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ABSTRACT

Cancer prevention treatments are being researched to see if an optimized treatment schedule

would decrease the likelihood of a person being diagnosed with cancer. To do this we

are looking at genes involved in the cell cycle and how they interact with one another.

Through each gene expression during the life of a normal cell we get an understanding of

the gene interactions and test these against those of a cancerous cell. First we construct

a simplified network model of the normal gene network. Once we have this model we

translate it into a transition matrix and force changes on it. Observing the effects of the

changes we see the interactions each gene has with other genes within the network. Using

the observed interactions we construct a set of differential equations that represent the

network dynamics. Using numerical methods and the rough system of equations, we find

an approximated system of equations that accurately predicts the dynamics of the normal

gene network.

Key Words: Dynamics, Biology, Gene networks, Differential equations, Dynamical

systems
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CHAPTER 1

INTRODUCTION

1.1 Biological Background

The cell cycle is what biological cells go through from their point of creation to either cell

death, a stable existence, or cell division. This cycle can be broken down into two large

phases: Interphase and Mitotic (M) phase. Interphase is then broken down into several

other phases with the first being the G1 phase. The G1 phase of interphase is characterized

by cell growth. From G1 phase the cell enters S phase. During this phase the cell has

reached an optimal size and is now synthesizing a copy of its DNA within its nucleus as

well as setting the stage for G2 phase. Once it enters G2 phase from S phase the cell begins

to grow more as well as make more organelles and proteins while splitting its contents

between two sides of the cell. When G2 phase ends, interphase is now over and the cell

moves into M phase, which is where the cell begins to divide into two new cells. From this

point the cells that are made will either enter interphase or enter an alternative phase known

as G0 phase. During G0 phase the cell is in a steady state and is just performing its duties.

It may or may not enter G1 phase at a later time. Depending on what type of cell it is the

cell may or may not go through every phase of the cell cycle. Figure 1.1 shows the diagram

of a typical cell cycle and where cell cycle checkpoints are located within that cycle.

Roughly speaking, cancer occurs when cells do not behave as normal cells do. This is

usually due to the fact that there has been some mistake that affects this cell cycle. There

are three defects within the cell cycle that can cause cancer. Of these there are unscheduled

proliferation, genomic instability, and chromosomal instability. All of these defects can be

contributed to cyclin-dependent kinases (CDKs) which are used to control the cell cycle

through individual check points between cell phases. These CDKs, as well as several other

types of proteins, cause unchecked progression through the cell cycle when unregulated
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Figure 1.1: Cell Cycle (https://oncogenesandcancer.wordpress.com/)

[1].

As mentioned above CDKs can wreak havoc on a cell if their activity is not con-

trolled. Unscheduled cell proliferation can happen because of misregulated CDKs as well

as chromosomal instabilities [1]. Unscheduled proliferation happens when a cell begins to

go through the cell division process without any of the cell cycle check points preventing

it from going through with cell division. This results in a runaway process in which one

could get a multitude of cells, densely packed in a small area.

Genomic instability occurs when there is a high frequency of mutations within a cell’s

genome which can in turn mean changes in gene sequences, chromosomal rearrangements

and sometimes aneuploidy. Changes in gene sequences could cause the proteins that are

to be made by certain genes to be inert and not work, thus causing a lack of what could

potentially be a protein that is essential to the cell cycle. Chromosomal rearrangements

could mean that some genes do not get to be produced because of their physical location

on a chromosome prevents their replication from happening.

Chromosomal instability occurs when a chromosome or multiple chromosomes are

reproduced too many times so that a cell that has just completed cell division now had 3 or
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more copies of a chromosome or a chromosome or parts of a chromosome get deleted all

together.

The genes that are associated with this cell cycle check point system can be repre-

sented as a network by using a graph. The graphs that can represent these gene networks

are constructed with vertices representing the genes and directed edges going to or from

each vertex representing the interaction paths between each gene. We shall talk about this

next.

1.2 Graphs, Random Walk, and Stationary Distribution

1.2.1 Basic Graph Theory

Mathematically speaking a graph is simply a diagram representing a system of con-

nections/relations between two or more objects which are represented as dots. Each dot

within a system is a vertex and the connections between pairs of vertices are called edges.

An example is shown in Figure 1.2 with a vertex and an edge labeled.

Figure 1.2: Vertex and edges of a graph ( http://world.mathigon.org/)

Graphs can be undirected, which means that the giving/receiving ends of a relationship

between two vertices are not specified. For instance, if each vertex represented a different

place around a town and each edge represented a road to one place from another then a

person who is at place 1 could go to place 5, and using the same path, go back to place 1.
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This would be an undirected edge in the graph in Figure 1.3.

Figure 1.3: An undirected graph (http://i.stack.imgur.com/uNgXD.png)

Graphs can be directed as well. This means that each vertex could have edges going to

or leaving it. With these types of graphs movement around a graph is restricted in a sense.

For example, we could model an electrical circuit as a directed graph, with a power source

and resistors in parallel to one another. Within this circuit an electron can only go from

the negative pole of the power source to the positive pole of the power source by moving

further away from the negative pole without back-tracking towards it, see Figure 1.4.

Figure 1.4: An electrical shunt circuit showing the pathways available for an electron to go

down and the corresponding graph (http://www.scielo.br/)

In both directed and undirected graphs, movement around the graph can be modeled

through mathematical tools which will be discussed in the next few sections.
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1.2.2 Random Walks

A specific type of movement around a graph can be classified as a random walk.

The random walk is a process in which, while going around the graph, the edge of which

one goes from one particular vertex to another is chosen at random. To exemplify this

is a version of the famous“’Drunkards Walk.” Using Figure 1.3 above as an example the

“Drunkards Walk” uses a scenario similar to the above mentioned town with numerous

places and a man, who would not be driving but walking for the safety of him and the

public, who drunkenly goes from one place to another with no tact or reason behind going

other than he has forgotten where he was going and does not remember where he has been.

