
Georgia Southern University 

Digital Commons@Georgia Southern 

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of 

Summer 2016 

Combinatorial Optimization of Subsequence Patterns in 
Words 
Matthew R. Just 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd 

 Part of the Discrete Mathematics and Combinatorics Commons 

Recommended Citation 
Just, Matthew R., "Combinatorial Optimization of Subsequence Patterns in Words" (2016). 
Electronic Theses and Dissertations. 1464. 
https://digitalcommons.georgiasouthern.edu/etd/1464 

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. 
Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia 
Southern. For more information, please contact digitalcommons@georgiasouthern.edu. 

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1464?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1464&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


COMBINATORIAL OPTIMIZATION OF SUBSEQUENCE
PATTERNS IN WORDS

by

MATTHEW JUST

(UNDER THE DIRECTION OF HUA WANG AND DANIEL GRAY)

Abstract. Packing patterns in words concerns finding a word with the

maximum number of a prescribed pattern. The majority of the work done

thus far is on packing patterns into permutations. In 2002, Albert, Atkinson,

Handley, Holton and Stromquist showed that there always exists a layered

permutation containing the maximum number of a layered pattern among

all permutations of length n. Consequently, the packing density for all but

two (up to equivalence) permutation patterns up to length 4 can be obtained.

In this thesis we consider the analogous question for colored patterns and

permutations. By introducing the concept of colored blocks we characterize

the optimal permutations with the maximum number of a given colored

pattern when it contains at most three colored blocks. As examples, we

apply this characterization to find the optimal permutations of various col-

ored patterns and subsequently obtain their corresponding packing densities.

Index Words: permutation, colored permutation, pattern, pattern packing
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1. Introduction

We begin our discussion with an overview of words. The combinatorics on

words has been studied extensively since the late 19th century. The inception

of the study is traditionally credited to Axel Thue (1863-1922) who worked

extensively on square-free infinite words. An extensive overview on the history

can be found in M. Lothaire’s1 Combinatorics on Words [8].

In the early 20th century, Major P. A. McMahon pioneered the study of

combinatorics in his beautiful work Combinatory Analysis [9]. Included in this

work were the first steps in the combinatorics of subsequence patterns in words.

Most notable is a bijection between 123 avoiding permutations and a special

class of partitions. In 1968, Donald Knuth showed in The Art of Computer

Programming [7] that this bijection extends to any length-3 permutation. More

recently the dual question has been considered, that of finding permutations

that contain as many copies of another permutation as possible. This is the

study of pattern packing, and will be the central focus of this thesis.

1.1. Words. Consider a nonempty set S and a binary operation on S denoted

by ×. If × is associative, then (S,×) is called a semigroup. Furthermore, if

S contains an element ε such that a × ε = ε × a = a, then (S,×) is called a

monoid. The element ε is called the identity of S under ×.

Let A denote a nonempty set of elements, which we call letters. For now, we

will assume the elements in A are distinct, yet have no relation to each other.

1M. Lothaire is a pseudonym for a group of Mathematicians, most of whom were students of
Marcel-Paul Schützenberger.
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Define a binary operation × that concatenates two elements, and let S be the

set generated by A and ×. For instance, let A = {a, b}. Then

S = {a, b, aa, bb, ab, aaa, bbb, aab, aba, baa, . . .}.

We will refer to A as an alphabet and S as the set of words generated by A.

For any word x ∈ S, the length of x, denoted by |x|, is the number of letters

that make up x. We can define the unique word ε such that |ε| = 0, referred to

as the empty word. If we include ε ∈ S then our set of words is a monoid. We

include several properties of monoids of words below.

Remark 1.1. Let S be a set of words closed under concatenation ×. Then

(a) Concatenation × is associative and non-commutative.

(b) The length of a word |x| is a monoid homomorphism.

(c) The set A is the smallest subset of S that generates all of S by ×.

Suppose that x, y, z ∈ S. The associativity of × is seen immediately. As an

example suppose again we have A = {a, b} and let x = aa, y = ab, and z = bb.

Then
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(x× y)× z = (aa× ab)× bb

= aaab× bb

= aaabbb

= aa× (ab× bb)

= x× (y × z).

Also x × y = aaab 6= abaa = y × x and thus × is not commutative. If

x, y ∈ S, then

|x× y| = |ai1 . . . aikaj1 . . . ajk | = 2k = k + k = |x|+ |y|

which illustrates that the length is a monoid homomorphism. Finally suppose

that A′ is any set that generates all of S. Clearly a, b ∈ A′ since a, b ∈ S. Thus

A ⊆ A′ and A is the smallest set that generates S.

Suppose we want to generate the set of all words in a concise way. Consider

the words in S of length k. Taking the kth-power of the sum of the elements

in A = {ai}1≤i≤n

(a1 + a2 + . . .+ an)k =
∑

1≤j≤nk

∏
1≤i≤n

aji .

For instance, if A = {a, b} and k = 3:
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(a+ b)3 = aaa+ aab+ aba+ abb+ baa+ bab+ bba+ bbb.

We see that the number of words of length k generated from an alphabet of

cardinality n is nk. A useful observation is that this expression can be viewed

as a symmetric function of the variables ai.

1.2. Patterns in Words. We want to build up some tools to discuss patterns

in words. By a pattern we mean a word that is in some way contained in

another word. For instance the word aabbac contains the smaller word aab. An

important note is that the letters in the pattern aab are consecutive in the word

aabbac. We could also consider the pattern abc which is made up of letters

read left to right, not necessarily consecutive. We formalize this distinction in

the following definition.

Definition 1.2. Let x = x1x2 . . . xk be a word of length k generated from an al-

phabetA = {a1, a2, . . . , an}. A length-m subword of x is a word xixi+1 . . . xi+m−1

with 1 ≤ i ≤ k −m+ 1. A length-m subsequence of x is a word xi1xi2 . . . xim

with ij < ij+1 for each 1 ≤ j ≤ m− 1.

This distinction splits the study of patterns in words into two categories:

subword patterns and subsequence patterns. Our focus in this thesis will be

on subsequence patterns.

Proposition 1.3. Let x be a word with |x| = k. Then there are exactly
(
k
m

)
length-m subsequences of x.
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Proof. We can assign a variable u to represent inclusion of an element in the

subsequence and a variable v to represent exclusion. Thus we can construct

the inclusion/exclusion sequences by expanding (u + v)k. Each term in this

expansion containing m us represents a unique length-m subsequence. By the

Binomial Theorem

(u+ v)k =
k∑

m=0

(
k

m

)
umvk−m

and we see there are
(
k
m

)
subsequences of length-m. �

For a word y of length m, we say y occurs as a subsequence pattern in the

word x if there is a length-m subsequence of x that is in some sense equivalent

to y. We will make this more precise by the following definition:

Definition 1.4. Let A be an alphabet equipped with a relation R, denoted

(A,R). For a word x = x1x2 . . . xk generated by A, the ordered adjacency

matrix of x is the adjacency matrix for the relation R restricted to

{x1 . . . xk} × {x1 . . . xk}

where rows and columns 1, . . . , k correspond to the elements x1, . . . , xk.

Two words x and y generated by A are isomorphic if the ordered adjacency

matrix for x and y are identical. Denote this by x ∼ y.



12 1 0 0
0 1 1
0 1 1


abb

1 0 0
0 1 1
0 1 1


bcc

Figure 1. The two adjacency matrices for the words abb and
bcc showing they are isomorphic under the relation I.

A simple example is the set (A, I) where I is the identity relation (every

element is only related to itself). Suppose the alphabet is given by A = {a, b, c}.

Then the length-3 words abb and bcc are isomorphic since their ordered adjacency

matrices are equivalent (see Figure 1).

1.3. Counting Occurrences of Patterns. Suppose now we want to count

the number of occurrences of a specific pattern y in a word x. Denote by

f(y, x) the number of occurrences of the pattern y in the word x. For example

consider the set of words generated by the set ({a, b, c}, I). Then we have

f(ab, abc) = 3,(1.1)

f(aa, cbcbcb) = 6, and(1.2)

f(abc, aaabbb) = 0.(1.3)

The number of ab patterns in (1.1) is equal to the number of subsequences in

abc. Thus this word has the maximum number of occurrences of this pattern.

There are no occurrences of abc in aaabbb in (1.3), thus this word avoids the
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pattern abc. It is convenient to define a statistic to measure the number of

occurrences of a pattern in a word.

Definition 1.5. Let y and x be two words generated from a set (A,R). The

density of y in x is given by

δ(y, x) =
f(y, x)(|x|
|y|

) .

Per our examples we have

δ(ab, abc) = 1,

δ(aa, cbcbcb) =
2

5
, and

δ(abc, aaabbb) = 0.

Clearly we always have 0 ≤ δ(y, x) ≤ 1. This suggests a probabilistic inter-

pretation of the density: δ(y, x) is the probability that a random subsequence

of x is isomorphic to y.

Consider the simplest nontrivial pattern generated by ({aj}1≤j≤n, I), namely

aa. If we look at the generating function for the set of all words generated by

this alphabet:



14

1

1− u(a1 + . . .+ an)
= 1 + u(a1 + . . . an) + u2(a1a1 + a1a2 + . . .+ anan) + . . .

where u is a variable tracking the length of each word (a1a2 has a factor

of u2 since this word is made up of two letters). We will use the fact that

this F is a symmetric function if we treat a1 . . . an as variables and allow

them to group (a1a2a1 = a21a2). (A symmetric function satisfies the property

F (a1 . . . an) = F (σ(a1) . . . σ(an)) for any permutation σ ∈ Sn, the symmetric

group of order n).

Consider the words of length k. These are the words with a coefficient of uk:

(a1 + a2 + . . .+ an)k

A necessary and sufficient condition for the occurrence of an aa pattern in a

word x is the containment of two copies of any aj. More specifically, if cj is

the number of aj letters in a word:

f(x, aa) =
n∑
j=1

(
cj
2

)

By the multinomial theorem,

(a1 + a2 + . . .+ an)k =
∑

c1+...+cn=k

(
k

c1, . . . , cn

)
ac11 . . . a

cn
n
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Partition Number of Words, x f(aa, x)
1111 24 0
112 144 1
22 48 2
13 36 3
4 4 6

Figure 2. Words of length 4 on 4 letters, stratified by occur-
rences of aa patterns by partitions.

