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by
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ABSTRACT

Nearly a century ago, the mathematicians Hardy and Ramanujan established their cel-

ebrated circle method to give a remarkable asymptotic expression for the unrestricted

partition function. Following later improvements by Rademacher, the method was

utilized by Niven, Lehner, Iseki, and others to develop rapidly convergent series rep-

resentations of various restricted partition functions. Following in this tradition, we

use the circle method to develop formulæ for counting the restricted classes of parti-

tions that arise in the Göllnitz–Gordon identities. We then show that our results are

strongly supported by numerical tests. As a side note, we also derive and compare

the asymptotic behavior of our formulæ.
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GÖLLNITZ–GORDON IDENTITIES

by

NICOLAS ALLEN SMOOT

Major Professor: Andrew Sills

Committee: Andrew Sills

Alex Stokolos

Yi Hu

Electronic Version Approved:

May 2016

iv



DEDICATION

This thesis is dedicated with generosity and love to the perpetual students of

academia—to those who struggled, who dropped out, who were told that they would

never do anything important, who faced dreadful odds in the hope of making the

smallest contribution to knowledge.

Know that you share this little honor with Galois, with Ramanujan, with Noether,

with Einstein, and with so many other great scientists and artists. You can be great.

Do not let yourself be told anything else.

v



ACKNOWLEDGMENTS

I wish to acknowledge the extremely generous assistance and encouragement on the

part of my advisor, Dr. Andrew Sills, who has been almost ridiculously supportive

and patient with me for the entire time that I have worked with him. Without his

kindness, my academic career would have ended as immediately as it had begun.

Drs. Alex Stokolos and Yi Hu were equally helpful and understanding, especially

in answering many of my difficult and sometimes tedious questions on matters of

complex analysis and exponential sums. I am also indebted to many faculty members

of Georgia Southern University, including Drs. Hua Wang, Sharon Taylor, Jimmy

Dillies, Enka Lakuriqi, Yan Wu, and Mihai Tohaneanu for their advice and kindness.

Many of my fellow graduate and undergraduate students were of immense help,

and often made themselves available when I needed someone to talk to. I am especially

thankful to my old office mates, Matthew Just, Michael Fox, and Zachary Espe, as

well as Joshua Ferrera, Ashley Holloway, Katelyn and Anthony Coggins, Rachel Bass,

Meghann Gibson, Corrie Hicks, and Isabella Perlee for their tolerance of my nearly

constant rambling about this subject throughout the last year.

I am immensely grateful to Mr. Spenser Santos, a fellow graduate student at

University of Iowa, for his help in finding some of the most important and obscure

references for this project.

Much thanks to veteran graduate students and fellow scholars Lisa Smoot and

Rachel Street for their excellent academic and historical insights after listening to

long technical discussions on Facebook.

And huge thanks to my family for their love, as well as their impatience—for

pushing me, and for demanding that I never give up.

vi



TABLE OF CONTENTS

Page

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Contour Integral Representation . . . . . . . . . . . . . . . . . . . 9

2.1 Cauchy’s Integral Theorem . . . . . . . . . . . . . . . . . . 9

2.2 Rademacher’s Contour . . . . . . . . . . . . . . . . . . . . 11

3 Transformation Equations . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Modular Forms . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Prelude: Transforming F (q) . . . . . . . . . . . . . . . . 20

3.1.3 Transformations on Fa(q) . . . . . . . . . . . . . . . . . 22

3.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 GCD(k, 8) = 8 . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 GCD(k, 8) = 4 . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 GCD(k, 8) = 2 . . . . . . . . . . . . . . . . . . . . . . . 32

vii



3.2.4 GCD(k, 8) = 1 . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Complete Transformation Equations . . . . . . . . . . . . . 38

3.4 Note on the Modularity of Fa(q) . . . . . . . . . . . . . . . 40

4 Important Estimations . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Kloosterman Sums . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 ω8(h, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 ω4(h, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.3 ω2(h, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.4 ω1(h, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 In the Case of p(n) . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 g
(8)
a (n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.2 g
(4)
a (n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.3 g
(2)
a (n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.4 g
(1)
a (n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Limit Process Completed . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Completed Formulæ . . . . . . . . . . . . . . . . . . . . . . 83

7 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

viii



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Asymptotics and Relationship with the Silver Ratio . . . . . . . . 95

B Mathematica Code: Supplement to Chapter 7 . . . . . . . . . . . 102

B.1 Defining ga(n) . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2 Defining (6.12) . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.3 Testing (6.12) . . . . . . . . . . . . . . . . . . . . . . . . . 107

ix



LIST OF TABLES

Table Page

7.1 g1(n) compared to (6.12) truncated for k, with a = 1. See Appendix
B for relevant Mathematica code. . . . . . . . . . . . . . . . . . 88

7.2 g3(n) compared to (6.12) truncated for k, with a = 3. See Appendix
B for relevant Mathematica code. . . . . . . . . . . . . . . . . . 90

x



LIST OF FIGURES

Figure Page

2.1 Ford circles C(h, k) for h/k ∈ F3, with P (3) highlighted. . . . . . 13

2.2 K
(−)
k with the highlighted path from zI(h, k) to zT (h, k). Notice that
the (−) indicates that the path is taken clockwise. . . . . . . . . 14

5.1 K
(−)
k with the chord connecting zI(h, k) to zT (h, k). . . . . . . . . 60

5.2 K
(−)
k with the highlighted path from zT (h, k) to 0. . . . . . . . . . 64

7.1 Graph of the difference between (6.12), with 1 ≤ k ≤ 3
√
n, and the

correct value of g1(n), 1 ≤ n ≤ 200. See Appendix B for relevant
Mathematica code. . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Graph of the difference between (6.12), with 1 ≤ k ≤ 3
√
n, and the

correct value of g3(n), 1 ≤ n ≤ 200. See Appendix B for relevant
Mathematica code. . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi



LIST OF SYMBOLS

The following are used throughout the body of this paper:

R Set of real numbers
C Set of complex numbers
Z Set of integers
N Set of natural numbers, i.e. positive integers
SL(2,Z) Group of 2× 2 matrices with entries in Z and determinant 1,

under matrix multiplication

ϕ Golden ratio, (1 +
√

5)/2

δS Silver ratio, 1 +
√

2

• (a; q)∞ =
∏∞

j=0 (1− aqj) = (1− a)(1− aq)(1− aq2)...

• Given a, b ∈ Z, a | b denotes that a divides b. Otherwise, a - b.

• Given functions f, g, over x ∈ R, f(x) = O(g(x)) as x → ∞ means that there
exists some x0 such that |f(x)| ≤ Cg(x) for all x ≥ x0, for some number C that
does not vary with x.

• Given functions f, g, f(x) ∼ g(x) means that f/g → 1 as x→∞.

xii



CHAPTER 1

INTRODUCTION

Let n ∈ N. An integer partition of n is a representation of n as a sum of positive

integers, called parts. The ordering of the parts is irrelevant.

As an example, consider the number 5, which has 7 partitions:

5,

4 + 1,

3 + 2,

3 + 1 + 1,

2 + 2 + 1,

2 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1.

Define the partition function p(n) to be the number of partitions of n. For

example, we have p(5) = 7. On inspection of individual cases, p(n) is a rapidly

increasing arithmetic function, with no obvious formulaic structure.

In 1918 the mathematicians G.H. Hardy and Srinivasa Ramanujan developed

their celebrated circle method in order to give a remarkable asymptotic expression

for p(n) [8]. Their formula was capable of calculating the value of p(n) to a degree of

precision hitherto considered unthinkable.

This result was as stunning as it was useful, given the comparable pessimism of

the mathematical community at the time. Barely 22 years before, the prime number

theorem, providing asymptotic formulæ for the prime counting function, had been

proven [25, Chapter 6]. But the proof came only after a solid century of contributions

by some of the finest minds in the history of mathematics; even then, the result-
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ing formulæ were so weak that they were effectively useless for direct computation

[9, Chapter 1]. The discovery of an arithmetic function that could admit a much

stronger asymptotic representation—together with the method used to develop such

a representation—was as unexpected as it was innovative.

Almost immediately after its successful use, the applicability of the circle method

was recognized, leading to its development into one of the most basic tools in analytic

number theory, applied to Diophantine equations, bounds for the weak and strong

forms of Waring’s problem, and even approaches to the Goldbach and twin prime

problems [27].

Notably, the method has continued to contribute to partition theory. By 1936,

Hardy and Ramanujan’s work had been carefully refined by Hans Rademacher, who

first modified Hardy and Ramanujan’s formula into a rapidly convergent series rep-

resentation for p(n) [16], and later developed a brilliant modification of the method

itself [17]. We give Rademacher’s completed form of the formula below.

Theorem 1.1. Let n ∈ N. Then

p(n) =
1

π
√

2

∞∑
k=1

√
k A(n, k)

d

dx

sinh
(
π
k

√
2
3

(
x− 1

24

))√
x− 1

24

∣∣∣∣∣
x=n

, (1.1)

where

A(n, k) =
∑

0≤h<k,
(h,k)=1

ω(h, k)e−2πinh/k, (1.2)

and ω(h, k) is a certain 24kth root of unity.

The precise value of ω(h, k) is given in Chapter 3.

This astonishing formula for so simple an arithmetic function is achieved primar-

ily through the remarkable properties of the generating function for p(n). One can
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show that, for |q| < 1,

F (q) =
∞∑
n=0

p(n)qn =
∞∏
m=1

1

1− qm
. (1.3)

Formally, this can be easily recognized through a geometric expansion of each factor

on the right hand side of (1.3). Notice that by convention, p(0) = 1. This is generally

the case, even for more restrictive partition functions.

The key idea of the circle method is to use the residue theorem of Cauchy to

extract the coefficient of qn, by effectively integrating the right hand side of (1.3).

With the right change of variables, this infinite product can be expressed in terms of

a modular form, which can be adjusted to become a more elementary function, much

more suitable to integration. The resulting integration yields (1.1).

Soon after Rademacher’s work, formulæ were developed for enumerating parti-

tions in which the given parts are restricted by various arithmetic progressions. For

example, Hua and Hagis developed a formula to count the partitions of n in which

each part is odd [10],[7].

Slightly earlier, through Rademacher’s tutelage, Ivan Niven developed a formula

to count partitions of n such that each part is ±1 (mod 6) [15]. While Niven’s formula

required a more careful approach to the theory of modular forms than the unrestricted

partition function, the applicability of the circle method itself was unchanged.

As a third example, of particular interest to us, Rademacher’s doctoral student

Joseph Lehner developed formulæ to count partitions in which parts are ±a (mod 5),

with a fixed at either 1 or 2 [12].

The significance of the three examples given above lies in the fact that each class

of partitions is associated with a certain identity. For example, due to an identity

of Euler, Hua and Hagis’ formula also counts the number of partitions of n in which

the given parts are distinct [9, Chapter 19]. Similarly, an identity of Schur imposes
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that Niven’s result also describes the number of partitions of n into distinct parts

congruent to ±1 (mod 3) [22].

Very notably, Lehner’s classes of partitions are associated with the Rogers–

Ramanujan identities [20], which are considered to be among the most beautiful

results in modern mathematics [19, pp. xxxiv]. We give the identities here, for later

reference, as identities both in q–series and in partitions.

For this and later reference, let |q| < 1, and define the infinite q–Pochhammer

symbol (a; q)∞ as

(a; q)∞ =
∞∏
j=0

(
1− aqj

)
. (1.4)

In particular,

(qa; qm)∞ =
∞∏
j=0

(
1− qmj+a

)
. (1.5)

This symbol is a helpful shorthand when infinite products of this type we describe

become common and rather clumsy to directly handle.

Theorem 1.2 (First Rogers–Ramanujan Identity). Let q ∈ C with |q| < 1. Then

∞∑
m=0

qm
2

(q; q)m
=

1

(q; q5)∞(q4; q5)∞
. (1.6)

This identity has an associated partition–theoretic interpretation:

Theorem 1.3. Given an integer n, the number of partitions of n in which parts are

non-repeating and non-consecutive is equal to the number of partitions of n in which

parts are congruent to ±1 (mod 5).

Theorem 1.4 (Second Rogers–Ramanujan Identity). Let q ∈ C with |q| < 1. Then

∞∑
m=0

qm
2+m

(q; q)m
=

1

(q2; q5)∞(q3; q5)∞
. (1.7)
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As a partition identity:

Theorem 1.5. Given an integer n, the number of partitions of n in which parts are

non-repeating, non-consecutive, and with smallest part ≥ 2 is equal to the number of

partitions of n in which parts are congruent to ±2 (mod 5).

Later, Livingood and Iseki developed more general approaches to partition for-

mulæ [13],[11]. More recently, Bringmann and Ono have developed formulæ to extract

coefficients from any harmonic Maas forms with weights ≤ 1/2. Their formulæ may

be used to describe a large variety of q-series, along with any associated class of

partitions in which the given parts are described by a set of symmetric arithmetic

progressions, encompassing nearly all earlier results on this matter [4].

Beautiful and interesting relationships between q-series similar to the Rogers–

Ramanujan identities abound. The variety of such identities can be glimpsed in

Slater’s enormous list [24]. Many of these identities have a partition–theoretic inter-

pretation, so that formulæ for the associated Fourier coefficients might be useful. The

formulæ for several of these identities have already been accounted for—for example,

Livingood’s work encompasses the earlier results of Lehner, Niven, Hua and Hagis,

with many others, as special cases. Iseki’s results, in turn, encompass Livingood’s

work.

However, other such identities have associated partition functions that cannot

directly be included in such earlier work. On the other hand, Bringmann and Ono’s

formulæ can be used to derive all such partition functions, but a direct application

of the circle method in the tradition of the earlier researchers has never been done.

We are here interested in an identity between q-series whose Fourier coefficients

have “escaped the net,” so to speak, of Hua, Hagis, Niven, Lehner, and their kin. The

identities have a partition–theoretic interpretation, named after the mathematicians

Göllnitz and Gordon, who independently discovered them in 1961 [5] and 1965 [6],
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respectively, although Slater includes the q-series identities in her earlier work [24, pp.

155, Equations (36), (34)] (and Ramanujan seems to have been aware of the q-series

identities much earlier still [2, pp. 36–37, Entries (1.7.11), (1.7.12)]).

It should be noted that in 1972 Subramanyasastri claimed a result [26] using the

classic circle method, which would encompass as a special case the Fourier coefficients

calculated in this paper. However, he gives neither a full definition, nor a complete

proof.

This class of q-series and partitions is especially interesting, in that the associated

identities have a similar structure to those of the Rogers–Ramanujan identities. We

provide both the q-series identities and the partition identities below.

Theorem 1.6 (First Ramanujan–Slater Identity). Let q ∈ C with |q| < 1. Then

∞∑
m=0

qm
2
(−q; q2)m

(q2; q2)m
=

1

(q; q8)∞(q4; q8)∞(q7; q8)∞
. (1.8)

As a partition identity:

Theorem 1.7 (First Göllnitz–Gordon Identity). Given an integer n, the number of

partitions of n in which parts are non-repeating and non-consecutive, and with any

two even parts differing by at least 4, is equal to the number of partitions of n in

which parts are congruent to ±1, 4 (mod 8).

Theorem 1.8 (Second Ramanujan–Slater Identity). Let q ∈ C with |q| < 1. Then

∞∑
m=0

qm
2+2m(−q; q2)m

(q2; q2)m
=

1

(q3; q8)∞(q4; q8)∞(q5; q8)∞
. (1.9)

As a partition identity:

Theorem 1.9 (Second Göllnitz–Gordon Identity). Given an integer n, the number

of partitions of n in which parts are non-repeating and non-consecutive, with any two
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even parts differing by at least 4, and with smallest part ≥ 3 is equal to the number

of partitions of n in which parts are congruent to ±3 (mod 8).

Notice that the right-hand side of (1.8) serves as the generating function for the

class of partitions in the first Göllnitz–Gordon identities with parts congruent to 4,±1

(mod 8). A similar interpretation holds relating (1.9) to the second Göllnitz–Gordon

identity. These generating functions turn out to be the easiest expressions from which

to extract coefficients.

Definition 1.10. Fix a = 1 or 3. A Göllnitz–Gordon partition of type a is composed

of even parts of the form 4 (mod 8), and odd parts of the form ±a (mod 8). Let

ga(n) represent the number of type–a Göllnitz–Gordon partitions of n, and let Fa(q)

denote the generating function for ga(n), for any q ∈ C with |q| < 1. By convention,

let ga(0) = 1.

We can then define:

Fa(q) =
∞∑
k=0

ga(k)qk (1.10)

=
∞∏
m=0

(1− q8m+a)−1(1− q8m+4)−1(1− q8m+8−a)−1 (1.11)

=
1

(qa; q8)∞(q4; q8)∞(q8−a; q8)∞
. (1.12)

We will extract the coefficient of qn from Fa(q) in a manner analogous to that

described in the derivation of (1.1) above. We wish to evaluate the contour integral

representation for ga(n) provided by the residue theorem of Cauchy (Chapter 2).

At first sight, such an integral seems to be very much inaccessible to computation.

However, we can take advantage of certain functional equations that Fa(q) is subject

to—in particular, the fact that Fa(q) is essentially a modular form with respect to
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the the subgroup H(8) of the modular group (Chapter 3). We can then approximate

Fa(q) as a more elementary function, more suitable to integration, for q near any point

on the unit circle (Chapter 5). Such an approximation necessitates the presence of

certain error terms in the integration, but through the use of certain exponential sum

estimations (Chapter 4) we can force such terms to become arbitrarily small. We

finish the integration with the use of modified Bessel functions (Chapter 6).