Keeping in mind he has no memory of where he has been and no idea where he is going

he wonders from one place to another by choosing to go to a new place at a random. This

wondering around aimlessly shows the random walk where the places are vertices and the

routes he takes to get to each one are the edges of the graph he is traversing.

You can have random walks on both undirected and directed graphs. The above ex-

ample of a random walk was using an undirected graph. To imagine a random walk on

a directed graph think about the electrical circuit modeled as a graph in Figure 1.4. Each

time an electron goes through the circuit it has several different ways it can go depending

on the resistance levels of each path it can take. For now we shall assume the resistance of

each pathway is the same so that there is an equal probability of an electron going through

a particular resistor each time. With all that said if an electron leaves the negative pole of

the power source then from the power source to the junction before the parallel resistors

the electron is on one path. Once it gets to the junction it will take one path in particular

through a resistor to the junction after the parallel resistors and then to the positive pole

of the power source. Then the next electron that goes through will follow a similar path

although it could possibly go through a different resistor than the previous electron. This

shows how, in a directed graph, things can move at random and create the random walk in



14

a direcvted graph.

1.2.3 The Transition Matrix and Stationary Distribution

The directed graphs that model certain systems can also be represented using matrices.

A matrix that represents a graph can be built by making a square matrix, where each column

represents incoming interactions (edges) between a particular vertex and the other vertices

of that graph and each row represents the outgoing interactions between a particular vertex

and the other vertices of that graph. The matrix will be square because the number of

columns must match the number of rows, which is the number of vertices in your graph.

To start, where there is an interaction between two vertices there will be an entry of 1.

Where there is no interaction between two vertices a zero is normally placed in the matrix

representation. This matrix which just indicates which vertices a vertex is connected to is

called an adjacency matrix.

We can construct from the adjacency matrix the transition matrix. To do this each

nonzero entry within a row is divided by the number of nonzero entries from that particular

row. When this is done, the new entries in each row sum up to one. The matrix described

is called a transition matrix and it helps determine the weights of each edge of the graph

based on a set of initial conditions and how many times the graph is introduced to new

conditions. An example of this representation and the graph the matrix represents is shown

in Figure 1.5.

The stationary distribution is basically the final distribution over the vertices of a

graph. It can be found using the transition matrix of a graph by finding the eigenvector

corresponding to the eigenvalue of one. We shall see the use of such stationary distribu-

tions throughout this thesis.

1.3 Systems of Differential Equations

A differential equation describes the relation of a given variable with derivatives of
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Figure 1.5: The adjacency matrix and the transition matrix built from the graph

(http://image.slidesharecdn.com/)

several orders of itself and possibly other variables. Given the nature of a differential equa-

tion it can be used to model how a certain function or physical object behaves. Differential

equations have been used in many fields including physics, engineering, biology and eco-

nomics.

Sometimes it is necessary to use systems of differential equations to model and de-

scribe the behaviors of a real object. For example a first order system of equations usually

involve first order differential equations of several variables where each differential equa-

tion represents the interaction between the variable the equation is modeling and those

corresponding variables. The first order system of differential equations describes the rates

of changes of the specified variable by using its corresponding interactions with other vari-

ables.

Suppose that you have a physical system where each component of that system had

a reaction based on input from other components within that same system and you needed

to model the reaction of each component. How could you do that? If the system only

requires that you show the rate of change of reaction of each component then you could
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create a system of differential equations where each equation was a first order differential

with respect to time that was equal to the sum of reactions it had to each of the components

of that system which interacted with it first-hand.

How would you know how each component reacted with the others within that system

to create the differential equations? If you have a diagram of that particular system which

showed the components, inputs, and outputs then you could have a way to find the differ-

ential equations involved in that system. You can take the diagram and translate it into a

directed graph and from there to a transition matrix. Using the transition matrix you could

use the columns that represent the incoming edges of the graph to a particular vertex to find

which vertex (component) interacted with it and create a rough differential equation for

that vertex and find the other rough equations similarly. Then once one has these they can

then use computational tools to find the exact ways each component reacts to each other

component and refine the differential equation for each component to where they have an

accurate representation for the change in reaction for each component. There will be a

more in depth look at how this process is done and the numerical methods involved further

in the discussion of the research at hand.

1.4 Our Approach

This research will focus on modeling the gene expressions and interactions of a se-

lected few CDKs and proteins with each other through the cell cycle in the form of a

network. Our motive for doing so is to see if preventative treatments of Tamoxifen or ot

other drugs could be administered on an optimized schedule to minimize the chance of a

patient from getting breast cancer [3, 4, 5].

In order to create models for the dynamics of a gene network we will first use a di-

rected graph of the interactions of CDKs and proteins relevant to specific check points

within the cell cycle and remove all but the most necessary CDKs and proteins from the

graph. Each vertex of the graph shall represent a gene expression of a CDK or other protein
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and each edge of this graph shall show interaction between two associated vertices.

Once we have a gene network that we feel most appropriately fits the scope of our re-

search, we will create an adjacency matrix that represents the interactions (edges) between

each vertex with ones and zeros where there is no interaction between vertices present.

We will then use this matrix to create a stochastic (probability or transition) matrix

where all values are between zero and one and each row adds up to one, using a Matlab

program. Each column within this matrix shall represent output edges from a single vertex

to other vertices and each row shall represent input edges from other vertices to a single

vertex.

We will use this transition matrix to determine the effects of the change in one vertex

output on other vertices for each vertex. Once we have modeled the effect each vertex has

on the others we shall use the data to create a set of general differential equations to model

the dynamics of each vertex within this system. We will refine the equations by performing

a parameter search by both least squares method and Gauss-Seidel method.
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CHAPTER 2

FORCED “EVOLUTIONS” ON GENES

2.1 Initial Set Up

To begin this project we obtained a list of genes, represented by the proteins they code for,

which play a vital part of the cell cycle check point system. Of these genes we came up

with 5 key genes that are given and shown in Figure 2.1. Once we had this graph we then

constructed a new graph with two artificial nodes for modeling purposes. The artificial

nodes will help create useful random walks as one node acts as a transition node for which

all the real, gene specific nodes, flow to and the other that acts as a restarting node to return

the flow back to the nodes to reset the cycle as shown in Figure 2.2.

