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ABSTRACT

This thesis project will analyze the bias in mixture models when contaminated data is

present. Specifically, we will analyze the relationship between the bias and the mixing

proportion, p, for the rank correlation methods Spearman’s Rho and Kendall’s Tau. We

will first look at the history of the two non-parametric rank correlation methods and the

sample and population definitions will be introduced. Copulas will be introduced to show

a few ways we can define these correlation methods. After that, mixture models will be

defined and the main theorem will be stated and proved. As an example, we will apply this

theorem to the Marshall-Olkin distribution. This will allow us to show the bias graphically

for each of the different correlation methods.
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CHAPTER 1

INTRODUCTION

The goal of statistics is to use data from a sample to learn as much as possible about

a population. However, it is often the case that a sample might be contaminated with indi-

viduals not belonging to the target population. Statisticians are always trying to improve

sampling methods, sample analysis, and parameter estimation, because the end goal is the

most representative sample possible. However, statisticians recognize that these methods

cannot be perfected and other methods have to be developed to achieve that goal. This

thesis paper hopes to achieve a method for characterizing bias, and behavior of bias, when-

ever contaminated data is present in a model. We will later define this as a mixture model.

Specifically, we will analyze two non-parametric measures of association between two vari-

ables in a sample (and populations as we will see). These two measures are Spearman’s

rank correlation coefficient (Rho) and Kendall’s rank correlation coefficient (Tau). There

is a long history of these coefficients, and there are a few ways to define them as well. We

will also see a general correlation coefficient where Rho and Tau are special cases. Copulas

are also introduced in Chapter 2, where we define equivalent forms of both Rho and Tau in

terms of copulas. There is a classification of integrals introduced, called Riemann-Stieltjes

integrals, which have integral differentials that are not the identity function. We will use a

clever technique to solve these with minimal effort.

The main result in this thesis will be defining and characterizing the bias for both

Rho and Tau under mixture models. We will introduce a bivariate mixture model ( ~M )

that consists of bivariate measurements from a valid population (~V ) and a contaminating

population (~C). A key question we will investigate is how this bias is affected as the

contamination changes. The bias will be defined in terms of a mixing proportion, p and

will have the form

Biasθ (p) = θ ~M − θ~V

for some statistic θ. A natural question one may ask is what form these equations will take.
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Will they have a simple closed form? If so, can we classify the direction the bias might

take as contamination is introduced? These are both questions that we will explore.

We will apply our results to the bivariate Marshall-Olkin distribution. This distribution

has a neat and easy analytical form that we can later define explicitly. Furthermore, the

distribution has closed form cumulative distribution functions (CDF), probability density

functions (PDF), and copulas. This adds to the simplicity of the analytical solutions. While

some calculations are very drawn out and tedious, it is primarily elementary algebra and

calculus. To wrap things up, we will demonstrate the technique by visualizing the bias for

randomly simulated parameter values.
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CHAPTER 2

BACKGROUND OF SPEARMAN’S RHO AND KENDALL’S TAU

2.1 THE HISTORY OF SPEARMAN’S RHO

In statistics, it is a common to study the correlation between variables. It is important

to understand the relationship between variables to check for dependence or lack of depen-

dence. A common statistic used in linear regression, Pearson’s correlation coefficient (ρ)

can quantify the linear dependence between two random variables. A variant of Pearson’s

correlation coefficient is Spearman’s Rho (ρS), which can be defined as the same quantity

using the rank of the variables. The rank of a number is the corresponding index of an

observation in the ordered data set. For example, the numbers {5, 7, 8, 2, 4} have corre-

sponding ranks {3, 4, 5, 1, 2}. We will begin by defining the sample version of Spearman’s

Rho, and consider the population version shortly after.

Definition 2.1. Let (x1, y1) , (x2, y2) , . . . , (xn, yn) be real-valued observations. Pearson’s

correlation coefficient can be defined as

ρ̂ (x, y) =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
=

Ĉov (x, y)

sxsy
.

Definition 2.2. Let (x1, y1) , (x2, y2) , . . . , (xn, yn) be real-valued observations and let rx

and ry be the ranks of each respective variable. Spearman’s Rho of a sample can be defined

as

ρ̂S (rx, ry) =

∑n
i=1 (rxi − r̄x) (ryi − r̄y)√∑n

i=1 (rxi − r̄x)2
√∑n

i=1 (ryi − r̄y)2
=

Ĉov (rx, ry)

srxsry
.

This idea of rank correlation was first introduced into the psychology community by

Charles Spearman in 1904. The motivation behind this measurement was to erase the

quantity in observations and analyze how data increased/decreased. In the original paper,

Spearman commented “it can often be altogether escaped in the case of quantities not ad-

mitting absolute measurement, by substituting instead comparison”[1]. As a consequence,

Rho not only measures linear correlation, but any type of positive or negative monotone
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behavior (exponential, quadratic, linear, etc.). By using the ranks of the data, the quantity

is erased from the calculation.

For random variables, the population version of Spearman’s Rho will be needed. The

population definition was introduced by William Kruskal in 1958 [2]. The following def-

inition uses the concept of concordance and discordance, which are essential throughout

this paper.

Definition 2.3. A concordant pair occurs when there are two points, (x1, y1) and (x2, y2),

that have the same sign when subtracted. In other words, sign(x2 − x1) = sign(y2 − y1).

Discordant pairs occur when the opposite is true, or when they have opposite signs. In

other words, sign(x2 − x1) = − sign(y2 − y1).

Graphically, a concordant pair will form an increasing, positively sloped line between

the two points. Similarly, a discordant pair will form a decreasing, negatively sloped line

between the two points.

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.
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1.

0
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5

Concordant Pair
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y
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y
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Figure 2.1: Two graphs showing examples of concordant and discordant pairs.
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Definition 2.4. Consider a bivariate distribution with random pair (X, Y ). Let (X1, Y1),

(X2, Y2), and (X3, Y3) be independent and identically distributed pairs. Spearman’s Rho

of a population can be defined as

ρS = 3 (P ((X1 −X2) (Y1 − Y3) > 0)− P ((X1 −X2) (Y1 − Y3) < 0)) .

It is important to notice the dependence between X1 and Y1 and the independence

between X2 and Y3. The reason for this will become more clear in Section 2.4. Also note

that the quantity in the parentheses is multiplied by 3. This is because the quantity inside

ranges from −1
3

to 1
3

(for detail see [2] p. 824). The first term in the parentheses is the

probability of concordance and the second term is probability of discordance. Also notice

that the second term is the compliment of the first. There are several ways to write Spear-

man’s Rho by taking advantage of this result. We will see in Section 2.4 that Spearman’s

Rho can be written in terms of probabilities, copulas, and CDFs. Although not obvious, we

will later see how the sample definition and the population definition relate to each other.

2.2 THE HISTORY OF KENDALL’S TAU

In 1938, the statistics community was introduced to Kendall’s Tau (τ ), another mea-

sure of rank correlation [3]. There are several parallels between Rho and Tau. They both

have the ability to measure monotone behavior between two variables and also both require

ranks to calculate. If both Rho and Tau are calculated on a set of data, often the quantities

are relatively close, and usually the same sign. The idea of concordant and discordant pairs

are used in the calculation of Tau.

Definition 2.5. Given a sample of raw data, (x1, y1) , (x2, y2) , . . . , (xn, yn), calculate the

number of concordant pairs c and number of discordant pairs d. Kendall’s Tau of a sample

can be defined as

τ̂ =
c− d
c+ d

=
c− d(
n
2

)
where n is the sample size.



11

There is an alternate definition for both Rho and Tau that accounts for tied pairs,

which is when the sign equals zero. Throughout the paper, continuous data will be studied.

Therefore, the probability of a tie happening is zero. The alternative definitions of Tau can

be useful for discrete data.

For the population definition we have to find the difference between the probability of

concordance and the probability of discordance. Just like Rho, there will be several results

that take advantage of the symmetry of the following definition.

Definition 2.6. Consider a bivariate distribution with random pair (X, Y ). Let (X1, Y1)

and (X2, Y2) be independent and identically distributed pairs. Kendall’s Tau of a popula-

tion can be defined as

τ = P ((X1 −X2) (Y1 − Y2) > 0)− P ((X1 −X2) (Y1 − Y2) < 0) .

This result looks intuitively symmetric and, much like Rho, we will define this quan-

tity in Section 2.4 in terms of probabilities, copulas, and CDFs. It is also important to

notice the dependence between X1 and Y1, and the dependence between X2 and Y2.

Let’s briefly relate this definition to the sample definition. Applying the Law of Large

Numbers, think of the sample size approaching infinity.

lim
n→∞

c− d(
n
2

) = lim
n→∞

c(
n
2

) − lim
n→∞

d(
n
2

) −→ (
P (concordance)− P (discordance)

)
This is a relaxed way to think about how the two definitions relate. To summarize, so

far we have been introduced to the sample and population definitions of Spearman’s Rho

and Kendall’s Tau.