As we work towards the complete formula for ga(n), we will introduce each

detailed step by sketching the analogous process for the derivation of p(n), as demon-

strated in Sills [23].

Once the integration is complete, we will then conduct numerical tests of our

results using Mathematica (Chapter 7). As with the original work of Hardy and

Ramanujan, our formulæ are remarkably efficient, and converge to the correct answer

very quickly. The code for our Mathematica calculations is included in Appendix B.

As an interesting consequence of our formulæ, we shall parallel an approach

Lehner developed [12] with the formulæ associated with the Rogers–Ramanujan iden-

tities, by examining the asymptotic behavior of ga(n), and especially of g1(n)
g3(n)

as n→∞

(Appendix A). Such asymptotics bear a surprising connection with the silver ratio,

analogous to the relationship between the Rogers–Ramanujan partition functions and

the golden ratio.



CHAPTER 2

CONTOUR INTEGRAL REPRESENTATION

In this chapter we will work on setting up the necessary machinery of complex analy-

sis in order to apply the circle method. To begin, we will see how the residue theorem

can be used to find ga(n) through a certain integration over C. We will also develop

an appropriate contour over which we may take our integral. We note that by in-

terchanging Fa(q) with F (q), we may utilize the same manipulations to develop a

theoretical formula for p(n) [23]. Moreover, the contour developed by Rademacher,

discussed in Section 2.2, is identical to that used in the derivation of p(n). We may

easily adapt this machinery to develop similar formulæ for a large variety of restricted

partition functions.

2.1 Cauchy’s Integral Theorem

We begin with a classical theorem of complex analysis, due to Cauchy [25, Chapter

3]. Recall that a holomorphic function f(q) with a pole of order n at q = w has an

expansion of the form

f(q) =
A−n

(q − w)n
+

A−n+1

(q − w)n−1
+ ...+

A−1

q − w
+G(q) (2.1)

with Ak ∈ C for all k, and G(q) a holomorphic function in some neighborhood of w.

Theorem 2.1. Let f be a holomorphic function in an open set containing a closed

contour C and its interior, except for a pole at w. Then

A−1 =
1

2πi

∮
C

f(q)dq. (2.2)

This formula gives us a means of calculating—at least in principle—the value of

ga(n). Hereafter, n will represent an arbitrary but fixed positive integer. If we divide
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the generating function of ga(n) by qn+1, we have

Fa(q)

qn+1
=

1

qn+1
+
ga(1)

qn
+
ga(2)

qn−1
+ ...+

ga(n)

q
+ ga(n+ 1) + ga(n+ 2)q + ... (2.3)

=
1

qn+1
+
ga(1)

qn
+
ga(2)

qn−1
+ ...+

ga(n)

q
+G(q), (2.4)

with G(q) a holomorphic function.

Now Fa(q) is holomorphic on the interior of the unit circle, so Fa(q)
qn+1 is holomorphic

in the unit circle, except for q = 0.

Theorem 2.2.

ga(n) =
1

2πi

∮
C

Fa(q)

qn+1
dq. (2.5)

Of course, 2.5 is not immediately helpful. Surely,

Fa(q)

qn+1
=

1

qn+1

∞∏
m=0

(1− q8m+a)−1(1− q8m+4)−1(1− q8m+8−a)−1 (2.6)

is anything but an easy function to integrate. In particular, we note that Fa(q)

becomes undefined if q is anywhere on the unit circle. This is most apparent if q is a

non-octic root of unity, i.e. q = e2πih/k, 8 - k.

Moreover, the most common factors of Fa(q) contain singularities in which k is

small. For example, the factor (1− q) divides every factor in (2.6), while (1− q2) is a

less common factor, and (1− q4) is rarer still. This implies that the singularity at the

root of unity 1 somehow holds more information than the singularity at −1, which

holds more information than those at ±i, etc.

This strange behavior at roots of unity is far from a disadvantage. As q ap-

proaches e2πih/k, Fa(q) can be approximated as a finite product of much more el-

ementary functions. Indeed, understanding the behavior of Fa(q) near lower-order



11

singularities will provide information for the bulk of the formula for ga(n), while

higher-order singularities will provide more detailed adjustments.

Before we consider the behavior of Fa in the limit as q → e2πih/k, we will first

consider the closed curve C that our contour integral will be taken over.

2.2 Rademacher’s Contour

Anticipating that the behavior of Fa(q) is most important near the roots of unity with

relatively small degree, we will now find an appropriate contour to integrate over.

Hardy and Ramanujan’s initial work involved simply integrating over a circle

centered at 0, with radius just less than 1 [8]. However, Rademacher recognized

that the necessary integration implied in Section 2.1 could be made much easier by

constructing a contour more suitable to manipulation near any given root of unity [17].

We will outline his construction of such a contour in this section, in a form slightly

modified by Andrew Sills [23]. While the motivation for so intricate a contour is not

obvious, later steps in our calculation will favor it to the more straightforward curves.

Recall the classic Farey sequence of degree N :

Definition 2.3. Let N ∈ N. The Farey sequence of degree N , FN , is the set of all

rational fractions h/k such that 0 ≤ h < k ≤ N , with h = 0 only when k = 1. For

our purposes, we will order FN by (≤).

The Farey sequence of degree 5, for example, is

F5 =

{
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5

}
. (2.7)

An excellent introduction to the Farey sequence can be found in Hardy and Wright

[9, Chapter 3].
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Definition 2.4. For a given h/k ∈ FN , define the Ford circle C(h, k) as the curve

given by

∣∣∣∣τ − (hk +
i

2k2

)∣∣∣∣ =
1

2k2
. (2.8)

Given the set of Ford circles corresponding to the Farey sequence of degree N ,

let γ(h, k) be defined as the upper arc of C(h, k) from

τI(h, k) =
h

k
− kp
k(k2 + k2

p)
+

1

k2 + k2
p

i

to

τT (h, k) =
h

k
+

ks
k(k2 + k2

s)
+

1

k2 + k2
s

i,

with hp/kp and hs/ks the immediate predecessor and successor (respectively) of h/k ∈

FN (let 0p/1p = (N − 1)/N ; similarly, let (N − 1)s/Ns = 0/1).

It is a trivial geometrical exercise [3, Chapter 5] to verify the following lemma:

Lemma 2.5. Any two Ford circles in FN are either tangent to one another, or

disjoint.

Definition 2.6. The Rademacher path of order N , P (N), is the union of all upper

arcs γ(h, k) from τ = i to τ = i+ 1:

P (N) =
⋃

h/k∈FN

γ(h, k). (2.9)

Since every Ford circle is almost entirely in the upper half of the τ plane H

(with a single point tangent to R), and the points within the upper arcs γ(h, k) have

nonzero imaginary part, therefore γ(h, k) lies entirely in H for every h/k ∈ FN , and

P (N) is a curve that lies entirely in H. See Figure 2.1.
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<(τ)

=(τ) <(τ) = 1

0 1/2 11/3 2/3

Figure 2.1: Ford circles C(h, k) for h/k ∈ F3, with P (3) highlighted.

So if we define q = e2πiτ , then the corresponding preimage of P (N) remains

inside of the unit circle, enclosing the origin. We may justifiably define C = P (N) for

any N ∈ N.

We can now give a precise definition of what it means for part of our contour to

be “near” a root of unity: q is close to e2πih/k if q lies on the preimage of γ(h, k).

More specifically, we will make one more change of variables, so that on γ(h, k)

we have

τ =
h

k
+
iz

k
, (2.10)

with <(z) > 0. Going from the τ plane to the z plane, the corresponding Ford circle

(with the upper arc γ(h, k)) is mapped to the circle
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K
(−)
k :

∣∣∣∣z − 1

2k

∣∣∣∣ =
1

2k
. (2.11)

<{z}

={z}

1/2k

zI(h, k)

zT (h, k)

Figure 2.2: K
(−)
k with the highlighted path from zI(h, k) to zT (h, k). Notice that the

(−) indicates that the path is taken clockwise.

Notice that K
(−)
k itself has no dependence on h. Rather, the information regard-

ing the fraction h/k is contained wholly in the initial and terminal points of the map

of γ(h, k). Indeed, we have

τI(h, k) 7→ zI(h, k) =
k

k2 + k2
p

+
kp

k2 + k2
p

i, (2.12)

τT (h, k) 7→ zT (h, k) =
k

k2 + k2
s

− ks
k2 + k2

s

i. (2.13)

We end this chapter with one simple but extremely important geometrical lemma.

Lemma 2.7. Let N ∈ N be given, and h/k ∈ FN and let zI(h, k), zT (h, k) be the

images of τI(h, k), τT (h, k), respectively, from C(h, k) to K
(−)
k . Then for any z on

the chord connecting zI(h, k) to zT (h, k), we have
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|z| = O
(
N−1

)
. (2.14)

Proof. Let z lie on the chord of K
(−)
k connecting zI(h, k) to zT (h, k). Then we have

|z| ≤max{|zI(h, k)| , |zT (h, k)|} (2.15)

≤max

{√
1

k2 + k2
p

,

√
1

k2 + k2
s

}
. (2.16)

We also have:

2(k2 + k2
p) =k2 + k2

p + (k2 + k2
p) (2.17)

≥k2 + k2
p + 2kkp (2.18)

=(k + kp)
2. (2.19)

Finally, as a natural consequence of the Farey sequence of order N [9],[18], for

any two consequtive fractions hp/kp, h/k ∈ FN , we have

k + kp ≥ N. (2.20)

Therefore, we have

2(k2 + k2
p) ≥ N2, (2.21)

and,

√
1

k2 + k2
p

≤
√

2

N
= O

(
N−1

)
. (2.22)

Of course, an identical relationship holds for
√

1
k2+k2s

by the same reasoning.



CHAPTER 3

TRANSFORMATION EQUATIONS

3.1 Introduction

3.1.1 Modular Forms

Before we take a close look at Fa, it is necessary to introduce some useful functions

and their corresponding properties. Henceforth, let q = exp(2πiτ).

The theory of modular forms, or functions that are nearly modular, is at times

immensely technical. Even the precise definition of the term “modular form” can

vary depending on the reference given, or even depending on the sections of a given

reference (See, for example, the discussion in Chapter 6 of Apostol [3]).

For our purposes, we define modularity of a function as follows:

Definition 3.1. A function φ(τ) is modular if it is holomorphic for τ ∈ H and

φ

(
aτ + b

cτ + d

)
= (cτ + d)kω(a, b, c, d)φ(τ), (3.1)

for
(
a b
c d

)
∈ SL(2,Z) with c > 0. Here k is usually referred to as the weight of φ, and

ω is a root of unity depending on a, b, c, d.

We will be interested in functions that satisfy a similar transformation equation

to (3.1), except that the right hand side will sometimes include additional exponential

factors, which may depend in part on τ . For this reason, the functions we work with

may be thought of as “nearly” modular.

The appeal of working with functions that are modular or nearly modular is that,

while φ itself may be an intimidating mathematical function, (cτ + d)kω is a string

of elementary factors. A common powerful technique to extract information from

φ (such as Fourier coefficients) is to modify the argument of φ by a transformation
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in SL(2,Z). By adjusting the argument, we may be able to force φ to approach 1,

transferring all relevant information about φ to the elementary factor (cτ + d)kω,

which is almost always easier to study than φ itself.

We will be especially interested in functions of weight 0 which are modular with

respect to certain specific subgroups of SL(2,Z), if not with SL(2,Z) itself. We say

that such a function is modular with respect to the associated subgroup of SL(2,Z).

We will find that our generating function, with a given exponential factor, is

exactly modular with respect to the subgroup H(8), defined in Section 3.4.

More precise definitions are given in Apostol [3, Chapter 6] and Rademacher [18,

Chapters 8, 9, 15]. We give an important example of an unambiguously modular form

in the Dedekind eta function:

Definition 3.2. Let τ ∈ H. Then we define Dedekind’s eta function by the following:

η(τ) =eπiτ/12

∞∏
m=1

(1− e2πimτ ) (3.2)

=q1/24(q; q)∞. (3.3)

The unrestricted partition function may be developed by manipulating this func-

tion alone. We give the relevant transformation equation for η here:

Theorem 3.3. Let
(
a b
c d

)
∈ SL(2,Z) with c > 0. Then for τ ∈ H we have

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)

√
cτ + d

i
η(τ), (3.4)

with

ε(a, b, c, d) =


(
d
c

)
i(1−c)/2 exp

(
πi/12)(bd(1− c2) + c(a+ d))

)
, 2 - c(

c
d

)
exp

(
(πid/4) + (πi/12)(ac(1− d2) + d(b− c))

)
, 2 - d

, (3.5)
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and
(
m
n

)
the Legendre–Jacobi character.

We emphasize that we are interested in the principal values of the square roots

from the above theorem forward.

We also note that Rademacher discovered a more succinct representation of

ε(a, b, c, d) [17], in the form of

ε(a, b, c, d) = exp

(
πi

(
a+ d

12c
+ s(−d, c)

))
, (3.6)

with

s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
. (3.7)

We will make primary use of (3.5) for our theoretical calculations, especially re-

garding the estimations in Chapter 4. However, (3.6), (3.7) is also a useful expression,

especially in matters of computation, being easier to input into a computer than (3.5).

We return to this matter in Appendix B.

It may be shown that the roots of unity ω(h, k) alluded to in (1.2) have the form

ω(h, k) = exp(πis(h, k)).

Our problem will also necessitate the study of additional, more intricate forms.

In particular, we need Jacobi’s theta functions.

Definition 3.4. Let v ∈ C and τ ∈ H. Then for our purposes, we define Jacobi’s

first theta function as

ϑ1(v|τ) =2eπiτ/4 sin(πv)
∞∏
m=1

(1− e2πimτ )(1− e2πimτ+2πiv)(1− e2πimτ−2πiv) (3.8)

=(q; q)∞(e2πivq; q)∞(e−2πivq; q)∞, (3.9)

and Jacobi’s Fourth Theta Function as
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ϑ4(v|τ) =
∞∏
m=1

(1− e2πimτ )(1− eπiτ(2m−1)+2πiv)(1− eπiτ(2m−1)−2πiv) (3.10)

=(q; q)∞(eπi(2v−τ)q; q)∞(e−πi(2v+τ)q; q)∞. (3.11)

Now ϑ1 is usually referred to as a Jacobi form, as it satisfies a slightly more

intricate transformation equation than that of η. We may still take advantage of the

transformation equation, albeit with slightly more trouble than with η:

Theorem 3.5. Let
(
a b
c d

)
∈ SL(2,Z) with c > 0. Then for v ∈ C and τ ∈ H we have

ϑ1

(
v

cτ + d

∣∣∣∣aτ + b

cτ + d

)
= −iε(a, b, c, d)3

√
cτ + d

i
eπicv

2/(cτ+d)ϑ1(v|τ), (3.12)

with ε(a, b, c, d) defined as in Theorem 3.3.

Finally, we give an expression for Ramanujan’s theta function, which is closely

related to Jacobi’s functions.

Definition 3.6. We define Ramanujan’s theta function as

f(a, b) =
∞∏
m=1

(1 + ambm−1)(1 + am−1bm)(1− ambm) (3.13)

=(−a; ab)∞(−b; ab)∞(ab; ab)∞. (3.14)

As is hinted by the notation, there are four theta functions associated with

Jacobi’s name (as expressed in [18, Chapter 10]). In fact, the functions ϑu for u =

1, 2, 3, 4, along with Ramanujan’s theta function, are usually defined in terms of

certain infinite series. We give the functions as infinite products to emphasize their

connection with Fa. Such product representations are justified through Jacobi’s Triple

Product Identity [18, Chapter 12].
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These functions will become especially useful for our manipulation of Fa itself,

which turns out to be a certain quotient of eta and theta functions. In particular, the

transformation equations are of immense value to us. We will also require additional

information on the behavior of ϑ1, as well as its connections to ϑ4 and f .

Lemma 3.7. Let v ∈ C, τ ∈ H, q = e2πiτ , and N ∈ N. Then the following apply:

1. ϑ1(v + 1|τ) = −ϑ1(v|τ)

2. ϑ1(v +Nτ |τ) = (−1)N exp (−πiN(2v +Nτ))ϑ1(v|τ)

3. ϑ1

(
v + τ

2

∣∣τ) = i exp
(−πi

4
(4v + τ)

)
ϑ4(v|τ)

4. f(−qα,−qβ) = −ieπiτ4 (3α−β)ϑ1(ατ |(α + β)τ).

See Rademacher [18, Chapters 9, 10] for a proof of these properties, as well as

the transformation formulæ in Theorems 3.3, 3.5.

3.1.2 Prelude: Transforming F (q)

We pause to discuss the use of η(τ) for the unrestricted partition function. The

process sketched here is taken from Sills [23].

Letting q = exp(2πiτ), the right-hand side of (1.3) becomes

F (q) = e−πiτ/12 1

η(τ)
.

With the machinery of Chapter 2, we have

p(n) =
1

2πi

∮
C

F (q)

qn+1
dq =

∫
P (N)

F (exp(2πiτ)) exp(−2πinτ)dτ,

for some large natural number N .
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We we begin by examining this integral near a specific root of unity. Let τ =

(h+ iz)/k, with 0 ≤ h < k and (h, k) = 1. Taking advantage of Theorem 3.3, we can

use the following matrix from SL(2,Z):

h − 1
k
(hH + 1)

k −H

 ,

where H is the inverse of h (mod k).

Using this matrix, we may modify our expression of F (q) by the following:

F (q) = ω(h, k)eπ(z−1−z)/12k
√
zF
(
exp(2πi(iz−1 +H)/k)

)
.