Figure 2.1: A gene network.

Utilizing the relationships indicated by the graph shown we made the following 7×7

adjacency matrix:
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Figure 2.2: The network with artificial nodes.













































R X1 X2 X3 X4 X5 T

R 1 1 1 1 1 1 0

X1 1 1 1 0 1 0 1

X2 1 1 1 1 0 1 1

X3 1 0 1 1 1 1 1

X4 1 0 0 1 1 1 1

X5 1 1 0 1 1 1 1

T 1 0 0 0 0 0 1













































.

Then using a script written in MATLAB, we called this adjacency matrix from the excel

file and constructed a transition matrix. In order to construct the said transition matrix we

divided each entry by the number of nonzero elements contained within the corresponding

row as we did for the first row here:

1

Number of Non Zero Terms
=

1

6
.
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Once we obtained this number for each row, each between zero and one, we replace each

nonzero element with this new number so that each row added up to one, as shown below.

We then added this transition matrix to the excel file we used to store the adjacency matrix

in a different spreadsheet. Once we have this transition matrix:













































R X1 X2 X3 X4 X5 T

R 1

6

1

6

1

6

1

6

1

6

1

6
0

X1
1

5

1

5

1

5
0 1

5
0 1

5

X2
1

6

1

6

1

6

1

6
0 1

6

1

6

X3
1

6
0 1

6

1

6

1

6

1

6

1

6

X4
1

5
0 0 1

5

1

5

1

5

1

5

X5
1

6

1

6
0 1

6

1

6

1

6

1

6

T 1

2
0 0 0 0 0 1

2













































,

we can then use this matrix to find the behavior of the network.

2.2 Modeling the Changes

In order to get an idea of the behavior of the network dynamics we had to decide how

the transition matrix would change with a given set of conditions. To do this, we created

another MATLAB script which would model the change of variable to variable interactions.

In order to model these interactions the script used had to perform the following.

• The column representing the independent variable would be multiplied by a range of

scalar numbers in a while-loop.

• The nonzero numbers that were not in that specified column would be altered so that

those nonzero numbers plus the elements in the specified column would sum up one.

• Take the stationary distribution of the specified variable that we were looking to

model changes after and place it in a vector that would record all of the eigenvector



21

values for the specified variable to variable interaction.

For example if you take the second column to be the independent variable then you

will multiply that column by a scalar, in our case 0.2:

x1 =

(

0.2

)







































1

6

1

5

1

6

0

0

1

6

0







































=







































1

30

1

25

1

30

0

0

1

30

0







































Once we have obtained the new values for this column of the transition matrix we

replace the old column within the matrix with this one:













































R X1 X2 X3 X4 X5 T

R 1

6

1

30

1

6

1

6

1

6

1

6
0

X1
1

5

1

25

1

5
0 1

5
0 1

5

X2
1

6

1

30

1

6

1

6
0 1

6

1

6

X3
1

6
0 1

6

1

6

1

6

1

6

1

6

X4
1

5
0 0 1

5

1

5

1

5

1

5

X5
1

6

1

30
0 1

6

1

6

1

6

1

6

T 1

2
0 0 0 0 0 1

2













































If you will notice, however, now the rows do not individually sum up to one. We

now need to adjust all other non-zero entries within each row to compensate for the new

numbers in the second column so that the rows sum up to one again. In order to do that

we look at the second column as see which row entries within that column have non-zero

entries. These will be the rows that need adjusting. Once we have made a note of these
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rows we begin to subtract each non-zero new number from the second column from one

and divide each of these rows by the number of non-zero entries in each row minus one to

account for the new second column entries which will stay the same. We do this as shown

in the next example with the first row:

1− Multiple of Specified Vector Element

Number of Non Zero Terms − 1
=

1− 1

30

5
=

29

150
.

Once we have this we replace all non-zero terms within the row, with the exception of the

second column value, with this new number so:

[R]1 =

(

29

150

1

30

29

150

29

150

29

150

29

150
0

)

.

Likewise, you do this for the rest of the rows until you get the completed matrix:













































R X1 X2 X3 X4 X5 T

R 29

150

1

30

29

150

29

150

29

150

29

150
0

X1
6

25

1

25

6

25
0 6

25
0 6

25

X2
29

150

1

30

29

150

29

150
0 29

150

29

150

X3
1

6
0 1

6

1

6

1

6

1

6

1

6

X4
1

5
0 0 1

5

1

5

1

5

1

5

X5
29

150

1

30
0 29

150

29

150

29

150

29

150

T 1

2
0 0 0 0 0 1

2













































This is your new transition matrix. Once you have it, you take the stationary distribution

corresponding to the new transition matrix and repeat the procedure on the new transition

matrix with a new scalar until one of the following conditions are reached:

• An entry within the transition matrix is less than zero.

• An entry within the transition matrix is greater than one.
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• The maximum number of scalars from which to multiply the transition matrix with

has been reached.

2.3 Results

The following plots represent how each variable reacted to the other relevant variables.

The x-axis of each plot represents a step in time while the y-axis represents the change in

the variable. The change in the variable, which can be defined as an approximation of the

derivative, was found using the forward, central, and backward difference methods. These

differences can be used to approximate a differential equation when the differences are

plotted against time.

We first show an example of using the central difference method by taking a set of

data recorded in the form of a matrix:

























T ime V alue

1 8

2 9

3 4

4 3

























Once you have data then you can find the forward difference, which is the difference

between the first and second data value divided by the time step between the two:

Forward Difference =
9− 8

1

Then to find the central difference we find the difference between the first and third

data value and divide that by the time step between the two numbers:

First Central Difference =
4− 8

2
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Second Central Difference =
3− 9

2

And to find the backward difference we subtract the second to last data value from the

last data value and divide that by the time step between the two values.