The sequences c1c2 . . . cn are compositions of k. We want to group the

terms by partitions of k (that is, not distinguish between compositions that

are equivalent under some permutation of the parts). For any such partition

λ = λ1 . . . λk, write the elements in terms of their multiplicities: λ = kbk(k −

1)bk−1 . . . 1b10b0 . Thus corresponding to λ there are in total

(
k

λ1 . . . λk

)(
n

b0 . . . bk

)
words of length k corresponding to the partition λ on an alphabet of n letters.

Each of these words has in total

k∑
i=1

(
λ

2

)
total aa patterns.

For example, let k = 4 and n = 4. There are 5 partitions of 4, namely

1111, 112, 13, 22, 4. The distribution of words and aa patterns are given in

Figure 2.
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1.4. Pattern Packing. It is often useful to ask a more specific question. For

instance: How many words of a certain length avoid a pattern? This is the

question of pattern avoidance. In the previous section we considered the pattern

aa and words of length k. From our analysis it would be straightforward to

determine how many words of length k avoid the pattern aa. For instance

if n = 4 and k = 4 there are 24 words that avoid aa. This could have been

proven directly. The number of words that avoid aa are just the words that

have all distinct letters. If the number of letters equals the length of the word,

this is just the permutations of length 4 (4! = 24).

A question dual in nature is this: among all words of length k, what is the

maximum number of occurrences of a pattern in a single word? This is the

question of pattern packing, and will be the central focus of the rest of this

thesis. For the example in the last section, the maximum number of occurrences

of aa was equal to the total number of subsequences of a word of length k.

Better yet, we determined that there were exactly n words that achieved this

maximum. In general it is ambitious to pursue this much detail. For our

purposes we will be content simply finding the maximum, understanding that

there may be multiple words that achieve it.

Definition 1.6. Let S be the set of words generated by an alphabet (A,R).

Let y be a pattern in S and let Sk be the subset of S containing all the words

of length k. A word x̂ (in general not unique) such that f(y, x̂) ≥ f(y, x) for

any other x ∈ Sk is called an optimal word of length k. Denote this maximum

number of occurrences of y in an x̂ by fk(y).
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It is an important observation that for a fixed y, fk(y) is a nondecreasing

function with k. More importantly is the next proposition, first proved by Fred

Galvin (see [10], Theorem 2.1).

Proposition 1.7. Let S be the set of words generated by an alphabet (A,R).

Let y be a pattern in S and let Sk be the subset of S containing all the words

of length k ≥ |y|. Define

δk(y) =
fk(y)(
k
|y|

)
Then δk−1(y) ≥ δk(y) for all k ≥ 2.

Proof. Consider f(y, x̂) = fk(y) for some optimal word x̂. Let Sk−1(x̂) be the

set of all length-(k − 1) subsequences of x̂. For any y-pattern in x̂, there are

exactly k − |y| subsequences in Sk−1(x̂) that contain this pattern. This is

because each length-(k − 1) subsequence excludes one element from x̂. Of the

k subsequences in Sk−1(x̂), |y| of them will exclude one of the elements that

compose this subsequence isomorphic to y. We can then write

fk(y) =
1

k − |y|
∑

z∈Sk−1(x̂)

f(y, z)

fk(y)(
k
|y|

) =

1
k−|y|

∑
z∈Sk−1(x̂)

f(y, z)(
k
|y|

)
=

1
k

∑
z∈Sk−1(x̂)

f(y, z)(
k−1
|y|

)
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Now because f(y, z) ≤ fk−1(y)

fk(y)(
k
|y|

) ≤ 1
k

∑
z∈Sk−1(x̂)

fk−1(y)(
k−1
|y|

)
≤ fk−1(y)(

k−1
|y|

)
�

We see now that δk(y) is a non-increasing sequence for any fixed pattern y.

Because δk(y) ≥ 0, it then makes sense to take the limit of this sequence.

Definition 1.8. Let y be a word generated from an alphabet (A,R). Define

the packing density of y as follows

δ(y) = lim
k→∞

δk(y)

Returning to the example in the previous section, let us compute the packing

density for the pattern aa. Considering an optimal word x̂ of length k, we

found that fk(aa) =
(
k
|y|

)
and thus δk(aa) = 1. Taking the limit is trivial, and

we find that δ(aa) = 1.

It was taken for granted in this example that the packing density holds a

dependence on the number of letters in the generating alphabet. For instance,

consider the packing density of the pattern ab over the alphabet ({a, b, c}, I). It

is straight forward to verify that there is a length-k optimal word with the form



19

ar1br2cr3 . Here we have used exponent notation to signify repeated consecutive

letters. It follows that r1 + r2 + r3 = k. Basic calculus shows r1 = r2 = r3 = k
3

and we have the following calculation for the packing density:

δk(ab) =
f(ab, a

k
3 b

k
3 c

k
3 )(

k
2

)
=

(
3
2

)( k
3
1

)2(
k
2

)
=

2k

9(k − 1)

δ(ab) =
2

9

If instead we had an alphabet with an infinite number of distinct letters, we

see that the packing density would be equal to one. Unless otherwise specified

we will assume the number of letters in our alphabet n equals the length of the

word in question k.
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2. Permutations

The majority of the previous work on subsequence patterns in words is in

the area of permutations. Here we will think of permutations not as bijective

maps but rather as a sequence of distinct, ordered letters. By convention we

will choose the natural numbers as our alphabet, equipped with the usual total

order <. For permutations, however, we will require the letters of each word

to be totally ordered as well. That is, we will not allow repeated elements in

the same word. We can clarify this in the following way.

Let [k] be the totally ordered alphabet consisting of the numbers 1 < 2 <

. . . < k. The set of permutations of length k, denoted [k!], is the collection

of all linear orderings of the letters in [k]. Note the notation [k!] is chosen to

signify the size of the set. This is easy to see. Starting with the first position

in the permutation there are k letters to choose from, then k− 1 for the second

position, and so on. Thus there are k(k − 1) . . . 1 = k! permutations of length

k.

Recall that two words are isomorphic if their ordered adjacency matrices

are equivalent. Thus two permutations are isomorphic if their elements are

ordered in the same way. See Figure 3 for an example.

0 1 1
0 0 0
0 1 0


132

0 1 1
0 0 0
0 1 0


586

Figure 3. The two adjacency matrices for the permutations
132 and 586 showing they are isomorphic under the relation <.
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Also a permutation τ , called a pattern, of length k occurs in another per-

mutation π of length n > k if there is a length-k subsequence of π that is

isomorphic to τ . The number of occurrences of τ in π will again be denoted by

f(τ, π). If f(τ, π) = 0, π avoids τ . If π̂ ∈ [n!] is such that f(τ, π̂) ≥ f(τ, π) for

any π ∈ [n!], then π̂ is an optimal permutation and we write fn(τ) = f(τ, π̂).

The packing density of τ is also defined as before

δ(τ) = lim
n→∞

fn(τ)(
n
k

)
For example we have the following:

f(12, 13524) = 7(2.1)

f(132, 132654) = 10(2.2)

f(321, 12435) = 0(2.3)

Here 2.3 shows that 12435 avoids the pattern 321. For 2.2 it can be shown

that 132654 is an 132-optimal permutation of length 6. It is not hard to see

that the packing density of an increasing/decreasing pattern is trivially equal

to 1 (achieved by any increasing/decreasing permutation). In general it is very

difficult to find the packing density of nontrivial permutations.

Definition 2.1. Let π = π(1)π(2) . . . π(n) be an arbitrary permutation of

length n. Define a pattern τ = τ(1)τ(2) . . . τ(k) to be a permutation of length
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k ≤ n. Let a length-k subsequence π(i1)π(i2) . . . π(ik) of π be isomorphic to

τ if π(ij) < (>)π(ik) whenever τ(j) < (>)τ(k), for j < k. The number of

τ -isomorphic subsequences in a permutation π is given by the pattern counting

function

f(τ, π)

If f(τ, π) > 0 then π is said to contain τ . If f(τ,Π) = 0 then π is said to

avoid τ .

The pattern counting function can also be used to count patterns contained in

sets of permutations. Let [n!] = {π1, π2, . . . , πn!} be the set of all permutations

of length n. The number of occurrences of any length k pattern in [n!] is easily

found.

Theorem 2.2. Let [n!] be the set of all permutations of length n and let τ be

a pattern of length k. Then the total number of τ -patterns contained in all

permutations in [n!] is given by

f(τ, [n!]) =
n!

k!

(
n

k

)

Proof. There are a total of n! permutations contained within [n!] and each per-

mutations contains
(
n
k

)
length-k subsequences. The probability of a randomly

selected subsequence being isomorphic to τ is one in k!, the total number of

length-k patterns. Thus the number of τ -isomorphic subsequences is the total
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number of length-k subsequences within [n!] multiplied by the expectation value

that one of these subsequences is τ -isomorphic. Therefore f(τ, [n!]) = n!
k!

(
n
k

)
. �

As an example consider the pattern τ = 132. Given a relatively short

permutation

π = 35421

the quantity f(132, 35421) can be counted directly. Because n = 5 there are a

total of
(
5
3

)
= 10 subsequences. They are given by

354 352 351 342 341

321 542 541 521 421

Clearly the only length-3 subsequence that is isomorphic to 132 is the

subsequence 354. Thus P (132, 35421) = 1 and 35421 contains one 132 pattern.

Suppose now it is desired to know the total number of 132 patterns con-

tained in the set of all length-4 permutations. Again for small n these can

be enumerated directly by examining the 24 permutations of length n and

counting the number of 132 patterns:
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π f(132, π) π f(132, π) π f(132, π) π f(132, π)

1234 0 1243 2 1324 1 1342 2

1423 2 1432 3 2134 0 2143 2

2314 0 2341 0 2413 1 2431 1

3124 0 3142 1 3214 0 3241 0

3412 0 3421 0 4123 0 4132 1

4213 0 4231 0 4312 0 4321 0

By summing all of the patterns it is clear that f(132, [4!]) = 16 = 4!
3!

(
4
3

)
.

Before going through a review of the literature, let us illustrate how the

occurrences of a simple pattern can be found using a generating function.

