

Mi = [m
(i)
1 m

(i)
2 ... m

(i)
N] ∈ R(p+q)N×N , 1 6 i 6 N, (1.14)

where

m
(i)
j =

0(i−1)p+(j−1)q

e1

0(N−i)p+(N−j)q

, 1 6 i, j 6 N, (1.15)

where e1 is the first column of the identity matrix Ip+q. Even though the first p+q−1

lines do not pass through any grid point of Ω and thus the first p+ q − 1 rows of the

system matrixM are all zero rows, we keep them in order for the dimensions of system

matrices C and M to be the same. By a sequence of row operations each of the two

matrices can be obtained from the other. Thus both C and M are (p+ q)N ×N2 and

are row equivalent. Furthermore by [9], if M and C are system matrices generated

by line-based and strip-based projection methods, respectively, along many directions

(Xd, Yd)
n

d=1, then both M and C are N
∑n

d=1(Xd + |Yd|) by N2 matrices and are also

row equivalent with

rank(C) = rank(M) = N
n
∑

d=1

(Xd + |Yd|)−
n
∑

d=1

Xd

n
∑

d=1

|Yd|. (1.16)

Since both system matrices are row-equivalent, we will only refer to one of them, sys-

tem matrix M . These results allow us to transform the strip-based projection system

to the line-based projection system, and vice versa. We can apply the techniques

developed for one of the systems to the other, where it is convenient. For example,

all of the existing reconstruction algorithms based on the line-based projection model

can be accordingly applied to the strip-based projection system.

11

1.5 Full Row-Rank System Matrix Generated Along One Direction

As larger matrices require more resources for the image reconstruction procedure,

it is beneficial to reduce the matrix’ size while keeping its rank. Suppose M is

underdetermined. The deletion of dependent rows of M will transform it into a full

row-rank matrix, while preserving its essential structure, i.e rank, and thus reducing

the cost of solving the system in Eq. (1.3). In addition, some l1 minimization software

packages for image reconstruction, such as l1 −Magic package [5], require a full row-

rank system.

The procedure for removing all of the dependent rows of M is described by

Zhu and Li [10], and is summarized as follows. Let M ∈ R(p+q)N×N2

be the system

matrix generated by the strip-based projection model along one direction (q,−p), s.t.

1 6 q < p and gcd(p, q) = 1. Let H be a set, such that

H = H1 ∪H2 ∪H3, where

H1 = {h ∈ K : 0 < h 6 pq and h 6∈ 1 + T},

H2 = {(p+ q)N + 1− h : h ∈ H1},

H3 = {h ∈ K : (p+ q)(N − 1)− qN + 1 < h 6 (p+ q)N − qN},

(1.17)

where K is the set of all positive integers less than or equal to (p+ q)N and

T = {t ∈ Z : 0 6 t < pq; t = pu+ qv + 1; u, v ∈ Z; 0 6 u, v 6 N − 1}. (1.18)

Then the indexes of the linearly dependent rows of the system matrix M are the in-

dexes in the set H. Thus the matrix obtained from deleting all rows with indexes in H

fromM will result in a new full-row rank system matrix rM , and rank(rM)=rank(M).

If we replace the ith row of M with a zero row and hi, in the right hand side of Eq.

(1.3), with zero, i /∈ T , then all nonzero rows of the modified M will be maximum

linearly independent rows of M. The resultant system is called the reduced binary

system matrix (RBSM) generated along one direction (q, p).

12

As an example of this procedure, consider the scanning of a binary image with size

20× 20 along the direction (4,−5). Thus N = 20, q = 4, and p = 5. A linear system

Mu = h is generated by the strip-based projection model along this direction. The

matrix M is of size 180× 400 and rank(M) = 160. Then the set T in Eq. (1.18) and

the set K are:

T = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20},

K = {N ∈ Z : 0 < N 6 180}.

Using the notation in (1.17), it follows that:

H1 = {2, 3, 4, 7, 8, 12},

H2 = {169, 173, 174, 177, 178, 179},

H3 = {93, 94, 95, 96, 97, 98, 99, 100}.

Thus deleting the rows from M with indexes in

H = H1 ∪H2 ∪H3

= {2, 3, 4, 7, 8, 12, 93, 94, 95, 96, 97, 98, 99, 100, 169, 173, 174, 177, 178, 179}

will result in reducedM , rM , being of size 160×400 with rank(rM) = rank(M) = 160,

and thus rM is of full row-rank.

For the projections along one scanning direction, the method above provides an ef-

ficient and precise way of locating linearly dependent rows of the system matrix M ,

generated by the strip-based projection model. In the case of multiple scanning direc-

tions, the system matrix is a vertical concatenation of component matrices for each

direction. The method above is not sufficient in the case of multiple directions, as

it only finds rows of each component matrix that are dependent to the rows of the

same component matrix. In order to make the whole system matrix of full row-rank,

13

we would also need to find rows of each component matrix that are dependent to

the rows of each of the preceding component matrices. The goal of our research is to

construct an algorithm that will precisely locate all indexes of each component matrix

regardless of the number of scanning directions. Upon removing these indexes from

each component matrix, the system matrix M will be of full row-rank.

CHAPTER 2

FULL ROW-RANK SYSTEM MATRIX GENERATED ALONG TWO

DIRECTIONS

2.1 Full Row-Rank System Generated Along Two Scanning Directions

Image reconstruction using algebraic approaches is time consuming and the compu-

tation cost for the procedure depends on the size of the system matrix M . More

scanning directions provide an increase in the reconstructed image quality, however

they increase the size of the system matrix M dramatically. Thus the deletion of

the dependent nonzero rows along with the zero rows of M reduces the size of M ,

furthermore transforms it into a full row-rank matrix, preserving all the information

embedded in the original matrix M , thus reducing the computational cost for image

reconstruction. In addition, some reconstruction algorithms require a full row-rank

system matrix to perform the image reconstruction [6]. In this chapter we extend our

research from a case of one scanning direction to two.

Let

Mu = h (2.1)

be the system of equations, defined in Eq. (1.3), generated by a line-based projection

model along two distinct scanning directions (q,±p) and (b,±a) such that gcd(a, b) =

gcd(p, q) = 1. The components of the system in Eq. (1.3) can be written as:

M =

M1

M2

and h =

h1

h2

, (2.2)

where M1 and M2 are the reduced binary system matrices (RBSM) generated along

scanning directions (q,±p) and (b,±a), respectively. The binary system matrix M is

of size (p+ q + a+ b)N by N2 with rank(M) = (p+ q + a+ b)N − (p+ a)(q + b). In

order to reduce this system matrix M to a full row-rank matrix, we need to remove

15

pq zero rows from M1 and ab zero rows from M2 along with bp+ aq non-zero rows of

M2. A study by Li, Wang, Wu, and Zhu [6] provides an explicit way of finding these

bp + aq nonzero rows of M2. The rows of the resulting system matrix are maximum

linearly independent rows of M making M of full row-rank. In this study the authors

presented two cases, first of which is for scanning directions of the same sign, both

positive or both negative, while the second case is for scanning directions of opposite

signs.

Case 1.

Let M be a system matrix generated along two distinct scanning directions of

the same sign, (q,−p) and (b,−a) or (q, p) and (b, a), s.t. gcd(p, q) = gcd(a, b) = 1.

The removal of the bp + aq nonzero rows of M2 whose indexes are the values in the

set delM2, given in Eq. (2.3), along with the removal of pq zero rows of M1 and ab

zero rows of M2 will result in a full row-rank system matrix M .

delM2 = Z ∪ YB ∪ Y ′
B, where

Z = {ab+ bp+ 1, ..., aq + ba},

YB = {au+ bv + 1 : 0 6 u 6 b− 1 and 0 6 v 6 p− 1},

Y ′
B = {au+ bv + 1 : N − b 6 u 6 N − 1 and N − p 6 v 6 N − 1}.

(2.3)

Case 2.