Because we are interested in the behavior of F (q) near the roots of unity, and

q = exp(2πi(h + iz)/k), it is important to know the behavior of F (q) with z close

to 0. Our matrix has transformed q to the variable exp(2πi(iz−1 + H)/k), which

approaches 0 as z → 0, forcing F (exp(2πi(iz−1 +H)/k)) to approach 1.

This means that all of the relevant information of F (q) near the root of unity

associated with h/k is transferred to the string of elementary factors

ω(h, k)eπ(z−1−z)/12k
√
z,

and the remaining problem lies in estimating our original integral near e2πih/k in terms

of the much simpler integral

i

k
e−2πinh/kω(h, k)

zT (h,k)∫
zI(h,k)

e2nπz/keπ(z−1−z)/12k
√
z dz.

Taking such a contribution for every h/k ∈ F(N), we may then estimate p(n) as a

series of such integrals.
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3.1.3 Transformations on Fa(q)

We will parallel the work outlined in 3.1.2, but with Fa(q) rather than with F (q).

Because of the more intricate form of Fa(q), we will have to use the Jacobi theta

functions as well as the eta function.

We start with Ramanujan’s theta function, which we can express with powers of

q in the following way:

f(−qα,−qβ) = (qα; qα+β)∞(qβ; qα+β)∞(qα+β; qα+β)∞ (3.15)

We then have

Fa(q) =
1

(qa; q8)∞(q4; q8)∞(q8−a; q8)∞
=

(q8; q8)2
∞

(q4; q4)∞f(−qa,−q8−a)
. (3.16)

Moreover, by Lemma 3.6.4,

f(−qα,−qβ) = −ie
πiτ
4

(3α−β)ϑ1(ατ |(α + β)τ). (3.17)

Also, by (3.3),

(qα; qα)∞ = e−
απiτ
12 η(ατ). (3.18)

Therefore, we can view Fa as a quotient of eta and theta functions:

Theorem 3.8. Let q = e2πiτ , with τ ∈ H. Then

Fa(q) = i exp (πiτ(1− a))
η(8τ)2

η(4τ)ϑ1(aτ |8τ)
. (3.19)

To recognize the importance of expressing Fa in this form, we will consider the

transformation equations on η and ϑ1. LetN be some large positive integer, τ = h
k
+ iz

k
,

with 0 < h < k, (h, k) = 1, k < N , and <(z) > 0, as defined in Chapter 2. The value
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of h/k will depend on what singularity that our q is near, i.e. what upper arc γ(h, k)

that τ lies on.

On each upper arc, we may exploit the transformation properties of η, ϑ1. The

object is do express

Fa(q) = Λ(z)Ψ(y), (3.20)

with Λ(z) some elementary function in z, Ψ(y) a modified quotient of eta and theta

functions, and y = e2πiτ ′ , where τ ′ is related to τ by a specific transformation over

the modular group.

There is one final complication that we must consider. Because the restrictions

imposed on Göllnitz–Gordon partitions involve arithmetic progressions (mod 8), the

relation of k to 8 will carry some significance. Indeed, the most useful modular

transformation to apply to τ will depend on the divisibility properties of k with

respect to 8. We must therefore consider four different cases, depending on whether

(k, 8) = 8, 4, 2, 1.

3.2 Transformations

3.2.1 GCD(k, 8) = 8

The simplest transformation formula relevant to our problem occurs for (k, 8) = 8.

Let H be defined as the negative inverse of h modulo 16k:

hH ≡ −1 (mod 16k). (3.21)

Notice that since 8|k by hypothesis, and (h, k) = 1, therefore (h, 16k) = (h, k) =

1, so that H exists. Then the following are elements of SL(2,Z):
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h − 8
k
(hH + 1)

k
8

−H

 , (3.22)

h − 4
k
(hH + 1)

k
4

−H

 , (3.23)

We will allow

τ ′ =
H

k
+
iz−1

k
. (3.24)

Applying (3.22) to 8τ ′, we have

8hτ ′ − 8
k
(hH + 1)

8k
8
τ ′ −H

= 8τ.

Similarly, applying (3.23) to 4τ ′, we have

4hτ ′ − 4
k
(hH + 1)

4k
4
τ ′ −H

= 4τ. (3.25)

Therefore, we will transform η(8τ) to η(8τ ′), using (3.22). Similarly, we transform

η(4τ) to η(4τ ′) using (3.23).

Invoking these transformations, we must contend with the roots of unity associ-

ated with (3.5). As a shorthand, we will refer to the roots of unity as the following:

ε(8, 8) = ε

(
h,
−8

k
(hH + 1),

k

8
,−H

)
, (3.26)

ε(8, 4) = ε

(
h,
−4

k
(hH + 1),

k

4
,−H

)
. (3.27)

This allows that
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η(8τ)2

η(4τ)
=

1

z1/2

ε(8, 8)2

ε(8, 4)

η(8τ ′)2

η(4τ ′)
. (3.28)

Handling ϑ1 turns out to be more difficult, due to the presence of a second

complex variable. We will mimic our work with η(8τ), using (3.22), and setting

v = aτiz−1 =
a(hiz−1 − 1)

k
. (3.29)

This gives us

ϑ1(aτ |8τ) = ϑ1

(
v

iz−1

∣∣∣∣8τ) (3.30)

= −iε(8, 8)3 1

z1/2
ezπa

2(hiz−1−1)2/8kϑ1 (v|8τ ′) . (3.31)

While τ is successfully transformed, it is essential to interpret (3.29) properly.

Recall that hH ≡ −1 (mod 16k). We can therefore write

−1 = hH + 16kM, (3.32)

with M ∈ Z. We then have

v = ahτ ′ + 16aM. (3.33)

If we also take advantage of Lemma 3.6.1, then with (3.33) we have

ϑ1 (v|8τ ′) = ϑ1 (ahτ ′ + 16aM |8τ ′) = ϑ1 (ahτ ′|8τ ′) . (3.34)

This is definitely an improvement, but we may go further still. Again considering

that (k, 8) = 8 and (h, k) = 1, and a = 1, 3, we also have ah ≡ 1, 3, 5, 7 (mod 8). We

may therefore write
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ϑ1(ahτ ′|8τ ′) = ϑ1(bτ ′ + 8Nτ ′|8τ ′), (3.35)

with b the least positive residue of ah modulo 8.

We now make use of Lemma 3.6.2, and attain

ϑ1(ahτ ′|8τ ′) = (−1)N exp(−πiN(2bτ ′ + 8Nτ ′))ϑ1(bτ ′|8τ ′). (3.36)

Combining (3.31), (3.34), (3.36), and inverting, we have the following:

1

ϑ1(aτ |8τ)
= i

(−1)N

ε(8, 8)3
z1/2e−zπa

2(hiz−1−1)2/8k exp(πiN(2bτ ′+8Nτ ′))
1

ϑ1(bτ ′|8τ ′)
. (3.37)

We now have sufficient information, in (3.28), (3.37), to reassemble the trans-

formed generating function.

Fa(q) =i exp(πiτ(1− a))
η(8τ)2

η(4τ)ϑ1(aτ |8τ)
(3.38)

=i exp(πiτ(1− a))
1

z1/2

ε(8, 8)2

ε(8, 4)

η(8τ ′)2

η(4τ ′)

1

ϑ1(aτ |8τ)
(3.39)

= exp(πiτ(1− a))
1

ε(8, 4)ε(8, 8)
e−zπa

2(hiz−1−1)2/8k(−1)N−1

× exp(πiN(2bτ ′ + 8Nτ ′))
η(8τ ′)2

η(4τ ′)ϑ1(bτ ′|8τ ′)
. (3.40)

Here b = 1, 3, 5, 7. However, noting from (3.17) that

f(−qα,−qβ) = f(−qβ,−qα), (3.41)

we may define F5(q) = F3(q), F7(q) = F1(q). We therefore have

Fa(q) =
i(−1)N

ε(8, 8)ε(8, 4)
× exp

(
πiτ(1− a)− zπa2(hiz−1 − 1)2/8k

+ πiN(2bτ ′ + 8Nτ ′) + πiτ ′(a− 1)

)
Fb(y), (3.42)
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with y = exp(2πiτ ′).

Here, referring to Section 3.1, we have Fa(q) = Λ(z)Ψ8(y) with Ψ8(y) = Fb(y),

and Λ(z) an exponential polynomial in 1/z. Remembering that

N =

⌊
ah

8

⌋
=
ah− b

8
, (3.43)

and that

a2 − 4a+ 3 = (a− 1)(a− 3) = 0, (3.44)

we may collect and reorganize the coefficients of 1, z, and 1/z in the exponential of

(3.42). Doing so gives the following transformation formula:

Fa(q) = ω8(h, k) exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(4a− 5)

))
Fb(y), (3.45)

where

ω8(h, k) =
i(−1)b

ah
8
c

ε(8, 8)ε(8, 4)
exp

(
πi

8k
(h(5− 4a)−H((b− 4)2 − 8))

)
. (3.46)

It should be noted that work by Iseki [11] strongly suggests that ω8(h, k) can be

written in a more reduced form, making use of certain Dedekind and semi-Dedekind

sums. We shall not pursue the matter here.

3.2.2 GCD(k, 8) = 4

The result of the previous section emphasises that Fa(q) is modular, at least with

respect to a subgroup of the modular group, and up to a shift of a. While such a

property does not carry over exactly to the remaining 3 cases, it is only necessary

that Fa(q) = f(z)Ψ(y), with Ψ(y) a suitable quotient of eta and theta functions.
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An important consideration for the following cases is that we will have to be

more restrictive over the possible values of h and H. In the case of (k, 8) = 4, for

example, we could define H simply as the negative inverse of h again. However, since

k/4 is odd, it is possible (and more helpful) to let 2H be the negative inverse of h:

2hH ≡ −1 (mod k/4). (3.47)

Then the following are elements of SL(2,Z):

2h − 4
k
(2hH + 1)

k
4

−H

 , (3.48)

h − 4
k
(2hH + 1)

k
4

−2H

 . (3.49)

We will allow

τ ′ =
H

k
+
iz−1

2k
. (3.50)

Applying (3.48) to 4τ ′, we have

8hτ ′ − 4
k
(2hH + 1)

4k
4
τ ′ −H

= 8τ. (3.51)

Similarly, applying (3.49) to 8τ ′, we have

8hτ ′ − 4
k
(2hH + 1)

8k
4
τ ′ − 2H

= 4τ. (3.52)

Therefore, we will have

η(8τ)2

η(4τ)
=

1

2z1/2

ε(4, 8)2

ε(4, 4)

η(4τ ′)2

η(8τ ′)
, (3.53)
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with

ε(4, 8) =ε

(
2h,
−4

k
(2hH + 1),

k

4
,−H

)
, (3.54)

ε(4, 4) =ε

(
h,
−4

k
(2hH + 1),

k

4
,−2H

)
. (3.55)

Once again, ϑ1 requires the most work by far. The initial transformation through

(3.48) gives us

ϑ1(aτ |8τ) =ϑ1

(
v

iz−1/2

∣∣∣∣8τ) (3.56)

=− iε(4, 8)3 1

(2z)1/2
ezπa

2(hiz−1−1)2/8kϑ1 (v|4τ ′) , (3.57)

with

v =
a(hiz−1 − 1)

2k
. (3.58)

Now remembering that 2hH ≡ −1 (mod k/4), we let

−1 = 2hH +Mk/4, (3.59)

with M ∈ Z, and rewrite

v =
a(hiz−1 − 1)

2k
=

a

2k
(hiz−1 + 2hH +Mk/4) = ahτ ′ +

aM

8
. (3.60)

This gives us

ϑ1 (v|4τ ′) = ϑ1

(
ahτ ′ +

aM

8

∣∣∣∣4τ ′) . (3.61)

We may now allow (as before) b ≡ ah (mod 4), letting ah = 4N + b, so that

(3.61), together with Lemma 3.6.2, gives
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ϑ1 (v|4τ ′) = (−1)N exp(−πiN(2τ ′(2N + b) + aM/4))

× ϑ1

(
bτ ′ +

aM

8

∣∣∣∣4τ ′) . (3.62)

To this point, our work has paralleled the case for (k, 8) = 8. However, the first

argument of ϑ1 contains a second term in the form of aM/8. Since 2hH + 1 is odd,

aM/8 is no integer, so we may not easily filter this term out.

We now shift from ϑ1 to ϑ4, by the identity from Lemma 3.6.3:

ϑ1(v|τ) = i exp(−πiτ/4− πiv)ϑ4(v|τ).

Write

ϑ1

(
bτ ′ +

aM

8

∣∣∣∣4τ ′) =ϑ1

(
(b− 2)τ ′ +

aM

8
+ 2τ ′

∣∣∣∣4τ ′) (3.63)

=i exp(−πi((b− 1)τ ′ + aM/8)) (3.64)

× ϑ4

(
(b− 2)τ ′ +

aM

8

∣∣∣∣4τ ′) . (3.65)

We now express ϑ4 as an infinite product:

ϑ4

(
(b− 2)τ ′ +

aM

8

∣∣∣∣4τ ′) =
∞∏
m=1

(1− y4m)(1− ρ4y
4m−4+b)(1− ρ−1

4 y4m−b) (3.66)

= (y4; y4)∞(ρ4y
b; y4)∞(ρ−1

4 y4−b; y4)∞, (3.67)

with

ρ4 = exp (πia(2hH + 1)/k) , (3.68)

Combining (3.53), (3.57), (3.62), (3.65), (3.67), we have
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Fa(a) = i exp(πiτ(1− a))
1

2z1/2

ε(4, 8)2

ε(4, 4)
× i (2z)1/2

ε(4, 8)3

× exp(−zπa2(hiz−1 − 1)2/8k)

× (−1)N exp(πiN(2τ ′(2N + b) + aM/4))

×−i exp(πi((b− 1)τ ′ − aM/8))×Ψ4(y), (3.69)

with

Ψ4(q) =
η(4τ ′)2

η(8τ ′)ϑ4

(
(b− 2)τ ′ + aM

8

∣∣∣∣4τ ′) (3.70)

=
(q4; q4)2

∞

(q8; q8)∞f(−ρ4qb;−ρ−1
4 q4−b)

. (3.71)

Reducing (3.69), we have

Fa(q) =
1√
2

i(−1)N

ε(4, 8)ε(4, 4)
exp

(
πiτ(1− a)− zπa2(hiz−1 − 1)2/8k

+ πiN(2τ ′(2N + b) + aM/4) + πi((b− 1)τ ′ − aM/8)

)
Ψ4(y). (3.72)

We must once again collect the coefficients of 1, z, and 1/z in the exponential of

(3.72). In doing so, we have the following:

Fa(q) =
1√
2
ω4(h, k) exp

(
π

8k

(
1

z
+ z(4a− 5)

))
Ψ4(y), (3.73)

where we define Ψ4(y) by (3.71), and

ω4(h, k) =
i(−1)b

ah
4
c

ε(4, 8)ε(4, 4)

× exp

(
πi

4k
(h−H − h(4a− 3)(hH + 1) + a(2hH + 1)(b− 2)

)
. (3.74)
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3.2.3 GCD(k, 8) = 2

Let 4hH ≡ −1 (mod k/2) and consider the matrices

4h − 2
k
(4hH + 1)

k
2

−H

 , (3.75)

2h − 2
k
(4hH + 1)

k
2

−2H

 . (3.76)

Both matrices are elements of SL(2,Z). We will allow

τ ′ =
H

k
+
iz−1

4k
. (3.77)

Applying (3.75) to 2τ ′, we have

8hτ ′ − 2
k
(4hH + 1)

2k
2
τ ′ −H

= 8τ. (3.78)

Similarly, applying (3.76) to 4τ ′, we have

8hτ ′ − 2
k
(4hH + 1)

4k
2
τ ′ − 2H

= 4τ. (3.79)

Therefore, we will have

η(8τ)2

η(4τ)
=

1

2
√

2z1/2

ε(2, 8)2

ε(2, 4)

η(2τ ′)2

η(4τ ′)
. (3.80)

Once again, ϑ1 requires the most work by far. The initial transformation through

(3.75) gives us

ϑ1(aτ |8τ) =ϑ1

(
v

iz−1/4

∣∣∣∣8τ) (3.81)

=− iε(2, 8)3 1

2z1/2
ezπa

2(hiz−1−1)2/8kϑ1 (v|2τ ′) , (3.82)
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with

v =
a(hiz−1 − 1)

4k
. (3.83)

Now remembering that 4hH ≡ −1 (mod k/2), we let

−1 = 4hH +Mk/2, (3.84)

with M ∈ Z, and rewrite

v =
a(hiz−1 − 1)

4k
=

a

4k
(hiz−1 + 4hH +Mk/2) = ahτ ′ +

aM

8
. (3.85)

This gives us

ϑ1 (v|2τ ′) = ϑ1

(
ahτ ′ +

aM

8

∣∣∣∣2τ ′) . (3.86)

Notice that both a and h are odd. We may therefore write ah = 2N + 1, so that

with Lemma 6.3.2,

ϑ1 (v|2τ ′) = (−1)N exp(−πiN(2τ ′ + aM/4 + 2τ ′N))ϑ1

(
τ ′ +

aM

4

∣∣∣∣2τ ′) . (3.87)

We now shift from ϑ1 to ϑ4, by Theorem 3.6.3. Write

ϑ1

(
τ ′ +

aM

8

∣∣∣∣2τ ′) = i exp(
−πi

8
(12τ ′ + aM/8))ϑ4

(
aM

8

∣∣∣∣2τ ′) . (3.88)

We now express ϑ4 as an infinite product:

ϑ4

(
aM

8

∣∣∣∣2τ ′) =
∞∏
m=1

(1− y2m)(1− ρ2y
2m−1)(1− ρ−1

2 y2m−1) (3.89)

= (y2; y2)∞(ρ2y; y2)∞(ρ−1
2 y; y2)∞, (3.90)
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with

ρ2 = exp (πia(4hH + 1)/2k) . (3.91)

Combining (3.80), (3.82), (3.87), (3.88), (3.90), we have

Fa(q) =
1√
2

i(−1)N

ε(2, 8)ε(2, 4)
exp

(
πiτ(1− a)− zπa2(hiz−1 − 1)2/4k

+ πiN(2τ ′ + aM/4 + 2τ ′N) +
−πi

8
(12τ ′ + aM/8)

)
Ψ2(y), (3.92)

with

Ψ2(q) =
η(2τ ′)2

η(4τ ′)ϑ4

(
aM
8

∣∣∣∣2τ ′) (3.93)

=
(q2; q2)2

∞

(q4; q4)∞f(−ρ2q;−ρ−1
2 q)

. (3.94)

We must once again collect the coefficients of 1, z, and 1/z in the exponential of

(3.92). In doing so, we have the following:

Fa(q) =
1√
2
ω2(h, k) exp

( π
8k

(z(4a− 5))
)

Ψ2(y), (3.95)

with Ψ2(q) defined by 3.94, and

ω2(h, k) =
i(−1)b

ah
2
c

ε(2, 8)ε(2, 4)
exp

(
πi

4k
(1− (4a− 3)(2hH + 1))

)
. (3.96)

3.2.4 GCD(k, 8) = 1

Let 8hH ≡ −1 (mod k) and consider the matrices
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8h − 1
k
(8hH + 1)

k −H

 , (3.97)

4h − 1
k
(8hH + 1)

k −2H

 . (3.98)

Both matrices are elements of SL(2,Z). We will allow

τ ′ =
H

k
+
iz−1

8k
. (3.99)

Applying (3.97) to τ ′, we have

8hτ ′ − 1
k
(8hH + 1)

kτ ′ −H
= 8τ. (3.100)

Similarly, applying (3.98) to 2τ ′, we have

8hτ ′ − 1
k
(8hH + 1)

2kτ ′ − 2H
= 4τ. (3.101)

Therefore, we will have

η(8τ)2

η(4τ)
=

1

4z1/2

ε(1, 8)2

ε(1, 4)

η(τ ′)2

η(2τ ′)
. (3.102)

Returning to ϑ1, we have

ϑ1(aτ |8τ) =ϑ1

(
v

iz−1/8

∣∣∣∣8τ) (3.103)

=− iε(1, 8)3 1

2
√

2z1/2
e8πkzv2ϑ1

(
a(hiz−1 − 1)

8k

∣∣∣∣τ ′) , (3.104)

with
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v =
a

8k
(hiz−1 − 1). (3.105)

Remembering that 8hH ≡ −1 (mod k), we write

−1 = 8hH +Mk, (3.106)

so that

v =
a(hiz−1 − 1)

8k
=

a

8k
(hiz−1 + 8hH +Mk) = ahτ ′ +

aM

8
. (3.107)

Therefore,

ϑ1 (v|τ ′) = ϑ1

(
ahτ ′ +

aM

8

∣∣∣∣τ ′) . (3.108)

Recognizing from Lemma 3.6.1 that we may extract ahτ ′ altogether from our

first variable, and recognizing that (−1)ah = (−1)h, we have

ϑ1 (v|τ ′) = (−1)h exp(−πiah(ahτ ′ + aM/4))ϑ1

(
aM

8

∣∣∣∣τ ′) . (3.109)

We may now write ϑ1

(
aM
8

∣∣∣∣τ ′) in the product form we defined it by in 3.1:

ϑ1

(
aM

8

∣∣∣∣τ ′) = 2eπiτ
′/4 sin(πaM/8)

∞∏
m=1

(1− e2πimτ ′)(1− e2πimτ ′+2πiaM/8)

× (1− e2πimτ ′−2πiaM/8). (3.110)

Let

ρ1 = exp(−2πiaM/8) = exp (πia(8hH + 1)/4k) , (3.111)

and
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y = exp

(
2πi

(
H

k
+
iz−1

8k

))
. (3.112)

Then we have

ϑ1

(
aM

8

∣∣∣∣τ ′) =2eπiτ
′/4 sin(πaM/8)

∞∏
m=1

(1− ym)(1− ρ1y
m)(1− ρ−1

1 ym) (3.113)

=2eπiτ
′/4 sin(πaM/8)(y; y)∞(ρ1y; y)∞(ρ−1

1 y; y)∞. (3.114)

Examining the sine function, let aM = 8N + c, with c the least positive residue

of aM (mod 8). Then

sin

(
πaM

8

)
= (−1)N sin

(πc
8

)
. (3.115)

Notice that sin
(
πc
8

)
> 0. We know that since

M = −1

k
(8hH + 1), (3.116)

and since (k, 8) = 1, therefore

c ≡ −ak−1 (mod 8). (3.117)

Moreover, k is odd, so k ≡ 1, 3, 5, 7 (mod 8); and in each of these cases, k−1 = k. So

sin
(πc

8

)
=
∣∣∣sin(πc

8

)∣∣∣ (3.118)

=

∣∣∣∣sin(−πc8

)∣∣∣∣ (3.119)

=

∣∣∣∣sin(−πak8

)∣∣∣∣ (3.120)

=

∣∣∣∣sin(πak8

)∣∣∣∣ . (3.121)
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Combining (3.102), (3.104), (3.108), (3.109), (3.110), (3.114), (3.115), we have:

Fa(q) =
1

2
√

2

(−1)N+h−1

ε(1, 8)ε(1, 4)
exp

(
πiτ(1− a)− 8πkz(a(hiz−1 − 1)/8k)2

+ πah(ahτ ′ + aM/4− πiτ ′/4)

) ∣∣∣∣sin(πak8

)∣∣∣∣Ψ1(y), (3.122)

where

Ψ1(y) =
η(τ ′)2

η(2τ ′)

1

(y; y)∞(ρ1y; y)∞(ρ−1
1 y; y)∞

(3.123)

=
(y; y)∞

(y2; y2)∞(ρ1y; y)∞(ρ−1
1 y; y)∞

. (3.124)

Collecting coefficients of 1, z, and 1/z in the exponential of (3.122), we have

Fa(q) =
1

2
√

2
ω1(h, k)

∣∣∣∣csc

(
πak

8

)∣∣∣∣ exp

(
π

8k

(
1

4z
+ z(4a− 5)

))
Ψ1(y), (3.125)

where Ψ1(y) is defined by (3.124), and

ω1(h, k) =
(−1)b

−a(8hH+1)
8k

c+h−1

ε(1, 8)ε(1, 4)
exp

(
πi

4k
(4h(1− a+ hH(3− 4a))−H)

)
. (3.126)

3.3 Complete Transformation Equations

We summarize Section 3.2 by giving the complete transformations in all four cases

below.

Theorem 3.9. Let (k, 8) = d, with d = 8, 4, 2, 1, and let 0 ≤ h < k with (h, k) = 1.

We define 8
d
H to be the negative inverse of h (mod k/d), and

q = exp

(
2πi

(
h

k
+ i

z

k

))
, (3.127)
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y = exp

(
2πi

(
H

k
+ i

dz−1

8k

))
. (3.128)

If d = 8, then

Fa(q) = ω8(h, k) exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(4a− 5)

))
Fb(y), (3.129)

with b ≡ ah (mod 8) = 1, 3, 5, 7, and

ω8(h, k) =
i(−1)b

ah
8
c

ε(8, 8)ε(8, 4)
exp

(
πi

8k
(h(5− 4a)−H((b− 4)2 − 8))

)
. (3.130)

If d = 4, then

Fa(q) =
1√
2
ω4(h, k) exp

(
π

8k

(
1

z
+ z(4a− 5)

))
Ψ4(y), (3.131)

with

ω4(h, k) =
i(−1)b

ah
4
c

ε(4, 8)ε(4, 4)

× exp

(
πi

4k
(h−H − h(4a− 3)(hH + 1) + a(2hH + 1)(b− 2)

)
. (3.132)

If d = 2, then

Fa(q) =
1√
2
ω2(h, k) exp

( π
8k

(z(4a− 5))
)

Ψ2(y), (3.133)

with

ω2(h, k) =
i(−1)b

ah
2
c

ε(2, 8)ε(2, 4)
exp

(
πi

4k
(1− (4a− 3)(2hH + 1))

)
. (3.134)

If d = 1, then
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Fa(q) =
1

2
√

2
ω1(h, k)

∣∣∣∣csc

(
πak

8

)∣∣∣∣ exp

(
π

8k

(
1

4z
+ z(4a− 5)

))
Ψ1(y), (3.135)

with

ω1(h, k) =
(−1)b

−a(8hH+1)
8k

c+h−1

ε(1, 8)ε(1, 4)
exp

(
πi

4k
(4h(1− a+ hH(3− 4a))−H)

)
. (3.136)

We define Ψd for d = 4, 2, 1 by (3.71), (3.94), (3.124), respectively, as q-series,

with Ψd(0) = 1.

3.4 Note on the Modularity of Fa(q)

It is noteworthy that, while we do not achieve modularity in the cases that (k, 8) =

4, 2, 1, we nearly do with (k, 8) = 8. This point is worth expanding on. Given a

matrix V =
(
α β
γ δ

)
∈ SL(2,Z), we have αδ = 1 + βγ. Clearly, αδ ≡ 1 (mod γ), and

(α, γ) = 1. Therefore, we may think of any matrix in SL(2,Z) as having the form

V =

h − 1
k
(hH + 1)

k −H

 , (3.137)

with hH ≡ −1 (mod k), and (h, k) = 1 (though in this more general case, h may

exceed k).

Given (k, 8) = 8, we have

τ =
h

k
+ i

z

k
(3.138)

and

τ ′ =
H

k
+ i

z−1

k
. (3.139)
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This yields

z =
1

i
(kτ − h), (3.140)

1

z
=

1

i
(kτ ′ −H). (3.141)

In this manner, we may rewrite (3.45) as

Fa (2πiτ) = ω8(h, k) exp

(
πi

8k
(((b− 4)2 − 8)h+ (4a− 5)H)

)
× exp

(
−πi

8
(((b− 4)2 − 8)τ + (4a− 5)τ ′)

)
Fb (exp(2πiτ ′)) . (3.142)

Now, supposing that V has a more specific form (mod 8):

V =

h − 1
k
(hH + 1)

k −H

 ≡
1 β

0 1

 (mod 8), (3.143)

we have h ≡ 1 (mod 8), ensuring that b ≡ a (mod 8), i.e. that b = a. With this in

mind, we simplify (3.142) as

Fa (2πiτ) = ω8(h, k) exp

(
−πi
8k

(4a− 5)(h−H)

)
× exp

(
πi

8
(4a− 5)(τ − τ ′)

)
Fa (exp(2πiτ ′)) , (3.144)

or

Fa (2πiτ) exp

(
−πi

8
(4a− 5)τ

)
= ω8(h, k) exp

(
−πi
8k

(4a− 5)(h−H)

)
× Fa (exp(2πiτ ′)) exp

(
−πi

8
(4a− 5)τ ′

)
. (3.145)

Since ω8(h, k) exp
(−πi

8k
(4a− 5)(h−H)

)
is a root of unity, we find the following:
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Theorem 3.10. For τ ∈ C with =(τ) > 0, the function

Fa (2πiτ) exp

(
−πi

8
(4a− 5)τ

)
(3.146)

is a modular form of weight 0 with respect to the subgroup

H(8) =

V ∈ SL(2,Z) : V ≡

1 β

0 1

 (mod 8)

 ≤ SL(2,Z). (3.147)



CHAPTER 4

IMPORTANT ESTIMATIONS

4.1 Kloosterman Sums

The transformation equations of Fa(q) discussed in the previous chapter will allow us

more control over the integral equation that we will evaluate in Chapter 5. However,

there is a second, and perhaps more difficult, matter that we must also contend with,

in the form of estimating certain exponential sums.

This is an immensely important technical question, with applications not only

to partition theory, but throughout the theory of numbers.

Definition 4.1. Let the integers u, v, q be given, and for any 0 ≤ h < q, let H be

given with hH ≡ −1 (mod q). Define the complete Kloosterman sum S by

S =
∑

0≤h<q,
(h,q)=1

exp

(
2πi

q
(uh+ vH)

)
. (4.1)

A Kloosterman sum is incomplete if the given sum does not extend over all h with

0 ≤ h < q and (h, q) = 1.

We will find that our ability to closely estimate S is a technical lynchpin on

which our calculation rests. A quick inspection of S gives us

|S| = O (ϕ(q)) = O(q). (4.2)

However, such an estimate will not be very useful to us, and we will work to achieve

something stronger; in particular, we make use of an ingenious estimate due to Hans

Salié:

Lemma 4.2. Given ε > 0, and integers u, v, λ,Λ, q, hH ≡ −1 (mod q), with Λ > 0

a positive divisor of q, and
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S =
∑

0≤h<q,
(h,q)=1

h≡λ (mod Λ)

exp

(
2πi

q
(uh+ vH)

)
, (4.3)

we have

|S| = O(q2/3+ε(u, q)1/3). (4.4)

The proof of this extraordinary result is in Salié’s 1931 paper, “Zur Abschätzung

der Fourierkoeffizienten ganzer Modulformen” [21].

We must now work to estimate sums based around the roots of unity ωd(h, k)

that we calculated in the previous chapter. We will actually work to estimate

∑
0≤h<k,
(h,k)=1

ωd(h, k)e2πih/k. (4.5)

Theorem 4.3. For d = 8, 4, 2, 1,

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ωd(h, k)e2πih/k

∣∣∣∣∣∣∣∣ = O
(
k2/3+εn1/3

)
. (4.6)

The proof of this theorem will take up the remainder of this chapter. We note

that this problem of estimating exponential sums is not as immediate a problem in the

case of deriving a formula for the unrestricted partition function, p(n). The reason

for this is that, in transforming the generating function F (q) for p(n), a factor of

√
z emerges, which can be used to better control the contribution of the associated

exponential sums [23], [18]. However, because Fa(q) has weight 0, no such power

of z emerges from the transformations in the previous chapter, and more precise

esimations will be needed.
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4.2 Estimations

4.2.1 ω8(h, k)

Recall that

ω8(h, k) =
i(−1)b

ah
8
c

ε(8, 8)ε(8, 4)
exp

(
πi

8k
(h(5− 4a)−H((b− 4)2 − 8))

)
, (4.7)

so that

Remembering that ε(8, 8), ε(8, 4) are determined by the first and second matrices,

respectively, in the case of (k, 8) = 8. Since −H is necessarily odd, we can determine

the value of ε(8, 8)ε(8, 4), by the formula in Section 3.1:

ε(8, 8)ε(8, 4) = (−1)
H2−1

8 exp

(
−πik

32

)
exp

(
πi

8k

(
h(k2/4) +H(k2/4)

))
. (4.8)

Simplifying ω8(h, k) and combining with e2πih/k, this gives us

ω8(h, k)e2πih/k = i(−1)b
ah
8
c+H2−1

8 exp

(
πik

32

)
× exp

(
−2πi

16k
(h(16n+ 4a− 5 + k2/4)−H((b− 4)2 − 8− k2/4))

)
. (4.9)

Let u = 16n+ 4a− 5 + k2/4 and v = (b− 4)2 − 8− k2/4. Notice that the value

of v depends on the congruence of ah, whereas the value of u does not.

We wish to estimate
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∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω8(h, k)e2πih/k

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

i(−1)b
ah
8
c+H2−1

8 exp

(
πik

32

)
exp

(
−2πi

16k
(hu−Hv)

)∣∣∣∣∣∣∣∣ . (4.10)

We now separate our sum into terms, depending on the congruence properties of

ah: our previous sum is

≤
8∑
j=1

∣∣∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ah≡(2j−1) (mod 16)

i(−1)b
ah
8
c+H2−1

8 exp

(
πik

32

)
exp

(
−2πi

16k
(hu−Hv)

)∣∣∣∣∣∣∣∣∣∣
(4.11)

Notice that since i and exp
(
πik
32

)
are fixed throughout our sum, we may factor

them out of our summation.

Next, we recognize that in each case ah ≡ 2j − 1 (mod 16), H2−1
8

will have a

definite parity, which will fix the alternation in sign that depends on H.

Moreover, if ah ≡ 1, 3, 5, 7 (mod 16), then bah
8
c is even; if ah ≡ 9, 11, 13, 15

(mod 16), then bah
8
c is odd. In either case, for a specific value of ah modulo 16, the

alternation induced by bah
8
c is fixed. We may therefore ignore the alternating sign in

front of each sum, and focus on estimating the sum of the exponentials themselves.

Finally, for each value of ah (mod 8), the value of v is fixed. Each sum is an

incomplete Kloosterman sum, in which only h and H vary in the exponential.