Definition 2.3. Let n be any positive integer. The q-analog of n, denoted

[n]q, is defined as follows:

[n]q =
1− qn

1− q

What makes this a q-analog is the fact that [n]q → n as q → 1. From this

definition it is natural to define the q-factorial:

[n]q! =
n∏
i=1

1− qi

1− q

which approaches n! as q tends to one. If we expand this out as a polynomial

in q we obtain:



25

[n]q! = 1q0 + (n− 1)q1 +
(n− 2)(n+ 1)

2
q2 + . . .+ 1q(

n
2)

The coefficients in this expansion have a combinatorial interpretation. The

coefficient of qi is the number of permutations of length n containing i 12

patterns2. For instance, if n = 3 we have that there are 2 permutations

containing one 12 pattern. These two patterns are 231 and 312.

Let us give a brief combinatorial (number theoretic) proof. Notice that [n]q!

is multiplying (simplified) polynomials of the form 1 + q + . . . + qi−1. The

i = 1 polynomial represents the first letter placed in the polynomial. The next

polynomial is q0 + q1. This represents the choice of adding one 12 pattern

(by letting this letter be greater than the first) or continuing to have no 12

patterns (by letting this letter be less than the first). For the i = 3 polynomial

q0 + q1 + q2 we have three options: add no 21 patterns (q0) by making this

letter less than the previous two, add one 21 patterns (q1) by making this letter

have numerical value between the previous two, or add two 21 patterns (q2) by

making this letter larger than the previous two. Continuing for all 1 ≤ i ≤ n

gives the desired result.

In this way we can think of permutations in a slightly different way: as a

sequence of numbers, a0a1 . . . an−1, for which 0 ≤ ai ≤ i shows how many 12

patterns are added by each letter. For example, we can write the permutation

146352 as 012131. 1 adds no 12 patterns, 4 adds one, 6 adds two, 3 adds one,

5 adds three, and 2 adds one.

2Classically this is the number of inversions in the permutation. An inversion is a 21 pattern
which has the same counting sequence as the pattern 12.
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Using this analysis we see that there is exactly one permutation of length n

that avoids 12 and exactly one optimal permutation. Unfortunately this type

of analysis does not work for more complex permutations, and we must stick

to asking more specific questions.

We will define two bijective maps on [n!] that will be very useful. They are

defined as follows:

Definition 2.4. Let π = π(1)π(2) . . . π(n) be a permutation in [n!]. Define

the reversal of π as

r(π) = π(n)π(n− 1) . . . π(1)

Similarly define the conjugate of π as

c(π) = (n− π(1) + 1)(n− π(2) + 1) . . . (n− π(n) + 1)

Let us give a couple examples. We have:

r(132) = 231

r(15243) = 34251

c(132) = 312

c(15243) = 51423
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Proposition 2.5. Let [n!] be the set of permutations of length n. Then the

reversal and conjugate are bijective maps on [n!] with the property that for any

π ∈ [n!] and pattern τ ∈ [k!]:

f(τ, π) = f(r(τ), r(π)) = f(c(τ), c(π))

Proof. Consider any subsequence π∗ of π that is isomorphic to τ . Because they

are isomorphic, the ordered adjacency matrices of π∗ and τ are identical. Now

the reversal corresponds to flipping the matrix horizontally and vertically, while

the conjugate corresponds to the transpose of the matrix. Performing these

operations on the matrix for π results in performing the same operations on π∗.

This leaves the matrix for r(π∗) equivalent to r(τ) and c(π∗) equivalent to c(τ).

Similarly any subsequence that is not isomorphic to τ will not be isomorphic

to r(τ) or c(τ) after reversal or conjugation. �

Notice this proposition implies that δ(τ) = δ(r(τ)) = δ(c(τ)). We thus have

classes of patterns that are, in a packing since, equivalent. Another interesting

observation is that r(123) = c(123). This is not true in general, and defines

a class of permutations which we call symmetric permutations. Here is an

interesting result:

Proposition 2.6. There are bn
2
c!2bn2 c symmetric permutations of length n.

Proof. For any symmetric permutation π ∈ [n!], we have that π(n− i+ 1) =

n− π(i) + 1 for each 1 ≤ i ≤ n. Thus π(i) + π(n− i+ 1) = n+ 1, so that each
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letter in π is paired with its reflected element to sum to n − 1. This means

that after selecting the first bn
2
c letters in π, the rest of the permutation is

determined. These elements can be rearranged (bn
2
c! ways) and switched with

their reflected element (2b
n
2
c ways). �

2.1. Permutation Pattern Avoidance. In this section we give a brief overview

of the key results for permutation subsequence patterns. The majority of the

early results are on pattern avoidance. Not until the last couple of decades has

pattern packing been studied more extensively.

Recall that a permutation π ∈ [n!] avoids a pattern τ ∈ [k!] if f(τ, π) = 0.

We will be most interested in the case that k ≤ n, since otherwise there is

nothing to study.

Definition 2.7. Let [n!] be the set of permutations of length n. For a fixed

pattern τ ∈ [k!], define the subset Avn(τ) ⊆ [n!] as follows:

Avn(τ) = {π ∈ [n!] : f(τ, π) = 0}

For convenience let avn(τ) = |Avn(τ)|.

Much of the early work on pattern avoidance involved finding the counting

sequence for avn(τ) for various patterns. We have already seen that avn(12) =

avn(21) = 1. Note this equivalence follows from r(12) = 21. It is also of interest

to find patterns that have the same sequence avn(τ) that are not related by

reversal or conjugation.
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Definition 2.8. Let τ, σ ∈ [k!] be two patterns. If avn(τ) = avn(σ) for all

n ≥ 1 then τ and σ are said to be Wilf-equivalent.

We see that all patterns of length one and two are trivially Wilf-equivalent.

We now turn our attention to the patterns of length three.

Proposition 2.9. For the pattern 132 (and all equivalents) we have avn(132) =

Cn, where Cn are the Catalan numbers defined as follows:

Cn =
1

n+ 1

(
2n

n

)

Proof. Consider any permutation of length n + 1, n ≥ 0. We will define a

recursion based on the location of the largest element n+ 1. If n+ 1 is located

at location i, then there is a length i− 1 132 avoiding permutation to the left

of n+ 1 and a length n+ 1− i 132 avoiding permutation to the right of n+ 1.

Thus summing over all i:

avn+1(132) =
n+1∑
i=1

avi−1(132)avn−i(132), n ≥ 0(2.4)

where av0(132) = 1. We can determine the generating function C(x) =∑∞
n=0 avn(132)xn by multiplying each side by xn and summing over all n:
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∑
n

avn+1(132)xn =
∑
n

n+1∑
i=1

avi−1(132)avn+1−i(132)xn

1

x

∑
n

avn+1(132)xn+1 =
∑
n

n∑
i=0

avi(132)avn−i(132)xn

1

x

(∑
n

avn(132)xn − 1

)
=
∑
n

avn(132)xn
∑
n

avn(132)xn

1

x
(C(x)− 1) = C(x)2

C(x) = 1 + xC(x)2

Using the quadratic formula we find C(x) implicitly:

C(x) =
1±
√

1− 4x

2x

Now we must have that C(x)→ 1 as x→ 0+ so that

C(x) =
1−
√

1− 4x

2x
=

2

1 +
√

1 + 4x

Recall the generalized binomial theorem:

(x+ y)r =
∞∑
k=0

(r)k
k!

xiyr−i

where (r)k = r(r − 1)(r − 2) . . . (r − k + 1) is the falling factorial. Thus
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√
1− 4x =

∞∑
k=0

(1
2
)k

k!
(−4x)n

Furthermore,

(1
2
)k

k!
=

1

k!

k−1∏
i=0

(−1)(2k − 1)

2

=
(−1)k+1

2kk!
(2k − 3)!!

where n!! = n(n− 2) . . . 2 if n is even, n!! = n(n− 2) . . . 1 if n is odd. For an

odd integer,

(2n− 1)!! =
(2n)!

(2n)!!
=

(2n)!

2nn!

so that we now have

(1
2
)k

k!
=

(−1)k+1(2k)!

(k!)24k(2k − 1)

=
(−1)k+1

(2k − 1)4k

(
2k

k

)

All together now
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C(x) =
1

2x

(
1−

∞∑
k=0

(−1)k+1

4k(2k − 1)

(
2k

k

)
(−4x)k

)

=
1

2x

(
1− 1−

∞∑
k=1

(−1)2k+1

2k − 1

(
2k

k

)
xk

)

=
1

2x

∞∑
k=0

1

2k + 1

(
2k + 2

k + 1

)
xk+1

=
∞∑
k=0

1

k + 1

(
2k

k

)
xk

Comparing coefficients we have the result. �

Since the patterns 132, 213, 231, 312 are equivalent by reversal or conjugation,

we need only consider the pattern 321 (equivalently (123). This question was

first considered by MacMahon [9], though in a slightly different context.

Proposition 2.10. All patterns of length 3 are Wilf-equivalent.

Proof. We will show that the set of 321-avoiding permutations is also counted

by the Catalan numbers by showing avn(321) = Cn. A bijection between

permutations and standard Young tableaus will be used, first presented by

Schensted [12].

Consider a permutation π = π(1) . . . π(n) written in two-line notation

 1 2 . . . n

π(1) π(2) . . . π(n)


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Create a tableau in the following way. Place the elements p(1), p(2), . . . p(j−1)

in the first row, where j is the first index such that p(j) < p(j−1). For instance

take the permutation 23154. The tableau will start out like

2 3

Next take the smallest p(i), 1 ≤ i ≤ j − 1, such that p(j) < p(i). Replace

p(i) with p(j) and move p(i) to the second row and first column of the tableau.

In our example we then have

1 3

2

Continue adding the elements p(j + 1) . . ., repeating the procedure until all

elements are placed. The final tableau for 23154 is given by

1 3

2

4

5

Now to ensure the uniqueness of this tableau we need to record the order for

which the squares appeared. Thus we have for 23154 a second tableau called

the insertion tableau:
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1 2

3

4

5

If we denote the set of all standard Young tableaus of shape λ by fλ, then

we have a mapping from

[n!]→
⋃
λ

(fλ × fλ)

It can be shown that this is a bijective map, and that any permutation

avoiding the permutation (k + 1)k . . . 1 will be mapped to a tableau with at

most k rows.

Thus to count the number of 321 avoiding permutations, it suffices to count

pairs of standard Young tableaus of a fixed shape and size n with at most two

rows.