2.3 A GENERAL CASE FOR RANK CORRELATION

Apart from the correlation coefficients already introduced, in 1948 a general correla-

tion coefficient was introduced by Maurice Kendall in his book Rank Correlation Methods

[4]. He proposed that this correlation coefficient is a generalization of coefficients such as

Kendall’s Tau (τ ), Spearman’s Rho (ρS), and Pearson’s Rho (ρ).
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Definition 2.7. To any pair of individuals, say the ith and the j th, we will allot an X-score,

denoted by aij , subject to the condition that aij = −aji. Similarly, we will allot a Y -score,

denoted by bij , where bij = −bji. We define a generalized correlation coefficient Γ by the

equation

Γ =

∑
aijbij√(∑
a2ij
∑
b2ij
)

and regard aij as zero if i = j.

We can define Kendall’s Tau using this definition. Let (X, Y ) be a random bivariate

vector with realized values (x, y). Then let ri denote the rank of the ith object and rj denote

the rank of the j th object, both ranked according to the variable x. Similarly, let pi denote

the rank of the ith object and pj denote the rank of the j th object, both ranked according to

the variable y. Define

aij =


1 , ri < rj

−1 , ri > rj

and

bij =


1 , pi < pj

−1 , pi > pj

.

Using these parameters, Kendall’s Tau is now defined in terms of the general correlation

coefficient. Definition 2.5 does not account for ties, but this general coefficient does. Be-

cause of this, the general coefficient is more powerful than the sample version. Again, our

focus will be continuous data which has probability zero of a tie happening.

Spearman’s Rho can be defined in a similar way. The parameters for Rho are much

easier to implement. Using the same notation from the Tau case, define

aij = rj − ri

and

bij = pj − pi.
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Spearman’s Rho is now defined via parameters of the general correlation coefficient. It can

easily be proved through algebraic manipulation that this way of defining it is equivalent to

Definition 2.2.

This general coefficient that Maurice Kendall discovered is a pleasing result. In addi-

tion to the similarities between the two rank correlation methods that we have already seen,

there will be more parallels throughout the entirety of this paper.

2.4 MODERN EXPRESSIONS FOR RANK CORRELATIONS

Both of the population definitions we have seen for Rho and Tau have several equiv-

alent forms, including in terms of copulas. Copulas are very important tools, as they are

able to isolate information about the dependence structure of jointly distributed random

variables. For the purposes of this project we only consider a bivariate case, but copulas

can be extended to a d-dimensional case. We can define copulas more formally below, and

follow with some related results and important theorems.

Definition 2.8. A two-dimensional copula is a function C : [0, 1]2 → [0, 1] with bivariate

inputs (u, v) such that the following conditions are satisfied:

1. C is a 2-increasing function, the bivariate analog of a univariate non-decreasing

function (for more detail, see [5] p. 8). Equivalently, for every u1, u2, v1, v2 ∈ [0, 1]

such that u1 ≤ u2 and v1 ≤ v2,

C (u2, v2)− C (u2, v1)− C (u1, v2) + C (u1, v1) ≥ 0.

This has also been called quasi-monotone [6].

2. C (u, 1) = u and C (1, v) = v.

3. C (u, 0) = 0 and C (0, v) = 0.



14

Definition 2.9. Let (U, V ) be a bivariate random vector with uniform marginals. An inde-

pendence copulas is defined as

Π (u, v) = uv.

In fact, random variables are independent if and only if their copula is the independence

copula.

The next Theorem (Sklar’s) will allow us to use copulas in a practical manner. We

incorporate CDFs and copulas so we can apply them to the definitions of Tau and Rho.

Using the next Theorem we will be able to input marginal distributions for some arbitrary

joint distribution function and output a quantity that can capture the dependence structure

between each marginal distribution.

Theorem 2.10 (Sklar’s Theorem [7]). Let FX,Y (x, y) be a bivariate distribution function

with marginals FX (x) and FY (y). Then there exists a copula C such that for all (x, y) ∈

R2,

FX,Y (x, y) = C (FX (x) , FY (y)) .

If FX (x) , FY (y) are continuous, then C is unique; otherwise C is uniquely determined on

ranFX (x)× ranFY (y). Conversely, if C is a copula and FX (x) , FY (y) are distribution

functions, then the function FX,Y (x, y) defined above is a bivariate distribution function

with marginals FX (x) , FY (y).

Corollary 2.11. Using the same notation as in Theorem 2.10, also let F−1X (x) and F−1Y (y)

be quasi-inverses of FX (x) and FY (y), respectively. Then for any (u, v) ∈ domC,

C (u, v) = FX,Y
(
F−1X (u) , F−1Y (v)

)
.

A quasi-inverse can be thought of as a traditional inverse function with weaker condi-

tions. Now that we have defined copulas and how to apply copulas to probability distribu-

tions, we can harness their advantages and derive the rank correlation methods in terms of
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copulas. To assist in future calculation and notation, we will introduce the “Q” construct.

This will make the notation simpler.

The rest of the paper is scattered with a generalize integral of the form∫ b

a

f (x) dg (x) .

This is called a Riemann-Steiljes integral, and by having the differential as a non-identity

function it will essentially “weight” the area of the curve with respect to the function g (x).

This idea can be extended into the bivariate case that we will utilize. This idea works when

the function g (x) satisfies general properties. However, when g (x) does not satisfy these

general properties, we will introduce a lemma that will fix that issue.

Theorem 2.12 (The “Q” Construct [5] p. 159). Let (X1, Y1) and (X2, Y2) be indepen-

dent vectors of continuous random variables with joint distribution functions F1 and F2,

respectively, with common marginals FX (x) and FY (y). Let C1 and C2 denote the cop-

ulas of (X1, Y1) and (X2, Y2), respectively, so that F1 (x, y) = C1 (FX (x) , FY (y)) and

F2 (x, y) = C2 (FX (x) , FY (y)). Let Q denote the difference between the probability of

concordance and discordance of (X1, Y1) and (X2, Y2), i.e. let

Q = P ((X1 −X2) (Y1 − Y2) > 0)− P ((X1 −X2) (Y1 − Y2) < 0) .

Then

Q = Q (C1, C2) = 4

∫ ∫
[0,1]2

C2 (u, v) dC1 (u, v)− 1.

Proof. The random variables being used are continuous. Because of this, we can use the

law of compliments to the following:

Q (C1, C2) = P ((X1 −X2) (Y1 − Y2) > 0)− P ((X1 −X2) (Y1 − Y2) < 0)

= 2P ((X1 −X2) (Y1 − Y2) > 0)− 1

= 2 [P (X1 > X2, Y1 > Y2) + P (X2 > X1, Y2 > Y1)]− 1.
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It remains to show that

P (X1 > X2, Y1 > Y2) + P (X2 > X1, Y2 > Y1) = 2P (X1 > X2, Y1 > Y2)

= 2

∫ ∫
R2

C2 (u, v) dC1 (u, v) .

We will spend the rest of the proof showing this. Start with the first term.

P (X1 > X2, Y1 > Y2) = P (X2 < X1, Y2 < Y1)

=

∫ ∫
R2

P (X2 < x, Y2 < y | X1 = x, Y1 = y) f1 (x, y) dxdy

=

∫ ∫
R2

F2 (x, y) dF1 (x, y)

=

∫ ∫
R2

C2 (FX (x) , FY (y)) dC1 (FX (x) , FY (y)) .

The previous line invokes Sklar’s Theorem. Using what we call a probability-integral trans-

formation [8] we can introduce the transformations u = FX (x) and v = FY (y). After

applying the transformation, it follows that

P (X1 > X2, Y1 > Y2) =

∫ ∫
[0,1]2

C2 (u, v) dC1 (u, v) .

Moving on to the second half of the proof, we will prove the next result. Let Si (x, y) be

the survival function for the ith joint CDF.

P (X1 < X2, Y1 < Y2) = P (X2 > X1, Y2 > Y1)

=

∫ ∫
R2

P (X2 > x, Y2 > y | X1 = x, Y1 = y) f1 (x, y) dxdy

=

∫ ∫
R2

S2 (x, y) dF1 (x, y)

=

∫ ∫
R2

[1− FX (x)− FY (y) + F2 (x, y)] dF1 (x, y)

=

∫ ∫
R2

[1− FX (x)− FY (y) + C2 (FX (x) , FY (y))] dC1 (FX (x) , FY (y))

The previous line invokes Sklar’s Theorem. Using the same probability-integral transfor-

mation introduced earlier, it follows that

=

∫ ∫
[0,1]2

[1− u− v + C2 (u, v)] dC1 (u, v)
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= 1− 1

2
− 1

2
+

∫ ∫
[0,1]2

C2 (u, v) dC1 (u, v)

=

∫ ∫
[0,1]2

C2 (u, v) dC1 (u, v) .

Thus,

Q (C2, C1) = 4

∫ ∫
[0,1]2

C2 (u, v) dC1 (u, v)− 1.

�

Corollary 2.13 (“Q” corollary [6]). Using the same notation from Theorem 2.12, also let

C be a survival copula. A survival copula has the same properties as a typical survival

function.

1. Q is symmetric in its arguments. That is, Q (C1, C2) = Q (C2, C1).

2. Copulas can be replaced by survival copulas in Q. That is, Q
(
C,C

)
= Q

(
C,C

)
.

With the help of all the previous definitions, theorems, and corollaries, we can define

both Spearman’s Rho and Kendall’s Tau in terms of copulas. Along with each definition,

we will have a short discussion about each rank correlation method. To overcome potential

confusion, we will finally connect the sample definition and the population definition of

Spearman’s Rho, as we have already seen with Tau.