We now take advantage Salié’s estimate, provided we also understand that, given

8|q,
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∣∣∣∣∣∣∣∣∣∣
∑

0≤h<q,
(h,q)=1

h≡λ (mod Λ)

exp

(
2πi

16q
(uh+ vH)

)∣∣∣∣∣∣∣∣∣∣
= O


∣∣∣∣∣∣∣∣∣∣

∑
0≤h<16q,
(h,q)=1

h≡λ (mod Λ)

exp

(
2πi

16q
(uh+ vH)

)∣∣∣∣∣∣∣∣∣∣

 . (4.12)

We may now write

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω8(h, k)e2πih/k

∣∣∣∣∣∣∣∣
≤
∣∣∣∣8i exp

(
πik

32

)∣∣∣∣ 8∑
j=1

∣∣∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ah≡(2j−1) (mod 16)

exp

(
−2πi

16k
(hu−Hv)

)∣∣∣∣∣∣∣∣∣∣
(4.13)

=O
(
(16k)2/3+ε(16n+ 4a− 5, 16k)1/3

)
(4.14)

=O
(
k2/3+ε(16n+ 4a− 5, k)1/3

)
. (4.15)

We finally recognize that since (16n+ 4a− 5, k) = O(16n+ 4a− 5) = O(n), that

therefore

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω8(h, k)e2πih/k

∣∣∣∣∣∣∣∣ = O
(
k2/3+εn1/3

)
. (4.16)

4.2.2 ω4(h, k)

Recall that
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ω4(h, k) =
i(−1)b

ah
4
c

ε(4, 8)ε(4, 4)

× exp

(
πi

4k
(h−H − h(4a− 3)(hH + 1) + a(2hH + 1)(b− 2)

)
. (4.17)

We have

1

ε(4, 8)ε(4, 4)
= (−1)(k−4)(k−12)/128 exp

(
πi

4k
(h(−k2/4) +H(k2/4))

)
. (4.18)

To simplify ω4(h, k), recall that 2hH ≡ −1 (mod k/4), i.e. hH ≡ −2−1 (mod k/4).

We will let c ≡ −2−1 (mod k/4), and hH = c+ βk/4. Then this gives us

ω4(h, k) = i(−1)(k−4)(k−12)/128+bah
4
c exp

(
πi

4k
a(b− 2)(2c+ 1)

)
× exp

(
πiβ

16
(2a(b− 2)− h(4a− 3))

)
× exp

(
πi

4k
(h(1− (4a− 3)(c+ 1)− k2/4)−H(k2/4 + 1)

)
. (4.19)

Finally, we multiply by e−2πinh/k:

ω4(h, k)e−2πinh/k = i(−1)(k−4)(k−12)/128+bah
4
c exp

(
πi

4k
a(b− 2)(2c+ 1)

)
× exp

(
πiβ

16
(2a(b− 2)− h(4a− 3))

)
× exp

(
−πi
4k

(h(16n+ (4a− 3)(c+ 1)− 1 + k2/4) +H(k2/4 + 1)

)
. (4.20)

For convenience, let u = 2(16n + (4a − 3)(c + 1) − 1 + k2/4), v = −(k2/4 + 1).

We then have
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ω4(h, k)e−2πinh/k = i(−1)(k−4)(k−12)/128+bah
4
c exp

(
πi

4k
a(b− 2)(2c+ 1)

)
× exp

(
2πiβ

32
(2a(b− 2)− h(4a− 3))

)
exp

(
−πi
8k

(hu− 2Hv)

)
. (4.21)

Once again, we may factor i out of our sum. Moreover, since we fix k for the

given sum, we need only pay attention to the alternation with respect to bah
4
c.

Since c depends only on k, therefore exp
(
πi
4k
a(b− 2)(2c+ 1)

)
will vary only as

ah ≡ b (mod 4) varies.

Finally, we may examine that value of β (2a(b− 2)− h(4a− 3)) (mod 32); since

the expression depends entirely on h (mod 32), we need only fix

exp

(
2πiβ

32
(2a(b− 2)− h(4a− 3))

)
by fixing ah (mod 32).

Therefore, the alternating sign and extraneous root of unity may be disregarded

after fixing k and varying the possible congruence conditions of h (mod 32);

Therefore, we may estimate our sum:
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∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣
≤

16∑
j=1

∣∣∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ah≡(2j−1) (mod 32)

exp

(
−2πi

16k
(hu− 2Hv)

)∣∣∣∣∣∣∣∣∣∣
(4.22)

=O


∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

exp

(
−πi
16k

(hu− 2Hv)

)∣∣∣∣∣∣∣∣
 (4.23)

=O
(
(16k)2/3+ε(u, 16k)1/3

)
(4.24)

=O
(
k2/3+εn1/3

)
. (4.25)

4.2.3 ω2(h, k)

Recall that

ω2(h, k) =
i(−1)b

ah
2
c

ε(2, 8)ε(2, 4)
exp

(
πi

4k
(1− (4a− 3)(2hH + 1))

)
. (4.26)

We calculate that

1

ε(2, 8)ε(2, 4)
= (−1)

(k−6)(k−2)
32 exp

(
πik

4
(−2h+H)

)
. (4.27)

We will let c ≡ −2−1 (mod k/2), and 2hH = c + βk/2. Then combining with

our expression above, we have

ω2(h, k) = i(−1)b
ah
2
c+ (k−6)(k−2)

32 exp

(
πi

4k
(1− (4a− 3)(c+ 1))

)
× exp

(
πi

8
(3− 4a)β

)
exp

(
πi

4k

(
h(−2k2) +H(k2)

))
. (4.28)
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Combining with e−2πinh/k,

ω2(h, k)e−2πinh/k = i(−1)b
ah
2
c+ (k−6)(k−2)

32 exp

(
πi

4k
(1− (4a− 3)(c+ 1))

)
× exp

(
πi

8
(3− 4a)β

)
exp

(
−πi
4k

(
h(8n+ 2k2)−H(k2)

))
. (4.29)

Again letting u = 8n+ 2k2 and v = k2/4, we have

ω2(h, k)e−2πinh/k = i(−1)b
ah
2
c+ (k−6)(k−2)

32 exp

(
πi

4k
(1− (4a− 3)(c+ 1))

)
× exp

(
πi

8
(3− 4a)β

)
exp

(
−πi
4k

(hu− 4Hv)

)
. (4.30)

Again, i(−1)
(k−6)(k−2)

32 will not vary with h; nor will exp
(
πi
4k

(1− (4a− 3)(c+ 1))
)
.

On the other hand, exp
(
πi
8

(3− 4a)β
)

will vary with the value of β (mod 16),

which will depend on the value of h (mod 16). So we have

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω2(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣
≤ exp

(
πi

8
(3− 4a)β

) 8∑
j=1

∣∣∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

h≡(2j−1) (mod 16)

exp

(
−2πi

8k
(hu− 4Hv)

)∣∣∣∣∣∣∣∣∣∣
(4.31)

=O


∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

exp

(
−πi
8k

(hu− 4Hv)

)∣∣∣∣∣∣∣∣
 (4.32)

=O
(
(8k)2/3+ε(u, 8k)1/3

)
(4.33)

=O
(
k2/3+εn1/3

)
. (4.34)
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4.2.4 ω1(h, k)

Recall that

ω1(h, k) =
(−1)b

−a(8hH+1)
8k

c+h−1

ε(1, 8)ε(1, 4)
exp

(
πi

4k
(4h(1− a+ hH(3− 4a))−H)

)
. (4.35)

We begin with evaluating and inverting ε(1, 8)ε(1, 4):

1

ε(1, 8)ε(1, 4)
= (−1)

(k−3)(k−1)
8 exp

(
−πik

4
(4h−H)

)
. (4.36)

Since 8hH ≡ −1 (mod k), we will let hH ≡ c ≡ −8−1 (mod k). We therefore

have hH = c+ βk, 8hH + 1 = 8c+ 8βk + 1.

Combining and simplifying, we have

ω1(h, k) = i(−1)b
−a(8hH+1)

8k
c+h+hH−1−c+ (k−3)(k−1)

8

× exp

(
πi

4k

(
4h(1− a+ c(3− 4a)− k2) +H(k2 − 1)

))
. (4.37)

Multiply by e−2πinh/k and let u = 8(2n+ a− 1 + c(4a− 3) + k2), v = k2−1
4

:

ω1(h, k) = i(−1)b
−a(8hH+1)

8k
c+h+hH−1−c+ (k−3)(k−1)

8 exp

(
−πi
8k

(hu− 8Hv)

)
. (4.38)

Again, i(−1)−1−c+ (k−3)(k−1)
8 will not vary with h. We may examine the congruence

of h (mod 8) to fix the remaining alternating sign. We have the following:
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∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣
≤

4∑
j=1

∣∣∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

h≡(2j−1) (mod 8)

exp

(
−2πi

16k
(hu− 8Hv)

)∣∣∣∣∣∣∣∣∣∣
(4.39)

=O


∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

exp

(
−2πi

16k
(hu− 8Hv)

)∣∣∣∣∣∣∣∣
 (4.40)

=O
(
(16k)2/3+ε(u, 16k)1/3

)
(4.41)

=O
(
k2/3+εn1/3

)
. (4.42)



CHAPTER 5

INTEGRATION

5.1 Heuristics

Recall our results from Chapter 2: Section 1 established that

ga(n) =
1

2πi

∮
C

Fa(q)

qn+1
dq,

while in Section 2 we described a contour that will prove useful for integration. We

will now begin the integration proper.

Let N be some large positive integer, and let the corresponding Rademacher

curve P (N) be given. Then we have the following:

ga(n) =
1

2πi

∮
P (N)

Fa(q)

qn+1
dq =

N∑
k=1

∑
0≤h<k,
(h,k)=1

1

2πi

∫
γ(h,k)

Fa(q)

qn+1
dq. (5.1)

In Chapter 3, we gave transformation equations for Fa(q) depending on the

divisibility properties of k. We now separate our integral into the corresponding

cases:

ga(n) = g(8)
a (n) + g(4)

a (n) + g(2)
a (n) + g(1)

a (n), (5.2)

with

g(d)
a (n) =

∑
(k,8)=d,
k≤N

∑
0≤h<k,
(h,k)=1

1

2πi

∫
γ(h,k)

Fa(q)

qn+1
dq. (5.3)

We now see the justification of the change of variables q = exp
(
2πi
(
h
k

+ iz
k

))
.

We will transform the integrand by the results in Chapter 3. For a substantial portion

of our integrand, we will let z ∈ C with <(z) > 0, modify our path of integration,
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and take z close to 0. As z → 0, q → e2πih/k, and y → 0. We will utilize the

corresponding arc γ(h, k) and show that y → 0 rapidly enough that the functions

Fb(y),Ψd(y) → 1. Those portions of the integral that remain will constitute a finite

string of elementary exponential factors—nontrivial, but far more accessible to inte-

gration. For such contributions, we will modify our contour in z to encompass the

whole of the corresponding circle K
(−)
k , and appeal to the theory of Bessel functions

to finish the integration.

Remembering from Lemma 2.7 that |zI(h, k)|, |zT (h, k)| = O(N−1), and N being

the upper bound on the denominators of h/k for the singularities e2πih/k considered,

we will ultimately take N →∞.

5.2 In the Case of p(n)

We begin by sketching the method of solving for p(n) [23]. As the summary in 3.1.2,

our formula for p(n) has the form

p(n) =
N∑
k=1

∑
0≤h<k,
(h,k)=1

i

k
e−2πinh/kω(h, k)

zT (h,k)∫
zI(h,k)

e2nπz/keπ(z−1−z)/12k
√
z F (y) dz

=
N∑
k=1

i

k

∑
0≤h<k,
(h,k)=1

e−2πinh/kω(h, k) (I(h, k) + I∗(h, k)) ,

where y = exp(2πi(iz−1 +H)/k), and

I(h, k) =

zT (h,k)∫
zI(h,k)

e2nπz/keπ(z−1−z)/12k
√
z dz,

and



56

I∗(h, k) =

zT (h,k)∫
zI(h,k)

e2nπz/keπ(z−1−z)/12k
√
z (F (y)− 1) dz.

We then wish to show that I∗(h, k) can be forced to become arbitrarily small, through

deforming our path of integration to a chord connecting zI(h, k) to zT (h, k). Due to

the final result in Chapter 2, and through manipulating the integrand of I∗(h, k), we

may show that |I∗(h, k)| = O(N−3/2).

We may then manipulate I(h, k) through altering the path of integration to

include the whole of K
(−)
k . Doing so gives us the following estimation of p(n):

p(n) =
N∑
k=1

i

k

∑
0≤h<k,
(h,k)=1

e−2πinh/kω(h, k)

∮
K

(−)
k

e2nπz/keπ(z−1−z)/12k
√
z dz +O(N−1/2),

with the error term on the order of N−1/2 after taking into account an estimation of

the sums of roots of unity attached to I∗(h, k).

5.3 Integration

Our method to simplify the formula for ga(n) will closely follow the sketch of the

derivation of p(n). The key complication to take into account is the division of the

integral of ga(n) into cases depending on the divisibility of k in the nearby root of

unity e2πih/k. In each case, we make use of the corresponding transformation derived

in Chapter 3.

However, in each case we will extract a portion of our integral analogous to that

of I∗(h, k) above, which we will refer to as I
(0)
d (h, k), and which will also be shown

not to contribute at all to the final formula.

We rewrite
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g(d)
a (n) =

∑
(k,8)=d
k≤N

i

k

∑
0≤h<k,
(h,k)=1

e−2πinh/k

zT (h,k)∫
zI(h,k)

Fa

(
exp

(
2πi

(
h

k
+
iz

k

)))
e2πnz/kdz, (5.4)

with zI(h, k), zT (h, k) the initial and terminal points, respectively, of γ(h, k) in terms

of z.

5.3.1 g
(8)
a (n)

Applying Theorem 3.2, we have

g(8)
a (n) =

∑
(k,8)=8
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/k

×
zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(16n+ 4a− 5)

))
Fb(y)dz. (5.5)

We now expand Fb(y) =
∞∑
j=0

gb(j)y
j as the generating function for gb(n). Recall

that we defined gb(0) = 1, i.e. the constant term in Fb(q) is necessarily 1. Therefore,

we may write

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(16n+ 4a− 5)

))
Fb(y)dz

=

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(16n+ 4a− 5)

))
dz (5.6)

+

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(16n+ 4a− 5)

)) ∞∑
j=1

gb(j)y
jdz. (5.7)

Hereafter,
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I
(1)
8 (h, k) =

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(16n+ 4a− 5)

))
dz, (5.8)

and

I
(0)
8 (h, k) =

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(16n+ 4a− 5)

)) ∞∑
j=1

gb(j)y
jdz. (5.9)

Therefore,

g(8)
a (n) =

∑
(k,8)=8
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/k
(
I

(1)
8 (h, k) + I

(0)
8 (h, k)

)
. (5.10)

Lemma 5.1. ∣∣∣I(0)
8 (h, k)

∣∣∣ = O
(
exp(3nπ)N−1

)
. (5.11)

Proof. We may interchange the summation with the integration. Also, remembering

that y = exp
(

2πi
(
H
k

+ iz−1

k

))
,

I
(0)
8 (h, k)

=
∞∑
j=1

gb(j)e
2πiHj/k

×
zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(16n+ 4a− 5)

))
e−2πz−1/kdz (5.12)

=
∞∑
j=1

gb(j)e
2πiHj/k

×
zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
(b− 4)2 − 8− 16j

z
+ z(16n+ 4a− 5)

))
dz. (5.13)
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Notice that the coefficient of 1/z in the exponent of the integrand is now always

negative.

Taking advantage of the fact that <(1/z) ≥ k and <(z) ≤ 1/k, we now examine

the magnitude of the integrand:

∣∣∣∣exp

(
π

8k

(
(b− 4)2 − 8− 16j

z
+ z(16n+ 4a− 5)

))∣∣∣∣ (5.14)

= exp
( π

8k
((b− 4)2 − 8− 16j)<(1/z) +

π

8k
(16n+ 4a− 5)<(z)

)
(5.15)

≤ exp

(
π(1− 16j)

8
+
π(16n+ 4a− 5)

8k2

)
(5.16)

= exp(−π(2j − 1/8) + 3nπ) ≤ exp(πj + 3nπ). (5.17)

We therefore have

|I(0)
8 (h, k)|

≤
∞∑
j=1

gb(j)|e2πiHj/k|

×
zT (h,k)∫
zI(h,k)

∣∣∣∣exp

(
π

8k

(
(b− 4)2 − 8− 16j

z
+ z(16n+ 4a− 5)

))∣∣∣∣ dz (5.18)

≤
∞∑
j=1

gb(j) exp(−πj + 3nπ)

zT (h,k)∫
zI(h,k)

dz. (5.19)

Recall that we are integrating along the circle K
(−)
k in the z-plane. We will now

now deform our contour so that it is a chord connecting zI and zT along K
(−)
k .

Recognizing from our discussion in Chapter 2 that the length of such a chord is

bounded above by a constant multiple of N−1, we have
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<{z}

={z}

1/2k

K
(−)
k :

∣∣z − 1
2k

∣∣ = 1
2k

zI(h, k)

zT (h, k)

Figure 5.1: K
(−)
k with the chord connecting zI(h, k) to zT (h, k).

|I(0)
8 (h, k)| = O

(
∞∑
j=1

gb(j) exp(−πj + 3nπ)N−1

)
(5.20)

= O

(
exp(3nπ)N−1

∞∑
j=1

gb(j) exp(−πj)

)
(5.21)

= O(exp(3nπ)N−1). (5.22)

We must now estimate not only I
(0)
8 (h, k), but the entire summation that makes

use of I
(0)
8 (h, k).