Let M be a system matrix generated along two distinct scanning directions of an

opposite sign, (q,−p) and (b, a) or (q, p) and (b,−a), s.t. gcd(p, q) = gcd(a, b) = 1.

The removal of the bp + aq nonzero rows of M2 whose indexes are the values in the

set delM2, given in Eq. (2.4), along with the removal of pq zero rows of M1 and ab

zero rows of M2 will result in a full row-rank system matrix M .

delM2 = {a(N − 1− q) + 1, ..., a(N − 1− b) + b(p+ a)}. (2.4)

16

2.2 Geometric Interpretation for Locating Dependent Rows Along Two

Scanning Directions

In order to implement the results in Eq. (2.3) and Eq. (2.4) in computational

software, such as MATLAB, an interpretation of these results is beneficial. We first

consider Case 1 in Section 2.1, in which both scanning directions have the same sign.

In addition, we restrict the slopes to be in ascending order, considering the sign, thus

for the two negative directions, −p

q
< −a

b
, and for the two positive, p

q
< a

b
. From [6]

we obtain the translation of the results via geometry. The domain of sets Z, YB and

Y ′
B in Eq. (2.3) can be plotted on a (u, v) coordinate plane as shown in the Fig. 2.1

and Fig. 2.2. Each point in this domain, excluding certain points which are defined

later, evaluated at au + bv + 1, provides a linearly dependent row index of M2. It

follows from geometry that the two slopes, p

q
and a

b
can be enclosed within Quadrant

I, as presented in the Fig. 2.1.

Figure 2.1: Scanning With 2 Positive Directions

17

For the sub case of both positive directions, the domain of the set YB, {0 6 u 6

b − 1 and 0 6 v 6 p − 1}, is the rectangle, positioned in the corner of the origin

(u0, v0). This rectangle includes bp number of points (u, v). Similarly, the domain

of the set Y ′
B, {N − b 6 u 6 N − 1, N − p 6 v 6 N − 1}, can be visualized as

the rectangle of the same size as in YB, but positioned in the bottom right corner

of the Quadrant 1, also containing bp number of points (u, v). Similarly, referring to

Fig. 2.2, for the sub case of both negative directions, the domains YB and Y ′
B are

represented by two rectangles, each also containing bp number of points, however the

domain of the set YB is now {0 6 u 6 q − 1, 0 6 v 6 a − 1}, while the domain for

the set Y ′
B is {N − q 6 u 6 N − 1, N − a 6 v 6 N − 1}.

Figure 2.2: Scanning With 2 Negative Directions

While the coordinate plane representaton of the domains of YB and Y ′
B is some-

what evident, the domain of the set Z is more complicated. Authors in [6] have shown

18

that the set Z in Eq. (2.3) can be written as au+ bv + 1 for some 0 6 u, v 6 N − 1.

These points (u, v) are in fact all of the discrete interior points and one vertex of the

parallelogram that is built from the two positive or negative directions. The paral-

lelogram is built in such a way that the two opposite vertexes of the parallelogram

are on the axes u0, v0, as shown in Fig. 2.1 and in Fig. 2.2. Evaluating these in-

terior points and any one vertex will result in a set Z in Eq. (2.3). To conclude,

the required aq + bp number of (u, v) points that result in aq + bp dependent rows

indexes of M2 inside and on the edge of the two rectangles, and all interior points

of the parallelogram, including only one vertex. Evaluating these aq + bp number

of points at au + bv + 1 will result in a vector delM2 in Eq. (2.3), consisting of all

linearly dependent rows of component matrix M2 to be deleted.

Figure 2.3: Scanning With 2 Directions of Different Signs

19

We now consider Case 2 in Section 2.1, for scanning along two directions using

different slope signs. Based on the study in [6], all of the interior points and one

vertex of a parallelogram constructed from these two scanning directions, evaluated

at au+ bv+1, are representative of the set delM2 in Eq. (2.4). This is also a total of

aq + bp points. We construct a parallelogram in Quadrant I using the two slopes of

different signs, in the same manner as for Case 1, except that we position it as shown

in Fig. 2.2.

2.3 Geometric-Based Algorithm for Scanning With Two Directions

Now that the geometric interpretation is described, and we are able to visualize the

results, we can move forward with writing an algorithm in MATLAB for finding the

dependent row indexes of the system matrix M2. The algorithm is called twodir and

will be used throughout the rest of the paper. Some pseudo code is given in this

section, however the exact code can be found in Appendix A. This method considers

all three possibilities, which are scanning with: two positive directions, two negative,

and different direction signs. Each of the three scenarios has a different geometric

interpretation, thus each needs to be dealt with separately and should have its own

part in the algorithm. twodir will identify which of the three scenarios is taking

place, and, based on the scenario’s geometric interpretation from previous section,

will locate and evaluate the needed points (u, v) at au + bv + 1 to an output vector

delM2 consisting of all rows of M2 that are dependent to M1. The rest of the section

will describe the detailed process involved in each step of twodir.

20

TWODIR

Input : D1, D2 : Scanning directions

N : Image size N by N, s.t. N is a multiple of pq and ab

u0, v0 : Origin of Quadrant 1 that encloses the needed paralellogram

sv : Axes shift when mixing signs of directions

Output : delM2 : Nonzero dependent rows of the second matrix M2

We start the method in line 1 by checking if the signs of the two scanning

directions are both positive. If this condition holds, we go on toward working with

the two rectangles and the parallelogram shown in Fig. 2.1. Lines 1.1 - 1.2 compute

the row indexes of M2 associated with the rectangle that is closer to the axes origin.

As we find (u, v) points within this rectangle, we evaluate them at au+ bv+1, which

results in a one dimensional vector Rect, where the dependent rows indexes associated

with the first rectangle are stored.

1. if sign(
p

q
) + sign(

a

b
) == 2

1.1. for u = 0 until b− 1

1.1.1. for v = v0− sv until v0− sv + p− 1

1.1.1.1. temp = [temp, au+ bv + 1];

1.1.2. end;

1.1.3. Rect = [Rect, temp];

1.2. end;

21

The next step, in lines 1.3 - 1.4, is to compute the indexes associated with the

second rectangle in the opposite corner from the origin. This is done exactly as with

the first rectangle, but with different bounds for u and v. Again, we evaluate the

located points at au+ bv+1 and store them in a one dimensional vector Rect2. This

vector includes indexes of dependent rows of M2 that are associated with the second

rectangle.

1.3. for u = N − b until N − 1

1.3.1. for v = N − v0 + sv − p until N − v0 + sv − 1

1.3.1.1. temp2 = [temp2, au+ bv + 1];

1.3.2. end;

1.3.3. Rect2 = [Rect2, temp2];

1.4. end;

Now that the rectangles are dealt with, we move on toward computing the de-

pendent row indexes associated with the parallelogram in Fig. 2.1, which is done in

lines 1.5 - 1.13. We begin by creating a two-dimensional matrix IP containing the

points to be checked for being interior points of the parallelogram. The top row of

IP contains u coordinates, while the bottom row consists of v coordinates.

1.5. for i = u0 until u0 + q + b

1.5.1. for j = v0 until v0 + p+ a

1.5.1.1. xq = [xq, (i)];

1.5.1.2. yq = [yq, (j)];

1.5.2. end;

1.6. end; IP = [xq; yq];

Next we declare the four vertexes of the parallelogram in vectors xv and yv, lines

22

1.7 - 1.8. As in the previous step, xv contains u points, while yv contains v points.

Then, in line 1.9, a vector in is created using a built-in MATLAB function, inpolygon,

[7],for finding interior or on the edge points of a polygon. Vector in contains indexes

of points of IP that are, in fact, interior or on the edge of the parallelogram. We use

a built-in MATLAB function, inpolygon, for finding interior or on the edge points of

a polygon.