Backward Difference =
3− 4

1

After doing this we have a central difference vector which we can use as an approxi-

mation for the change of the data, or the derivative, from one point of data to the next:

























Time ∆Value

1 1

2 −2

3 −3

4 −1

























Using data gathered in a manner similar to the above example we then plotted the time

response of each of the variables’ change in flow for each of these variables as shown in

the resulting figures below:

Figure 2.3: The time response for x1 when forcing a change on its corresponding dependent

variables.
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As you can see in Figure 2.3, the first plot shows the rate of change of the eigenvector

value corresponding to x1 when a change is forced onto itself. This shows that the rate of

change corresponding to x1 to a change forced on itself is concave up and increasing. With

the second plot in the figure, which shows the rate of change of x1 when a change is forced

on x2, is concave down and decreasing. Likewise in the third plot in the figure, the rate of

change that occurs when x4 has a changed forced on it is linear and decreasing.

Figure 2.4: The time response for the x2 variable when forcing a change on its correspond-

ing dependent variables.

In Figure 2.4, the first plot shows the rate of change of the eigenvector value cor-

responding to x2 when a change is forced onto x1. This shows that the rate of change

corresponding to x2 when a change is forced on x1 is concave down and decreasing. With

the second plot in the figure, which shows the rate of change of x2 when a change is forced

on itself, is concave up and increasing. Likewise in the third plot in the figure, the rate of

change that occurs when x3 has a changed forced on it is concave down and decreasing.

The last plot shows the change when a change is forced on x5. That plot is concave up and

decreasing.
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Figure 2.5: The time response for the x3 variable when forcing a change on its correspond-

ing dependent variables.

The first of these plots, in Figure 2.5, shows the change in x3 when a change is forced

upon x2. The plot shows that when this variable is changed it reduces the eigenvector value

corresponding to x3 resulting in a concave down and decreasing plot. When x3 is plotted

against changes of itself it results in a concave up and positive plot. The third plot shows

the rate of change of x4 when x4 has a change forced on it. This plot shows a concave

down and decreasing trend. When finding how x5 effects x3, we found this concave up and

decreasing.

Almost all of the plots, in Figure 2.6, that show change in x4 all show some linearity.

The first of these plots shows the change in x3 when a change is forced upon x4. The plot

shows that when this variable is changed it reduces the eigenvector value corresponding to

x3 resulting in a linear, decreasing trending plot. The second plot shows the rate of change

of x3 when x4 has a change forced upon it. This plot shows a concave up, increasing trend.

The third plot shows the decreasing and linear trend associated with the changes forced

upon (x5).
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Figure 2.6: The time response for the x4 variable when forcing a change on its correspond-

ing dependent variables.

The first of the plots, in Figure 2.7, shows the change in x5 when a change is forced

upon x1 which is concave down with a decreasing trend. The second plot shows the rate

of change of x4 when x3 has a change forced upon it. This plot shows a linear decreasing

trend. The third plot shows the concave down, decreasing trend associated with the changes

forced upon (x4). When finding how x5 effects x5, we found this concave down, positively

sloped plot.
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Figure 2.7: The time response for the x5 variable when forcing a change on its correspond-

ing dependent variables.
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CHAPTER 3

THE NETWORK’S SELF-EVOLUTION

3.1 Data gathering

After getting a general idea of how the network changed with a change in one variable we

then advanced to modeling the entire gene network.

3.1.1 Natural Evolution of the Network

To start doing this we initially need data from the network as it evolved naturally through

time, similarly to how we did for the first part of this research but with a few changes. In

order to obtain this data from the network we would first pull the original transition matrix

from the excel file, the same one that is used in the first part of our research. Once the Excel

file is read into the MATLAB program we then multiply a initial and arbitrary probability

distribution, in our case:

X0 =

[

0 1 0 0 0 0 0

]

,

by the transition matrix:













































R X1 X2 X3 X4 X5 T

R 1

6

1

6

1

6

1

6

1

6

1

6
0

X1
1

5

1

5

1

5
0 1

5
0 1

5

X2
1

6

1

6

1

6

1

6
0 1

6

1

6

X3
1

6
0 1

6

1

6

1

6

1

6

1

6

X4
1

5
0 0 1

5

1

5

1

5

1

5

X5
1

6

1

6
0 1

6

1

6

1

6

1

6

T 1

2
0 0 0 0 0 1

2
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









































.
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Once this is done we now have a new probability distribution:

X1 =

[

1

5

1

5
0 1

5

1

5
0 1

5

]

,

which we can multiply to the transition matrix and come up with a new probability distri-

bution. We repeat this loop until the values in each element in the are the same each loop.

Once we have these values we can then find the finite differences, as discussed in Chapter

2, of the data and store that in an excel file.

3.1.2 Initial setup of system of differential equations

After creating these new plots we began the process of making generic forms of the

differential equations that would represent the dynamics of each variable within the system.

Based on the plots we got the following five differential equations:

ẋ1 = r11x1 + r12x1x2 + r13x5

ẋ2 = r21x1 + r22x2 + r23x3 + r24x1x2

ẋ3 = r31x2 + r32x3 + r33x4 + r34x5 + r35x
2

3

ẋ4 = r41x1 + r42x1x3 + r43x4 + r44x5

ẋ5 = r51x2x3 + r52x4 + r53x5

Once these differential equations were formed we then moved on to finding the right

values to use for the parameters rij in the equations.

3.1.3 Generating the data for use in finding the parameters

In order to find the parameters of the equations we came up with we needed to first

have some numerical data so that we can find precisely what each parameter is. To do this

we created another MATLAB script that reads the transition matrix from the excel file then,
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using a for-loop, we multiplied the transition matrix by an initial probability distribution

[0 1 0 0 0 0 0] to get a new vector and repeated this for a few hundred times to collect

the samples. In doing this we were able to find what the transition matrix’s probability

distribution converged to, which was then considered the stationary distribution. Using

the data provided from doing this we could now proceed to estimate the parameters of the

system of differential equations.