Theorem 2.14. Let (X, Y ) be a continuous random vector and let C be a copula for

(X, Y ). Spearman’s Rho can be defined as

Q (C,Π) = 12

∫ ∫
[0,1]2

C (u, v) dudv − 3

where Π is an independence copula.

Proof. Recall from Definition 2.4, Spearman’s Rho can be defined as

ρS = 3 (P ((X1 −X2) (Y1 − Y3) > 0)− P ((X1 −X2) (Y1 − Y3) < 0)) .

From Theorem 2.12, we know the difference between the probability of concordance and

discordance is the Q construct. The following form may appear different than Theorem
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2.12, but because X2 and Y3 are defined as independent, they will have an independence

copula. Hence,

ρS = 3

[
4

∫ ∫
[0,1]2

C (u, v) dudv − 1

]
= 12

∫ ∫
[0,1]2

C (u, v) dudv − 3 = 3Q (C,Π) .

�

An interesting result from the previous theorem can help us tie together the sample def-

inition and the population version. It is important to restate that copulas of a probability dis-

tribution have uniform marginal distributions. Hence, U ∼ Uni (0, 1) and V ∼ Uni (0, 1).

Note that the probability-integral transformation is used in the below derivation. Also recall

the expected value and variance of a uniform distribution on (0, 1) are 1
2

and 1
12

, respec-

tively.

ρS = 3Q (C,Π)

= 12

∫ ∫
[0,1]2

uvdC (u, v)− 3

= 12

∫ ∫
[0,1]2

uvdFX,Y
(
F−1X (u) , F−1Y (v)

)
− 3 (by Corollary 2.11)

= 12

∫ ∫
[0,1]2

uvdP
(
X < F−1X (u) , Y < F−1Y (v)

)
− 3

= 12

∫ ∫
[0,1]2

uvdP (U < u, V < v)− 3 (transformation)

= 12

∫ ∫
[0,1]2

uvfU,V (u, v) dudv − 3

= 12 · E [UV ]− 3

=
E [UV ]− 1

4
1
12

=
Cov (U, V )√

Var (U)
√

Var (V )

= ρ (FX (x) , FY (y)) .

Even through the population definition in terms of copulas, we are still able to define it in

terms of Pearson’s correlation coefficient. In summary, the population version of Spear-

man’s Rho is Pearson’s evaluated in terms of the marginal CDFs.
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Theorem 2.15. Let (X, Y ) be a continuous random vector and let C be a copula for

(X, Y ). Kendall’s Tau can be defined as

Q (C,C) = 4

∫ ∫
[0,1]2

C (u.v) dC (u, v)− 1.

Proof. Recall from Definition 2.6, the population definition of Kendall’s Tau is

τ = P ((X1 −X2) (Y1 − Y2) > 0)− P ((X1 −X2) (Y1 − Y2) < 0) .

Apply Theorem 2.12 and we arrive at

4

∫ ∫
[0,1]2

C (u, v) dC (u, v)− 1 = Q (C,C) .

�

Using the results from above, we can finally define both Spearman’s Rho and Kendall’s

Tau in terms of CDFs. Although the bias that we will study in later sections can be achieved

by using copulas, it is much easier to work with the definitions in terms of densities. The

copulas will help during Chapter 4 when we introduce the Marshall-Olkin distribution. The

intuition behind the following theorem comes easily from the results above, so we will not

prove them.

Definition 2.16. Let (X, Y ) be a continuous, random vector with joint CDF FX,Y (x, y)

and respective marginals FX (x), FY (y). We can define Spearman’s Rho as

ρS (X, Y ) = 12

∫ ∫
R2

FX,Y (x, y) dFX (x) dFY (y)− 3

and Kendall’s Tau as

τ (X, Y ) = 4

∫ ∫
R2

FX,Y (x, y) dFX,Y (x, y)− 1.

Proof. For both expression we will introduce the substitution u = FX (x) and v = FY (y).

Then, invoking Sklar’s Theorem (2.10) we get the following expressions.

ρS = 12

∫ ∫
[0,1]2

C (u, v) dudv − 3
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= 12

∫ ∫
R2

FX,Y (x, y) dFX (x) dFY (y)− 3

τ = 4

∫ ∫
[0,1]2

C (u, v) dC (u, v)− 1

= 4

∫ ∫
R2

FX,Y (x, y) dFX,Y (x, y)− 1

�

In summary, we can make the following observation. Ignoring the constants, Spear-

man’s Rho can be defined as an integral over R2 of a joint CDF with respect to the two

marginal CDFs. Similarly, ignoring the constants, Kendall’s Tau can be defined as an inte-

gral over R2 of a joint CDF with respect to the joint CDF. Another way to think about these

rank correlation methods is in terms of concordance and discordance. Ignoring constants,

Spearman’s Rho is the probability of concordance minus the probability of discordance,

with the constraints that the marginals are independent. Similarly, ignoring the constants,

Kendall’s Tau is just the probability of concordance minus the probability of discordance.

In the next chapter we will see the expressions from Definition 2.16 in terms of sur-

vival functions. The following lemma will show this is valid, and will also help simplify

future calculations.

Lemma 2.17. Let FX,Y (x, y) be a joint CDF with marginals joint densities fX (x) and

fY (y) with survival function SX,Y (x, y). Then∫ ∫
R2

FX,Y (x, y) dFX (x) dFY (y) =

∫ ∫
R2

SX,Y (x, y) dSX (x) dSY (y)

and ∫ ∫
R2

FX,Y (x, y) dFX,Y (x, y) =

∫ ∫
R2

SX,Y (x, y) dSX,Y (x, y) .

Proof. Starting with the first expression,∫ ∫
R2

FX,Y (x, y) dFX (x) dFY (y)

=

∫ ∫
R2

FX,Y (x, y) fX (x) fY (y) dxdy
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=

∫ ∫
R2

[1− SX (x)− SY (y) + SX,Y (x, y)] fX (x) fY (y) dxdy

=

∫ ∫
R2

[1− (1− FX (x))− (1− FY (y)) + SX,Y (x, y)] fX (x) fY (y) dxdy

=

∫ ∫
R2

fX (x) fY (y) dxdy −
∫ ∫

R2

fX (x) fY (y) dxdy −
∫ ∫

R2

fX (x) fY (y) dxdy

+

∫ ∫
R2

FX (x) fX (x) fY (y) dxdy +

∫ ∫
R2

FY (y) fX (x) fY (y) dxdy

+

∫ ∫
R2

SX,Y (x, y) fX (x) fY (y) dxdy

Now introduce the substitutions u = FX (x) and v = FY (y), where du = fX (x) dx and

dv = fY (y) dy.

=−
∫ ∫

R2

fX (x) fY (y) dxdy +

∫
R
fY (y)

∫ 1

0

ududy +

∫
R
fX (x)

∫ 1

0

vdvdx

+

∫ ∫
R2

SX,Y (x, y) fX (x) fY (y) dxdy

=− 1 +
1

2

∫
R
fY (y) dy +

1

2

∫
R
fX (x) dx+

∫ ∫
R2

SX,Y (x, y) fX (x) fY (y) dxdy

=− 1 +
1

2
+

1

2
+

∫ ∫
R2

SX,Y (x, y) fX (x) fY (y) dxdy

=

∫ ∫
R2

SX,Y (x, y) fX (x) fY (y) dxdy

Now observe that

dSX (x) dSY (y) = d (1− FX (x)) d (1− FY (y)) = fX (x) fY (y) dxdy.

Hence, ∫ ∫
R2

FX,Y (x, y) dFX (x) dFY (y) =

∫ ∫
R2

SX,Y (x, y) dSX (x) dSY (y) .

The second expression is proved in a similar way.∫ ∫
R2

FX,Y (x, y) dFX,Y (x, y)

=

∫ ∫
R2

[1− SX (x)− SY (y) + SX,Y (x, y)] fX,Y (x, y) dxdy

=

∫ ∫
R2

[1− (1− FX (x))− (1− FY (y)) + SX,Y (x, y)] fX,Y (x, y) dxdy
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=

∫ ∫
R2

fX,Y (x, y) dxdy −
∫ ∫

R2

fX,Y (x, y) dxdy −
∫ ∫

R2

fX,Y (x, y) dxdy

+

∫ ∫
R2

FX (x) fX,Y (x, y) dxdy +

∫ ∫
R2

FY (x) fX,Y (x, y) dxdy

+

∫ ∫
R2

SX,Y (x, y) fX,Y (x, y) dxdy

Now introduce the substitutions u = FX (x) and v = FY (y), where du = fX (x) dx and

dv = fY (y) dy.

=−
∫ ∫

R2

fX,Y (x, y) +

∫
R
fX,Y (x, y)

∫ 1

0

ududy +

∫
R
fx,Y (x, y)

∫ 1

0

vdvdx

+

∫ ∫
R2

SX,Y (x, y) fX,Y (x, y) dxdy

=− 1 +
1

2
+

1

2
+

∫ ∫
R2

Sx,Y (x, y) fx,Y (x, y) dxdy

Now observe that

dSx,Y (x, y) = d (1− FX (x)− FY (y) + FX,Y (x, y)) = fX,Y (x, y) dxdy.