1.7. xv = [u0, u0 + b, u0 + q + b, u0 + q];

1.8. yv = [v0 + p+ a, v0 + p, v0, v0 + a];

1.9. in = find(inpolygon(xq, yq, xv, yv) == 1);

Lines 1.10 - 1.13 extract the needed points from IP and place them into a matrix

UV , after which the (u, v) points in UV are evaluated at au + bv + 1, resulting in

a vector Paral, containing the indexes of dependent ros of M2 associated with the

interior points and one vertex of the parallelogram. An additional step is required to

remove three out four vertexes from UV , which is not included here, but is present in

the exact code. Finally, in line 1.14, we combine Rect, Rect2, and Paral, to create

the needed output vector delM2.

1.10. for i = 1 until the number of columns of in

1.10.1. UV(:, i) = IP(:, in(i));

1.11. end;

1.12. for i = 1 until the number of columns of UV

1.12.1. Paral = [Paral, au+ bv + 1];

1.13. end;

1.14. delM2 = [Rect Rect2 Paral];

23

This completes the part of the twodir algorithm that works with both positive

scanning directions. In the case of both negative directions, the method skips to line

2. This portion of the algorithm is identical to the one of both positive directions, but

since the rectangles and the parallelogram in Fig. 2.2 have rotated counterclockwise

by 90 degrees, we need to re-declare the points in lines 1.1, 1.1.1, 1.3, and 1.3.1. The

parallelogram, even though it is rotated, still has the same vertex points, but in a

different order, so no change is necessary. So lines 2.1-2.14 consist exactly of the same

lines as 1.1-1.14, except the changes in the following lines:

2. if sign(
p

q
) + sign(

a

b
) == −2

2.1. for u = u0 until u0 + q − 1

2.1.1 for v = 0 until a− 1

2.3 for u = N − u0− q until N − u0− 1

2.3.1 for v = N − a until N − 1

If the input scanning directions have different signs, the method skips to line

3 to work with Fig. 2.3. The dependent row indexes of M2 associated with the

parallelogram are computed in the similar manner as for same direction signs scenario

associated with a parallelogram, except that the location of parallelogram’s vertexes

in lines 3.3 and 3.4 are slightly changed.

3. else

3.1. for i = u0 until u0 + q + b

3.1.1. for j = v0 until v0 + p+ a

2.1.1.1. xq = [xq, (i)];

2.1.1.2. yq = [yq, (j)];

3.1.2. end;

24

3.2. end; IP = [xq; yq];];

3.3. xv = [u0, u0 + b, u0 + q + b, u0 + q];

3.4. yv = [v0− p, v0− p− a, v0− a, v0];

3.5. in = find(inpolygon(xq, yq, xv, yv) == 1);

3.6. for i = 1 until the number of columns of in];

3.6.1. UV(:, i) = IP(:, in(i));

3.7. end;

3.8. for i = 1 until the number of columns of UV

3.8.1. Paral = [Paral, au+ bv + 1];

3.9. end;

3.10. delM2 = Paral;

4. end

2.4 Example

We demonstrate the results in Section 2.3 using a numerical example in this section.

Consider the scanning of an image with size 30 × 30 along directions (q, p)=(5,1) and

(b, a)=(3,2). The matrix M in Eq. (2.1) consists of M1 and M2, RBSMs generated

along scanning directions (5, 1) and (3, 2), respectively. The dimension and rank of

M is 330 × 900, with rank(M) = 306. The component matrices M1 and M2 have

5 and 6 zero rows, respectively. In addition to these 11 zero rows, matrix M has 13

nonzero rows that should be removed to result in a full row-rank matrix. In order to

compute these non-zero row indexes, we call on twodir algorithm above, by:

twodir(D1, D2, N, u0, v0, sv) = twodir([5, 1], [3, 2], 30, 0, 0, 0).

25

The method outputs a set delM2 = Z ∪ YB ∪ Y ′
B = {10, 11, 12, 13, 14, 15, 16} ∪

{1, 3, 5}∪ {142, 144, 146}. This numerical experiment verifies that the removal of the

rows in M2 with indexes in delM2 along with 5 zero rows of M1 and 6 zero rows of

M2, results in a full row rank matrix rM with dimension of 306 × 900 and rank(rM)

= rank(M) = 306.

CHAPTER 3

FULL ROW-RANK SYSTEM GENERATED ALONG MANY

DIRECTIONS OF THE SAME SLOPE SIGN

3.1 All Positive Scanning Directions

3.1.1 Three and Four Positive Scanning Directions

In practice, as X-Ray source moves around the object, it creates projections from

many directions. The main goal of this research is to propose an algorithm that will

provide the dependent row indexes of system matrix M regardless of the number of

directions and their signs. This would help reconstruct quality CT images using less

computational power.

We first describe the process involving three positive scanning directions (q, p),

(b, a) and (d, c), such that N is a multiple of pq, ab, and cd, and gcd(p, q) = gcd(a, b)

= gcd(c, d) = 1. Additionally, the three directions are in ascending order, such that

p

q
< a

b
< c

d
. The components of the system in Eq. (2.1) can be written as:

M =

M1

M2

M3

and h =

h1

h2

h3

, (3.1)

where M1, M2 and M3 are the reduced binary system matrices (RBSM), generated

along scanning directions (q, p), (b, a), and (d, c), respectively. In order to find all

linearly dependent rows of M , we first start by finding rows of M2 that are dependent

to M1. This is done by applying previously established twodir algorithm to matrices

M1 and M2. This procedure stays exactly the same as how it is described in Chapter

2. Once indexes of M2 are calculated, we proceed by adding the third matrix M3 and

our goal now is to find the rows of M3, that are dependent to M1 and M2, respectively.

27

The idea is to apply the twodir algorithm to each pair, M1 and M3, and, M2 and M3,

but to do so, we need to know the input parameters for twodir, which are unique for

each pair. Thus it is necessary to construct a geometric interpretation as in Section 2.2

using all three scanning directions. The figure will provide us with the required input

parameters for the algorithm. Graphically, from these three directions we construct

the needed parallelograms and their respective rectangles, on a (u, v) plane as shown

in Fig. 3.1.

Figure 3.1: Scanning With 3 Positive Directions

Each application of twodir in the case of three positive scanning directions will

find (u, v) points associated with 2 rectangles and one parallelogram, and since we

call on twodir twice, we will ultimately manage both parallelograms and all four rect-

angles, shown in the Fig. 3.1. As we work with matrices M1 and M3, using Fig. 3.1,

it is evident that the u0 axis, shown in Fig. 2.1, needs to be positioned at u0 = b,

28

in order for the opposite vertexes of this parallelogram to touch the axes. v0 axis

stays at v0 = 0 as no shift is necessary here. Similarly, working with the matrices M2

and M3, and the parallelogram constructed from the respective scanning directions

in Fig. 3.1, it is evident that the v0 axis is shifted to v0 = p, while u0, in this case, is

unchanged from u0 = 0. The summary of the MATLAB algorithm for three positive

scanning directions is shown below.

Three Positive Directions Algorithm

Input : D1, D2, D3 : Scanning directions

N : Image size N by N, s.t. N is a multiple of pq, ab and cd

Output : delM2 : Nonzero dependent rows of the second matrix M2

delM3 : Nonzero dependent rows of the third matrix M3

1. delM2 = twodir(D1, D2, N, 0, 0, 0),

2.1. delM13 = twodir(D1, D3, N, b, 0, 0),

2.2. delM23 = twodir(D2, D3, N, 0, p, 0),

2. delM3 = [delM13 delM23].

The same geometry and reasoning can be extended to a case with four positive

scanning directions, (q, p), (b, a), (d, c), and (f, e), with the same restrictions as in the

case of three directions. The procedure for four directions is all that we have shown

for three directions, plus one more iteration of computing rows of matrix M4 that

are linearly dependent to all the preceding matrices, M1, M2, and M3. For the third

iteration, we position the three parallelograms and their corresponding rectangles

as shown in Fig. 3.2, in a very similar manner as before. After determining the

29

enclosing axes for each of the parallelograms, we, in the same manner, proceed with

the MATLAB implementation of the procedure.