3.2 Finding parameters of the equations

3.2.1 First set, an example

In order to estimate the parameters of the system of equations we first had to work out

a few things. First we decided that based on the size of the system using a method such as

Monte Carlo simulation was not needed and that we could use a Least-Squares method to

estimate the likelihood of the parameters. To do this we first needed to derive the system of

equations for the parameters based on the method of least-squares, as shown with the work

done below for the first differential equation out of the system:

First we needed to set up the performance index.

J =
1

2

N
∑

i=1

[r11x1i + r12x2i + r13x5i − ẋ1i]
2

,

where ẋ1i are the derivative samples.

After finding the general least-squares equation we find the derivative of each, with

respect to a particular parameter in the following fashion. Each of these derivatives with

respect to a parameter are set to zero.
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∂J

∂r11
= r11

N
∑

i=1

x2

1i + r12

N
∑

i=1

x1ix2i + r13

N
∑

i=1

x1ix5i −

N
∑

i=1

x1iẋ1i = 0

∂J

∂r12
= r11

N
∑

i=1

x1ix2i + r12

N
∑

i=1

x2

2i + r13

N
∑

i=1

x2ix5i −

N
∑

i=1

x2iẋ1i = 0

∂J

∂r13
= r11

N
∑

i=1

x1ix5i + r12

N
∑

i=1

x2ix5i + r13

N
∑

i=1

x2

5i −

N
∑

i=1

x5iẋ1i = 0

Therefore, the parameters satisfy the following system of equations:

N
∑

i=1

x1iẋ1i = r11

N
∑

i=1

x2

1i + r12

N
∑

i=1

x1ix2i + r13

N
∑

i=1

x1ix5i

N
∑

i=1

x2iẋ1i = r11

N
∑

i=1

x1ix2i + r12

N
∑

i=1

x2

2i + r13

N
∑

i=1

x2ix5i

N
∑

i=1

x5iẋ1i = r11

N
∑

i=1

x1ix5i + r12

N
∑

i=1

x2ix5i + r13

N
∑

i=1

x2

5i

3.2.2 First matrices set up

If you examine the system of equations given above you will notice that it can also

be written in the matrix form as shown below, however, instead of the x-values being in a

column and being multiplied by parameters it is reversed.












∑N

i=1
x2

1i

∑N

i=1
x2i

∑N

i=1
x1ix5i

∑N

i=1
x1ix2i

∑N

i=1
x2

2i

∑N

i=1
x2ix5i

∑N

i=1
x1ix5i

∑N

i=1
x2ix5i

∑N

i=1
x2

5i

























r11

r12

r13













=













∑N

i=1
x1iẋ1i

∑N

i=1
x2iẋ1i

∑N

i=1
x5iẋ1i













.

Once we have the least-squares equation in matrix form we can now use a MATLAB

script to compute the correct parameters. Once these parameters are found they are stored

in a “.dat” file to be used in the next stage of this research.
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3.3 Second set

This set is done similarly to the above example.

3.3.1 Second Least-Squares Equation Work

The performance index:

J =
1

2

N
∑

i=1

[r21x1i + r22x2i + r23x3i + r24x1ix2 − ẋ2i]
2

Similar to the previous case, by setting the derivatives of this parameter index to zero,

we find the following system of equations:

∂J

∂r21
= r21

N
∑

i=1

x
2

1i + r22

N
∑

i=1

x1ix2i + r23

N
∑

i=1

x1ix3i + r24

N
∑

i=1

x
2

1ix2 −

N
∑

i=1

x1iẋ2i = 0

∂J

∂r22
= r21

N
∑

i=1

x1ix2i + r22

N
∑

i=1

x
2

2i + r23

N
∑

i=1

x2ix3i + r24

N
∑

i=1

x1ix
2

2 −

N
∑

i=1

x2iẋ2i = 0

∂J

∂r23
= r21

N
∑

i=1

x1ix3i + r22

N
∑

i=1

x2ix3i + r23

N
∑

i=1

x
2

3i + r24

N
∑

i=1

x1ix2x3i −

N
∑

i=1

x3iẋ2i = 0

∂J

∂r24
= r21

N
∑

i=1

x
2

1ix2i + r22

N
∑

i=1

x1ix
2

2i + r23

N
∑

i=1

x1ix2ix3i + r24

N
∑

i=1

x
2

1ix
2

2 −

N
∑

i=1

x1ix2iẋ2i = 0

To obtain:
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N
∑

i=1

x1iẋ2i = r21

N
∑

i=1

x
2

1i + r22

N
∑

i=1

x1ix2i + r23

N
∑

i=1

x1ix3i + r24

N
∑

i=1

x
2

1ix2

N
∑

i=1

x2iẋ2i = r21

N
∑

i=1

x1ix2i + r22

N
∑

i=1

x
2

2i + r23

N
∑

i=1

x2ix3i + r24

N
∑

i=1

x1ix
2

2

N
∑

i=1

x3iẋ2i = r21

N
∑

i=1

x1ix3i + r22

N
∑

i=1

x2ix3i + r23

N
∑

i=1

x
2

3i + r24

N
∑

i=1

x1ix2x3i

N
∑

i=1

x1ix2iẋ2i = r21

N
∑

i=1

x
2

1ix2i + r22

N
∑

i=1

x1ix
2

2i + r23

N
∑

i=1

x1ix2ix3i + r24

N
∑

i=1

x
2

1ix
2

2

3.3.2 Second matrices set up



















∑N
i=1

x2
1i

∑N
i=1

x1ix2i
∑N

i=1
x1ix3i

∑N
i=1

x2
1ix2

∑N
i=1

x1ix2i
∑N

i=1
x2
2i

∑N
i=1

x2ix3i
∑N

i=1
x1ix

2
2

∑N
i=1

x1ix3i
∑N

i=1
x2ix3i

∑N
i=1

x2
3i

∑N
i=1

x1ix2x3i

∑N
i=1

x2
1ix2i

∑N
i=1

x1ix
2

2i

∑N
i=1

x1ix2ix3i
∑N

i=1
x2
1ix

2
2





































r21

r22

r23

r24



















=



















∑N
i=1

x1iẋ2i

∑N
i=1

x2iẋ2i

∑N
i=1

x3iẋ2i

∑N
i=1

x1ix2iẋ2i



















.