Hence, ∫ ∫
R2

FX,Y (x, y) dFX,Y (x, y) =

∫ ∫
R2

SX,Y (x, y) dSX,Y (x, y) .

�
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CHAPTER 3

BIAS UNDER A MIXTURE MODEL AND ITS BEHAVIOR

3.1 WHAT IS A MIXTURE MODEL?

Mixture models can arise for multiple reasons. This could be due to bad sampling

methods, diverse population, or it could be intended. In general, a mixture model represents

a population with more than one distribution in it. For our purposes, we will be analyzing

a bivariate mixture model that contains true, intended data, and contaminating, unwanted

data. More formally, we can define a mixture model below.

Definition 3.1. Let ~V and ~C be bivariate random vectors from the valid distribution and

contaminated distribution, respectively. Let W ∼ Bernoulli(p), where p is the proportion

of contamination. Then define a bivariate mixture model as

~M = W ~C + (1−W ) ~V .

Consider the following scenario. Statisticians are collecting two statistics for under-

graduate students at a university. They administer surveys randomly throughout campus

without screening. There is a possibility that graduate students accidentally enter the sam-

ple unintended. Although the probability may be low, it still must be considered. This

sample will contain a proportion (p) of unwanted, contaminated data. Assume that the

distribution of each population is known where undergraduates are the valid data and the

graduate students are the contaminating data, and

~V ∼ Normal

~µ =

0

0

 , Σ =

 0.07 −0.03

−0.03 0.05




~C ∼ Normal

~µ =

2

3

 , Σ =

 0.03 −0.05

−0.05 0.1


 .

Taking a random sample from these populations and mixing accordingly, we can observe

the results in Figure 3.1 below. In the first graph we are introducing no mixing, and is
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all the valid population. In the second graph there is half-valid, half-contaminated. The

third graph contains all contaminated data, which would occur if the statistician samples

the wrong population, entirely. This example of mixing illustrates the famous Simpson’s

Paradox. Notice the correlation is negative with no mixing, and as mixing is introduced

the correlation becomes positive and then back to negative as the contamination takes over.

This relationship between mixing and positive/negative correlation will be similar to the

main results introduced throughout this chapter.
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Figure 3.1: Three different results of changing the mixing proportion (p).

The first graph shows sampling the valid population. The second graph shows

sampling half from the valid population and half from the contaminated population. The

last graph shows sampling fully from the contaminated population. This diagram illustrates

Simpson’s Paradox. For visual convenience, the correlation is printed and the least-squares

regression line is over-layed on each graph.

3.2 BIAS UNDER MIXTURE MODELS

Traditionally, bias is defined as the difference between the expected value of an es-

timate and the true value of the parameter it is intended to estimate. In the context of

Spearman’s Rho, Kendall’s Tau, and mixture models we define the bias as the difference

between the parameter of the mixture and the parameter of the valid population. This can
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be defined more formally below.

Definition 3.2. Let ~V , ~C, ~M , W , and p be described as in definition 3.1. The bias under

the mixture is

Biasτ (p) = τ ~M − τ~V ,

Biasρ(p) = ρ ~M − ρ~V .

Before the main result of the paper is introduced, there is one more lemma that will

be used in the proof for Theorem 3.4. This lemma will use the property of the linearity of

differentials and will help us prove later results.

Lemma 3.3. Let f(x), g(x), and h(x) be real-valued functions and let a, b, c ∈ R. Then∫ t

s

f(x)d (ag(x) + bh(x)) =

∫ t

s

af(x)dg(x) +

∫ t

s

bf(x)dh(x).

Applying Definition 3.2 to the rank correlation methods, the main result of this paper

can now be introduced.

Theorem 3.4. The bias in Kendall’s Tau and Spearman’s Rho due to mixing can be ex-

pressed as

Biasτ (p) = 4
(
aτp

2 + bτp
)

Biasρ(p) = 12
(
aρp

3 + bρp
2 + cρp

)
,

where

aτ =

∫ ∫
R2

S~V (x, y)dS~V (x, y)−
∫ ∫

R2

S~V (x, y)dS ~C(x, y)

−
∫ ∫

R2

S ~C(x, y)dS~V (x, y) +

∫ ∫
R2

S ~C(x, y)dS ~C(x, y),

bτ =

∫ ∫
R2

S~V (x, y)dS ~C(x, y) +

∫ ∫
R2

S ~C(x, y)dS~V (x, y)

−2

∫ ∫
R2

S~V (x, y)dS~V (x, y)
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and

aρ =−
∫ ∫

R2

S~V (x, y) dSV1 (x) dSV2 (y) +

∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)

+

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y)−
∫ ∫

R2

S~V (x, y) dSC1 (x) dSC2 (y)

+

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y)−
∫ ∫

R2

S ~C (x, y) dSV1 (x) dSC2 (y)

−
∫ ∫

R2

S ~C (x, y) dSC1 (x) dSV2 (y) +

∫ ∫
R2

S ~C (x, y) dSC1 (x) dSC2 (y)

bρ =3

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y)− 2

∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)

− 2

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y) +

∫ ∫
R2

S~V (x, y) dSC1 (x) dSC2 (y)

− 2

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y) +

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSC2 (y)

+

∫ ∫
R2

S ~C (x, y) dSC1 (x) dSV2 (y)

cρ =

∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)− 3

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y)

+

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y) +

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y) .

Proof. Beginning with Kendall’s Tau, we will start with the definition of bias.

Biasτ (p) =τ ~M − τ~V

=4

∫ ∫
R2

S ~M (x, y) dS ~M (x, y)− 1−
(

4

∫ ∫
R2

S~V (x, y) dS~V (x, y)− 1

)
=4

∫ ∫
R2

[
(1− p)S~V (x, y) + pS ~C (x, y)

]
d [(1− p)S~V (x, y) + pS ~C (x, y)]

− 4

∫ ∫
R2

S~V dS~V (x, y) .

Now apply Lemma 3.3.

=4

[ ∫ ∫
R2

(1− p)2 S~V (x, y) dS~V (x, y) +

∫ ∫
R2

(1− p) pS~V (x, y) dS ~C (x, y)

+

∫ ∫
R2

p (1− p)S ~C (x, y) dS~V (x, y) +

∫ ∫
R2

p2S ~C (x, y) dS ~C (x, y)

]
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− 4

∫ ∫
R2

S~V (x, y) dS~V (x, y)

=4

[ ∫ ∫
R2

S~V (x, y) dS~V (x, y)− 2p

∫ ∫
R2

S~V (x, y) dS~V (x, y)

+ p2
∫ ∫

R2

S~V (x, y) dS~V (x, y) + p

∫ ∫
R2

S~V (x, y) dS ~C (x, y)

− p2
∫ ∫

R2

S~V (x, y) dS ~C (x, y) + p

∫ ∫
R2

S ~C (x, y) dS~V (x, y)

− p2
∫ ∫

R2

S ~C (x, y) dS~V (x, y) + p2
∫ ∫

R2

S ~C (x, y) dS ~C (x, y)

]
− 4

∫ ∫
R2

S~V (x, y) dS~V (x, y)

=4

[
p2
(∫ ∫

R2

S~V (x, y) dS~V (x, y)−
∫ ∫

R2

S~V (x, y) dS ~C (x, y)

−
∫ ∫

R2

S ~C (x, y) dS~V (x, y) +

∫ ∫
R2

S ~C (x, y) dS ~C (x, y)

)
+ p

(∫ ∫
R2

S~V (x, y) dS ~C (x, y) +

∫ ∫
R2

S ~C (x, y) dS~V (x, y)

− 2

∫ ∫
R2

S~V (x, y) dS~V (x, y)

)]

=4
(
aτp

2 + bτp
)
.

Using the same strategy above, we can use it solve for the bias of Rho under a mixture.

Biasρ (p) =ρ ~M − ρ~V

=12

∫ ∫
R2

S ~M (x, y) dSM1 (x) dSM2 (y)− 3

−
(

12

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y)− 3

)
=12

∫ ∫
R2

[
(1− p)S~V (x, y) + pS ~C (x, y)

]
d
[

(1− p)SV1 (x) + pSC1 (x)
]
d
[

(1− p)SV2 (y) + pSC2 (y)
]

−
(

12

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y)

)
=12

[ ∫ ∫
R2

(1− p)3 S~V (x, y) dSV1 (x) dSV2 (y)

+

∫ ∫
R2

(1− p)2 pS~V (x, y) dSV1 (x) dSC2 (y)
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+

∫ ∫
R2

(1− p)2 pS~V (x, y) dSC1 (x) dSV2 (y)

+

∫ ∫
R2

(1− p) p2S~V (x, y) dSC1 (x) dSC2 (y)

+

∫ ∫
R2

(1− p)2 pS ~C (x, y) dSV1 (x) dSV2 (y)

+

∫ ∫
R2

p2 (1− p)S ~C (x, y) dSV1 (x) dSC2 (y)

+

∫ ∫
R2

p2 (1− p)S ~C (x, y) dSC1 (x) dSV2 (y)

+

∫ ∫
R2

p3S ~C (x, y) dSC1 (x) dSC2 (y)

]
− 12

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y) .