Lemma 5.2. Let ε > 0. Then

∣∣∣∣∣∣∣∣
∑

(k,8)=8
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/kI
(0)
8 (h, k)

∣∣∣∣∣∣∣∣ = O
(
e3nπn1/3N−1/3+ε

)
. (5.23)
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Proof. We begin by taking the previous result into account:

∣∣∣∣∣∣∣∣
∑

(k,8)=8
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/kI
(0)
8 (h, k)

∣∣∣∣∣∣∣∣
≤
∑

(k,8)=8
k≤N

1

kN
e3nπ

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣ . (5.24)

With the result from Chapter 4, we know that

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣ = O
(
k2/3+εn1/3

)
. (5.25)

This gives us

∣∣∣∣∣∣∣∣
∑

(k,8)=8
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/kI
(0)
8 (h, k)

∣∣∣∣∣∣∣∣
= O


∣∣∣∣∣∣∣∣
∑

(k,8)=8
k≤N

1

kN
e3nπk2/3+εn1/3

∣∣∣∣∣∣∣∣
 (5.26)

= O

(∣∣∣∣∣e3nπn1/3N−1

N∑
k=1

k2/3+ε

k

∣∣∣∣∣
)
. (5.27)

Recognizing that

N∑
k=1

k2/3+ε

k
=

N∑
k=1

k2/3+2ε

k1+ε
≤

N∑
k=1

N2/3+2ε

k1+ε
= N2/3+2ε

N∑
k=1

1

k1+ε
, (5.28)

that
∑N

k=1
1

k1+ε
is bounded above as N gets large, and finally noting that we may

replace 2ε with ε, we now have
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O

(∣∣∣∣∣e3nπn1/3N−1

N∑
k=1

k2/3+ε

k

∣∣∣∣∣
)

= O(e3nπn1/3N−1/3+ε), (5.29)

and the proof is completed.

We now have

g(8)
a (n) =

∑
(k,8)=8
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/kI
(1)
8 (h, k) +O

(
e3nπn1/3N−1/3+ε

)
. (5.30)

Notice that a substantial portion of the original integral has been absorbed into

the error term, which will become negligible when N is taken to be arbitrarily large.

Almost everything that remains will contribute to the final form of g
(8)
a (n). Notice

that the method we applied to dispose of large parts of our integrand can be used to

dispose of a portion of I
(1)
8 (h, k). Recall that

I
(1)
8 (h, k) =

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
(b− 4)2 − 8

z
+ z(16n+ 4a− 5)

))
dz, (5.31)

with b ≡ ah (mod 8). If b = 1, 7, then the coefficient of 1/z in the exponent is 1.

However, if b = 3, 5, then the coefficient is −7. If we suppose b = 3, 5 for the moment,

then by almost identical reasoning of Lemma 5.1, we have

∣∣∣I(1)
8 (h, k)

∣∣∣ = O
(
exp(3nπ)N−1

)
. (5.32)

With Lemma 5.2, we therefore have
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g(8)
a (n) =

∑
(k,8)=8
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ah≡±1 (mod 8)

ω8(h, k)e−2πinh/kI
(1)
8 (h, k)

+O
(
e3nπn1/3N−1/3+ε

)
. (5.33)

Our object now will be to put the remainder into a form approachable from the

theory of Bessel functions.

We now return to the original Rademacher contour of I
(1)
8 (h, k), along a portion of

K
(−)
k . The brilliance of the contour becomes clear once it is realized that <(1/z) = k,

i.e. is a constant, provided we remain along K
(−)
k (and avoid z = 0, of course). We

wish to make use of the whole of K
(−)
k , so we will make adjustments to the contour

as follows:

I
(1)
8 (h, k) =

∮
K

(−)
k

−
zI(h,k)∫

0

−
0∫

zT (h,k)

 exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz. (5.34)

Notice that
zI(h,k)∫

0

and
0∫

zT (h,k)

are improper: the integrand is not defined at z = 0.

We interpret these integrals as limits in which a variable approaches 0. We will now

show that
zI(h,k)∫

0

and
0∫

zT (h,k)

will not contribute anything of importance:

Lemma 5.3.∣∣∣∣∣∣∣
0∫

zT (h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz

∣∣∣∣∣∣∣ ,∣∣∣∣∣∣
zI(h,k)∫

0

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz

∣∣∣∣∣∣
= O

(
exp(3nπ)N−1

)
. (5.35)
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<{z}

={z}

1/2k

K
(−)
k

zT (h, k)

Figure 5.2: K
(−)
k with the highlighted path from zT (h, k) to 0.

Proof. We will keep on K
(−)
k for these estimations. Since the estimation is almost

identical in either case, we will work with the integral
0∫

zT (h,k)

. We begin by estimating

the integrand of the integral:

∣∣∣∣exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))∣∣∣∣
= exp

( π
8k

(<(1/z) + <(z)(16n+ 4a− 5))
)

(5.36)

≤ exp

(
π

8k

(
k +

16n+ 4a− 5

k

))
(5.37)

≤ exp

(
π

8
+
π(16n+ 4a− 5)

8k2

)
(5.38)

≤ exp(3nπ). (5.39)

We now estimate the path of integration:

The chord connecting 0 with zT (h, k) can be no longer than the diameter of K(−),

so the length along the arc from 0 to zT (h, k) can be no longer than |zT (h, k)|π
2
. Since

|zT (h, k)| <
√

2/N , we have a path length that is O(N−1). This gives us
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∣∣∣∣∣∣∣
0∫

zT (h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz

∣∣∣∣∣∣∣
≤

0∫
zT (h,k)

∣∣∣∣exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))∣∣∣∣ dz (5.40)

≤ exp(3nπ)

0∫
zT (h,k)

dz (5.41)

= O
(
exp(3nπ)N−1

)
. (5.42)

The case for
zI(h,k)∫

0

is virtually identical.

As a consequence of the previous Lemmas 5.1, 5.2, and 5.3, we have

Theorem 5.4.

g(8)
a (n) =

∑
(k,8)=8,
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/k

×
∮
K

(−)
k

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz +O

(
e3nπn1/3N−1/3+ε

)
. (5.43)

We will save the remaining integral for (5.43) for the next chapter.

5.3.2 g
(4)
a (n)

Beginning with the opening expression 5.4 for g
(d)
a (n) for d = 4, and remembering

Chapter 3, we have
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g(4)
a (n) =

∑
(k,8)=8
k≤N

i

k
√

2

∑
0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/k

×
zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
Ψ4(y)dz. (5.44)

Since this expression has similar structure to g
(8)
a (n), we may utilize many of the

same techniques and estimations. We will let

Ψ4(q) =
∞∑
j=0

ψ4(j)qj (5.45)

be the q-expansion of Ψ4(q), with ψ4(0) = 1. Then write

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
Ψ4(y)dz

=

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz

+

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

)) ∞∑
j=1

ψ4(j)yjdz (5.46)

=I
(1)
4 (h, k) + I

(0)
4 (h, k), (5.47)

analogous to the integrals we dealt with in 4.2.1. In particular, I
(1)
4 (h, k) = I

(1)
8 (h, k).

Lemma 5.5. ∣∣∣I(0)
4 (h, k)

∣∣∣ = O
(
exp(3nπ)N−1

)
. (5.48)

Proof. We write
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I
(0)
4 (h, k) (5.49)

=

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

)) ∞∑
j=1

ψ4(j)yjdz (5.50)

=
∞∑
j=1

ψ4(j)e2πiHj/k

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
e−2πjz−1/2kdz (5.51)

=
∞∑
j=1

ψ4(j)e2πiHj/k

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1− 8j

z
+ z(16n+ 4a− 5)

))
dz. (5.52)

Notice that the coefficient of 1/z in the exponent of the integrand is now always

negative.

Taking advantage of the fact that <(1/z) ≥ k and <(z) ≤ 1/k, we now examine

the magnitude of the integrand:

∣∣∣∣exp

(
π

8k

(
(1− 8j

z
+ z(16n+ 4a− 5)

))∣∣∣∣ (5.53)

= exp
( π

8k
(1− 8j)<(1/z) +

π

8k
(16n+ 4a− 5)<(z)

)
(5.54)

≤ exp

(
π(1− 8j)

8
+
π(16n+ 4a− 5)

8k2

)
(5.55)

= exp(−πj + 3nπ). (5.56)

We therefore have
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|I(0)
4 (h, k)|

=

∣∣∣∣∣∣∣
zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

)) ∞∑
j=1

ψ4(j)yjdz

∣∣∣∣∣∣∣ (5.57)

≤
∞∑
j=1

|ψ4(j)||e2πiHj/k|

×
zT (h,k)∫
zI(h,k)

∣∣∣∣exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
e−2πjz−1/2k

∣∣∣∣ dz (5.58)

=
∞∑
j=1

|ψ4(j)|
zT (h,k)∫
zI(h,k)

∣∣∣∣exp

(
π

8k

(
1− 8j

z
+ z(16n+ 4a− 5)

))∣∣∣∣ dz (5.59)

≤
∞∑
j=1

|ψ4(j)| exp(−πj + 3nπ)

zT (h,k)∫
zI(h,k)

dz. (5.60)

Remembering from Chapter 2 that we may deform our path from zI(h, k) to

zT (h, k) into the corresponding chord of K
(−)
k , and that such a chord is O(N−1), we

have

|I(0)
4 (h, k)| = O

(
e3nπN−1

∞∑
j=1

|ψ4(j)|e−πj
)
. (5.61)

Notice that since Ψ4(q) =
∑∞

j=0 ψ4(j)qj is a q-series, it is absolutely convergent,

which gives us

O

(
e3nπN−1

∞∑
j=1

|ψ4(j)|e−πj
)

= O
(
exp(3nπ)N−1

)
, (5.62)

and the proof is completed.

In parallel to the case of (k, 8) = 8, we now show that the entire portion of our

formula containing I
(0)
4 (h, k) will not contribute:
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Lemma 5.6. Let ε > 0. Then

∣∣∣∣∣∣∣∣
∑

(k,8)=4,
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/kI
(0)
4 (h, k)

∣∣∣∣∣∣∣∣ = O
(
e3nπn1/3N−1/3+ε

)
. (5.63)

Proof. We begin by taking the previous result into account:

∣∣∣∣∣∣∣∣
∑

(k,8)=4,
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/kI
(0)
4 (h, k)

∣∣∣∣∣∣∣∣
≤

∑
(k,8)=4,
k≤N

1

kN
e3nπ

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣ . (5.64)

With the result from Chapter 4, we know that

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣ = O
(
k2/3+εn1/3

)
. (5.65)

This gives us

∣∣∣∣∣∣∣∣
∑

(k,8)=4,
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/kI
(0)
4 (h, k)

∣∣∣∣∣∣∣∣
= O


∣∣∣∣∣∣∣∣
∑

(k,8)=4,
k≤N

1

kN
e3nπk2/3+εn1/3

∣∣∣∣∣∣∣∣
 (5.66)

= O

(∣∣∣∣∣e3nπn1/3N−1

N∑
k=1

k2/3+ε

k

∣∣∣∣∣
)
. (5.67)

We proceed in a manner identical to the proof of Lemma 5.2.
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We now have

g(4)
a (n) =

1√
2

∑
(k,8)=4,
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/kI
(1)
4 (h, k)

+O
(
e3nπn1/3N−1/3+ε

)
. (5.68)

Notice that I
(1)
4 (h, k) has the same form as I

(1)
8 (h, k). We may therefore apply

Lemma 5.3, in conjunction with (5.34). We then have the following:

Theorem 5.7.

g(4)
a (n) =

1√
2

∑
(k,8)=4,
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/k

×
∮
K

(−)
k

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz +O

(
e3nπn1/3N−1/3+ε

)
. (5.69)

5.3.3 g
(2)
a (n)

Again referring to Equation 5.4 and Chapter 3, we have

g(2)
a (n) =

∑
(k,8)=2,
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω2(h, k)e−2πinh/k

×
zT (h,k)∫
zI(h,k)

exp
( π

8k
(z(16n+ 4a− 5))

)
Ψ2(y)dz. (5.70)

Expanding,
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g(2)
a (n) =

∑
(k,8)=2
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω2(h, k)e−2πinh/k

×
∞∑
j=0

ψ2(j)e2πiHj/k

zT (h,k)∫
zI(h,k)

exp
( π

8k
(z(16n+ 4a− 5))

)
e−2πjz−1/4kdz (5.71)

=
∑

(k,8)=2
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω2(h, k)e−2πinh/k

×
∞∑
j=0

ψ2(j)e2πiHj/k

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
−4j

z
+ z(16n+ 4a− 5)

))
dz. (5.72)

Critically, the coefficient of 1/z in the exponential of the integrand is never

positive. Therefore, we may immediately apply the reasoning of Lemmas 5.1 and 5.5:

∣∣∣∣exp

(
π

8k

(
(−4j

z
+ z(16n+ 4a− 5)

))∣∣∣∣ (5.73)

= exp
( π

8k
(−4j)<(1/z) +

π

8k
(16n+ 4a− 5)<(z)

)
(5.74)

≤ exp

(
π(−4j)

8
+
π(16n+ 4a− 5)

8k2

)
(5.75)

= exp(−πj/2 + 3nπ). (5.76)

Therefore,
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∣∣∣∣∣∣∣
zT (h,k)∫
zI(h,k)

exp
( π

8k
(z(16n+ 4a− 5))

)
Ψ2(y)dz

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∞∑
j=0

ψ2(j)e2πiHj/k

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
−4j

z
+ z(16n+ 4a− 5)

))
dz

∣∣∣∣∣∣∣ (5.77)

≤
∞∑
j=1

|ψ2(j)||e2πiHj/k|
zT (h,k)∫
zI(h,k)

∣∣∣∣exp

(
π

8k

(
−4j

z
+ z(16n+ 4a− 5)

))∣∣∣∣ dz (5.78)

≤
∞∑
j=1

|ψ4(j)| exp(−πj/2 + 3nπ)

zT (h,k)∫
zI(h,k)

dz. (5.79)

Finally altering our contour, and remembering that Ψ2(y) is absolutely conver-

gent, we have

∣∣∣∣∣∣∣
zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
−4j

z
+ z(16n+ 4a− 5)

))
Ψ2(y)dz

∣∣∣∣∣∣∣ = O
(
exp(3nπ)N−1

)
. (5.80)

We now take note that

∣∣g(2)
a (n)

∣∣ = O

 ∑
(k,8)=2,
k≤N

1

kN
e3nπ

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω2(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣
 . (5.81)

Returning to the previous chapter:

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω2(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣ = O
(
k2/3+εn1/3

)
. (5.82)

Therefore,
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|g(2)
a (n)|

=

∣∣∣∣∣ ∑
(k,8)=2,
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω2(h, k)e−2πinh/k

×
zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
−4j

z
+ z(16n+ 4a− 5)

))
Ψ2(y)dz

∣∣∣∣∣
=O


∣∣∣∣∣∣∣∣
∑

(k,8)=4,
k≤N

1

kN
e3nπk2/3+εn1/3

∣∣∣∣∣∣∣∣
 (5.83)

=O

(∣∣∣∣∣e3nπn1/3N−1

N∑
k=1

k2/3+ε

k

∣∣∣∣∣
)
. (5.84)

We proceed in a manner identical to the proof of Lemma 5.2, to achieve the

following:

Theorem 5.8.

g(2)
a (n) = O

(
e3nπn1/3N−1/3+ε

)
. (5.85)

5.3.4 g
(1)
a (n)

Again referring to Equation 5.4 and Chapter 3, we have
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g(1)
a (n) =

∑
(k,8)=1,
k≤N

i

k2
√

2

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/k

×
zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))
Ψ1(y)dz (5.86)

=
∑

(k,8)=1,
k≤N

i

k2
√

2

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/k (5.87)

×
(
I

(1)
1 (h, k) + I

(0)
1 (h, k)

)
, (5.88)

with

I
(1)
1 (h, k) =

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))
dz, (5.89)

and

I
(0)
1 (h, k) =

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

)) ∞∑
j=1

ψ1(j)yjdz. (5.90)

Notice that the coefficient of 1/z in the exponent of I
(1)
1 (h, k) is positive, indicat-

ing that, unlike in the previous case, there will be a nontrivial contribution. However,

contrary to the cases (k, 8) = 8, 4, that same coefficient is 1/4 rather than 1. This

will not substantially affect the application of the same techniques employed in the

previous cases, although it will slightly affect results in the sequel chapter.

Lemma 5.9. ∣∣∣I(0)
1 (h, k)

∣∣∣ = O
(
exp(3nπ)N−1

)
. (5.91)

Proof. We write
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I
(0)
1 (h, k) (5.92)

=

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

)) ∞∑
j=1

ψ1(j)yjdz (5.93)

=
∞∑
j=1

ψ1(j)e2πiHj/k

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))
e−2πjz−1/8kdz (5.94)

=
∞∑
j=1

ψ1(j)e2πiHj/k

zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
−2j + 1/4

z
+ z(16n+ 4a− 5)

))
dz. (5.95)

Taking advantage of the fact that <(1/z) ≥ k and <(z) ≤ 1/k, we now examine

the magnitude of the integrand:

∣∣∣∣exp

(
π

8k

(
−2j + 1/4

z
+ z(16n+ 4a− 5)

))∣∣∣∣ (5.96)

= exp
( π

8k
(−2j + 1/4)<(1/z) +

π

8k
(16n+ 4a− 5)<(z)

)
(5.97)

≤ exp

(
π(−2j + 1/4)

8
+
π(16n+ 4a− 5)

8k2

)
(5.98)

≤ exp(−πj/4 + 3nπ). (5.99)

We therefore have
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|I(0)
1 (h, k)|

=

∣∣∣∣∣∣∣
zT (h,k)∫
zI(h,k)

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

)) ∞∑
j=1

ψ1(j)yjdz

∣∣∣∣∣∣∣ (5.100)

≤
∞∑
j=1

|ψ1(j)||e2πiHj/k|

×
zT (h,k)∫
zI(h,k)

∣∣∣∣exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
e−2πjz−1/8k

∣∣∣∣ dz (5.101)

=
∞∑
j=1

|ψ1(j)|
zT (h,k)∫
zI(h,k)

∣∣∣∣exp

(
π

8k

(
−2j + 1/4

z
+ z(16n+ 4a− 5)

))∣∣∣∣ dz (5.102)

≤
∞∑
j=1

|ψ1(j)| exp(−πj/4 + 3nπ)

zT (h,k)∫
zI(h,k)

dz. (5.103)

Deforming our path from zI(h, k) to zT (h, k) once again into the corresponding

chord of K
(−)
k , we have

|I(0)
1 (h, k)| = O

(
e3nπN−1

∞∑
j=1

|ψ1(j)|e−πj/4
)
. (5.104)

Notice that since Ψ1(y) is absolutely convergent, which gives us

O

(
e3nπN−1

∞∑
j=1

|ψ1(j)|e−πj
)

= O
(
exp(3nπ)N−1

)
, (5.105)

and the proof is completed.