To do this we use the following one-to-one mapping based on the lattice

permutations proposed by MacMahon [9]. Start with the first tableau for a

permutation π. Create a word generated by the alphabet {α, β} where letter

i is α if i is in the first row or β if it is in the second. Append to this word

a second word generated by the same alphabet, however assigning β to letter

n− j + 1 if j is in the second row if the insertion tableau, and α otherwise.
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Consider again the example of 23154. We then have the word αβααβαβαββ.

It can be verified that that these words have n αs and n βs, and that any

initial subword has at least as many αs as βs.

A word of this type will satisfy the following recursion. Let q(m,n) denote

the number of words of length m+ n, m > n, m giving the number of αs, n

giving the number of βs, and any initial subword having more αs than βs. If

we remove the last letter of any of these words, we obtain any of the words

with either m− 1 αs or n− 1 βs. Thus

q(m,n) = q(m,n− 1) + q(m− 1, n)

It is easily verified that a general solution of this difference equation is given

by

(m+ n)!

(m+ s)(n− s)!

where s is an integer. Taking a linear combination of these solutions we have

q(m,n) =
n∑
s=0

as
(m+ n)!

(m+ s)!(n− s)!

If m = 0, then this reduces to
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q(0, n) =
n∑
s=0

as

(
n

s

)

Now if n = 0 then q(0, 0) = 1 and thus

1 = a0

Furthermore, if n = 1 then q(0, 1) = 0 (and for larger values of n), thus

0 = a0 + a1

which shows that a1 = −1. Taking any larger value of n yields that an = 0,

therefore

q(m,n) =
(m+ n)!

m!n!
− (m+ n)!

(m+ 1)!(n− 1)!

=
(m+ 1)(m+ n)!− n(m+ n)!

(m+ 1)!n!

=
(m+ n)!(m− n+ 1)

(m+ 1)!n!

Finally setting m = n shows that avn(321) = Cn. �



37

Now that we have shown the Wilf-equivalence of patterns of length-3, we

will show some other results. Our attention is now turned to length-4 patterns.

The following gives examples of patterns that are nontrivially Wilf-equivalent.

Stankova [14] showed first that the two length four patterns 1342 and 2413

are Wilf-equivalent. Later with West [13], he showed that any length-4 pattern

beginning with a 231 pattern is Wilf-equivalent to a length-4 pattern beginning

with a 312 pattern. Backelin, West and Xin [2] showed a similar Wilf-equivalence

for length-4 patterns beginning with 123 and 321 patterns.

In total there are 4! = 24 length four patterns. Considering the Wilf-

equivalence classes formed by the symmetries of the patterns and the three

results stated above, there are only three length-4 Wilf-equivalence classes:

{1234, 4321, 2341, 3214, 1432, 4123, 1243, 3421, 2134, 4312, 2143, 3412}

{1342, 2413, 4213, 3124, 2413, 3142, 2314, 4132, 1423, 3241}

{1324, 4231}

Thus there are only three values to enumerate, however only two have

been found exactly. The number of permutations avoiding 1234 (and all Wilf-

equivalent patterns) was found by Gessel [5]. The number of permutations
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avoiding 1342 (and thus all Wilf-equivalent patterns) was enumerated by Bóna

[3]. The exact enumeration for avn(1324) is an open question.

2.2. Layered Permutations. We will now introduce a type of permutation,

called a layered permutation, that is essential to the study of permutation

patterns. We first define a direct sum of two permutations:

Definition 2.11. Let π ∈ [n!] and σ ∈ [k!] be two permutations. The direct

sum of π and σ is given by

π ⊕ σ = π(1)π(2) . . . π(n)(σ(1) + n)(σ(2) + n) . . . (σ(k) + n)

A few important properties of the direct sum are summarized next.

Proposition 2.12. The direct sum is an associative, non-commutative binary

operation on ∪i[i!].

Proof. Let π ∈ [n!], σ ∈ [k!], and φ ∈ [`!]. Clearly we have π ⊕ σ ∈ [(n+ k)!].

Then

(π ⊕ σ)⊕ φ = π(σ(1) + n) . . . (σ(k) + n)⊕ φ

= π(σ(1) + n) . . . (σ(k) + n)(φ(1) + k + n) . . . (φ(`) + k + n)

= π ⊕ σ(1) . . . σ(k)(φ(1) + k)(φ(`) + k)

= π ⊕ (σ ⊕ φ)
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and thus ⊕ is associative. Next consider 123 ⊕ 132 = 123465. Since

132⊕ 123 = 132456 6= 123465, ⊕ is not commutative. �

Denote a decreasing permutation by n̄ := n(n− 1) . . . 1. Recall that for pat-

tern avoidance and pattern packing, the nicest results were for such decreasing

patterns. We consider now direct sums of decreasing permutations.

Definition 2.13. Let {n̄i}1≤i≤k be a set of decreasing permutations. A layered

permutation is of the form

k⊕
i=1

n̄i

Let Ln denote the set of all layered permutations of length n.

A graph of the layered permutation 1 ⊕ 21 ⊕ 321 = 132654 is shown in

Figure 4. There is a useful way to characterize layered permutations in terms

of pattern avoidance.

Proposition 2.14. Let Avn({312, 231}) be the subset of permutations of length

n that avoid both the patterns 312 and 231. Then Avn({312, 231}) = Ln.

Proof. We will prove this by double inclusion. First consider ⊆. For any

permutation in π ∈ Avn({312, 231}), we can partition π into consecutive

decreasing subwords π = π1π2 . . . πk. For instance, let π = 2147653. Then

we can write π = 21|4|765|3. Now take the last element of some πi, x, and

the first element of πi+1, y.. We argue that y must be larger than x. Assume
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1

3

2

6

5

4

Figure 4. Graph of the layered permutation 132654.

y is smaller than x. Then there must be some z such that y < x < z, since

otherwise πi and πi+1 would be a single consecutively decreasing subword. If

z is located before x, then zxy is a 231 pattern. If z is located after y, then

xyz is a 312 pattern. Thus y is larger than x and π consists of collectively

increasing, consecutively decreasing subsequences. Thus π is layered.

For the other inclusion ⊇, suppose π is layered. Clearly π avoids 312 and

231 patterns. Thus we have equivalence. �

The consecutive subwords πi are called the layers of a layered permutation

π. Viewing the permutations in Ln it is straightforward to enumerate |Ln|.

Proposition 2.15. Let Ln be the set of all layered permutations of length n.

Furthermore, let Ln(k) be the subset of Ln consisting of the layered permutations

with k layers, 1 ≤ k ≤ n. Then
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|Ln(k)| =
(
n− 1

k − 1

)

It follows then that there are 2n−1 layered permutations of length n.

Proof. For any layered permutation π ∈ Ln with exactly k layers, consider the

largest element n. Either n is in a layer by itself (the last layer) or it is part of

a longer layer. Thus if we remove n we are left with one of the permutations in

Ln−1(k) or Ln−1(k− 1). Then denoting `(n, k) = |Ln(k)| we have the recursion

`(n, k) = `(n− 1, k) + `(n− 1, k − 1)

It is easy to verify that

`(n, k) =

(
n

k

)

is a general solution to this recursion. If we apply the boundary condition

`(n, 1) = 1, then we have

`(n, k) =

(
n− 1

k − 1

)

Now summing over all k and applying the binomial theorem we find |Ln|:
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|Ln| =
n∑
k=1

(
n− 1

k − 1

)
= 2n−1

�

Layered permutations are essential for the study of packing densities. In fact,

there are no non-layered patterns for which the packing density is known (up to

equivalence). That does not mean the packing density of every layered pattern

is known, as calculating the packing density of layered patterns turns out to

be a nontrivial optimization question. We first introduce a way to decompose

permutations into partially ordered sets, used by Walter Stromquist [15] to

prove an important theorem regarding packing densities of layered patterns.

Definition 2.16. Let π = π(1) . . . π(n) be a length-n permutation. Define a

relation ≺ between two elements, defined π(j) ≺ π(k) if j < k and π(j) < π(k).

An element π(j) is a right-to-left maxima if there is no π(k) such that π(i) ≺

π(k). The set of all right-to-left maxima will be denoted by R1. Furthermore,

define Ri to be the set of right-to-left maxima of the permutation π \ ∪i−1r=1Rr.

We will similarly define the sets Li to be the left-to-right maxima under �,

defined π(j) � π(k) if j > k and π(j) < π(k).

Note that the term “maxima” here is precise, the relation ≺ induces a partial

ordering on the set of elements in the permutation. This relationship can be

seen in Figure 5. Note also that the upper triangles of the adjacency matrices

are complements of each other. This is clear since for any two elements π(j)

and π(k), WLOG π(j) < π(k). Thus either j < k implying π(j) ≺ π(k), or

j > k implying π(j) � π(k).
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1

4
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1 4 5 7 8

R5

R4

R3

R2

R1

L3

L2

L1



0 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0





0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 1
0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Figure 5. Graph of the permutation 14573826 (top left); Graph
of the right-to-left maxima (top middle); Graph of the left-to-
right maxima (top right); adjacency matrix for ≺ (bottom left);
adjacency matrix for � (bottom right).

We then can map a permutation onto a certain kind of lattice in Z+ × Z+,

which we refer to as a maxima lattice. Here each element π(k) ∈ Li, Rj is

mapped to (i, j). The lattice will be reversed for the second coordinate (as

with partitions and matrices). Thus for our previous example of 14573826 we

have the lattice
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One may ask how many different maxima lattices are mapped to by the

permutations in [n!]? This question seems to be extremely challenging, however

a program is written to generate these lattices. We find the first few terms of

the counting sequence to be 1, 2, 5, 15, 51, . . ..

One use of these maxima lattices is to provide an immediate proof of the

Erdős-Szekeres theorem.

Theorem 2.17 (Erdős-Szekeres [4]). Any permutation of length mn+1 contains

either a 1 . . . (m+ 1) pattern or an (n+ 1) . . . 1 pattern.

Proof. Consider any permutation of length mn + 1. Then we can map this

permutation to a maxima lattice λ. It is straightforward to see that the number

of rows in λ gives the length of the longest increasing subsequence, and the

number of columns gives the length of the longest decreasing subsequence. By

the pigeon hole principle, λ must have at least n+1 columns or m+1 rows. �

Now we can define a “gap” in such a lattice as follows. Let λ ⊆ Z+ × Z+ be

a maxima lattice of a permutation π. A point (i, j) is a horizontal gap in λ
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if (i, j) /∈ λ but (i+ 1, j) ∈ λ. Similarly (i, j) is a vertical gap if (i, j) /∈ λ but

(i, j + 1) ∈ λ.