Figure 3.2: Scanning With 4 Positive Directions

Four Positive Directions Algorithm

Input: D1, D2, D3, D4 : Scanning directions

N : Image size N by N, s.t. N is a multiple of pq, ab, cd and ef

Output: delM2 : Nonzero dependent rows of the second matrix M2

delM3 : Nonzero dependent rows of the third matrix M3

delM4 : Nonzero dependent rows of the fourth matrix M4

30

1. delM2 = twodir(D1, D2, N, 0, 0, 0),

2.1. delM13 = twodir(D1, D3, N, b, 0, 0),

2.2. delM23 = twodir(D2, D3, N, 0, p, 0),

2. delM3 = [delM13 delM23],

3.1. delM14 = twodir(D1, D4, N, b+ d, 0, 0),

3.2. delM24 = twodir(D2, D4, N, d, p, 0),

3.3. delM34 = twodir(D3, D4, N, 0, p+ a, 0),

3. delM4 = [delM14 delM24 delM34].

We can keep adding positive directions in an increasing manner and continue

the process. In the next section we will provide an algorithm that will automatically

locate indexes of linearly dependent rows of each component matrix that make up

the system matrix M , regardless of the number of positive scanning directions.

3.1.2 Many Positive Scanning Directions

In this section we extend the system matrix M defined in Eq. (2.1) to be the system

matrix generated along n distinct scanning directions (XD1
, YD1

), (XD2
, YD2

), ... ,

(XDn
, YDn

), such that
YD1

XD1

<
YD2

XD2

< ... <
YDn

XDn
, gcd(XD1

, YD1
) = gcd(XD2

, YD2
) = ...

= gcd(XDn
, YDn

) = 1, andN is a multiple of the product ofXi and Yi for i = 1, 2, ..., n.

In addition, Σn
i=1XDi < N and Σn

i=1YDi < N . In practice, the last condition is

insignificant as N is large, but, if needed, N can be increased, by scalar multiplying

it, without affecting any of the other conditions, and while leaving the scanning

directions unchanged. The components of the system in Eq. (2.1) can be written as:

31

M =

M1

M2

...

Mn

and h =

h1

h2

...

hn

. (3.2)

In order to make the system matrix M of full-row rank, we take each component

matrix, M2 through Mn, and find indexes of rows that are dependent to all the

previous component matrices. This is an iterative process, and in the last iteration

we apply the twodir algorithm to n− 1 pairs, direction Dn and each of the directions

in the set {D1, D2, ..., Dn−1}, hence the n− 1 iterations. As in previous sections, we

construct Fig. 3.3 containing all n− 1 parallelograms and 2(n− 1) rectangles, which

would help us establish an iterative algorithm for precisely locating all dependent rows

of the system matrix M . Essentially our goal is to construct a MATLAB algorithm

ndir, that will combine all three cases, in particular n positive directions, n negative

directions, and n directions of different signs. We proceed with the explanation of

the first case.

NDIR Positive

Input: Dir : Scanning directions [D1; D2; ... ; Dn]

n : Image size N by N, s.t. N is a multiple of the product of X and Y

of each scanning direction

Output: delM2 : Nonzero dependent rows of the second matrix M2

delM3 : Nonzero dependent rows of the third matrix M3

...

delMn : Nonzero dependent rows of the nth matrix Mn

32

Figure 3.3: Scanning With n Positive Directions

1. for i = 2 until number of rows in Dir

1.1.v = [],

1.2.for j = 1 until i− 1

1.2.1. v = [v, twodir(Dir(j, :), Dir(i, :), N, sum(X(j + 1 : i− 1)),

sum(Y (1 : j − 1)), 0)],

1.3.end,

1.4.eval([′delM ′ num2str (i)′ = v′]),

2. end.

33

In the main iteration loop, index i represents the number of given scanning

directions. As i runs from 2 to the index of the last direction, n, we acquire the

needed n − 1 iterations. Within each iteration, we let index j run from 1 to i −

1, where j represents all the scanning directions preceding the current direction i.

Now, using Figure 3.3, let us consider any parallelogram, labeled Dn−jDn, for which

i = n. In order to enclose this particular parallelogram in axes u0, v0 as explained

in Section 2.2 for positive scanning directions, it is evident that the u0 axis needs

to be shifted to u0 = XDn−1
+ XDn−2

+ ... + XDj+1
= sum(X(j + 1 : n − 1)).

Therefore, for any i, the u0 axis needs to be shifted to u0 = sum(X(j + 1 : i − 1)).

Similarly, for the same parallelogram, the v0 axis needs to be shifted to v0 = YD1
+

YD2
+ ... + YDj−1

= sum(Y (1 : j − 1)). For each direction i we restart the vector

v and we keep concatenating it with its previous self. Once all js are deprived, we

create a vector delMi containing all rows of the matrix Mi that are dependent to all

preceding matrices. Once each of the delMi vectors are calculated, we proceed with

removing from each matrix Mi all the rows whose indexes are in delMi and all the

zero rows. Upon the completion of this process for each of the component matrix Mi,

and removing zero rows from M1, the resulting reduced system matrix M in Equation

3.2 is of full-row rank. An example will be presented at the end of this chapter to

verify these results.

3.2 All Negative Scanning Directions

3.2.1 Three and Four Negative Scanning Directions

We now extend this process to a scenario where all of the scanning directions are of

a negative sign. The process here is analogous to the one with all positive directions,

except for few minor changes. Due to the lack of further complexity here, we will

34

describe the geometric interpretation for three and four slopes in one example of four

negative scanning directions. We will then move toward generalizing this idea for an

unlimited number of negative scanning directions.

The the system matrix M generated along four scanning directions (q,−p),

(b,−a), (d,−c) and (f,−e), such that gcd(p, q) = gcd(a, b) = gcd(c, d) = gcd(e, f)

= 1. Again, directions here are in ascending order, considering the sign, thus −p

q
<

−a
b
< − c

d
< − e

f
. The system matrix M is composed of four component matrices, M1,

M2, M3 and M4. The process of locating linearly dependent rows of M2, M3 and M4

is exactly the same as it is described for four positive directions, however the input

parameters u0 and v0 need to be investigated. We first apply the twodir algorithm

to component matrices M1 and M2, which is described in Chapter 2. We move on by

adding a third negative scanning direction, and in order to see the input parameters,

we construct Fig. 3.4. For the next iteration, we add fourth negative direction and

use Fig. 3.5 to locate the needed parameters.

Figure 3.4: Scanning With 3 Negative Directions

35

Referring back to Chapter 2, the axes, that enclose the parallelogram, based on

two negative directions, are placed in the bottom left corner of each parallelogram.

Thus in Fig. 3.4, in order to enclose the parallelogram D1D3, we need to keep u0 at

u0 = 0, but shift v0 to v0 = a. Similarly, for the parallelogram D2D3, we shift u0 to

u0 = q, and keep v0 at v0 = 0.

Figure 3.5: Scanning With 4 Negative Directions

Furthermore, referring to Fig. 3.5, we see that for the the parallelogram D1D4

we keep u0 at u0 = 0, and shift v0 to v0 = a+ c. For the the parallelogram D2D4 we

shift u0 to u0 = q, and shift v0 to v0 = c. Lastly, for the the parallelogram D3D4 we

shift u0 to u0 = q + b, and leave v0 at v0 = 0. The summary of a MATLAB process

for four negative scanning directions is shown below.

36

Four Negative Directions Algorithm

Input : D1, D2, D3, D4 : Scanning directions

N : Image size N by N, s.t. N is a multiple of pq, ab, cd and ef

Output : delM2 : Nonzero dependent rows of the second matrix M2

delM3 : Nonzero dependent rows of the second matrix M3

delM4 : Nonzero dependent rows of the second matrix M4

1. delM2 = twodir(D1, D2, N, 0, 0, 0),

2.1. delM13 = twodir(D1, D3, N, 0, a, 0),

2.2. delM23 = twodir(D2, D3, N, q, 0, 0),

2. delM3 = [delM13 delM23],

3.1. delM14 = twodir(D1, D4, N, 0, a+ c, 0, ,

3.2. delM24 = twodir(D2, D4, N, q, c, 0),

3.2. delM34 = twodir(D3, D4, N, q + b, 0, 0),

3. delM4 = [delM14 delM24 delM34].