3.4 Third set

3.4.1 Third Least-Squares Equation Work

For the third performance index we get:

J =
1

2

N
∑

i=1

[r31x2i + r32x4ix5i + r33x
2

3i − ẋ3i]
2

After setting the derivatives with respect to their respective parameters to zero:
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∂J

∂r31
= r31

N
∑

i=1

x
2

2i + r32

N
∑

i=1

x2ix4ix5i + r33

N
∑

i=1

x2ix
2

3i −

N
∑

i=1

x2iẋ3i = 0

∂J

∂r32
= r31

N
∑

i=1

x2ix4ix5i + r32

N
∑

i=1

x
2

4ix
2

5i + r33

N
∑

i=1

x
2

3ix4ix5i −

N
∑

i=1

x4ix5iẋ3i = 0

∂J

∂r33
= r31

N
∑

i=1

x2ix
2

3i + r32

N
∑

i=1

x
2

3ix4ix5i + r33

N
∑

i=1

x
4

3i −

N
∑

i=1

x
2

3iẋ3i = 0

We obtain:

N
∑

i=1

x2iẋ3i = r31

N
∑

i=1

x
2

2i + r32

N
∑

i=1

x2ix4ix5i + r33

N
∑

i=1

x2ix
2

3i

N
∑

i=1

x4ix5iẋ3i = r31

N
∑

i=1

x2ix4ix5i + r32

N
∑

i=1

x
2

4ix
2

5i + r33

N
∑

i=1

x4ix5ix
2

3i

N
∑

i=1

x
2

3iẋ3i = r31

N
∑

i=1

x2ix
2

3i + r32

N
∑

i=1

x
2

3ix4ix5i + r33

N
∑

i=1

x
4

3i

3.4.2 Third matrices set up













∑N
i=1

x2
2i

∑N
i=1

x2ix4ix5i
∑N

i=1
x2
3i

∑N
i=1

x2ix4ix5i
∑N

i=1
x2
4ix

2

5i

∑N
i=1

x2
3ix4ix5i

∑N
i=1

x2ix
2

3i

∑N
i=1

x2
3ix4ix5i

∑N
i=1

x4
3i

























r31

r32

r33













=













∑N
i=1

x2iẋ3i

∑N
i=1

x4ix5iẋ3i

∑N
i=1

x2
3iẋ3i













.
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3.5 Fourth set

3.5.1 Fourth Least-Squares Equation Work

For the fourth performance index we get:

J =
1

2

N
∑

i=1

[r41x1 + r42x3i + r43x4ix5i + r44x
2

4i − ẋ4i]
2

After setting the derivatives with respect to their respective parameters to zero:

∂J

∂r41

= r41

N
∑

i=1

x
2

1i
+ r42

N
∑

i=1

x1ix3i + r43

N
∑

i=1

x1ix4ix5i + r44

N
∑

i=1

x1ix
2

4i
−

N
∑

i=1

x1iẋ4i = 0

∂J

∂r42

= r41

N
∑

i=1

x1ix3i + r42

N
∑

i=1

x
2

3i
+ r43

N
∑

i=1

x3ix4ix5i + r44

N
∑

i=1

x3ix
2

5i
−

N
∑

i=1

x3iẋ4i = 0

∂J

∂r43

= r41

N
∑

i=1

x1ix4ix5i + r42

N
∑

i=1

x3ix4ix5i + r43

N
∑

i=1

x
2

4i
x
2

5i
+ r44

N
∑

i=1

x
3

4i
x5i −

N
∑

i=1

x4ix5iẋ4i = 0

∂J

∂r44

= r41

N
∑

i=1

x1ix
2

4i
+ r42

N
∑

i=1

x3ix
2

4i
+ r43

N
∑

i=1

x
3

4i
x5i + r44

N
∑

i=1

x
4

4i
−

N
∑

i=1

x
2

4i
ẋ4i = 0

We obtain:

N
∑

i=1

x1iẋ4i = r41

N
∑

i=1

x
2

1i
+ r42

N
∑

i=1

x1ix3i + r43

N
∑

i=1

x1ix4ix5i + r44

N
∑

i=1

x1ix
2

4i

N
∑

i=1

x3iẋ4i = r41

N
∑

i=1

x1ix3i + r42

N
∑

i=1

x
2

3i
+ r43

N
∑

i=1

x3ix4ix5i + r44

N
∑

i=1

x3ix
2

4i

N
∑

i=1

x4ix5iẋ4i = r41

N
∑

i=1

x1ix4ix5i + r42

N
∑

i=1

x3ix4ix5i + r43

N
∑

i=1

x
2

4i
x
2

5i
+ r44

N
∑

i=1

x
2

4i
x
2

5i

N
∑

i=1

x
2

4i
ẋ4i = r41

N
∑

i=1

x1ix
2

4i
+ r42

N
∑

i=1

x3ix
2

4i
+ r43

N
∑

i=1

x
3

4i
x5i + r44

N
∑

i=1

x
4

4i

3.5.2 Fourth matrices set up

















∑

N

i=1
x
2

1i

∑

N

i=1
x1ix3i

∑

N

i=1
x1ix4ix5i

∑

N

i=1
x1ix

2

4i

∑

N

i=1
x1ix3i

∑

N

i=1
x
2

3i

∑

N

i=1
x3ix4ix5i

∑

N

i=1
x3ix

2

4i

∑

N

i=1
x1ix4ix5i

∑

N

i=1
x3ix4ix5i

∑

N

i=1
x
2

4i
x
2

5i

∑

N

i=1
x
3

4i
x5i

∑

N

i=1
x1ix

2

4i

∑

N

i=1
x3ix

2

4i

∑

N

i=1
x
3

4i
x5i

∑

N

i=1
x
4

4i

































r41

r42

r43

r44

















=

















∑

N

i=1
x1iẋ4i

∑

N

i=1
x3iẋ4i

∑

N

i=1
x4ix5iẋ4i

∑

N

i=1
x
2

4i
ẋ4i

















.