Proposition 2.18. There is a one-to-one correspondence between layered

permutations and maxima lattices with no horizontal gaps.

Proof. Start with any maxima lattice λ with rows λ1λ2 . . . λk, n nodes, and no

horizontal gaps. Clearly the length-n layered permutation π = π1π2 . . . πk with

|πi| = |λi| will map to this maxima lattice. For the inverse of this map, start

with the maxima lattice λ1λ2 . . . λk. Label the nodes in the following manner.

Let (1, 1) = n, (1, 2) = n−1, up to (1, |λ1|) = n−λ1 + 1. Continue labeling the

rows consecutively in this way. Writing down the label of the nodes starting

bottom to top from row λk, reading left to right yields the layered permutation

π = π1π2 . . . πk. �

The equal enumeration of these two sets is clear when thought of in this

way. The maxima lattices that avoid horizontal gaps are just compositions of

n, counted by 2n−1.

We see here that associated with every layered permutations is a maxima

lattice. Now in general there are other permutations that are not layered

that will map to this same maxima lattice. If we consider just the graph of

the right-to-left maxima, we can think of layered permutations in a slightly

different way. Let Ri be a set of right-to-left maxima, i ≥ 1. If for any y ∈ Ri,

x ≺ y for each x ∈ Rj, j < i, then Ri is layered.
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Definition 2.19. If for a permutation π, R1 is layered, then π is layered on

top (LOT).

It follows immediately that if each Ri is layered, then π is layered.

2.3. Packing Densities of Layered Patterns. Let us now turn our atten-

tion to finding packing densities of layered patterns. It is a well known result

that for any layered pattern τ , there exists a layered permutation that is

τ -optimal of every length3. We state a slightly more general result here, proven

by Albert, et al. [1].

Theorem 2.20. Let Π = {τ1 . . . τm} be a multiset of permutations that are all

layered. A Π-optimal permutation π̂ satisfies

m∑
i=1

f(τi, π̂) ≥
m∑
i=1

f(τi, π)

for any other permutation π ∈ [n!]. Then among all Π-optimizers, there

exists one that is layered.

Note that as a special case we have for any layered pattern τ

fn(τ) = f(τ, π)

for some π ∈ Ln. We refer the reader to the preceding reference for the proof.

3This result was first proven by Stromquist [15]
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We next illustrate the idea of the proof on some specific patterns. First

consider an increasing pattern k+ := 12 . . . k. It is trivial to show the packing

density of k+ is equal to one, however we generalize the analysis as follows.

Let [n!;m,∞] be the set of permutations that map to a maxima lattice

with m rows; i.e. contains a longest increasing subsequence of length m. By

searching in this restricted set, we can ask a slightly more interesting question.

What is the maximum number of occurrences of k+ in any one permutation in

[n!;m,∞]?

Proposition 2.21. Let δ(τ ;m,∞) be the packing density of τ when restricting

the set of permutations to [n!;m,∞]. Then

δ(k+;m,∞) =
k!

(m)k

(
m

k

)

Proof. For any permutation π with right-to-left maxima sets R1, R2, . . . , Rm,

consider any chain x1 ≺ x2 ≺ . . . ≺ xs where xi ∈ Rji (ji < ji+1). Within this

chain there are
(
s
k

)
k+ patterns. Now there are at most

m∏
j=1

Rj

chains of length m. This quantity is obtainable by any layered permutation

π = π1π2 . . . πk. Thus if we denote |Rj| = rj , we have an optimization question
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fn(k+;m,∞) = max
r1+...rm=n


∑
p⊆[m]
|p|=k

m∏
i=1

rpi

(2.5)

where fn(τ ;m,∞) = f(τ, π), π being a τ optimal permutation among

permutations in [n!;m,∞].

We will show that 2.5 is achieved when r1 = r2 = . . . = rm. We proceed by

induction on m and k, walking through the first several cases for illustrative

purposes. Let p(m, k) be the statement that 2.5 is achieved when all m variables

are equal. Our base case is p(m, 1), which is trivial. Next we will show that

p(m,m) is true. The expression to optimize is

x1x2 . . . xm

subject to x1 +x2 + . . .+xm = n. By the arithmetic/geometric mean inequality

m
√
x1x2 . . . xm ≤

x1 + x2 + . . .+ xm
m

x1x2 . . . xm ≤
nm

mm

Equality holds when x1 = x2 = . . . = xm, thus p(m,m) is true. The first

case not covered by these two is p(3, 2). In this case we need to maximize the

expression
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xy + xz + yz

subject to x + y + z = n. Now if we factor out the x from the first two

expressions we obtain

x(y + z) + yz

The term y + z is equal to n− x, but more specifically it is the case p(2, 1).

The term yz is the case p(2, 2). Thus we can say, by induction, that y = z

maximizes both of these expressions. Thus we have

x(2y) + y2 = x(n− x) +
(n− x)2

4

All that is left to do is to find the optimal value of x. Taking the derivative

and setting it equal to zero:

n− 2x+
x− n

2
= 0

2n− 4x+ x− n = 0

x =
n

3
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Thus y = z = n−x
2

= n
3

= x and p(3, 2) is true. Now we will show the general

case, p(m, k), is true. We need only assume 1 < k < m. The expression to

maximize is

x1 . . . xk + . . .+ x1 . . . xm + . . .+ xm−k+1 . . . xm

subject to x1 + x2 + . . .+ xm = n. Exploiting the same trick by factoring out

x1 we obtain

x1(x2 . . . xk + . . .+ xm−k+2 . . . xm) + . . .+ xm−k+1 . . . xm

By p(m − 1, k − 1), the sum in parenthesis is maximized when all m − 1

variables are equal. By p(m−1, k) the remaining sum of terms is also maximized

when the same m− 1 variables are equal. Thus for any fixed value of x1, the

whole expression reaches a maximum when x2 = x3 = . . . = xm. In this case

we have

x1

(
m− 1

k − 1

)
(n− x1)k−1

(m− 1)k−1
+

(
m− 1

k

)
(n− x1)k

(m− 1)k

Now we solve for the optimal size of x1 by taking the derivative and setting

it equal to zero. For simplicity let x = x1.
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d

dx

[
(m− 1)!x(n− x)k−1

(k − 1)!(m− k)!(m− 1)k−1
+

(m− 1)!(n− x)k

k!(m− k − 1)!(m− 1)k

]
= 0

(m− 1)![(n− x)k−1 − x(k − 1)(n− x)k−2]

(k − 1)!(m− k)!(m− 1)k−1
− (m− 1)!k(n− x)k−1

k!(m− k − 1)!(m− 1)k
= 0

(m− 1)[(n− x)− x(k − 1)]− (m− k)(n− x) = 0

(m− 1)(n− kx)− (m− k)(n− x) = 0

(mn−mkx− n+ kx)− (mn−mx− kn+ kx) = 0

mx(1− k) + n(k − 1) = 0

mx = n

x =
n

m

Now we can solve for the rest of the variables. For i ≥ 2,

xi =
n− x
m− 1

=
nm− n
m(m− 1)

=
n

m
= x

Thus we have x1 = x2 = . . . = xm. Thus 2.5 becomes

fn(k+;m,∞) =

(
m

k

)( n
m

)k
The packing density is then given by
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δ(k+;m,∞) = lim
n→∞

(
m
k

) (
n
m

)k(
n
k

)
=

k!

mk

(
m

k

)
�

We see immediately from this analysis that as m → ∞, δ(k+;m,∞) →

δ(k+) = 1. It is natural to assume this is true for any pattern, an idea we will

explore in the next section.

In general we can restrict ourselves to [n!;m, `], the set of permutations of

length n with a maxima lattice containing m rows and ` columns. In general

it is very difficult to find the dependence of an optimal permutation on m and

`. In fact, for m and ` both fixed we inherently bound n. More specifically,

m+ `− 1 ≤ n ≤ m`

Equality holds for more than one permutation. For the lower bound, we

have 132 and 231 with m = ` = 2 and n = m + `− 1 = 3. As for the upper

bound, consider 3142 and 2413. We have m = ` = 2 and n = m` = 4.

We use these facts to compute the packing densities of a couple nontrivial

layered patterns. For patterns of length-3 there is only one nontrivial pattern

(up to equivalence), the pattern 132. The packing density for 132 was first

calculated by Galvin under the assumption of Theorem 2.20. A specific case
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of Theorem 2.20 was then proven independently by Kleitman and Stromquist.

This account was recorded by Price [10].

We will prove a Lemma next that allows us to calculate the packing density

of 132. Theorem 2.20 also follows from this Lemma.

Lemma 2.22. Let τ be a layered pattern of length k ≤ n. Let [n!;m,∞, LOT ]

be the set of all permutations of length n that are layered on top (LOT). Then

among τ -optimizers there exists one that is in [n!;m,∞, LOT ].

Proof. We will prove by contradiction. Assume then that there is no π ∈

[n!;m,∞, LOT ] such that f(τ, π) = fn(τ ;m,∞). We then select another τ -

optimizer σ ∈ [n!;m,∞]. By our assumption σ /∈ [n!;m,∞, LOT ]. Thus if we

consider the right-to-left maxima R1 of σ we can find two elements x, y ∈ R1

satisfying the following. First x and y are consecutive elements in R1. That is,

if x = σ(j) and y = σ(k) with j < k, there does not exist a z = σ(i) ∈ R1 such

that j < i < k. Next define the following sets:

A = {σ(a) : a < j ∧ σ(k) < σ(a) < σ(j)}

B = {σ(b) : j < b < k ∧ σ(b) < σ(k)}

Figure 6 gives an illustration of these two sets. We can assume finally that

either A 6= ∅ or B 6= ∅.
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x

yA

B

Figure 6.

x

y

A

B

(1)

x

y
A

B

(2)

Figure 7. New permutations: (1) formed by moving x next to
y; (2) formed by moving y next to x.

Now we will perform two different operations on σ, showing that one of them

will not decrease the number of occurrences of τ .

(1) In the graph of σ, x is at location (j, σ(j)). Create a new permutation

by moving x to location (k − 1, σ(k) + 1), shifting the other elements

in σ accordingly.

(2) In the graph of σ, y is at location (k, σ(k). Create a new premutation

by moving y to location (j + 1, σ(j)− 1), shifting the other elements in

σ accordingly.