=12

[ ∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y)− 3p

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y)

+ 3p2
∫ ∫

R2

S~V (x, y) dSV1 (x) dSV2 (y)− p3
∫ ∫

R2

S~V (x, y) dSV1 (x) dSV2 (y)

+ p

∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)− 2p2
∫ ∫

R2

S~V (x, y) dSV1 (x) dSC2 (y)

+ p3
∫ ∫

R2

S~V (x, y) dSV1 (x) dSC2 (y) + p

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y)

− 2p2
∫ ∫

R2

S~V (x, y) dSC1 (x) dSV2 (y) + p3
∫ ∫

R2

S~V (x, y) dSC1 (x) dSV2 (y)

+ p2
∫ ∫

R2

S~V (x, y) dSC1 (x) dSC2 (y)− p3
∫ ∫

R2

S~V (x, y) dSC1 (x) dSC2 (y)

+ p

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y)− 2p2
∫ ∫

R2

S ~C (x, y) dSV1 (x) dSV2 (y)

+ p3
∫ ∫

R2

S ~C (x, y) dSV1 (x) dSV2 (y) + p2
∫ ∫

R2

S ~C (x, y) dSV1 (x) dSC2 (y)

− p3
∫ ∫

R2

S ~C (x, y) dSV1 (x) dSC2 (y) + p2
∫ ∫

R2

S ~C (x, y) dSC1 (x) dSV2 (Y )

− p3
∫ ∫

R2

S ~C (x, y) dSC1 (x) dSV2 (y) + p3
∫ ∫

R2

S ~C (x, y) dSC1 (x) dSC2 (y)

]
− 12

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y) .

=12

[
p3
(
−
∫ ∫

R2

S~V (x, y) dSV1 (x) dSV2 (y) +

∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)

+

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y)−
∫ ∫

R2

S~V (x, y) dSC1 (x) dSC2 (y)
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+

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y)−
∫ ∫

R2

S ~C (x, y) dSV1 (x) dSC2 (y)

−
∫ ∫

R2

S ~C (x, y) dSC1 (x) dSV2 (y) +

∫ ∫
R2

S ~C (x, y) dSC1 (x) dSC2 (y)

)
+ p2

(
3

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y)− 2

∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)

− 2

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y) +

∫ ∫
R2

S~V (x, y) dSC1 (x) dSC2 (y)

− 2

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y) +

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSC2 (y)

+

∫ ∫
R2

S ~C (x, y) dSC1 (x) dSV2 (y)

)
+ p

(∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)− 3

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y)

+

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y) +

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y)

)]
=12

(
aρp

3 + bρp
2 + cρp

)
.

�

3.3 GENERAL BEHAVIOR OF QUADRATICS AND CUBICS

In the case of Tau, the final form expression for the bias is a quadratic without a

constant term. In the case of Rho, the final form expression for the bias is a cubic without

a constant term. For the interest of statistical application, it is common to want the sign of

the bias. That is, whether the contamination will result in a positive or negative bias. By

analyzing and characterizing all the different root behaviors, we can easily find the sign of

the bias. Because the polynomials have no constant terms, our analysis will be simplified

by having a root at zero.

Proposition 3.5. Consider a quadratic function without a constant term, f(p) = ap2 + bp.

The following inequalities between a and b serve as a partition of the coefficient space that

characterizes root behavior and thus the regions in the unit interval where the function is

positive and negative. There are five cases below with subcases for some.
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1. f(p) = 0 for all p in (0, 1). This occurs when a = b = 0.

2. f(p) > 0 for all p in (0, 1). This has two subcases.

(a) a ≥ 0 and b ≥ 0 (but not both equal to zero).

(b) 0 < −a ≤ b.

3. f(p) < 0 for all p in (0, 1). This has two subcases.

(a) a ≤ 0 and b ≤ 0 (but not both equal to zero).

(b) b ≤ −a < 0.

4. There exists a root p1 in (0, 1) such that f(p) > 0 for p < p1, but f(p) < 0 for

p > p1. This occurs when 0 < b < −a.

5. There exists a non-zero root p1 in (0, 1) such that f(p) < 0 for p < p1, but f(p) > 0

for p > p1. This occurs when −a < b < 0.

Consider a cubic function without a constant term, f(p) = ap3 + bp2 + cp. The following

inequalities between a, b, and c serve as a partition of the coefficient space that character-

izes root behavior and thus the regions in the unit interval where the function is positive

and negative. There are 7 cases below with multiple subcases for some.

1. f(p) = 0 for all p in (0, 1). This occurs when a = b = c = 0.

2. f(p) > 0 for all p in (0, 1). This has four subcases.

(a) a > 0, |b| < 2
√
ac, c > 0.

(b) a > 0, |b| > 2
√
ac, b ≤ −2a, c ≥ a, a+ b+ c ≥ 0.

(c) a > 0, b > 0, c > 0, |b| > 2
√
ac.

(d) a < 0, c > 0, a+ b+ c ≥ 0.

3. f(p) < 0 for all p in (0, 1). This has four subcases.
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(a) a < 0, |b| < 2
√
ac, c < 0.

(b) a < 0, |b| > 2
√
ac, b ≥ −2a, c ≤ a, a+ b+ c ≤ 0.

(c) a < 0, b < 0, c < 0, |b| > 2
√
ac.

(d) a > 0, c < 0, a+ b+ c ≤ 0.

4. There exists a non-zero root p1 in (0, 1) such that f(p) > 0 for p < p1, but f(p) < 0

for p > p1. This has two subcases.

(a) a > 0, b ≤ −a, c > 0, |b| > 2
√
ac, a+ b+ c ≤ 0.

(b) a < 0, c > 0, a+ b+ c ≤ 0.

5. There exists a non-zero root p1 in (0, 1) such that f(p) < 0 for 0 < p < p1, but

f(p) > 0 for p1 < p < 1. This has two subcases.

(a) a < 0, b ≥ −a, c < 0, |b| > 2
√
ac, a+ b+ c ≥ 0.

(b) a > 0, c < 0, a+ b+ c ≥ 0.

6. There exists two non-zero roots p1 < p2 in (0, 1) such that f(p) > 0 for 0 < p < p1,

f(p) < 0 for p1 < p < p2, and f(p) > 0 for p2 < p < 1. This occurs when a > 0,

−2a ≤ b ≤ 0, c ≤ a, |b| > 2
√
ac, a+ b+ c ≥ 0.

7. There exists two non-zero roots p1 < p2 in (0, 1) such that f(p) < 0 for 0 < p < p1,

f(p) > 0 for p1 < p < p2, and f(p) < 0 for p2 < p < 1. This occurs when a < 0,

−2a ≥ b ≥ 0, c ≥ a, |b| > 2
√
ac, a+ b+ c ≤ 0.

The proof of these cases are elementary, yet tedious, and will be skipped. The appli-

cation of these cases will be shown graphically in Chapter 4 when we study the Marshall-

Olkin distribution.
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CHAPTER 4

THE MARSHALL-OLKIN DISTRIBUTION

4.1 INTRODUCING THE MARSHALL-OLKIN DISTRIBUTION

Albert W. Marshall and Ingram Olkin introduced the Marshall-Olkin (MO) distribu-

tion in 1967. They claimed that they were the first to have proposed a multivariate exponen-

tial distribution with an applicable use. This distribution arises from “shock models” and

its ability to model the failing of a two-component system [9]. Define three independent

random variables, where Z1 ∼ Exp (λ1), Z2 ∼ Exp (λ2), and Z3 ∼ Exp (λ3) represent the

time until occurrences of the shocks. The first two random variables are shocks to compo-

nent one and component two, respectively, and the last random variable is a shock to both

components. Now define two random variables X = min{Z1, Z3} and Y = min{Z2, Z3}.

These new random variables represent the lifetimes of component one and component two,

respectively. We can now find the joint survival function. The survival function will allow

for more convenient calculations than working with the joint CDF.

SX,Y (x, y) = P (X > x, Y > y)

= P (min{Z1, Z3} > x,min{Z2, Z3} > y)

= P (Z1 > x,Z3 > x,Z2 > y,Z3 > y)

= P (Z1 > x,Z2 > y,Z3 > max{x, y})

= exp {− (λ1x+ λ2y + λ3 max{x, y})} , x, y > 0

The visual of an exponential distribution curve is very well known. However, the MO

distribution is difficult to visualize because of the “max” term. Let’s show an example with

three different sets of parameters.
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Figure 4.1: The red graph shows λ1 = 1, λ2 = 0.2, and λ3 = 0.5; the blue graph shows

λ1 = 10, λ2 = 1, and λ3 = 0.5; the black graph shows λ1,= 0.5, λ2 = 0.5, λ3 = 2; the top

row shows the survival function and the bottom row shows the CDF.

4.2 RANK CORRELATION OF THE MARSHALL-OLKIN DISTRIBUTION

The population definitions have been defined in multiple ways for both Spearman’s

Rho and Kendall’s Tau. We can now use them to define these rank correlation methods for

the MO distribution. We will begin with Spearman’s Rho, because for Kendall’s Tau we

have to invoke a Lemma that will be defined soon.