37

3.6 Fifth set

3.6.1 Fifth Least-Squares Equation Work

For the fifth performance index we get:

J =
1

2

N
∑

i=1

[r51x2i + r52x3i + r53x4ix5i + r54x5i − ẋ5i]
2

After setting the derivatives with respect to their respective parameters to zero:

∂J

∂r51
= r51

N
∑

i=1

x
2

2i + r52

N
∑

i=1

x2ix3i + r53

N
∑

i=1

x2ix4ix5i + r54

N
∑

i=1

x2ix5i −

N
∑

i=1

x2ix3iẋ5i = 0

∂J

∂r52
= r51

N
∑

i=1

x2ix3i + r52

N
∑

i=1

x
2

3i + r53

N
∑

i=1

x3ix4ix5i + r54

N
∑

i=1

x3ix5i −

N
∑

i=1

x3iẋ5i = 0

∂J

∂r53
= r51

N
∑

i=1

x2ix4i + r52

N
∑

i=1

x3ix4i + r53

N
∑

i=1

x
2

4ix
2

5i + r54

N
∑

i=1

x4ix
2

5i −

N
∑

i=1

x4ix5iẋ5i = 0

∂J

∂r54
= r51

N
∑

i=1

x2ix5i + r52

N
∑

i=1

x3ix5i + r53

N
∑

i=1

x4ix
2

5i + r54

N
∑

i=1

x
2

5i −

N
∑

i=1

x5iẋ5i = 0

We obtain:

N
∑

i=1

x2iẋ5i = r51

N
∑

i=1

x
2

2i + r52

N
∑

i=1

x2ix3i + r53

N
∑

i=1

x2ix4i + r54

N
∑

i=1

x2ix5i

N
∑

i=1

x3iẋ5i = r51

N
∑

i=1

x2ix3i + r52

N
∑

i=1

x
2

3i + r53

N
∑

i=1

x3ix4ix5i + r54

N
∑

i=1

x3ix5i

N
∑

i=1

x4ix5iẋ5i = r51

N
∑

i=1

x2ix4ix5i + r52

N
∑

i=1

x3ix4ix5i + r53

N
∑

i=1

x
2

4ix
2

5i + r54

N
∑

i=1

x4ix
2

5i

N
∑

i=1

x5iẋ5i = r51

N
∑

i=1

x2ix5i + r52

N
∑

i=1

x3ix5i + r53

N
∑

i=1

x4ix
2

5i + r54

N
∑

i=1

x
2

5i
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3.6.2 Fifth matrices set up

















∑

N

i=1
x
2

2i

∑

N

i=1
x2ix3i

∑

N

i=1
x2ix4i + r54

∑

N

i=1
x2ix5i

∑

N

i=1
x2ix3i sum

N

i=1
x
2

3i

∑

N

i=1
x3ix4ix5i

∑

N

i=1
x3ix5i

∑

N

i=1
x2ix4ix5i

∑

N

i=1
x3ix4ix5i

∑

N

i=1
x
2

4i
x
2

5i

∑

N

i=1
x4ix

2

5i

∑

N

i=1
x2ix5i

∑

N

i=1
x3ix5i

∑

N

i=1
x4ix

2

5i

∑

N

i=1
x
2

5i

































r51

r52

r53

r54

















=

















∑

N

i=1
x2iẋ5i

∑

N

i=1
x3iẋ5i

∑

N

i=1
x4ix5iẋ5i

∑

N

i=1
x5iẋ5i

















.

3.7 Gauss-Seidel Method

One of the methods that was used to find the parameters is the Gauss-Seidel Method. This

method is used when conventional least squares methods cannot be used, such as when one has an

ill-conditioned matrix. In order to use this method one still needs a matrix that is derived using the

derivatives of the least squares equation at hand with respect to each of the parameters. Once one

has the matrix we can set up the equation:

[A][x] = [b]

where in this case [x] is the parameters, rij we are searching for and [b] are the sums of the data,

∑N
i=1

xi from the respective variables used.

To use Gauss-Seidel Method we shall solve equation 3.1 iteratively assuming the initial x-

values are zero. Once we find the new x-values we then plug these new values in to find a new set

of x-values. We do this iteratively until we hit a stopping criteria, ǫ, which is the error between the

newest value of xi and the last value of xi.

To illustrate this method we shall use a 3× 3 symmetric matrix for [A] and a vector for [b] in

the equation:













3 6 5

6 2 7

5 7 1

























x1

x2

x3













=













5

3

6













.

Now that we have this set up we can solve for each parameter:
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x
k
1 =

5− 6xk−1

2
− 5xk−1

3

3

x
k
2 =

3− 6xk
1
− 7xk−1

3

2

x
k
3 =

6− 5xk
1
− 7xk

2

1

where the k marks the iteration version of the parameter.

Now we just use the [x]ki equations for the iterations. For the first iteration the [x]k vector shall

be:

[x]0 =













0

0

0













Now the results for the first iteration:

x
1

1 =
5− 6 ∗ 0− 5 ∗ 0

3
=

5

3

x
1

2 =
3− 6 ∗ 5

3
− 7 ∗ 0

2
=

−7

2

x
1

3 =
6− 5 ∗ 5

3
− 7 ∗ −7

2

1
=

133

6

To get the second iteration we just have to do the same thing but using the new vector, [x]1,

instead of [x]0 then:

[x]2 =













−509

6

2141

6

−6203

3













Thus you have your second iteration of values for [x] using Gauss-Seidel Method.
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3.8 Results

This part of the research resulted in the network dynamics for this system.

3.8.1 Plots of the evolution of the network

These plots show data of each variable and the rate of change for each variable.