We can keep adding negative directions in an increasing manner and continue

the process exactly as with positive directions. We now move toward providing an

algorithms that will automatically locate indexes of linearly dependent rows of each

component matrix that make up the system matrix C, regardless of the number of

negative scanning directions.

3.2.2 Many Negative Scanning Directions

We further extend the system matrix M defined in Eq. (2.1) to be the system matrix

generated along n negative distinct scanning directions (XD1
,−YD1

), (XD2
,−YD2

),...,

37

(XDn
,−YDn

), such that −
YD1

XD1

< −
YD2

XD2

< ... < −
YDn

XDn
, and gcd(XD1

, YD1
) = gcd(XD2

,

YD2
) = ... = gcd(XDn

, YDn
) = 1. In addition, Σn

i=1XDi
< N and Σn

i=1YDi
< N .

Components of the system in Eq. (2.1) can be written in the same way as in Eq.

(3.2). In order to make the system matrixM of full-row rank, we take each component

matrix, M2 through Mn, and find indexes of rows that are dependent to all the

previous component matrices. This, again, is an iterative process, and in the last

iteration we apply the twodir algorithm to n− 1 pairs, direction Dn and each of the

directions in the set {D1, D2, ..., Dn−1}, hence there are n−1 iterations. We construct

Fig. 3.6 containing all n−1 parallelograms and 2(n−1) rectangles, which would help

us construct an iterative algorithm that would precisely locate all dependent rows of

the system matrix M . We proceed with constructing the portion of ndir algorithm

that deals with scanning using all negative directions.

Figure 3.6: Scanning With n Negative Directions

38

NDIR Negative

Input: Dir : Scanning directions [D1;D2; ...;Dn]

N : Image size N by N, s.t. N is a multiple of pq, ab, cd and ef

Output: delM2 : Nonzero dependent rows of the second matrix M2

delM3 : Nonzero dependent rows of the second matrix M3

...

delMn : Nonzero dependent rows of the second matrix Mn

1. for i = 2 until number of rows in Dir

1.1.v = [],

1.2.for j = 1 until i− 1

1.2.1. v = [v, twodir(Dir(j, :), Dir(i, :), n, sum(X(1 : j − 1)),

sum(Y (j + 1 : i− 1)), 0)],

1.3.end,

1.4.eval([′delM ′ num2str (i)′ = v′]),

2. end.

The process here is almost identical to the one described in Section 3.2 using all

positive scanning direction. Here, again, in the main iteration loop, index i represents

the number of given scanning directions. As i runs from 2 to the index of the last

direction, n, we acquire the needed n − 1 iterations. Within each iteration, we let

index j run from 1 to i−1, where j represents all the directions preceding the current

direction i. However now, using Fig. 3.4, let us consider any parallelogram, labeled

Dn − jDn, for which i = n. In order to enclose this particular parallelogram in

axes u0, v0 as explained in Section 2.2 for negative scanning directions, it is evident

39

that the u0 axis needs to be shifted to u0 = XD1
+XD2

+ ... +XDj−1
= sum(X(1 :

j − 1)). Similarly, for the same parallelogram, the v0 axis needs to be shifted to

v0 = YDn−1
+ YDn−2

+ ... + YDj+1
= sum(Y (j + 1 : n − 1)). Therefore, for any i,

the v0 axis needs to be shifted to v0 = sum(Y (j + 1 : i − 1)). For each direction

i we restart the vector v and we keep adding it to itself until j completes its cycle.

Once all js are deprived, we create a vector delMi containing all rows of the matrix

Mi that are dependent to all preceding matrices. Once each of the delMi vectors are

calculated, we proceed with removing from each matrix Mi all the rows whose indexes

are in delMi and all the zero rows. Upon the completion of this process for each of

the component matrix Mi, and removing zero rows from M1, the resulting reduced

system matrix M in Eq. (3.2) is of full-row rank.

3.3 Examples

In this section we demonstrate the results from Chapter 3 using a pair of numerical

examples. Consider the scanning of an image with size 48 × 48 along an array of 7

positive directions, in particular

Dir =

3 4 1 2 1 1 1

2 3 1 3 2 3 6

.

The matrix M = [M1;M2; ...;M7], consisting of 7 component RBSMs generated along

7 positive scanning directions, has the dimension and rank of M is 1584 × 2304, with

rank(M) = 1324. M has 36 zero rows. In addition to these 36 zero rows, matrix

M has 224 nonzero linearly dependent rows that should be removed to result in a

full row-rank matrix. In order to compute these non zero row indexes, we use the

MATLAB algorithm for all positive scanning directions to compute and/or remove

all of the dependent rows. The method produced a total of 224 values within 6

vectors, each vector containing the indexes of dependent rows to be removed from

40

corresponding component matrices. The vectors are:

delM2 = [1, 4, 5, 7, 8, 10, 11, 14, 39, 149, 152, 153, 155, 156, 158, 159, 162],

delM3 = [1− 5, 12, 13, 43− 47],

delM4 = [1, 3− 12, 14, 28− 39],

delM5 = [1− 9, 16− 26, 62− 70],

delM6 = [1− 11, 18− 39, 83− 93],

delM7 = [1− 14, 21− 78, 149− 162].

Upon removing the rows represented by the indexes in each of these vectors from

their respective component matrix, along with removing all the zero rows from the

system matrix M , the resulting reduced matrix rM is of size 1324 × 2304, with

rank(rM) = 1324. The matrix is now full-row rank, requiring around 28 percent less

computational power for reconstructions, while preserving all of its original image

data.

For another example, consider the scanning of an image with size 36 × 36 along

an array of 6 negative directions, in particular

Dir =

1 1 1 2 1 3

-6 -3 -2 -3 -1 -2

.

The matrixM = [M1;M2; ...;M6], consisting of 6 components RBSMs generated along

6 negative scanning directions, has the dimension and rank of M is 936 × 1296, with

rank(M) = 783. M has 24 zero rows. In addition to these 24 zero rows, matrix M has

129 nonzero linearly dependent rows that should be removed to result in a full row-

rank matrix. In order to compute these non zero row indexes, we use the MATLAB

algorithm for all negative scanning directions to compute and/or remove all of the

dependent rows. The method produced a total of 129 values within 5 vectors, each

vector containing the indexes of dependent rows to be removed from corresponding

41

component matrices. The vectors are:

delM2 = [1, 2, 3, 7, 8, 9, 67, 68, 69],

delM3 = [1, ..., 4, 7, ..., 11, 49, ..., 52],

delM4 = [1, 3, ..., 11, 16, ..., 28, 76, 78, ..., 84, 86],

delM5 = [1, ..., 5, 7, ..., 15, 31, ..., 35],

delM6 = [1, 3, ..., 12, 14, 19, ..., 51, 73, 75, ..., 84, 86].

Upon removing the rows represented by the indexes in each of these vectors from their

respective component matrix, along with removing all the zero rows from the system

matrix M , the resulting reduced matrix rM is of size 783 × 1296, with rank(M) =

783. The matrix is now full-row rank, requiring around 27 percent less computational

power for reconstructions, while preserving all of its original image data.

CHAPTER 4

FULL ROW-RANK SYSTEM GENERATED ALONG MULTIPLE

DIRECTIONS OF VARIOUS SIGNS

4.1 Many Directions of Various Signs

In this chapter we extend the process for locating all linearly dependent rows of the

system matrix M by combining all the previously discussed cases into a scenario

where the scanning directions contain both negative and positive slopes. Let the

matrix M , defined in Eq. (2.1), be the system matrix generated along n distinct

increasing scanning directions:

(XD1
,−YD1

), (XD2
,−YD2

), ... , (XDk
,−YDk

), (XDk+1
, YDk+1

), ... , (XDn, YDn) with

conditions, such that: −
YD1

XD1

< −
YD2

XD2

< ... < −
YDk

XDk

<
YDk+1

X
Dk+1

< ... <
YDn

XDn
;

gcd(XD1
, YD1

) = gcd(XD2
, YD2

) = ... = gcd(XDk
, YDk

) = gcd(XDk+1
, YDk+1

) = ...