We will again show that no part of g
(1)
a (n) associated with I

(0)
1 (h, k) will con-

tribute to our final formula:

Lemma 5.10. Let ε > 0. Then
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∣∣∣∣∣∣∣∣
∑

(k,8)=1,
k≤N

i

k

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/kI
(0)
1 (h, k)

∣∣∣∣∣∣∣∣
= O

(
e3nπn1/3N−1/3+ε

)
. (5.106)

Proof. We begin by taking the previous result into account:

∣∣∣∣∣∣∣∣
∑

(k,8)=1,
k≤N

i

k

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/kI
(0)
1 (h, k)

∣∣∣∣∣∣∣∣
≤

∑
(k,8)=1,
k≤N

1

kN
e3nπ

∣∣∣∣csc

(
πak

8

)∣∣∣∣
∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣ . (5.107)

With the result from Chapter 4, we know that

∣∣∣∣∣∣∣∣
∑

0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/k

∣∣∣∣∣∣∣∣ = O
(
k2/3+εn1/3

)
. (5.108)

This gives us

∣∣∣∣∣∣∣∣
∑

(k,8)=1,
k≤N

i

k

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/kI
(0)
1 (h, k)

∣∣∣∣∣∣∣∣
= O


∣∣∣∣∣∣∣∣
∑

(k,8)=1,
k≤N

1

kN

∣∣∣∣csc

(
πak

8

)∣∣∣∣ e3nπk2/3+εn1/3

∣∣∣∣∣∣∣∣
 (5.109)

= O

(∣∣∣∣∣e3nπn1/3N−1

N∑
k=1

∣∣∣∣csc

(
πak

8

)∣∣∣∣ k2/3+ε

k

∣∣∣∣∣
)
. (5.110)
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We must quickly make note of the behavior of the cosecant term. Since (k, 8) = 1,

πak/8 will never become an integer multiple of π. Moreover, we know that by the

periodicity of csc(x) that

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∈ {| csc(πam/8)| : m = 1, 3, 5, 7}. (5.111)

We may therefore easily bound
∣∣csc

(
πak

8

)∣∣ by the maximum of its four possible

defined values.

Let C = max{| csc(πam/8)| : m = 1, 3, 5, 7}. Then

N∑
k=1

∣∣∣∣csc

(
πak

8

)∣∣∣∣ k2/3+ε

k
≤ C

N∑
k=1

k2/3+ε

k
= O

(
N∑
k=1

k2/3+ε

k

)
. (5.112)

With this minor obstacle sidestepped, we now have

∣∣∣∣∣∣∣∣
∑

(k,8)=1,
k≤N

i

k

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/kI
(0)
1 (h, k)

∣∣∣∣∣∣∣∣
= O

(∣∣∣∣∣e3nπn1/3N−1

N∑
k=1

k2/3+ε

k

∣∣∣∣∣
)
. (5.113)

We finish in the manner of Lemma 5.2.

We now have

g(1)
a (n) =

1

2
√

2

∑
(k,8)=4,
k≤N

i

k

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/kI
(1)
1 (h, k)

+O
(
e3nπn1/3N−1/3+ε

)
. (5.114)
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We must now apply an adjustment to our contour analogous to that of Lemma

5.3, with the knowledge that I
(1)
1 (h, k) has a slightly different form from I

(1)
4 (h, k) and

I
(1)
8 (h, k).

Lemma 5.11.∣∣∣∣∣∣∣
0∫

zT (h,k)

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))
dz

∣∣∣∣∣∣∣ ,∣∣∣∣∣∣
zI(h,k)∫

0

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))
dz

∣∣∣∣∣∣
= O

(
exp(3nπ)N−1

)
. (5.115)

Proof. We will keep on K
(−)
k for these estimations, remembering that <(1/z) = k.

Since the estimation is almost identical in either case, we will work with the integral
0∫

zT (h,k)

. We begin by estimating the integrand of the integral:

∣∣∣∣exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))∣∣∣∣
= exp

( π
8k

(<(1/4z) + <(z)(16n+ 4a− 5))
)

(5.116)

≤ exp

(
π

8k

(
k/4 +

16n+ 4a− 5

k

))
(5.117)

≤ exp

(
π

32
+
π(16n+ 4a− 5)

8k2

)
(5.118)

≤ exp(3nπ). (5.119)

We now estimate the path of integration:

The chord connecting 0 with zT (h, k) can be no longer than the diameter of K(−),

so the length along the arc from 0 to zT (h, k) can be no longer than |zT (h, k)|π
2
. Since

|zT (h, k)| <
√

2/N , we have a path length that is O(N−1). This gives us
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∣∣∣∣∣∣∣
0∫

zT (h,k)

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))
dz

∣∣∣∣∣∣∣
≤

0∫
zT (h,k)

∣∣∣∣exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))∣∣∣∣ dz (5.120)

≤ exp(3nπ)

0∫
zT (h,k)

dz (5.121)

= O
(
exp(3nπ)N−1

)
. (5.122)

The case for
zI(h,k)∫

0

is virtually identical.

We now have the following:

Theorem 5.12.

g(1)
a (n) =

1

2
√

2

∑
(k,8)=1
k≤N

i

k

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/k

×
∮
K

(−)
k

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))
dz +O

(
e3nπn1/3N−1/3+ε

)
. (5.123)



CHAPTER 6

LIMIT PROCESS COMPLETED

Once we take (5.43), (5.69), (5.85), (5.123), and collect the error terms, we have

ga(n) = g(8)
a (n) + g(4)

a (n) + g(2)
a (n) + g(1)

a (n)

=
1

2
√

2

∑
(k,8)=1
k≤N

i

k

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/k

×
∮
K

(−)
k

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))
dz

+
1√
2

∑
(k,8)=4
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/k

×
∮
K

(−)
k

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz

+
∑

(k,8)=8
k≤N

i

k

∑
0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/k

×
∮
K

(−)
k

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz

+O
(
e3nπn1/3N−1/3+ε

)
. (6.1)

The remaining integrals can be put in terms of modified Bessel functions. We

shall complete this step before finishing with the rather obvious limit process.

6.1 Bessel Functions

We briefly recall the formula for p(n) as summarized in the beginning of Chapter 5:
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p(n) =
N∑
k=1

i

k

∑
0≤h<k,
(h,k)=1

e−2πinh/kω(h, k)

∮
K

(−)
k

e2nπz/keπ(z−1−z)/12k
√
z dz

+O(N−1/2).

The remaining step to simplify what is left of the integration is to shift variables,

and express our integral in terms of modified Bessel functions [23]. In particular, the

function of interest here is

I3/2(Z) =

√
2Z

π

d

dZ

(
sinh(Z)

Z

)
.

With the resulting modification, and finally taking N to be arbitrarily large, we have

p(n) =
1

π
√

2

∞∑
k=1

√
k A(n, k)

d

dx

sinh
(
π
k

√
2
3

(
x− 1

24

))√
x− 1

24

∣∣∣∣∣
x=n

.

In the case of ga(n), the necessary Bessel function is of integer order, but otherwise

the process of modifying the given integrals is nearly identical to the process just

summarized.

Lemma 6.1.

∮
K

(−)
k

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz

=
−2πi√

16n+ 4a− 5
I1

(
π
√

16n+ 4a− 5

4k

)
, (6.2)

∮
K

(−)
k

exp

(
π

8k

(
1

4z
+ z(16n+ 4a− 5)

))
dz

=
−πi√

16n+ 4a− 5
I1

(
π
√

16n+ 4a− 5

8k

)
. (6.3)
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Proof. Beginning with the first integral, we change variables, first by w = 1/z, then

by w = 8kt/π:

∮
K

(−)
k

exp

(
π

8k

(
1

z
+ z(16n+ 4a− 5)

))
dz

=−
∫ k+∞i

k−∞i
w−2 exp

(
πw

8k
+
π(16n+ 4a− 5)

8kw

)
dw (6.4)

=−
∫ π/8+∞i

π/8−∞i

π

8k
t−2 exp

(
t+

π2(16n+ 4a− 5)

64k2t

)
dt. (6.5)

Finally, letting Z = π
4k

√
16n+ 4a− 5, we have

=− π

8k

∫ π/8+∞i

π/8−∞i
t−2 exp

(
t+

Z2

4t

)
dt (6.6)

=− π

8k

2πi

Z/2

(
Z/2

2πi

∫ π/8+∞i

π/8−∞i
t−2 exp

(
t+

Z2

4t

)
dt

)
(6.7)

=
−2πi√

16n+ 4a− 5
I1(Z). (6.8)

The second relation may be proved almost identically to the first, except with

the shift of variables w = 32kt/π.

6.2 Completed Formulæ

With the previous Lemma, we may write
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ga(n) = g(8)
a (n) + g(4)

a (n) + g(2)
a (n) + g(1)

a (n)

=
π
√

2

4
√

16n+ 4a− 5

∑
(k,8)=1
k≤N

1

k

∣∣∣∣csc

(
πak

8

)∣∣∣∣ ∑
0≤h<k,
(h,k)=1

ω1(h, k)e−2πinh/k

× I1

(
π
√

16n+ 4a− 5

8k

)
+

π
√

2√
16n+ 4a− 5

∑
(k,8)=4
k≤N

1

k

∑
0≤h<k,
(h,k)=1

ω4(h, k)e−2πinh/k

× I1

(
π
√

16n+ 4a− 5

4k

)
+

2π√
16n+ 4a− 5

∑
(k,8)=8
k≤N

1

k

∑
0≤h<k,
(h,k)=1

ω8(h, k)e−2πinh/k

× I1

(
π
√

16n+ 4a− 5

4k

)
+O

(
e3nπn1/3N−1/3+ε

)
. (6.9)

Since the corresponding Bessel Functions have integer order, we have simplified

our formulæ as far as possible.

The final step is now clear, and we have saved it until the end as an admittedly

symbolic act.
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Theorem 6.2. Let d = 1, 4, and

Ad(n, k) =
∑

0≤h<k,
(h,k)=1

ωd(h, k)e−2πinh/k, (6.10)

and

A8(n, k) =
∑

0≤h<k,
(h,k)=1,

ah≡±1 (mod 8)

ω8(h, k)e−2πinh/k. (6.11)

Then

ga(n) =
π
√

2

4
√

16n+ 4a− 5

∑
(k,8)=1

∣∣∣∣csc

(
πak

8

)∣∣∣∣ A1(n, k)

k
I1

(
π
√

16n+ 4a− 5

8k

)

+
π
√

2√
16n+ 4a− 5

∑
(k,8)=4

A4(n, k)

k
I1

(
π
√

16n+ 4a− 5

4k

)

+
2π√

16n+ 4a− 5

∑
(k,8)=8

A8(n, k)

k
I1

(
π
√

16n+ 4a− 5

4k

)
. (6.12)

Proof. Take (6.9) and let N →∞.

We note that since |zI(h, k)|, |zT (h, k)| ≤
√

2
N

, N → ∞ immediately implies

that the endpoints along our z-contour approach 0, i.e., q = exp
(
2πi
(
h
k

+ iz
k

))
→

exp (2πih/k), approaching the corresponding root of unity, confirming our initial

heuristic approach in Chapters 2 and 5 that the roots of unity along the unit circle

contained much of the information concerning the behavior and structure of ga(n).



CHAPTER 7

NUMERICAL TESTS

In the previous chapters we have developed and rigorously justified our formulæ

for ga(n). However, it is not automatically obvious that such an equation can be

effectively used. Hardy and Wright [9, Chapters 1, 22, Appendix], for example, list

multiple different formulæ for the prime numbers which, although valid, are veridically

useless. While we do not claim to have conducted a detailed study into the overall

efficiency of our results, we may point to strong numerical evidence that our work is

useful.

We have subjected (6.12) to numerical tests through Mathematica for the first

200 positive integers. Of course, since (6.12) is an infinite series over the variable k,

we must truncate our formulæ. The results for the unrestricted partition function

p(n), developed by Hardy, Ramanujan, and Rademacher, would give adequate results

if the series over k were truncated to a number of terms on the order of
√
n.

Suspecting (6.12) to behave in a similar fashion, we truncated the series over k

to various multiples of
√
n, for 1 ≤ n ≤ 200. We found that, by computing (6.12)

truncated for 1 ≤ k ≤ 3
√
n, we obtain a numerical result that differs from the correct

value of ga(n) by an absolute error strictly less than 0.5. See Tables 7.1 and 7.2.

Given that the correct value of ga(n) is always a nonnegative integer, we need only

round our numerical result to achieve the exact answer.

Moreover, upon examining the behavior of the error term as n grows, we find that

the largest errors—slightly less than ±0.3 for a = 1, and slightly more than ±0.3 for

a = 3—occur for small values of n. For larger n, the absolute error is much smaller:

for n > 100, the largest absolute error for a = 1 is 0.0806. The largest absolute error

for a = 3 is 0.0667. See Figures 7.1 and 7.2.

These results strongly suggest that summing over the first 3
√
n terms of (6.12)
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and rounding is sufficient to give the correct value for ga(n) for any value of n.
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n g1(n) Eqn. (6.12), 1 ≤ k ≤ 3
√
n Absolute Error

1 1 0.7784305652 0.2215694348

2 1 0.7196351376 0.2803648624

3 1 1.114485490 0.114485490

4 2 1.890769460 0.109230540

5 2 2.146945231 0.146945231

6 2 2.174897898 0.174897898

7 3 2.917027886 0.082972114

8 4 3.994864237 0.005135763

9 5 4.903833678 0.096166322

10 5 5.108441112 0.108441112

20 26 26.07125673 0.07125673

30 92 91.98629238 0.01370762

40 288 287.9388309 0.0611691

50 783 782.9196301 0.0803699

60 1989 1988.942843 0.057157

70 4695 4695.013781 0.013781

80 10570 10569.99993 0.00007

90 22705 22704.99878 0.00122

100 47091 47090.99132 0.00868

110 94450 94449.99175 0.00825

120 184376 184376.0417 0.0417

130 350845 350845.0360 0.0360

140 653257 653257.0001 0.0001

150 1191854 1191853.996 0.004

160 2135922 2135921.998 0.002

170 3764251 3764251.002 0.002

180 6534755 6534754.996 0.004

190 11185460 11185460.01 0.001

200 18900623 18900622.99 0.001

Table 7.1: g1(n) compared to (6.12) truncated for k, with a = 1. See Appendix B for

relevant Mathematica code.
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Figure 7.1: Graph of the difference between (6.12), with 1 ≤ k ≤ 3
√
n, and the

correct value of g1(n), 1 ≤ n ≤ 200. See Appendix B for relevant Mathematica code.
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n g3(n) Eqn. (6.12), a = 3, 1 ≤ k ≤ 3
√
n Absolute Error

1 0 0.2908871603 0.2908871603

2 0 0.1385488254 0.1385488254

3 1 0.8129880460 0.1870119540

4 1 0.9584818018 0.0415181982

5 1 0.8666320258 0.1333679742

6 1 0.9177374697 0.0822625303

7 1 1.323340028 0.323340028

8 2 2.095679009 0.095679009

9 2 2.042654099 0.042654099

10 2 1.953812941 0.046187059

20 12 12.01649403 0.01649403

30 40 39.99130288 0.00869712

40 127 126.9760443 0.0239557

50 338 338.0093175 0.0093175

60 865 865.0090307 0.0090307

70 2023 2022.881670 0.118330

80 4560 4560.002784 0.002784

90 9754 9754.001400 0.001400

100 20223 20223.00416 0.00416

110 40461 40461.00444 0.00444

120 78939 78938.94603 0.05397

130 149955 149954.9985 0.0015

140 279016 279016.0448 0.0448

150 508454 508454.0481 0.0481

160 910572 910571.9617 0.0383

170 1603268 1603268.030 0.030

180 2781541 2781540.997 0.003

190 4757566 4757566.031 0.031

200 8034534 8034534.006 0.006

Table 7.2: g3(n) compared to (6.12) truncated for k, with a = 3. See Appendix B for

relevant Mathematica code.
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Figure 7.2: Graph of the difference between (6.12), with 1 ≤ k ≤ 3
√
n, and the

correct value of g3(n), 1 ≤ n ≤ 200. See Appendix B for relevant Mathematica code.
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Appendix A

ASYMPTOTICS AND RELATIONSHIP WITH THE SILVER RATIO

In, say, the theory of the distribution of primes, or more ambitious problems in addi-

tive number theory, such as the Goldbach conjecture, exact formulæ are exceedingly

rare or cumbersome [9],[27]. These problems must usually be studied with much less

reliable asymptotic formulæ. However, since we can achieve exact, convergent for-

mulæ in the cases discussed in this paper, we have the advantage of deriving and

studying the less reliable, but simpler, asymptotics, with relatively little work.

We begin with a class of partitions studied by Lehner in 1941 [12], already alluded

to in Chapter 1.