Theorem 4.1. Spearman’s Rho for the Marshall-Olkin distribution can be defined as

ρS =
3α1α2

2α1 + 2α2 − α1α2

where α1 = λ3
λ1+λ3

and α = λ3
λ2+λ3

.

Proof. Recall Theorem 2.14, where Spearman’s Rho is defined as

Q (C,Π) = 12

∫ ∫
[0,1]2

C (u, v) dudv − 3.
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We can use this definition by finding the copula for the MO distribution. To find the copula,

make the following observations. Notice that max {x, y} = x + y − min {x, y}. The

marginal survival functions for X and Y are SX (x) = exp {− (λ1 + λ3)x} and SY (y) =

exp {− (λ2 + λ3) y}, respectively. To make future calculations easier, let α1 = λ3
λ1+λ3

and

α2 = λ3
λ2+λ3

. Using these observations, we will start with the survival function, manipulate

it, then apply the copula transformation.

SX,Y (x, y) = exp {− (λ1x+ λ2y + λ3 max {x, y})}

= exp {− (λ1 + λ3)x− (λ2 + λ3) y + λ3 min {x, y}}

= exp {− (λ1 + λ3)x} exp {− (λ2 + λ3) y} exp {λ3 min {x, y}}

= SX (x)SY (y) min {exp {λ3x} , exp {λ3y}}

Using the fact that exp {λ3x} = SX (x)−α1 and exp {λ3y} = SY (y)−α2 , now apply the

copula transformation U = FX (x), V = FY (y). Let C be the survival copula.

C (u, v) = u vmin
{
u−α1 , v−α2

}
= min

{
v u1−α1 , u v1−α2

}
=


v u1−α1 , uα1 ≥ vα2

u v1−α2 , uα1 ≤ vα2

The MO distribution contains a singular component. This is a concentrated cluster of den-

sity on the line y = x (or the line uα1 = vα2). Because of this, the integral in Theorem 2.14

will have to be split into two parts to account for this cluster. To visualize this, consider

Figure 4.2 below, a simulation done using the software R. Now that the copula has been

defined, apply to Theorem 2.14.

ρS = 12

∫ ∫
[0,1]2

C (u, v) dudv − 3

= 12

∫ 1

0

[∫ uα1/α2

0

v u1−α1dv +

∫ 1

uα1/α2
u v1−α2dv

]
du− 3



35

Figure 4.2: Simulation of the Marshall-Olkin survival copula using parameters: λ1 = 0.7,

λ2 = 0.2, and λ3 = 0.5.
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= 12

∫ 1

0

[
u1−α1

1

2
v2
∣∣∣∣uα1/α2
0

+ u
v2−α2

2− α2

∣∣∣∣1
uα1/α2

]
du− 3

= 12

∫ 1

0

[
u1−α1u2α1/α2

2
+

(
u

2− α2

− uu(α1/α2)(2−α2)

2− α2

)]
du− 3

= 12

∫ 1

0

[
u2α1/α2−α1+1

(
1

2
− 1

2− α2

)
+

u

2− α2

]
du− 3

= 12

[(
1

2
− 1

2− α2

)
u2α1/α2−α1+2

2α1/α2 − α1 + 2

∣∣∣∣1
0

+
u2

2 (2− α2)

∣∣∣∣1
0

]
− 3

= 12

[(
1

2
− 1

2− α2

)(
1

2α1/α2 − α1 + 2

)
+

1

2 (2− α2)

]
− 3

= 12

[
2− α2 − 2 + 2α1/α2 − α1 + 2

2 (2− α2) (2α1/α2 − α1 + 2)

]
− 3

=
−12α2 + 24α1/α2 − 12α1 + 24

2 (2− α2) (2α1/α2 − α1 + 2)
− 6 (2− α2) (2α1α2 − α1 + 2)

2 (2− α2) (2α1/α2 − α1 + 2)

=
12α1 − 6α1α2

2 (2− α2) (2α1/α2 − α1 + 2)

=
3α1

2α1/α2 − α1 + 2

=
3α1α2

2α1 + 2α2 − α1α2

In terms of lambda, we can define it as

ρS =
3
(

λ3
λ1+λ3

)(
λ3

λ2+λ3

)
2
(

λ3
λ1+λ3

)
+ 2

(
λ3

λ2+λ3

)
−
(

λ3
λ1+λ3

)(
λ3

λ2+λ3

)
�

For the Kendall’s Tau definition of the MO distribution, we will take the same route

as Spearman’s Rho by using the copula. We will first define a lemma to help us evaluate

integrals with singular components. The original lemma was proved by Li, X. in 2002 [10]

in terms of copulas. Here, we state it in terms of CDFs.

Lemma 4.2. Let FX,Y (x, y) and GX,Y (x, y) be differentiable CDFs. Then∫ ∫
R2

FX,Y (x, y) dGX,Y (x, y) =
1

2
−
∫ ∫

R2

∂

∂x
FX,Y (x, y)

∂

∂y
GX,Y (x, y) dxdy.

Using Lemma 4.2, we will now derive Kendall’s Tau for the MO distribution.
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Theorem 4.3. Kendall’s Tau for the Marshall-Olkin distribution can be derived as

τ =
α1α2

α1 + α2 − α1α2

where α1 = λ3
λ1+λ3

and α = λ3
λ2+λ3

.

Proof.

τ = 4

∫ ∫
[0,1]2

C (u, v) dC (u, v)− 1

= 4

[
1

2
−
∫ ∫

[0,1]2

∂

∂u
C (u, v)

∂

∂v
C (u, v) dudv

]
− 1

= 4

[
1

2
−
∫ 1

0

(∫ uα1/α2

0

∂

∂u
u1−α1v

∂

∂v
u1−α1vdv +

∫ 1

uα1/α2

∂

∂u
uv1−α2

∂

∂v
uv1−α2dv

)
du

]
− 1

= 4

[
1

2
−
∫ 1

0

(∫ uα1/α2

0

(1− α1)u
−α1vu1−α1dv −

∫ 1

uα1/α2
uv1−α2 (1− α2) v

−α2dv

)
du

]
− 1

= 4

[
1

2
−
∫ 1

0

(
1− α1

2
u1−2α1v2

∣∣∣∣uα1/α2
0

+
1− α2

2− 2α2

uv2−2α2

∣∣∣∣1
uα1/α2

)
du

]
− 1

= 4

[
1

2
−
∫ 1

0

(
1− α1

2
u2α1/α2−2α1+1 +

1

2
u− 1

2
u2α1/α2−2α1+1

)
du

]
− 1

= 2

(
1 + α1

u2α1/α2−2α1+2

2α1/α2 − 2α1 + 2

∣∣∣∣1
0

− 1

2
u2
∣∣∣∣1
0

)
− 1

= 2

(
1 +

α1

2α1/α2 − 2α1 + 2
− 1

2

)
− 1

=
α1

α1/α2 − α1 + 1

=
α1α2

α1 + α2 − α1α2

In terms of lambda, we can define it as

τ =

(
λ3

λ1+λ3

)(
λ3

λ2+λ3

)
λ3

λ1+λ3
+ λ3

λ2+λ3
+
(

λ3
λ1+λ3

)(
λ3

λ2+λ3

)
�

For both of the previous proofs we could have arrived at the same solutions by using

the CDF versions. We now have all the information we need to find the bias of the Marshall-

Olkin distribution in terms of the mixing proportion, p.
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4.3 BIAS OF RANK CORRELATION UNDER A MIXTURE MODEL

Consider two populations that follow a bivariate Marshall-Olkin distribution, one

being a valid population and the other contaminating. Define the parameters for each to be

(X, Y )V ∼ MO (λV 1, λV 2, λV 3) and (X, Y )C ∼ MO (λC1, λC2, λC3) .

To find the bias in terms of the mixing proportion we can anticipate there will be a lot of

integrals to solve in order to arrive at the desired analytical solution. However, by noticing

a pattern for each integral in the coefficients from Theorem 3.4 we can formulate a general

integral to solve. This is because each integral follows a similar form, the only differ-

ence being valid or contaminated survival function. Furthermore, some of the integrals are

equivalent to the ones solved in both Theorem 4.1 and 4.3. Recall the bias from Theorem

3.4,

Biasτ (p) = τ ~M − τ~V = 4
(
aτp

2 + bτp
)

where

aτ =

∫ ∫
R2

S~V (x, y)dS~V (x, y)−
∫ ∫

R2

S~V (x, y)dS ~C(x, y)

−
∫ ∫

R2

S ~C(x, y)dS~V (x, y) +

∫ ∫
R2

S ~C(x, y)dS ~C(x, y),

bτ =

∫ ∫
R2

S~V (x, y)dS ~C(x, y) +

∫ ∫
R2

S ~C(x, y)dS~V (x, y)

−2

∫ ∫
R2

S~V (x, y)dS~V (x, y).