= gcd(XDn
, YDn

) = 1; furthermore Σn
i=1XDi

< N and Σn
i=1YDi

< N .

The system M can be written as

M =

M1

M2

...

Mk

Mk+1

...

Mn

and h =

h1

h2

...

hk

hk+1

...

hn

. (4.1)

Note that since the scanning directions are in ascending order, the first set of

directions in the set {D1, D2, ..., Dk} are of a negative sign, while the directions in the

set {Dk+1, ..., Dn} are of a positive sign. Our goal is to construct an algorithm, that,

as before, will locate all the linearly dependent rows of M , by taking each component

matrix M2 through Mn and locating indexes of its rows that are dependent to all the

43

preceding matrices. In order to proceed with the explanation of this procedure, we

first construct Fig. 4.1 consisting of parallelograms and rectangles that are generated

by the given set of n directions. We construct the portion of ndir algorithm that

work with a set of directions of different signs.

Figure 4.1: Scanning With n Directions of Different Signs

44

NDIR Different Signs

Input: Dir : Scanning directions [D1; D2; ... ; Dk; Dk+1; ... Dn]

N : Image size N by N, s.t. N is a multiple of the product of X and Y

of each scanning direction

Output: delM2 : Nonzero dependent rows of the second matrix M2

delM3 : Nonzero dependent rows of the third matrix M3

...

delMn : Nonzero dependent rows of the nth matrix Mn

As we start the algorithm, we first need to locate the index k that tells us how

many negative directions are present. This is easily done and is shown in line 1 below:

1. k = length(find(signDir == −1)).

Now that we know exactly how many negative directions are present in Dir, we

proceed with the method for locating dependent row indexes for each of the compo-

nent matrices M2 through Mn. We split the main iteration loop for this portion of

ndir into two separate loops, first of which works with directions from 1 to k, while

the second loop works with directions k+1 through n. It is evident that for the first

k directions, which are all of a negative sign, we would adopt the exact procedure

that was used for n negative directions, described in Section 3.2.2, where n = k.

Thus for the first loop of k − 1 iterations, lines 2 through 3, where i runs from 2 to

k, while j runs from 1 to i− 1, the twodir parameters stay the same as presented in

Section 3.2.2.

45

2. for i = 2 until k

2.1. v = [],

2.2. for j = 1 until i− 1

5.2.1. v = [v, twodir(Dir(j, :), Dir(i, :), n, sum(X(1 : j − 1)),

sum(Y (j + 1 : i− 1)), 0)],

2.3. end,

2.4. eval([′delM ′ num2str (i)′ = v′]),

3. end.

Once the first loop is complete, we have located the dependent row indexes for

each of the component matrices M2 through Mk and stored them in corresponding

vectors delM2 through delMk. The next step is to add the first positive direction,

indexed at Dk+1, and apply the twodir method to component matrix pairs M1 and

Mk+1, throughMk andMk+1. We then proceed by adding the rest of positive scanning

directions, one at a time, and proceed as before. In order to generalize the parameters

for the twodir method, we refer back to Fig. 4.1 which provides a visualization for

the last (n − 1)st iteration. From this figure we construct the second loop that

runs through positive directions k + 1 through n. For every i here, j, represents all

directions preceding i, consists of a negative and a positive directions. The first k

indexes of j are directions of negative slopes, while i here represents a positive slope.

Thus, when applying twodir method to a pair Dj and Di where j 6 k, we are working

with a pair of negative and positive slopes, and thus only interior points and one vertex

are representatives of linearly dependent rows here. These parallelograms are shown

on Fig. 4.1, and are denoted D1Dn through DkDn. The parameters u0 and v0 are

the axes that enclose each of these parallelograms in a way described in Chapter 2, in

46

a case of two directions of different signs. For example, consider parallelogram D1Dn

in Fig. 4.1. u0 for this parallelogram is at u0 = 0, while v0 = YDk+1
+ ...+YDn

+YD1
.

Now consider the next parallelogram to the right, D2Dn. u0 here shifts to u0 = XD1
,

while v0 = YDk+1
+ ... + YDn

+ YD1
+ YD2

. Similarly, parallelogram D3Dn has u0, v0

its axes at u0 = XD1
+ XD2

and v0 = YDk+1
+ ... + YDn

+ YD1
+ YD2

+ YD3
. The

pattern here is clear, and thus for the last kth parallelogram DkDn, constructed from

a negative and positive slopes, the u0 and v0 shift is at u0 = XD1
+XD2

+ ...+XDk−1

and v0 = YDk+1
+ ... + YDn

+ YD1
+ YD2

+ ... + YDk
. A more general call on twodir

method is shown in line 4.2.1.1.

4. for i = k + 1 until n, the number of rows in Dir

4.1. v = [],

4.2. for j = 1 until i− 1

4.2.1 if j 6 k

4.2.1.1. v = [v, twodir(Dir(j, :), Dir(i, :), N, sum(X(1 : j − 1)),

sum(Y (1 : j)) + sum(Y (k + 1 : i)), 0)],

As j runs from 1 to i − 1, and j > k, the parallelograms constructed with pairs of

directionsDk+1 andDn throughDn−1 andDn are all of positive direction pairs. As we

call on twodir method for these pair, it would generate dependent indexes from each of

the parallelograms and two rectangles associated with it. In order to generally define

the parameters for these parallelograms, we first consider parallelogram Dk+1Dn. The

enclosing axes for it are u0 = XD1
+ ...+XDk

+XDk+2
+ ...+XDn−1

and v0 = YD1
+ ...+

YDk
. Next, for the parallelogram Dk+2Dn, the axes are u0 = XD1

+...+XDk
+XDk+3

+

...+XDn−1
and v0 = YD1

+ ...+YDk+1
. Finally, for the last parallelogram Dn−1Dn, the

axes are u0 = XD1
+...+XDk

and v0 = YD1
+...+YDn−2

. This generalizes to the u0 and

v0 parameters shown in line 4.2.2.1, where u0 = sum(X(1 : k))+sum(X(j+1 : i−1)),

47

and v0 = sum(Y (1 : j − 1)). As we work not only with parallelograms here but also

with two rectangles for each parallelogram, we need to include a third parameter,

sv. No matter which case we work with, the rectangles have to be positioned near

the main axes u, v, such that u = 0 : XDn
− 1 and v varies based on the direction,

however the first rectangle starts at 0. When working with two or more positive

slopes, this is automatically done without using sv or sv = 0. However, in the case

of directions of different signs, if sv is not used, the rectangles would be positioned

in a column at u = 0 : XDn
− 1, but the first rectangle Dk+1Dn would start at

v = sum(Y (1 : k)) . Thus we require the new parameter sv = sum(Y (1 : k)) to shift

the column of rectangles to v = 0. The summary of the complete algorithm for the

case of directions of different signs is shown below in lines 4 through 5.

4.2.2 elseif j > k

4.2.2.1. v = [v, twodir(Dir(j, :), Dir(i, :), N,

sum(X(1 : k)) + sum(X(j + 1 : i− 1)),

sum(Y (1 : j − 1)), sum(Y (1 : k)))],

4.2.3 end

4.3. end,

4.4. eval([′delM ′ num2str (i)′ = v′]),

5. end.

Now that the three portions of ndir are derived, we combine them into one

program, the exact code of which is found in Appendix B.