Definition A.1. Fix a = 1 or 2. A Rogers–Ramanujan partition of type a is com-

posed of parts of the form ±a (mod 5). Let ra(n) represent the number of type-a

Rogers–Ramanujan partitions of n.

Lehner proved the following:

Theorem A.2 (Lehner).

ra(n) =
π√

60n− 12a+ 13

∑
(k,5)=1

∣∣∣∣csc

(
πak

5

)∣∣∣∣ A5,1(n, k)

k
I1

(
π
√

60n− 12a+ 13

15k

)

+
2π√

60n− 12a+ 13

∑
(k,5)=5

A5,5(n, k)

k
I1

(
π
√

60n− 12a+ 13

15k

)
, (A.1)

with A5,1(n, k), A5,5(n, k) sums of roots of unity associated with (6.10), (6.11).

Notice the similarity to Theorem 6.2. Lehner was able to derive simpler asymp-

totic formulæ for ra(n), and in so doing, demonstrated a remarkable relationship

between ra(n) and the golden ratio, ϕ = 1+
√

5
2

.

We will demonstrate that an analogous relationship holds between ga(n) and the

silver ratio, δS = 1 +
√

2, by developing their corresponding asymptotic formulæ.
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The method by which we arrive at this relationship is almost identical to Lehner’s

method, so we do not claim this as a substantial original result. We only wish to

make note of it, since it is a beautiful consequence of the more exact work done in

the main body of our paper.

We will begin by noting a lemma whose proof can be found in Watson [28]:

Lemma A.3. If |X| < 1, then

I1(X) = O(X). (A.2)

If |X| > 1, then

I1(X) ∼ eX√
2πX

. (A.3)

With this in mind, we now develop the asymptotics of ga(n).

Theorem A.4.

ga(n) ∼
√

1

2

csc (πa/8)

(16n+ 4a− 5)3/4
e
π
8

√
16n+4a−5. (A.4)

Proof. Returning to Theorem 6.2, we have

ga(n) =
π
√

2

4
√

16n+ 4a− 5

∑
(k,8)=1

∣∣∣∣csc

(
πak

8

)∣∣∣∣ A1(n, k)

k
I1

(
π
√

16n+ 4a− 5

8k

)

+
π
√

2√
16n+ 4a− 5

∑
(k,8)=4

A4(n, k)

k
I1

(
π
√

16n+ 4a− 5

4k

)

+
2π√

16n+ 4a− 5

∑
(k,8)=8

A8(n, k)

k
I1

(
π
√

16n+ 4a− 5

4k

)
. (A.5)

For convenience, let X = π
√

16n+4a−5
8

. Notice that X > 1. Anticipating that

the most significant contribution to the value of ga(n) will be the very first term, i.e.

k = 1, we will factor this term out of our formula:
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ga(n) =
π
√

2

4
√

16n+ 4a− 5
csc
(πa

8

)
I1(X)

×

( ∑
(k,8)=1

A1(n, k)

k

|csc (πak/8)|
csc(πa/8)

I1(X/k)

I1(X)

+ 4
∑

(k,8)=4

A4(n, k)

k
sin
(πa

8

) I1(2X/k)

I1(X)

+ 4
√

2
∑

(k,8)=8

A8(n, k)

k
sin
(πa

8

) I1(2X/k)

I1(X)

)
. (A.6)

Focusing on the sum over k with (k, 8) = 1, we will treat first the majority of

the sum, in which X/k < 1. We then have I1(X/k) = O(X/k), and

I1(X/k)

I1(X)
∼ O

(
X3/2

k
e−X

)
= O

(
n3/4

k
e−

π
8

√
16n+4a−5

)
. (A.7)

Moreover, we remember from Chapter 4 that |A1(n, k)| = O
(
k2/3+εn1/3

)
. So we

have

A1(n, k)

k

|csc (πak/8)|
csc(πa/8)

I1(X/k)

I1(X)
∼ O

(
n13/12e−

π
8

√
16n+4a−5k−4/3+ε

)
. (A.8)

Our sum, then, is

∑
(k,8)=1,
X<k

A1(n, k)

k

|csc (πak/8)|
csc(πa/8)

I1(X/k)

I1(X)

∼O

(
n13/12e−

π
8

√
16n+4a−5

∑
k

k−4/3+ε

)
. (A.9)

But X = π
√

16n+4a−5
8

< k, and therefore n = O(k2), and n1/12 = O(k1/6). So we

have
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∑
(k,8)=1,
X<k

A1(n, k)

k

|csc (πak/8)|
csc(πa/8)

I1(X/k)

I1(X)

∼O

(
ne−

π
8

√
16n+4a−5

∑
k

k−7/6+ε

)
(A.10)

=O
(
ne−c1

√
n
)
, (A.11)

with constant c1 > 0.

On the other hand, if X/k > 1, then we have

I1(X/k)

I1(X)
∼ e−X(1−1/k)

√
k = e−

π
√
16n+4a−5

8
(1−1/k)

√
k. (A.12)

We have

A1(n, k)

k

|csc (πak/8)|
csc(πa/8)

I1(X/k)

I1(X)

∼A1(n, k)√
k

|csc (πak/8)|
csc(πa/8)

e−
π
√
16n+4a−5

8
(1−1/k) (A.13)

=O
(
e−

π
√
16n+4a−5

8
(2/3)A1(n, k)n−1/4

)
(A.14)

=O
(
n2/3+εn−1/4e−

π
√

16n+4a−5
8

(2/3)
)

(A.15)

=O
(
ne−c2

√
n
)
, (A.16)

with constant c2 > 0.

Therefore

∑
(k,8)=1

A1(n, k)

k

|csc (πak/8)|
csc(πa/8)

I1(X/k)

I1(X)
∼ O

(
ne−c3

√
n
)
, (A.17)

for some constant c3 > 0.

Similarly,
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∑
(k,8)=4

A4(n, k)

k
sin
(πa

8

) I1(2X/k)

I1(X)
∼ O

(
ne−c4

√
n
)
, (A.18)

∑
(k,8)=8

A8(n, k)

k
sin
(πa

8

) I1(2X/k)

I1(X)
∼ O

(
ne−c5

√
n
)
, (A.19)

with constants c4, c5 > 0. Finally,

∑
(k,8)=1

A1(n, k)

k

|csc (πak/8)|
csc(πa/8)

I1(X/k)

I1(X)

+4
∑

(k,8)=4

A4(n, k)

k
sin
(πa

8

) I1(2X/k)

I1(X)

+4
√

2
∑

(k,8)=8

A8(n, k)

k
sin
(πa

8

) I1(2X/k)

I1(X)

∼O
(
ne−c

√
n
)
, (A.20)

with constants c > 0.

On the other hand, examining our initial factor,

π
√

2

4
√

16n+ 4a− 5
csc
(πa

8

)
I1(X)

∼ π
√

2

4
√

16n+ 4a− 5
csc
(πa

8

)
× 2

√
2

π
√

2(16n+ 4a− 5)1/4
e
π
√
16n+4a−5

8 (A.21)

=

√
1

2

csc (πa/8)

(16n+ 4a− 5)3/4
e
π
8

√
16n+4a−5. (A.22)

Due to the positive exponential, (A.22) easily dominates (A.20) as n→∞, and

the proof is completed.

This asymptotic formula (A.4) is more elegant, and agrees with more general

work on the asymptotics of partition formulæ [1, Chapter 6]. The value of this
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formula to us is that we may very easily compare the behavior of g1(n) and g3(n). In

doing so, we come upon this striking relationship.

Corollary A.5.

g1(n)

g3(n)
→ δS, (A.23)

as n→∞.

Proof. Take the asymptotics of g1(n) and g3(n):

g1(n)

g3(n)
∼ sin (3π/8)

sin (π/8)

(
16n+ 7

16n− 1

)3/4

e
π
8 (
√

16n−1−
√

16n+7). (A.24)

By the half-angle formula,

sin(3π/8)

sin(π/8)
= 1 +

√
2, (A.25)

while

(
16n+ 7

16n− 1

)3/4

e
π
8 (
√

16n−1−
√

16n+7) → 1, (A.26)

as n→∞.

This is especially remarkable, as Lehner proved the following with nearly identical

methods [12]:

Theorem A.6 (Lehner).

r1(n)

r2(n)
→ ϕ, (A.27)

as n→∞.

This provides the lovely perspective that the Göllnitz–Gordon identities (1.8),

(1.9) bear a relationship to the Rogers–Ramanujan identities (1.6), (1.7) that is in



101

some way analogous to the relationship between the silver ratio δS and the golden

ratio ϕ.



Appendix B

MATHEMATICA CODE: SUPPLEMENT TO CHAPTER 7

Here we provide the code used to program and test (6.12), concatenated to a sum

over 1 ≤ k ≤ N .

B.1 Defining ga(n)

We start by defining ga(n) itself, through the coefficients of the generating function

defined by (3.16).

For a = 1 we define

G1 = Series[1/(QPochhammer[q^1, q^8] QPochhammer[q^7, q^8]

QPochhammer[q^4, q^8]), {q, 0, 200}].

For a = 3, we have

G3 = Series[1/(QPochhammer[q^3, q^8] QPochhammer[q^5, q^8]

QPochhammer[q^4, q^8]), {q, 0, 200}].

Notice that in both cases we have taken the first 200 values of n.

We may now compute ga(n) for any n from 1 to 200 simply by extracting the

associated coefficient. For example, to find g1(43), we input

Coefficient[G1, q, 43],

and return

390.
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B.2 Defining (6.12)

We now give our formula for ga(n) itself, (6.12). To assist our calculations, we make

use of (3.7), which Rademacher showed to be equivalent to (3.5). To begin, we define

s(h, k):

s[h_, k_] := Sum[r/k ((h r)/k - Floor[(h r)/k] - 1/2), {r, 1, k - 1}]

Now, we start with developing the necessary numbers in the case of (k, 8) = 8.

We refer to H defined by (3.21) as H8. The second entry of (3.22) is defined as M8.

H8[h_, k_] := PowerMod[-h, -1, 16 k]

M8[h_, k_] := -8/k (h H8[h, k] + 1)

We now define the roots of unity, (3.26), (3.27):

e88[h_, k_] := Exp[\[Pi] I ((2 (h - H8[h, k]))/(3 k)

+ s[H8[h, k], k/8])]

e84[h_, k_] := Exp[\[Pi] I ((h - H8[h, k])/(3 k)

+ s[H8[h, k], k/4])]

We now define (3.43) and b as defined in (3.35):

N8[a_, h_] := Floor[(a h)/8]

b[a_, h_] := Mod[a h, 8]

We now have enough information to properly define the sum A8(n, k), defined in

(3.130) and (6.11):
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w8[a_, h_, k_] := Exp[(\[Pi] I)/(8 k) (h (5 - 4 a) - H8[h, k])]

A8[a_, k_, n_] := Sum[

If[GCD[h, k] == 1, (I (-1)^N8[a, h])/(e88[h, k] e84[h, k])

w8[a, h, k] Exp[(-2 \[Pi] I n h)/k]

If[b[a, h] == 1 \[Or] b[a, h] == 7, 1, 0], 0], {h, 1, k - 1}]

We now work with the case for (k, 8) = 4, defining (3.132) and (6.10) for the case

of d = 4:

H4[h_, k_] := PowerMod[-2 h, -1, k/4]

M4[h_, k_] := -4/k (2 h H4[h, k] + 1)

e44[h_, k_] := Exp[\[Pi] I ((h - 2 H4[h, k])/(3 k)

+ s[2 H4[h, k], k/4])]

e48[h_, k_] := Exp[\[Pi] I ((2 h - H4[h, k])/(3 k)

+ s[H4[h, k], k/4])]

N4[a_, h_] := Floor[(a h)/4]

b4[a_, h_] := Mod[a h, 4]

w4[a_, h_, k_] :=

Exp[(\[Pi] I)/(4 k) (h - H4[h, k] - h (4 a - 3) (h H4[h, k] + 1)

+ a (2 h H4[h, k] + 1) (b4[a, h] - 2))]
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A4[a_, k_, n_] :=

Sum[If[GCD[h, k] == 1, (I (-1)^N4[a, h])/(e48[h, k] e44[h, k])

w4[a, h, k] Exp[(-2 \[Pi] I n h)/k], 0], {h, 1, k - 1}]

We now do the same for (k, 8) = 1, defining (3.136) and (6.10) with d = 1.

Notice that here we use N1 to denote part of the alternating sign in (3.136).

We must also be careful in the case that k = 1, not least because, as shown

in Appendix A, this term contributes the most to the correct answer. In that case,

A1(n, 1) = 1.

H1[h_, k_] := PowerMod[-8 h, -1, k]

M1[h_, k_] := -1/k (8 h H1[h, k] + 1)

e14[h_, k_] := Exp[\[Pi] I ((2 h - H1[h, k])/(6 k)

+ s[2 H1[h, k], k])]

e18[h_, k_] := Exp[\[Pi] I ((8 h - H1[h, k])/(12 k)

+ s[H1[h, k], k])]

N1[a_, h_, k_] := Floor[(a M1[h, k])/8]

w1[a_, h_, k_] := Exp[(\[Pi] I)/(4 k) (4 h (1 - a

+ h H1[h, k] (3 - 4 a)) - H1[h, k])]

B1[a_, h_, k_, n_] :=

If[GCD[h, k] == 1, (-1)^(N1[a, h, k] + h - 1)/(e18[h, k] e14[h, k])

w1[a, h, k] Exp[(-2 \[Pi] I n h)/k], 0]
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A1[a_, k_, n_] := If[k == 1, 1, Sum[B1[a, h, k, n], {h, 1, k - 1}]]

Finally, with the relevant sums defined, we move on to the overall structure of

(6.12)

p8[a_, n_, N_] := (2 \[Pi])/Sqrt[16 n + 4 a - 5]

Sum[If[GCD[k, 8] == 8,

A8[a, k, n]/k BesselI[1, (\[Pi] Sqrt[16 n + 4 a - 5])/(4 k)],

0], {k, 1, N}]

p4[a_, n_, N_] := (\[Pi] Sqrt[2])/Sqrt[16 n + 4 a - 5]

Sum[If[GCD[k, 8] == 4,

A4[a, k, n]/k BesselI[1, (\[Pi] Sqrt[16 n + 4 a - 5])/(4 k)],

0], {k, 1, N}]

p1[a_, n_, N_] := (\[Pi] Sqrt[2])/(4 Sqrt[16 n + 4 a - 5])

Sum[If[GCD[k, 8] == 1,

A1[a, k, n]/

k Abs[Csc[(\[Pi] a k)/8]] BesselI[

1, (\[Pi] Sqrt[16 n + 4 a - 5])/(8 k)], 0], {k, 1, N}]

p[a_, n_, N_] := p8[a, n, N] + p4[a, n, N] + p1[a, n, N]

Notice that we give our formula concatenated to a sum over 1 ≤ k ≤ N , since

we cannot expect Mathematica to carry out the complete series for any n ∈ N.
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B.3 Testing (6.12)

As a quick example, of how to test our formula in a single case, we test our formula

for a = 1 and n = 7 with N = 5. Remembering that our result will not be an integer,

and will have some minor imaginary contributions, owing to the roots of unity present

in our sums (6.10) and (6.11), we will focus on the real part, and take a numerical

approximation to, say, ten decimal places:

N[Re[p[1, 7, 5]], 10].

This input returns

2.884331031.

One may check, through the coefficient of q7 in G1 (or through simple trial for

so small a number), that

g1(7) = 3. (B.1)

To check our formula for a = 1 with all numbers 1 ≤ n ≤ 200, with 1 ≤ k ≤

b3
√
nc, we construct the table

Table[ N[Re[p[1, n, Floor[3 Sqrt[n]]]], 10] -

Coefficient[G1, q, n], {n, 1, 200}];

Following immediately with

Max[%]

and

Min[%%]
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we return

0.174897898

and

-0.2803648624.

This gives us the largest and smallest errors for our formula: the largest absolute

error is less than 0.3.

Moreover, we may check for 100 ≤ n ≤ 200,

Table[ N[Re[p[1, n, Floor[3 Sqrt[n]]]], 10] -

Coefficient[G1, q, n], {n, 100, 200}];

Here we find that the largest absolute error is less than 0.09.

Similarly, for a = 3 we may construct

Table[ N[Re[p[3, n, Floor[3 Sqrt[n]]]], 10] -

Coefficient[G3, q, n], {n, 1, 200}];

In this case we find that applying

Max[%]

and

Min[%%]

we return

0.323340028
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and

-0.1870119540.

The largest error slightly exceeds 0.3. However, again checking the error for

100 ≤ n ≤ 200, similarly to the case for a = 1, we find that the largest absolute error

is less than 0.07. This suggests that the errors may be relatively large (but not large

enough to hinder our estimation) for relatively small values of n, before diminishing

for larger values of n.

We can construct Table 7.1 with the following:

Grid[Table[ {n, N[Re[p[1, n, Floor[3 Sqrt[n]]]], 10],

N[Re[p[1, n, Floor[3 Sqrt[n]]]], 10] - Coefficient[G1, q, n]}, {n,

1, 200}]].

We may construct Table 7.2 in similar fashion. The interested reader is invited to

substitute any desired number of terms in for b3
√
nc, to check (6.12) to whatever

level of precision is desired.

For a more visual representation of the size of our error term, we may construct

Figures 7.1 with the following:

ListPlot[Table[

N[Re[p[1, n, Floor[3 Sqrt[n]]]], 10] - Coefficient[G1, q, n], {n, 1,

200}]].

Figure 7.2 may be constructed in a similar fashion.
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