In the coefficients above, there are four unique integrals. Instead of solving all four

integrals directly, we can solve a general integral. Beginning with the bias for Tau, we will

generalize the integral using placeholder parameters, (α1, α2, α3) and (β1, β2, β3). Think

of these as being the valid and contaminated parameters, allowing us to rearrange them

without loss of generality.∫ ∫
R2

Sα (x, y) dSβ (x, y)
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=

∫ ∞
0

∫ ∞
0

e−α1x−α2y−α3 max{x,y}de−β1x−β2y−β3 max{x,y}

=
1

2
−
∫ ∞
0

∫ ∞
0

∂

∂x
e−α1x−α2y−α3 max{x,y} ∂

∂y
e−β1x−β2y−β3 max{x,y}dxdy

=
1

2
−
∫ ∞
0

∫ ∞
y

(α1 + α3) β2e
−(α1+α3+β1+β3)x−(α2+β2)ydxdy

−
∫ ∞
0

∫ ∞
x

α1 (β2 + β3) e
−(α1+β1)x−(α2+α3+β2+β3)ydydx

=
1

2
+

∫ ∞
0

[
(α1 + α3) β2

α1 + α3 + β1 + β3
e−(α1+α3+β1+β3)x−(α2+β2)y

∣∣∣∣∞
y

]
dy

+

∫ ∞
0

[
α1 (β2 + β3)

α2 + α3 + β2 + β3
e−(α1+β1)x−(α2+α3+β2+β3)y

∣∣∣∣∞
x

]
dx

=
1

2
− (α1 + α3) β2
α1 + α3 + β1 + β3

∫ ∞
0

e−(α1+α2+α3+β1+β2+β3)ydy

− α1 (β2 + β3)

α2 + α3 + β2 + β3

∫ ∞
0

e−(α1+α2+α3+β1+β2+β3)xdx

=
1

2
− (α1 + α3) β2
α1 + α3 + β1 + β3

(
−1

α1 + α2 + α3 + β1 + β2 + β3
e−(α1+α2+α3+β1+β2+β3)y

∣∣∣∣∞
0

)
− α1 (β2 + β3)

α2 + α3 + β2 + β3

(
−1

α1 + α2 + α3 + β1 + β2 + β3
e−(α1+α2+α3+β1+β2+β3)x

∣∣∣∣∞
0

)
=

1

2
− 1

α1 + α2 + α3 + β1 + β2 + β3

(
(α1 + α3) β2

α1 + α3 + β1 + β3
+

α1 (β2 + β3)

α2 + α3 + β2 + β3

)
Observe that if the survival functions are the same for both the integrand and the differen-

tial, the general solution reduces to the form∫ ∫
R2

Sα (x, y) dSα (x, y) =
1

2
− α1 + α2

4α1 + 4α2 + 4α3

.

Now that the general integral is solved, the last step is to plug in the correct parameters for

each corresponding integral. The coefficients for the bias of Tau can be defined as

aτ =
1

2
− λV 1 + λV 2

4λV 1 + 4λV 2 + 4λV 3

−
(
1

2
− 1

λV 1 + λV 2 + λV 3 + λC1 + λC2 + λC3

(
(λV 1 + λV 3)λC2

λV 1 + λV 3 + λC1 + λC3
+

λV 1 (λV 2 + λV 3)

λV 2 + λV 3 + λC2 + λC3

))
−
(
1

2
− 1

λC1 + λC2 + λC3 + λV 1 + λV 2 + λV 3

(
(λC1 + λC3)λV 2

λC1 + λC3 + λV 1 + λV 3
+

λC1 (λC2 + λC3)

λC2 + λC3 + λV 2 + λV 3

))
+

1

2
− λC1 + λC2

4λC1 + 4λC2 + 4λC3

bτ =

(
1

2
− 1

λV 1 + λV 2 + λV 3 + λC1 + λC2 + λC3

(
(λV 1 + λV 3)λC2

λV 1 + λV 3 + λC1 + λC3
+

λV 1 (λV 2 + λV 3)

λV 2 + λV 3 + λC2 + λC3

))
+

(
1

2
− 1

λC1 + λC2 + λC3 + λV 1 + λV 2 + λV 3

(
(λC1 + λC3)λV 2

λC1 + λC3 + λV 1 + λV 3
+

λC1 (λC2 + λC3)

λC2 + λC3 + λV 2 + λV 3

))
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− 2

(
1

2
− λV 1 + λV 2

4λV 1 + 4λV 2 + 4λV 3

)
.

After elementary algebra steps we can arrive at the final expression for the coefficients for

the bias of Tau as

aτ =
1

λV 1 + λV 2 + λV 3 + λC1 + λC2 + λC3

·
(
(λV 1 + λV 3)λC2 + (λC1 + λC3)λV 2

λV 1 + λV 3 + λC1 + λC3
+
λV 1 (λV 2 + λV 3) + λC1 (λC2 + λC3)

λV 2 + λV 3 + λC2 + λC3

)
−
(

λV 1 + λV 2

4λV 1 + 4λV 2 + 4λV 3
+

λC1 + λC2

4λC1 + 4λC2 + 4λC3

)
bτ =

λV 1 + λV 2

2λV 1 + 2λV 2 + 2λV 3

− 1

λV 1 + λV 2 + λV 3 + λC1 + λC2 + λC3

·
(
(λV 1 + λV 3)λC2 + (λC1 + λC3)λV 2

λV 1 + λV 3 + λC1 + λC3
+
λV 1 (λV 2 + λV 3) + λC1 (λC2 + λC3)

λV 2 + λV 3 + λC2 + λC3

)
.

Solving for the coefficient for the bias of Rho is achieved following the same process.

There are eight unique integrals in the case of Rho, so we will also solve a general integral.

Recall the bias from Theorem 3.4,

Biasρ(p) = ρ ~M − ρ~V = 12
(
aρp

3 + bρp
2 + cρp

)
where

aρ =−
∫ ∫

R2

S~V (x, y) dSV1 (x) dSV2 (y) +

∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)

+

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y)−
∫ ∫

R2

S~V (x, y) dSC1 (x) dSC2 (y)

+

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y)−
∫ ∫

R2

S ~C (x, y) dSV1 (x) dSC2 (y)

−
∫ ∫

R2

S ~C (x, y) dSC1 (x) dSV2 (y) +

∫ ∫
R2

S ~C (x, y) dSC1 (x) dSC2 (y)

bρ =3

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y)− 2

∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)

− 2

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y) +

∫ ∫
R2

S~V (x, y) dSC1 (x) dSC2 (y)

− 2

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y) +

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSC2 (y)

+

∫ ∫
R2

S ~C (x, y) dSC1 (x) dSV2 (y)
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cρ =− 3

∫ ∫
R2

S~V (x, y) dSV1 (x) dSV2 (y) +

∫ ∫
R2

S~V (x, y) dSV1 (x) dSC2 (y)

+

∫ ∫
R2

S~V (x, y) dSC1 (x) dSV2 (y) +

∫ ∫
R2

S ~C (x, y) dSV1 (x) dSV2 (y) .

For this general integral we will introduce three placeholder parameters, because each in-

tegral will involve three different arrangements of functions. These parameters will be

(α1, α2, α3), (β1, β2, β3), and (γ1, γ2, γ3).∫ ∫
R2

Sα (x, y) dSβ (x) dSγ (y)

=

∫ ∫
R2

Sα (x, y) fβ (x) fγ (y) dxdy

=

∫ ∞
0

∫ ∞
0

e−α1x−α2y−α3 max{x,y} (β1 + β3) e
−(β1+β3)x (γ2 + γ3) e

−(γ2+γ3)ydxdy

=

∫ ∞
0

∫ ∞
0

(β1 + β3) (γ2 + γ3) e
−(α1+α3+β1+β3)x−(α2+γ2+γ3)ydxdy

+

∫ ∞
0

∫ ∞
0

(β1 + β3) (γ2 + γ3) e
−(α1+β1+β3)x−(α2+α3+γ2+γ3)ydydx

=−
∫ ∞
0

(β1 + β3) (γ2 + γ3)

α1 + α3 + β1 + β3

(
e−(α1+α3+β1+β3)x−(α2+γ2+γ3)y

∣∣∣∣∞
y

)
dy

−
∫ ∞
0

(β1 + β3) (γ2 + γ3)

α2 + α3 + γ2 + γ3

(
e−(α1+β1+β3)x−(α2+α3+γ2+γ3)y

∣∣∣∣∞
x

)
dx

=
(β1 + β3) (γ2 + γ3)

α1 + α3 + β1 + β3

∫ ∞
0

e−(α1+α2+α3+β1+β3+γ2+γ3)ydy

+
(β1 + β3) (γ2 + γ3)

α2 + α3 + γ2 + γ3

∫ ∞
0

e−(α1+α2+α3+β1+β3+γ2+γ3)xdx

=
(β1 + β3) (γ2 + γ3)

α1 + α3 + β1 + β3

(
−1

α1 + α2 + α3 + β1 + β3 + γ2 + γ3
e−(α1+α2+α3+β1+β3+γ2+γ3)y

∣∣∣∣∞
0

)
+

(β1 + β3) (γ2 + γ3)

α2 + α3 + γ2 + γ3

(
−1

α1 + α2 + α3 + β1 + β3 + γ2 + γ3
e−(α1+α2+α3+β1+β3+γ2+γ3)x

∣∣∣∣∞
0

)
=

(β1 + β3) (γ2 + γ3)

α1 + α2 + α3 + β1 + β3 + γ2 + γ3

(
1

α1 + α3 + β1 + β3
+

1

α2 + α3 + γ2 + γ3

)
Observe that if the survival function and marginal densities are just valid or just contami-

nating then the integral reduces to∫ ∫
R2

Sα (x, y) fα (x) fα (y) dxdy =
λV 1 + λV 2 + 2λV 3

4λV 1 + 4λV 2 + 6λV 3

.