These two new words are shown in Figure 7.
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We can now count the change in τ patterns for these two words. In σ, let

f(τ, σ;x,¬y) denote the τ patterns in σ formed using x and not y, and let

f(τ, σ; y,¬x) denote the τ patterns in σ formed using y and not x. Then the

change in τ patterns from σ to (1) is given by

f(τ, (1))− f(τ, σ) = f(τ, σ; y,¬x)− f(τ, σ;x,¬y)

Similarly the change in τ patterns from σ to (2) is given by

f(τ, (2))− f(τ, σ) = f(τ, σ;x,¬y)− f(τ, σ; y,¬x)

Conveniently one of these two terms must be nonnegative. Thus either (1)

or (2) has at least as many τ patterns as σ. This is a contradiction since σ not

being LOT requires such a gap between two elements in R1. Thus there must

exist a τ optimal permutation that is layered on top. �

This proof never required there being only one layered pattern τ being packed.

If instead we had considered a set of layered patterns {τi}1≤i≤s, it follows that

there is still a LOT permutation π that maximizes the sum

s∑
i=1

f(τi, π)

2.4. Bounded and Unbounded Permutations. We saw for the simple

pattern k+ that as the number right-to-left maxima sets (for layered patterns
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corresponding to the number of layers) increased, the packing density increased

as well. This is not true in general. It may be the case that there is an m∗

such that

δ(τ ;m∗,∞) ≥ δ(τ ;m,∞)

for any m > m∗. For a layered pattern, this means there is an optimal number

of layers for which any more layers will not increase the packing density.

Definition 2.23. Given a pattern τ with restricted packing density δ(τ ;m,∞).

Let m(τ) be the value of m such that

δ(τ ;m,∞)

is a maximum. If m(τ) <∞ then τ is said to be bounded or of the bounded

type. If m(τ) =∞ then τ is said to be unbounded or of the unbounded type.

The first result regarding bounded/unbounded permutations is again due to

Price [10].

Proposition 2.24. Let τ = 1⊕ k̄ where again k̄ = k(k − 1) . . . 1. Then τ is

of the unbounded type.

Proof. Assume that there exists an m <∞ such that δ(τ ;m,∞) is maximized.

Thus there exists an N such that f(τ, π;m,∞) = fN (τ) for some permutation

π ∈ [N !;m,∞]. Since τ is layered we can assume π is also layered by Theo-

rem 2.20. If we consider the last right-to-left maxima set Rm, the size of this set
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is some fraction of N . Thus we can write |Rm| = aN for some a ∈ (0, 1). Now

for every n > N , there is some optimal layered permutation in [n!;m,∞] with

|Rm| = an. If we increase the size of our permutation to be of size n = N+k+1
a

,

then the our set Rm contains at least k+ 2 elements. The number of τ patterns

formed using elements in Rm is then

|Rm|
m−1∑
i=1

(
|Ri|
k

)

Now because this permutation is layered, Rm is just a layer containing

π(|Rm|) = 1. If we move this element to the beginning of the permutation, we

form a permutation with m+ 1 layers containing

|Rm|
m−1∑
i=1

(
|Ri|
k

)
+ 1

τ patterns. This contradicts m maximizing δ(τ ;m,∞). Thus τ is unbounded.

�

We will now calculate the packing density of the pattern 132.

Proposition 2.25. For the pattern 132, we have

δ(132) = 2
√

3− 3
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Proof. Since 132 is a layered pattern, we can assume there is a 132-optimal

permutation π ∈ [n!;m,∞, LOT ] for any m. If we denote the top layer of π

by π1 and |π1| = x, then we can write

π = π∗π1

where π∗ is a 132-optimal permutation of length n− x in [(n− x)!;m− 1,∞].

For instance,

fn(132; 2,∞) = max
x∈(0,n)

{
(n− x)

(
x

2

)}

It is straightforward to find the optimal x:

d

dx

[
(n− x)

x2 − x
2

]
= 0

1

2

(
(x− x2) + (n− x)(2x− 1)

)
= 0

x− x2 + 2nx− n− 2x2 + x = 0

3x2 − 2(1 + n)x+ n = 0

x =
2(1 + n)±

√
4(1 + n)2 − 12n

6

=
2(1 + n)±

√
4(1− n+ n2)

6

=
1 + n±

√
1− n− n2

3
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Now as n→∞ we see that x ∼ 2n
3

. Thus

δ(132; 2,∞) = lim
n→∞

n(4n2−6n)
54(
n
3

) =
4

9

For m ≥ 2 we can write

fn(132;m,∞) = max
x∈(0,n)

{
fn−x(132;m− 1,∞) + (n− x)

(
x

2

)}

Recall

fn−x(132;m− 1,∞) = δn−x(132;m− 1,∞)
(n− x)3

6

Then we solve for x in the expression

d

dx

[
δn−x(132;m− 1,∞)

(n− x)3

6
+ (n− x)

(
x

2

)]
= 0

We then obtain

x =
−
√
−n2 + δn−x[m− 1]n+ n2 − n+ 1 + δn−x[m− 1]n+ n+ 1

δn−x[m− 1] + 3

For simplicity let δn−x(132;m − 1,∞) = δn−x[m]. Here we must make an

important note. Though δn−x[m] implicitly depends on x, we use the fact that
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δn[m]→ δ[m] as n→∞. Thus we must argue that (n− x)→∞ as n→∞

for the optimal value of x (which inherently depends on n). Let x[m] be the

optimal x for any given m as n→∞. We can show that x[∞] = an for some

a > 0. Consider

fn(132) = max
x∈(0,n)

{
fn−x(132) + (n− x)

(
x

2

)}

This recursion can be solved explicitly, giving

fn(132) = max
a∈(0,1)

{
a(1− n) (a2n2 + 2a2n+ 2a2 + an+ a− n2)

2(a+ 1) (a2 + a+ 1)

}

Solving for a we obtain

a ∼ 1

2
(3−

√
3)

Therefore x[∞] = 1
2
(3 −

√
3)n as claimed. It is now easy to see that each

x[m] > x[∞], so that

n ≥ n− x[m] ≥ n− x[∞] =
1

2
(
√

3− 1)n

and thus n− x[m]→∞ for every m.
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Substituting the expression for the optimal x into the expression for fn(132;m,∞),

dividing by
(
n
3

)
, and letting n→∞ (using the fact that δn(τ)→ δ(τ) as n→∞)

we have

δ[m] =
2
(

2−
√

1− δ[m− 1]
)(

δ[m− 1] +
√

1− δ[m− 1] + 1
)

(δ[m− 1] + 3)2
(2.6)

where again δ[m] = δ(132;m,∞). Now because 132 is of the unbounded type,

it follows that

δ[m+ 1] ≥ δ[m]

Since this sequence is also bounded above (by 1), there is a unique fixed

point of this sequence which is easily found:

δ =
2
(
2−
√

1− δ
) (
δ +

√
1− δ + 1

)
(δ + 3)2

and we find that δ = δ(132) = 2
√

3− 3. �

Note that using (2.6) we have found δ(132;m,∞) for every m recursively.

Setting m = 1 we have the base case δ(132; 1,∞) = 0. For m = 2 we have

δ(132; 2,∞) = 4
9

as we have seen.

Analysis of this type works for any pattern of the form 1⊕ k̄. Unfortunately

for other patterns with other structure we must use other methods. In general



62

this can be almost impossible, particularly if the pattern is of the bounded

type. In fact, in many cases m(τ) may not even be known.

Let us look at a simple pattern of the bounded type. This result was first

shown by [1].

Proposition 2.26. The length-4 pattern τ = 2143 is of the bounded type.

Furthermore, m(τ) = 2 and

δ(2143) =
3

8

Proof. We will first show that m(τ) = 2. It then follows immediately the 2143

is of the bounded type, and that δ(2143) = 3
8
. It is trivial to see m(τ) ≥ 2 since

otherwise there would be no 2143 patterns. Also any τ -optimal permutation may

be assumed to be layered. Now suppose there is a permutation π ∈ [n!;m,∞]

for some m > 2 such that f(τ, π) > fn(2143; 2,∞). Now if we enumerate the

number of 2143 patterns in π with layeres π1, π2, . . . , πr, we have

f(τ, π) =

(
|π1|
2

)(
|π2|
2

)
+

(
|π1|
2

)(
|π3|
2

)
+ . . .+

(
|πs−1|

2

)(
|πs|
2

)

We will first factor out
(|π1|

2

)
from each term that contains one,

f(τ, π) =

(
|π1|
2

)((
|π2|
2

)
+ . . .+

(
|πs|
2

))
+ . . .+

(
|πs−1|

2

)(
|πs|
2

)
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The term in parenthesis is a convex function. We have

∑s
i=1 |πi|2 − n

2

with Hessian δi,j, the Kronecker delta defined as

δi,j =


1 i = j

0 i 6= j

so all the eigenvalues of the Hessian are 1. This implies the Hessian is positive

definite, i.e. the function is convex. Because it is convex the maximum value

will occur on the boundary. Now consider the case when m = 3. We have

f(τ, π) =

(
|π1|
2

)((
|π2|
2

)
+

(
|π3|
2

))
+

(
|π2|
2

)(
|π3|
2

)

For simplicity, let |πi| = xi. Then using Lagrange multipliers we have

(
x1 −

1

2

)((
x2
2

)
+

(
x3
2

))
= 1(

x2 −
1

2

)((
x1
2

)
+

(
x3
2

))
= 1(

x3 −
1

2

)((
x1
2

)
+

(
x2
2

))
= 1
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With some algebra we see there is a unique local maximum on the interior

at x1 = x2 = x3 = n
3
. Looking on the boundary (WLOG (x1, x2, 0), since our

function is symmetric) we see the maximum is located at x1 = x2 = n
2
. We can

find the values of n for which one of these terms is larger:

3

(
n
3

2

)2

≤
(
n
2

2

)2

for n ≥ 6
11

(
1 + 2

√
3
)
≈ 2.43. Since we are only interested in permutations of

length ≥ 4, the point on the boundary is the absolute maximum.

Having a base case, we can show by induction that

(
n
2

2

)2

≥ fn(2143;m,∞)

for any m > 2. Thus m(τ) = 2. �

We conclude by giving a brief table of packing densities of well known

patterns.