In Figure 3.1 we see the data gathered for the x1 variable using the programs described above.

The first plot shows the actual data generated using the given constraints described above. The

following four plots show the results of the data generated of the other four variables.

Figure 3.1: State of X1 and its finite difference.

3.8.2 The comparison plots that show the observed dynamics with the cal-

culated dynamics of the system

The following plots illustrate our results, which come after generating data and a parameter

search involving least squares methods. The plots show the contrast between the data generated
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Figure 3.2: State of X2 and its finite difference.

Figure 3.3: State of X3 and its finite difference.

versus the approximated differential equations using the newly found parameters.

3.8.3 The System of Differential Equations Found

∂x1

∂t
= −0.6 ∗ x1 + 0.1 ∗ x2 + 0.393 ∗ x5

∂x2

∂t
= 0.5 ∗ x1 − 0.6 ∗ x2 + .2 ∗ x3 − 1.8 ∗ x1 ∗ x2

∂x3

∂t
= 0.2 ∗ x2 + 0.1 ∗ x4 ∗ x5 − 1.395 ∗ x23

∂x4

∂t
= 0.3 ∗ x1 + 0.1 ∗ x3 − 0.5 ∗ x4 ∗ x5 − 2.139 ∗ x24

∂x5

∂t
= 0.3 ∗ x2 + 0.1 ∗ x3 − 0.8 ∗ x4 ∗ x5 − 0.236 ∗ x5
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Figure 3.4: State of X4 and its finite difference.

Figure 3.5: State of X5 and its finite difference.

The following figures show the plots of the systems of equations found using Runge-Kutta

methods overlayed with the original collected data.

3.8.4 Stability Analysis

Now that we have approximated the system of differential equations that define the network

an analysis of the stability is performed. To do this we have to take the Jacobian of the system by
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Figure 3.6: Actual finite differences for X1 and the finite differences estimated from the

parameters found using least squares methods.

first setting the system of differential equations to zero:

−0.6 ∗ x1 + 0.1 ∗ x2 + 0.393 ∗ x5 = 0

0.5 ∗ x1 − 0.6 ∗ x2 + 0.2 ∗ x3 − 1.8 ∗ x1 ∗ x2 = 0

0.2 ∗ x2 + 0.1 ∗ x4 ∗ x5 − 1.395 ∗ x23 = 0

0.3 ∗ x1 + 0.1 ∗ x3 − 0.5 ∗ x4 ∗ x5 − 2.139 ∗ x24 = 0

0.3 ∗ x2 + 0.1 ∗ x3 − 0.8 ∗ x4 ∗ x5 − 0.236 ∗ x5 = 0

Now to construct the Jacobian matrix we take the first derivative of each equation with respect to

the five variables that make up the network to create:



























−0.6 0.1 0 0 0.393

0.5− 1.8 ∗ x2 −0.6− 1.8 ∗ x1 0.2 0 0

0 0.2 −2.790 ∗ x3 0.1 ∗ x5 0.1 ∗ x4

0.3 0 0.1 −0.5 ∗ x5 − 4.278 ∗ x4 −0.5 ∗ x4

0 0.3 0.1 −0.8 ∗ x5 −0.8 ∗ x4 − 0.236



























After constructing the Jacobian we then find the steady-state approximation for each variable

using the last data points from the variable state versus step response plots, which was the stationary



44

Figure 3.7: Actual finite differences for X2 and the finite differences estimated from the

parameters found using least squares methods.

distribution:

X =

[

0.09199491315 0.09109270746 0.1187114309 0.1228228975 0.1172714431

]

. This steady-state approximation will be considered the equilibrium point of the system of differ-

ential equations. We then find the eigenvectors and their corresponding eigenvalues of the Jacobian

using the equilibrium point approximations using matlab to get the following eigen-pairs (eigenvec-

tor and eigenvalue):


























−0.0722− 0.3217i

−0.7276 + 0.0000i

0.2816 + 0.0645i

−0.1449 + 0.3553i

0.3307 + 0.1476i



























; −0.8097 + 0.1308i



























−0.0722 + 0.3217i

−0.7276 + 0.0000i

0.2816− 0.0645i

−0.1449− 0.3553i

0.3307− 0.1476i



























; −0.8097− 0.1308i



























−0.5205 + 0.0000i

−0.3877 + 0.0000i

−0.3978 + 0.0000i

−0.3413 + 0.0000i

−0.5513 + 0.0000i
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Figure 3.8: Actual finite differences for X3 and the finite differences estimated from the

parameters found using least squares methods
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According to a theorem on the linear stability at a point, since the eigenvalues of each eigen-

pair have negative valued real parts the system of differential equations is stable.

What having a stable equilibrium point means for this system of differential equations is that

the network would not easily be unstabilized given disturbances from outside the network.
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Figure 3.9: Actual finite differences for X4 and the finite differences estimated from the

parameters found using least squares methods

Figure 3.10: Actual finite differences for X5 and the finite differences estimated from the

parameters found using least squares methods
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Figure 3.11: Actual state of X1 and the predicted state found using the RK-4 method.

Figure 3.12: Actual state of X2 and the predicted state found using the RK-4 method.

Figure 3.13: Actual state of X3 and the predicted state found using the RK-4 method.
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Figure 3.14: Actual state of X4 and the predicted state found using the RK-4 method.

Figure 3.15: Actual state of X5 and the predicted state found using the RK-4 method.
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CHAPTER 4

IN CLOSING

The resulting system of differential equations and stability analysis of the system of differential

equations implies that this gene network is stable. As viewed in a biological sense this means that

this gene network should be very hard to disrupt so that the cell cycle does not have problems on

a regular basis. That being said there are a lot of different mechanisms within the cell, outside this

gene network, which help in maintaining the network’s stability.

Future work can be done to find the breaking points for this gene network and other networks

like it. As was stated earlier, this research is meant to help find a treatment schedule for breat cancer

patients. The gathered data serves as a starting point for finding such schedules.
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