48

4.2 Examples

To finalize our research, we demonstrate with several examples the use of ndir method

to locate and then remove all linearly dependent rows from the system matrix M , in

addition to zero rows, to form a reduced system matrix rM , which is then tested to

be of full row rank by using a built-in MATLAB function rank. In addition to the

dimensions and ranks of original and reduced matrices, we provide the time that ndir

took to locate and remove the dependent rows on an 2015 Apple MacBook Pro with

2.5 GHz Intel Core i7 processor.

Consider the scanning of an image with size 108 × 108 along an array of eleven

directions, in particular:

Dir =

2 4 3 4 9 9 3 4 3 4 2

-9 -9 -4 -3 2 4 2 3 4 9 9

The matrix M = [M1;M2; ...;M11], consisting of 11 RBSMs generated along 11 di-

rections, 4 of which are positive and 7 negative, has the dimension and rank of M

is 11340 × 11664, with rank(M)=8614. Upon the completion of ndir method, the

reduced system matrix rM is of size 8614× 11664 and rank(rM)=8614. The elapse

time is 0.521571 seconds.

Consider another example with scanning of an image with size 100 × 100 along

an array of eight directions, in particular:

Dir =

2 5 5 25 25 1 5 5

-5 -4 -2 -4 -2 1 2 4

The matrix M = [M1;M2; ...;M8], consisting of 8 RBSMs generated along 8 direc-

tions, 5 of which are positive and 3 negative, has the dimension and rank of M is

49

9700×10000, with rank(M)=7948. Upon the completion of ndir method, the reduced

system matrix rM is of size 7948 × 10000 and rank(rM)=7948. The elapse time is

0.424827 seconds.

CHAPTER 5

CONCLUSION AND FUTURE WORK

Throughout this work we have proposed a computational algorithm that precisely

locates the indexes of linearly dependent rows of a reduced binary system matrix

generated along a number of scanning directions. This algorithm has been verified

via a large set of numerical examples.

For the image reconstruction procedure, it is customary in industry and academia

to use block-scheme iteration reconstruction algorithms. The idea is to split the orig-

inal system matrix M into many blocks, each block generated from a small number of

scanning directions, such as three or four. Dependent rows are then found within the

set of those three or four component matrices for each block. Some image reconstruc-

tion software packages require the full row-rank blocks. In contrast, our algorithm can

be applied to the entire system matrix M , and sequential iteration image reconstruc-

tion algorithms can be applied. As a result of applying out algorithm to the entire

system matrix M at once, many more rows will be removed compared to working

with each block independently. To visualize this, let us consider the second example

in Section 4.2. There are eight scanning directions. Let us split the system matrix

into two blocks, each with four directions. From the first block of four component

matrices ndir will remove 415 linearly dependent rows. From the second block of

the last four directions ndir will remove 243 rows. In total, there are 658 dependent

rows to be removed. If we apply ndir to the entire system matrix, we are to remove

1531 linearly dependent rows. This is an improvement that could lead to faster image

reconstruction time, and thus reduce the computational cost.

In the future we would like to improve the method by adding a set of directions

in the form of (±1, 0) and (0,±1). With the addition of these scanning directions,

our set will include all possible scanning direction. Lastly, we would like to rigorously

51

prove the method to verify its accuracy and effectiveness.

52

REFERENCES

[1] D. Gale, A theorem on flows in networks, Pacific Journal of Mathematics, 7:1073-
1082 (1957).

[2] L. Hajdu and R. Tijdeman, Algebraic aspects of discrete tomography, Journal für
die Reine und Angewandte Mathematik, 534:119-128 (2001).

[3] G.T, Herman, and A. Kuba, Discrete Tomography: Foundations, Algorithms and

Applications, Birkhäuser, Boston, MA, 1999.

[4] C. Kak and M. Slaney Principles of Computerized Tomographic Imaging, IEEE
Press, New York, NY 1988.

[5] E. Candes and J. Romberg, l1-Magic, (2016, May 15). Retrieved from
http://statweb.stanford.edu/ candes/l1magic/

[6] X. Li, H. Wang, Y. Wu, and J. Zhu, A full row-rank system matrix generated

along two directions in discrete tomography, Journal on Applied Mathematics
and Computation, 218:107-114 (2011).

[7] Points located inside or on edge of polygonal region, (2016, March 20). Retrieved
from www.mathworks.com/help/matlab/ref/inpolygon.html

[8] H. J. Ryser Combinatorial properties of matrices of zeros and ones, Canadian
Journal of Mathematics, 9:371-377 (1957).

[9] J. Zhu, X. Li, Y. Ye, and G. Wang, Analysis on the strip-based projection model

for discrete tomography, Journal on Discrete Applied Mathematics, 156:2359-2367
(2008).

[10] J. Zhu and X. Li, A full row-rank system matrix generated by the strip-based

projection model in discrete tomography, Journal on Applied Mathematics and
Computation, 216:3536-3540 (2010).

Appendix A

TWODIR

function Bdel = twodir(D1,D2,N,u0,v0,sv)

% The function determines dependent rows of the second matrix M 2

% corresponding to the second direction D2.

% Inputs:

% D1,D2: scanning directions

% N: image size N by N, N is a multiple of p*q and a*b

% u0,v0: oordinates for the corner of a rectangle enclosing enclosing

% the parallelogram

% sv: vertical axes shift for rectangles

% needed when more than 2 scanning directions are present

% Output:

% Bdel: nonzero rows in the second matrix M 2.

% Variables:

% Paral: dependent row indices in M 2 corresponding to the parallelogram

% Rect: dependent row indices in M 2 corresponding to the first rectangle

% Rect2: dependent row indices in M 2 corresponding to the second rectangle

%Initialization

Dir = [D1; D2];

signDir = sign(Dir(:,1).*Dir(:,2));

X = abs(Dir(:,1));

Y = abs(Dir(:,2));

Paral = []; Rect = []; Rect2=[];

54

if sum(signDir) == −2 %−−

%indices from parallelogram

% creating vertices to check

xq=[]; yq=[];

for i=(u0):u0+(sum(X))

for j=(v0):v0+(sum(Y))

xq = [xq, (i)];

yq = [yq, (j)];

end

end

IP=[xq; yq];

% verteces of the parallelogram

xv = [u0, u0+X(2,1), u0+sum(X), u0+X(1,1)];

yv = [v0+sum(Y), v0+Y(1,1), v0, v0+Y(2,1)];

% running built−in inpolygon method

rng default

in = find(inpolygon(xq,yq,xv,yv)==1);

[inm, inn]=size(in);

% vector of points that are verteces and are internal points

% of the parallelogram

for i=1:inn

UV(:,i)=IP(:,in(i));

end

% removing 3 out 4 verteces

remove1 = [u0 v0+sum(Y)];

remove2 = [u0+sum(X) v0];

remove3 = [u0+X(2,1) v0+Y(1,1)];

UV(:,find(ismember(UV',remove1,'rows')))=[];

UV(:,find(ismember(UV',remove2,'rows')))=[];

UV(:,find(ismember(UV',remove3,'rows')))=[]; [UVm UVn]=size(UV);

55

% computing indeces of M 2 based on parallelogram

for i=1:UVn

Paral = [Paral Y(2,1)*UV(1,i) + X(2,1)*UV(2,i) + 1];

end

%indices from 1st rectangle

%u=[]; v=[];

for u = u0 : u0 + X(1,1) − 1

temp=[];

for v = 0 : 0 + Y(2,1) − 1

temp = [temp, abs(Dir(2,:))*[v;u] + 1];

end

Rect = [Rect temp];

end

%indices from 2st rectangle

%u=[];v=[];

for u = (N−u0−X(1,1)):(N−u0−1)

temp2 = [];

for v = (N−Y(2,1)):(N−1)

temp2 = [temp2, abs(Dir(2,:))*[v;u] + 1];

end

Rect2 = [Rect2 temp2];

end

Bdel = [Paral Rect Rect2];

end

if sum(signDir) == 2 %++

%indices from parallelogram

% creating vertices to check

xq=[]; yq=[];

56

for i=(u0):u0+(sum(X))

for j=(v0):v0+(sum(Y))

xq = [xq, (i)];

yq = [yq, (j)];

end

end

IP=[xq; yq];