65

τ δ(τ) m(τ) Reference
1 . . . k 1.000 ∞ —
k . . . 1 1.000 ∞ —
132 0.464 ∞ [15]
1432 0.424 ∞ [10]
2143 0.375 2 [10]
1243 0.375 ∞ [1]
1324 ≈ 0.244 ∞ [10]
1342 ≈ 0.197 ∞ Conjecture
2413 ≈ 0.105 ∞ Conjecture

Figure 8.
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3. Colored Permutations

We now turn our attention to permutations that are colored. That is, start

with a permutation π ∈ [n!]. Let C 6= ∅ be a set of distinct yet unrelated

elements, called colors. A colored permutation is any element χ ∈ [n!]× (Cn).

The sequence c = c(1)c(2) . . . c(n) ∈ Cn of a colored permutation χ = (π, c) is

called the coloring of π. We give a simple definition here:

Definition 3.1. An m-colored permutation χ of length n is a permutation of

length n in which each element is assigned one of m distinct colors.

For example, let χ = 3a2a5b1a4b be a two-colored permutation where 3,2 and

1 have color a while 5 and 4 have color b. Analogously to the case of non-colored

patterns the colored pattern φ = 2a1a3b occurs in χ as the subsequences 3a1a4b

and 3a2a4b.

Colored permutations are similar to permutations of a multi-set. The ques-

tion of pattern avoidance on multi-sets has been studied in past years (see,

for instance, [11]). In this section we focus on pattern packing in colored

permutations.

We first define colored blocks, which are central to our study. Colored blocks

are analogous to layers in non-colored permutations.

Definition 3.2. In a colored permutation χ, a colored block is a maximal

monochromatic segment χ
(a)
i in which each element has color a and every

element not in χ
(a)
i is either larger than or smaller than all elements in χ

(a)
i .
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Remark 3.3. Note that every entry in a colored permutation is in exactly one

of its colored blocks.

In other words, a colored block is a monochromatic segment of elements with

consecutive numerical values. For instance, the permutation χ = 3a1a2a6a5b4b

contains three colored blocks, χ
(a)
1 = 3a1a2a, χ

(a)
2 = 6a, and χ

(b)
3 = 5b4b. A

graphical representation of colored blocks is shown in Figure 9. An important

note is that colored blocks are both numerically and chromatically disjoint.

Figure 9. A Colored Permutation 3a1a2a6a5b4b

In what follows we provide some observations on the optimal colored permu-

tations for colored patterns which contain either two or three colored blocks.

For convenience we will reuse the notation f(φ, χ) to represent the number

of occurrences of the colored pattern φ in the colored permutation χ. Col-

ored blocks will often be denoted simply by their color and/or location, i.e.

χ
(a)
1 = A1, χ

(b)
2 = B2, χ

(a)
3 = A3, etc. Similarly for colored patterns φ

(a)
1 = α1,

φ
(b)
2 = β2, etc. The collection of all colored blocks in χ of color a (b) will be

denoted by χA (χB).

3.1. Two Colored Blocks. Note that a single-colored (or non-colored) per-

mutation has exactly one colored block (namely the permutation itself). We

then assume the permutations/patterns under consideration to be at least

two-colored.



68

Since the number of colored blocks is at least the number of colors, we may

assume that a colored pattern φ with two colored blocks φ
(r)
1 = ρ and φ

(b)
2 = β

to have exactly two colors and is of the form ρβ. Furthermore, we may assume

without loss of generality that all elements in ρ are less than all elements of β

(similarly to layers denoted α < β). For the remainder of this section color r

will be referred to as “red” and b will be referred to as “blue”.

Theorem 3.4. For a pattern φ with two blocks of the form ρβ with ρ < β,

there is an optimal length-n permutation χ̂ of the form RB with R < B.

Remark 3.5. The proof below follows the simple idea that sliding all of the red

entries to the left and all of the blue entries to the right leaves every instance

of a φ-pattern intact.

Proof. Let χ be an optimal permutation of length n with colored blocks

χ1χ2 . . . χk. First we claim that χ1 = R1 is red. If χ1 were blue,

f(φ, χ) = f(ρ, χ1) · f(β, χ>1, ) + f(φ, χ>1)

where χ>i0 (χ<i0) is the collection of all colored blocks in χ after (before) χi0 .

Clearly the first term in the sum is zero. By recoloring χ1 red, this term is

replaced with

f(ρ,R1) · f(β, χ>1) ≥ 0,

and thus f(φ, χ) will only increase. Similarly, we may assume χk = Bk is blue.

Along the same lines we claim there is no blue block immediately preceding a

red block. Otherwise, let χj = Bj and χj+1 = Rj+1 in χ, we have

f(φ, χ) = f(ρ, χ<j) · f(β,Bj) + f(β, χ>j+1) · f(ρ,Rj+1) + f(φ, χ<jχ>j+1).
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Let χ′ be obtained from χ by switching χj and χj+1, we have

f(φ, χ′) = f(φ, χ) + f(ρ,Rj+1) · f(β,Bj).

Thus f(φ, χ) may only increase.

Consequently, we now have an optimal permutation χ of the form χ = χRχB.

Because any φ = ρβ pattern occurring in χ must consist of a ρ pattern from

χR and a β pattern from χB, we have

f(φ, χ) ≤ f(ρ, χR) · f(β, χB)

with equality if χR < χB. Hence there is an optimal permutation χ̂ = RB with

R < B. �

For example, to pack the pattern χ = 2r1r3b4b an optimal permutation of

length n consists of a decreasing sequence of the elements bn
2
c . . . 1 colored red

followed by an increasing sequence of the elements (bn
2
c+ 1) . . . n colored blue.

More detailed applications will be discussed in Section 3.3.

3.2. Three Colored Blocks. We next consider patterns with three colored

blocks through several different cases. Some arguments are similar to those in

the previous subsection and we omit some details.

First consider the case when the pattern has three distinct colors. Assume

without loss of generality φ
(r)
1 = ρ, φ

(b)
2 = β, and φ

(g)
3 = γ (with colors red, blue

and green) and thus the colored pattern has the form φ = ρβγ.
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Theorem 3.6. Given a pattern φ with three colored blocks of distinct colors

of the form ρβγ, there is an optimal permutation χ̂ (of length n) of the form

RBG with the same numerical ordering as ρβγ.

Remark 3.7. For instance, given a pattern φ of the form ρβγ with ρ < γ < β,

there is an optimal permutation of the form RBG such that R < G < B.

Proof. Following the same arguments as Theorem 3.4, it is easy to show that

the optimal permutation is of the form

R1 . . . RiBi+1 . . . BjGj+1 . . . Gk = χRχBχG.

Then

f(φ, χ) ≤ f(ρ, χR) · f(β, χB) · f(γ, χG)

with equality if any elements a ∈ χR, b ∈ χB and c ∈ χG assume the same

numerical ordering as ρ, β and γ. �

Suppose now that a pattern φ has three colored blocks with only two colors.

Assume without loss of generality that there is one red block and two blue

blocks. First consider the case when the two blue blocks are adjacent, i.e.,

φ = ρβ1β2. This case is representative of all patterns with two adjacent blue

blocks since reversing the permutation/pattern turns all ρβ1β2 patterns into

β1β2ρ patterns.

Theorem 3.8. For a pattern φ with three colored blocks of the form ρβ1β2,

there is an optimal permutation χ̂ (of length n) that is also of the form RB1B2
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and the numerical ordering of the colored blocks in χ̂ is the same as that of the

colored blocks in φ.

Proof. First note that since the two blue blocks are numerically disjoint, no

element from β1 may be (numerically) adjacent to an element in β2. That is,

either β1 < ρ < β2 or β2 < ρ < β1. Without loss of generality we will assume

the former.

Once again arguments from Theorem 3.4 yield that all red blocks in an

optimal permutation χ can be placed before any blue blocks. That is, an

optimal permutation is of the form

χ = R1 . . . RiBi+1 . . . Bk = χRχB.

Note that any ρβ1β2 pattern is a result of a ρ pattern in χR and a β1β2

pattern in χB. For any particular pattern ρ in χR, let χB<ρ be the set of all

blue blocks less than ρ and χB>ρ be the set of all blue blocks greater than

ρ. Since ρβ1β2 patterns are only formed using β1 patterns from χB<ρ and β2

patterns from χB>ρ , the contribution from this ρ pattern to f(φ, χ) is at most

f(β1, χB<ρ) · f(β2, χB>ρ).

This can be achieved (regardless of the choice of ρ) by putting the blue

blocks in increasing order. Under this assumption, let χB<j (χB>j) denote the
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collection of blue blocks before (after) Bj in χB and j0 be such that

f(β1, χB<j0+1
) · f(β2, χB>j0 ) ≥ f(β1, χB<j+1

) · f(β2, χB>j)

for any i+ 1 ≤ j ≤ k − 1, we now have

f(φ, χ) ≤ f(ρ, χR) · f(β1, χB<j0+1
) · f(β2, χB>j0 ).

Equality holds if

χB<j0+1
< χR < χB>j0 .

Consequently each of R = χR, B1 = χB<j0+1
and B2 = χB>j0 is a single block

and the optimal permutation is of the form RB1B2 with B1 < R < B2. �

Lastly we consider the case when the pattern is of the form φ = β1ρβ2.

Theorem 3.9. For a pattern φ with three colored blocks of the form β1ρβ2, there

is an optimal permutation χ̂ that is of the form B1RB2 with same numerical

ordering as those in φ.

Proof. First we may assume (following the same argument as before), that in

an optimal permutation χ, the first and last blocks are blue, i.e.,

χ = χ
(b)
1 . . . χ

(ci)
i . . . χ

(b)
k

where ci ∈ {r, b}. Consider any ρ pattern formed in the sequence of the s

red blocks χR := χ
(r)
j1
χ
(r)
j2
. . . χ

(r)
js

. A β1ρβ2 pattern can only be formed by a β1

pattern in the the sequence of blue blocks before χ
(r)
j1

and a β2 pattern in the

sequence of blue blocks after χ
(r)
js

. Thus the number of φ patterns formed from
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this particular ρ pattern is at most

f(β1, χB<j1 ) · f(β2, χB>js )

where χB<j1 denotes the sequence of blue blocks before block j1 and χB>js

denotes the sequence of blue blocks after block js.