42

The general integral is solved, so the last step is to plug in the correct coefficients to each

placeholder parameter. The resulting coefficients are as follows.

aρ =−
λV 1 + λV 2 + 2λV 3

4λV 1 + 4λV 2 + 6λV 3

+
(λV 1 + λV 3) (λC2 + λC3)

2λV 1 + λV 2 + 2λV 3 + λC2 + λC3

(
1

2λV 1 + 2λV 3
+

1

λV 2 + λV 3 + λC2 + λC3

)
+

(λC1 + λC3) (λV 2 + λV 3)

λV 1 + 2λV 2 + 2λV 3 + λC1 + λC3

(
1

λV 1 + λV 3 + λC1 + λC3
+

1

2λV 2 + 2λV 3

)
− (λC1 + λC3) (λC2 + λC3)

λV 1 + λV 2 + λV 3 + λC1 + λC2 + 2λC3

(
1

λV 1 + λV 3 + λC1 + λC3
+

1

λV 2 + λV 3 + λC2 + λC3

)
+

(λV 1 + λV 3) (λV 2 + λV 3)

λC1 + λC2 + λC3 + λV 1 + λV 2 + 2λV 3

(
1

λC1 + 2λC3 + λV 1 + λV 3
+

1

λC2 + λC3 + λV 2 + λV 3

)
− (λV 1 + λV 3) (λC2 + λC3)

λC1 + 2λC2 + 2λC3 + λV 1 + λV 3

(
1

λC1 + λC3 + λV 1 + λV 3
+

1

2λC2 + 2λC3

)
− (λC1 + λC3) (λV 2 + λV 3)

2λC1 + λC2 + 2λC3 + λV 2 + λV 3

(
1

2λC1 + 2λC3
+

1

λC2 + λC3 + λV 2 + λV 3

)
+

λC1 + λC2 + 2λC3

4λC1 + 4λC2 + 6λC3

bρ =3
λV 1 + λV 2 + 2λV 3

4λV 1 + 4λV 2 + 6λV 3

− 2
(λV 1 + λV 3) (λC2 + λC3)

2λV 1 + λV 2 + 2λV 3 + λC2 + λC3

(
1

2λV 1 + 2λV 3
+

1

λV 2 + λV 3 + λC2 + λC3

)
− 2

(λC1 + λC3) (λV 2 + λV 3)

λV 1 + 2λV 2 + 2λV 3 + λC1 + λC3

(
1

λV 1 + λV 3 + λC1 + λC3
+

1

2λV 2 + 2λV 3

)
+

(λC1 + λC3) (λC2 + λC3)

λV 1 + λV 2 + λV 3 + λC1 + λC2 + 2λC3

(
1

λV 1 + λV 3 + λC1 + λC3
+

1

λV 2 + λV 3 + λC2 + λC3

)
− 2

(λV 1 + λV 3) (λV 2 + λV 3)

λC1 + λC2 + λC3 + λV 1 + λV 2 + 2λV 3

(
1

λC1 + 2λC3 + λV 1 + λV 3
+

1

λC2 + λC3 + λV 2 + λV 3

)
+

(λV 1 + λV 3) (λC2 + λC3)

λC1 + 2λC2 + 2λC3 + λV 1 + λV 3

(
1

λC1 + λC3 + λV 1 + λV 3
+

1

2λC2 + 2λC3

)
+

(λC1 + λC3) (λV 2 + λV 3)

2λC1 + λC2 + 2λC3 + λV 2 + λV 3

(
1

2λC1 + 2λC3
+

1

λC2 + λC3 + λV 2 + λV 3

)
cρ =− 3

λV 1 + λV 2 + 2λV 3

4λV 1 + 4λV 2 + 6λV 3

+
(λV 1 + λV 3) (λC2 + λC3)

2λV 1 + λV 2 + 2λV 3 + λC2 + λC3

(
1

2λV 1 + 2λV 3
+

1

λV 2 + λV 3 + λC2 + λC3

)
+

(λC1 + λC3) (λV 2 + λV 3)

λV 1 + 2λV 2 + 2λV 3 + λC1 + λC3

(
1

λV 1 + λV 3 + λC1 + λC3
+

1

2λV 2 + 2λV 3

)
+

(λV 1 + λV 3) (λV 2 + λV 3)

λC1 + λC2 + λC3 + λV 1 + λV 2 + 2λV 3

(
1

λC1 + 2λC3 + λV 1 + λV 3
+

1

λC2 + λC3 + λV 2 + λV 3

)
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In application, such as coding in the statistical language R, it would be most efficient to cre-

ate a general formula for each of the eight integrals like we did above. Then the coefficient

could be formed by writing the function as linear combination using the correct parameters

for each. For the purposes of this thesis, a complete analytical solution is included. The

same applies to Tau.

4.4 ROOT BEHAVIOR CASES FOR THE MARSHALL-OLKIN DISTRIBUTION

In application of the example we introduced in this chapter, a natural question arises.

Are all of the cases listed in Section 3.2 possible? By creating all the necessary functions

and cases in the software program R, we let the computer generate random parameters

until it matches each case. Because we have the analytical solutions, we can calculate the

bias exact. We did this for both Tau and Rho. Some cases took much longer than others,

but all were accounted for. The cases that took the longest were those that had the most

inflection points. In Table 4.1 and 4.2 below there are listed the parameters that satisfied

each case. Accompanying those tables we also have graphs for each case using those same

parameters. These are important because they illustrate the behavior of the bias and have

potential for each application. It is common for researchers wanting to know whether the

bias is positive or negative and this can make it easier.

Case λV 1 λV 2 λV 3 λC1 λC2 λC3

2(a) 9.91 8.92 4.00 4.66 8.62 9.93
2(b) 6.20 7.52 7.45 1.23 5.83 4.20
3(a) 2.41 8.52 2.86 3.16 3.14 0.57
4(b) 3.05 0.69 7.24 3.64 4.48 7.64

5 6.47 7.69 6.34 5.29 3.99 3.80
6 2.80 7.44 6.69 7.67 3.24 7.74

Table 4.1: Parameter values for a mixture of Marshall-Olkin distributions that produce each

scenario under Tau; these values are used to produce the figures below.
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Case λV 1 λV 2 λV 3 λC1 λC2 λC3

2(a) 7.47 2.99 8.96 1.44 1.49 9.77
2(b) 4.01 5.47 4.26 4.92 9.36 8.58
2(c) 0.22 5.05 4.49 3.38 2.71 7.63
2(d) 4.51 9.60 2.48 8.32 2.39 6.58
3(a) 2.35 2.89 5.78 3.36 4.97 2.91
3(b) 1.35 5.89 4.67 4.74 2.72 0.98
3(c) 6.61 8.98 5.33 4.94 6.81 1.79
3(d) 1.75 5.93 7.00 9.80 5.73 5.59
4(a) 1.40 1.73 2.66 6.73 2.17 6.34
4(b) 6.72 4.48 5.20 3.90 1.47 2.21
5(a) 3.98 0.65 5.09 0.10 3.53 4.58
5(b) 0.20 9.31 6.26 6.01 4.68 7.66

6 3.45 2.07 6.09 8.84 0.18 9.95
7 3.06 8.03 8.73 3.77 5.35 7.17

Table 4.2: Parameter values for a mixture of Marshall-Olkin distributions that produce each

scenario under Rho; these values are used to produce the figures below.
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Figure 4.3: Using the values from Table 4.1, these are the possible scenarios for bias in Tau

for a mixture of Marshall-Olkin distributions.
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Figure 4.4: Using the values from Table 4.2, these are the possible scenarios for bias in

Rho for a mixture of Marshall-Olkin distributions.
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CHAPTER 5

CONCLUSION

In conclusion, we have answered the result we set out to show. The bias for both rank

correlation methods under mixture models are described as polynomials of degrees two and

three. Using that result we elaborated and extended the potential by showing the different

cases for both quadratics and cubic. The importance of this comes with application. If a

researcher has potentially contaminated data, based on parameters they estimate, they may

be able to predict whether the bias is positive or negative relative to the mixing proportion.

That is, if their data follows a Marshall-Olkin distribution. However, after laying this foun-

dation for bias analysis of rank correlation under mixtures, it could now be extended using

different distributions or even multivariate distributions. A multivariate extension of Rho

can be found in Trevor Camper’s thesis Essays on Mixture Models, although his motivation

is quite different [11].

Along with our main results in Theorem 3.4, we also introduced a variety of different

techniques throughout that readers may be unaware of. These include copulas, which are

used extensively in the financial world, a generalized correlation coefficient, population

extensions for Rho and Tau, Li’s Theorem for CDFs, and some applications of Riemann-

Stieljes integrals. The motivation of this project was to explore more techniques that statis-

ticians can add to their toolbox when solving real-world problems. I believe this was ac-

complished in my thesis report. In reality, techniques are only as good as their ease to use

and, with the R code that I provided and the analytical solution to the problems, it could

make a successful statistical tool.
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