% verteces of the parallelogram

xv = [u0, u0+X(2,1), u0+sum(X), u0+X(1,1)];

yv = [v0+sum(Y), v0+Y(1,1), v0, v0+Y(2,1)];

% running built−in inpolygon method

rng default

in = find(inpolygon(xq,yq,xv,yv)==1);

[inm, inn]=size(in);

% vector of points that are verteces and are internal points

% of the parallelogram

for i=1:inn

UV(:,i)=IP(:,in(i));

end

% removing 3 out 4 verteces

remove1 = [u0 v0+sum(Y)];

remove2 = [u0+sum(X) v0];

remove3 = [u0+X(1,1) v0+Y(2,1)];

UV(:,find(ismember(UV',remove1,'rows')))=[];

UV(:,find(ismember(UV',remove2,'rows')))=[];

UV(:,find(ismember(UV',remove3,'rows')))=[]; [UVm UVn]=size(UV);

% computing indeces of M 2 based on parallelogram

for i=1:UVn

Paral = [Paral Y(2,1)*UV(1,i) + X(2,1)*UV(2,i) + 1];

end

57

%indices from 1st rectangle

for u = 0 : X(2,1) − 1

temp=[];

for v = v0−sv : v0−sv + Y(1,1) − 1

temp = [temp, abs(Dir(2,:))*[v;u] + 1];

end

Rect = [Rect temp];

end

%indices from 2st rectangle

for u = (N−X(2,1)):(N−1)

temp2 = [];

for v = (N−v0+sv−Y(1,1)):(N−v0+sv−1)

temp2 = [temp2, abs(Dir(2,:))*[v;u] + 1];

end

Rect2 = [Rect2 temp2];

end

Bdel = [Paral Rect Rect2];

end

if sum(signDir) == 0 %−+

%indices from parallelogram

% creating vertices to check

xq=[]; yq=[];

for i=(u0):(u0+sum(X))

for j=(v0−sum(Y)):(v0)

xq = [xq, (i)];

yq = [yq, (j)];

end

end

IP=[xq; yq];

58

% verteces of the parallelogram

xv = [u0, u0+X(2,1), u0+sum(X), u0+X(1,1)];

yv = [v0−Y(1,1), v0−sum(Y), v0−Y(2,1), v0];

% running built−in inpolygon method

rng default

in = find(inpolygon(xq,yq,xv,yv)==1);

[inm, inn]=size(in);

% vector of points that are verteces and are internal points

% of the parallelogram

for i=1:inn

UV(:,i)=IP(:,in(i));

end

% removing 3 out 4 verteces

remove1 = [u0+X(2,1) v0−sum(Y)];

remove2 = [u0+sum(X) v0−Y(2,1)];

remove3 = [u0+X(1,1) v0];

UV(:,find(ismember(UV',remove1,'rows')))=[];

UV(:,find(ismember(UV',remove2,'rows')))=[];

UV(:,find(ismember(UV',remove3,'rows')))=[];

[UVm UVn]=size(UV); Bdel=[];

% computing indeces of M 2 based on parallelogram

for i=1:UVn

Bdel = [Bdel Y(2,1)*UV(1,i) + X(2,1)*UV(2,i) + 1];

end

end

Appendix B

NDIR

function [rC] = ndir(Dir,N)

% The program locates and then removes the dependent row indexes

% from M. It then compares the rank of the original system

% matrix M with the rank of the reduced one rM. If the original system

% matrix is over−determined, the program terminates

% Inputs:

% Dir: set of scanning directions [D1; D2; ... ; Dn]

% N: image size N by N, N is a multiple of XiYi, ... , XnYn

% Output:

% rM: reduced system matrix

% Sorting directions to be in ascending order

Dir(:,3)=Dir(:,2)./Dir(:,1);

[x,y]=sort(Dir(:,3),1,'ascend');

col1=Dir(:,1); col2=Dir(:,2);

temp1=col1(y); temp2=col2(y);

Dir=[temp1 temp2];

% initialization

[a b]=size(Dir);

signDir = sign(Dir(:,1).*Dir(:,2));

X = abs(Dir(:,1));

Y = abs(Dir(:,2));

% directions in original order

60

fprintf('input directions : '); Dir

% obtaining component matrices:

for i=1:a

M{i} = getmat(Dir(i,:), N);

Mlength(i) = length(M{i}(:,1));

end

% concatinating component matrices to form C=[M1;M2;...;Mn]

C = cat(1, M{1,:});

[om, on] = size(C);

if om > Nˆ2

fprintf('Original matrix M is over−determined. i.e. number of rows

exceeds number of columns. The algorithm is not applicable');

return

end

%rank based on the paper

r = sum(X+Y)*N−sum(X)*sum(Y);

fprintf('Rank based on the paper: '); r

%Printng original system matrix info

fprintf('original matrix M=[M1;M2;...;Mn], generated from D1,D2,...,Dn :');

fprintf(' size = %4d x %d, ', om, on);

fprintf(' rank = %4d \n', r);

% master loop otputing already reduced matrices based on twodir.m

if sign(Dir(1,2))+sign(Dir(a,2))==2 % all positive directions

% applying twodir method

61

for i=2:a

v = [];

for j=1:(i−1)

v = [v, twodir(Dir(j,:),Dir(i,:),N,sum(X(j+1:i−1)),

sum(Y(1:j−1)),0)];

end

eval(['delM' num2str(i) '= v;']);

% removing dependent rows from corresponding component matrix

v = setdiff(1:Mlength(i),v);

M{i} = M{i}(v,:);

end

elseif sign(Dir(1,2))+sign(Dir(a,2))==−2 % all negative directions

for i=2:a

v = [];

for j=1:(i−1)

v = [v, twodir(Dir(j,:),Dir(i,:),N,sum(X(1:j−1)),

sum(Y((j+1):(i−1))),0)];

end

eval(['delM' num2str(i) '= v;']);

v = setdiff(1:Mlength(i),v);

M{i} = M{i}(v,:);

end

elseif sign(Dir(1,2))+sign(Dir(a,2))==0 % mixed directions

% computing the number of negative directions, k

k = length(find(signDir == −1));

%applying twodir method to first k directions

tic

for i=2:k

v = [];

62

for j=1:i−1

v = [v, twodir(Dir(j,:),Dir(i,:),N,sum(X(1:j−1)),

sum(Y((j+1):(i−1))),0)];

end

eval(['delM' num2str(i) '= v;']);

v = setdiff(1:Mlength(i),v);

M{i} = M{i}(v,:);

end

for i=(k+1):a

v = [];

for j=1:(i−1)

% applying twodir method to negative and positive

directions

if j<=k

v = [v, twodir(Dir(j,:),Dir(i,:),N,sum(X(1:j−1)),

sum(Y(1:j))+sum(Y(k+1:i)),0)];

% applying twodir method to positive directions

elseif j>k

v = [v, twodir(Dir(j,:),Dir(i,:),N,

sum(X(1:k))+sum(X(j+1:i−1)),sum(Y(1:j−1)),

sum(Y(1:k)))];

end

eval(['delM' num2str(i) '= v;']);

end

v = setdiff(1:Mlength(i),v);

M{i} = M{i}(v,:);

end

toc

end

63

% removing zero rows from the reduced system matrix

rC = cat(1, M{1,:});

Mdelz = find(sum(rC,2)==0); zeroarray=Mdelz';

rC(zeroarray,:)=[];

[rCm rCn]=size(rC);

%Printng reduced system matrix data

fprintf('reduced matricx rM=[rM1;rM2;...;rMn], generated from

D1,D2,...,Dn : ');

fprintf(' size = %4d x %d, ', rCm, rCn);

fprintf(' rank = %4d \n', rank(rC));

	Geometric-Based Algorithm for a Full Row-Rank System Matrix Along Multiple Directions in DT
	Recommended Citation

	tmp.1466433504.pdf.8bNCA