Let j0 (not necessarily unique) be a value such that cj0 = r and

f(β1, χB<j0 ) · f(β2, χB>j0 ) ≥ f(β1, χB<j) · f(β2, χB>j)

for all j, then

f(β1ρβ2, χ) ≤ f(β1, χB<j0 ) · f(ρ, χR) · f(β2, χB>j0 )

with equality if all red blocks are located in between the first blue block

immediately preceding and following χ
(r)
j0

. Consequently χ is an optimal

permutation of the form

χ
(b)
1 . . . χ

(b)
` χ

(r)
`+1 . . . χ

(r)
m χ

(b)
m+1 . . . χ

(b)
k = χB1χRχB2

with colored blocks χB1 := χ
(b)
1 . . . χ

(b)
` , χR := χ

(r)
`+1 . . . χ

(r)
m , and χB2 := χ

(b)
m+1 . . . χ

(b)
k .

Through arguments similar to those of Theorem 3.8 one can see that the

numerical ordering of χB1χRχB2 is the same as β1ρβ2. �

3.3. Applications to Specific Patterns. In this section, we apply our find-

ings to some specific colored patterns and obtain their corresponding packing
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densities. Recall fn(φ) denotes the specific number of occurrences of φ in an

optimal permutation of length n.

3.3.1. Patterns of Length 2. For non-colored patterns of length 2, the packing

density is trivially equal to one.

In the colored case, Theorem 3.4 implies that the optimal permutation of

length n of the colored pattern 1r2b (or equivalently 2r1b) is of the form RB

with R < B. Then

fn(1r2b) = f(1, R) · f(1, B) = |R| · |B|.

Given |R|+ |B| = n, it is easy to see that

fn(1r2b) =

⌊
n2

4

⌋
=

2n2 − 1 + (−1)n

8
.

Therefore the packing density of all length two colored patterns (in which two

distinct colors occur) is given by

δ(1r2b) = lim
n→∞

fn(1r2b)(
n
2

) =
1

2
.

For non-colored patterns of length 3, the packing densities for the decreasing

and increasing patterns are trivial. The layered pattern 132 has packing density

2
√

3− 3 as established in [15].

3.3.2. The pattern 2r1b3b (and equivalents). Theorem 3.8 implies that the

optimal permutation of length n of the colored pattern 2r1b3b is of the form
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RB1B2 with B1 < R < B2, then

fn(2r1b3b) = f(1, R) · f(1, B1) · f(1, B2) = |R| · |B1| · |B2|.

With |R|+ |B1|+ |B1| = n, it is easily shown that

fn(2r1b3b) =


n3

27
, if n ≡ 0 mod 3

(n−1)2(n+2)
27

, if n ≡ 1 mod 3

(n+1)2(n−2)
27

, if n ≡ 2 mod 3

Consequently the packing density of 2r1b3b (and equivalent patterns) is

δ(2r1b3b) = lim
n→∞

fn(2r1b3b)(
n
3

) =
2

9
.

3.3.3. The pattern 1r3b2b (and equivalents). Theorem 3.4 implies that the

optimal permutation of length n of the colored pattern 1r3b2b is of the form

RB in which R < B, then

fn(1r3b2b) = f(1, R) · f(21, B) = |R|
(
|B|
2

)
.

Let |B| = k, then

fn(1r3b2b) = max
1≤k≤n

{
(n− k)

(
k

2

)}
,

achieved when k ∼ 2n
3

. Consequently δ(1r3b2b) = 4
9
.
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Patterns of length over three may also be studied so long as they contain

no more than three colored blocks and each colored block is equivalent to a

non-colored pattern with known packing density.

3.3.4. Pattern 1b3r4r2b. Theorem 3.9 implies that the optimal colored permu-

tation χ̂ is of the form B1RB2 with B1 < B2 < R, then

fn(1b3r4r2b) = f(1, B1) · f(12, R) · f(1, B2).

For convenience, let |B1| = x, |R| = y, and |B2| = z. Then x+ y + z = n and

thus for any fixed y

f(1, B1) · f(1, B2) = x · z ≤ 2(n− y)2 − 1 + (−1)n−y

8

with equality when |x− z| ≤ 1. Consequently

fn(1b3r4r2b) = max
2≤y≤n−2

{
2(n− y)2 − 1 + (−1)n−y

8
·
(
y

2

)}
,

achieved when y ∼ n
2
. Hence δ(1b3r4r2b) = 3

16
.

3.3.5. Pattern 3b2b4r6r5r1b. Theorem 3.8 implies that the optimal permutation

χ̂ is of the form B1RB2 with B2 < B1 < R. Hence

fn(3b2b4r6r5r1b) = f(21, B1) · f(132, R) · f(1, B2).

Letting |B1| = x, |R| = y, |B2| = z and fixing y again, we have x+ z = n− y

and

f(21, B1) · f(1, B2) ≤
(
x

2

)
· z.
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This expression is maximized when x ∼ 2(n−y)
3

and z ∼ n−y
3

. From [15] we have

fy(132) ∼ (2
√

3− 3)y
3

6
, hence

fn(3b2b4r6r5r1b)

∼ max
3≤y≤n−3

{
2(n− y)

6

(
2(n− y)− 3

6

)
·
(

2(n− y)

3

)
· (2
√

3− 3)
y3

6

}
,

achieved when y ∼ n
2
. Thus δ(3b2b4r6r5r1b) = 5

9
(2
√

3− 3).

Here we considered the question of packing colored patterns into colored

permutations. We summarize our results in the following Theorem:

Theorem 3.1 ([6]). For a colored pattern with at most three colored blocks,

the optimal colored permutation with respect to a given colored pattern always

shares the same number and arrangement of the colored blocks as those of the

pattern.

It is worth noting that, with our characterizations of the optimal permu-

tations, the colored version of the pattern packing question is in some sense

easier than the non-colored version and encompasses a wider range of patterns.

For instance, the optimal permutation for the colored pattern 6r1r3r2r5b4b can

indeed be characterized since it contains only three colored blocks and each

block is a layered pattern. However, the non-colored pattern 613254 is not

layered and its optimal permutation is much more difficult to characterize.

It is natural to conjecture that the following holds in general, which we post

as a question.
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Question 3.10. Is it true that the optimal colored permutation with respect to

a given colored pattern always shares the same number and arrangement of the

colored blocks as those of the pattern?

Finally we will give some more details on calculating the packing densities of

colored patterns. In addition to listing computational results, we also provide

some combinatorial explanations for some identities of packing densities in

Section 3.4.

3.4. Evaluation of Packing Densities. First note that for any optimal

permutation χ̂ with respect to a pattern φ, we have

fn(φ) ∼ δ(φ)

(
n

|φ|

)
as n→∞.

Let φ be a pattern (of length k) of the form φ1φ2φ3 where each φi (i = 1, 2, 3)

is a colored block of φ. Theorem 3.1 implies that the optimal permutation χ̂ of

length n must be of the form χ1χ2χ3 such that χi is of the same color as φi

for i = 1, 2, 3 and the numerical orderings of φ1, φ2, φ3 and χ1, χ2, χ3 are the

same.
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Since each φ pattern in χ̂ is a result of a φi pattern in χi for i = 1, 2, 3, each

χi must be optimal with respect to φi. Hence

f(φ, χ̂)

=f(φ1, χ1)f(φ2, χ2)f(φ3, χ3)

∼
(
δ(φ1)

(
|χ1|
|φ1|

))(
δ(φ2)

(
|χ2|
|φ2|

))(
δ(φ2)

(
|χ2|
|φ2|

))
∼δ(φ1)δ(φ2)δ(φ3)

(
|χ1||φ1|

|φ1|!
|χ2||φ2|

|φ2|!
|χ3||φ3|

|φ3|!

)
as |χi| → ∞ for i = 1, 2, 3.

Given that |χ1| + |χ2| + |χ3| = n, |φ1| + |φ2| + |φ3| = k and let ni = |χi|,

ai = |φi| for any i,

|χ1||φ1||χ2||φ2||χ3||φ3| = na11 n
a2
2 (n− n1 − n2)

a3 .

With fixed n1, f(x) := xa2((n− n1)− x)a3 is maximized when

f ′(x) = 0⇔ x ∼ a2 · (n− n1)

k − a1
.

Following similar standard calculations, we have the maximum

|χ1||φ1||χ2||φ2||χ3||φ3|

when

|χi| ∼
|φi|
k
· n

for i = 1, 2, 3, as n→∞.
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Consequently

δ(φ)

= lim
n→∞

f(φ, χ̂)(
n
k

)
= lim

n→∞

1(
n
k

) 1

|φ1|!|φ2|!|φ3|!
δ(φ1)δ(φ2)δ(φ3)·

·
(
|φ1|
k
· n
)|φ1|( |φ2|

k
· n
)|φ2|( |φ3|

k
· n
)|φ3|

= lim
n→∞

1

nk
k!

|φ1|!|φ2|!|φ3|!
δ(φ1)δ(φ2)δ(φ3)·

· |φ1||φ1||φ2||φ2||φ3||φ3|n|φ1|+|φ2|+|φ3|

k|φ1|+|φ2|+|φ3|

=

(
k

|φ1|, |φ2|, |φ3|

)
δ(φ1)δ(φ2)δ(φ3)

|φ1||φ1||φ2||φ2||φ3||φ3|

kk

and the following theorem follows.

Theorem 3.2. Given a pattern φ (of length k) of the form φ1φ2φ3 with colored

blocks φi (i = 1, 2, 3), we have

δ(φ) =

(
k

|φ1|, |φ2|, |φ3|

)
δ(φ1)δ(φ2)δ(φ3)

|φ1||φ1||φ2||φ2||φ3||φ3|

kk
.

Of course, similar arguments can be applied to a pattern φ (of length k)

with two colored blocks, of the form φ1φ2.

Theorem 3.3. Given a pattern φ = φ1φ2 with two colored blocks φ1 and φ2,

we have

δ(φ) =

(
k

|φ1|, |φ2|

)
δ(φ1)δ(φ2)

|φ1||φ1||φ2||φ2|

kk
.
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Remark 3.11. As a simple but important consequence of Theorems 3.2 and

3.3, the packing density of a colored pattern with two or three colored blocks

is entirely decided by the subpattern in each block regardless of the color or

order of the blocks.

Following Theorem 3.2 and 3.3, it is easy to calculate the packing densities

of many small patterns. Figure 10 lists some of the representative patterns

and their packing densities. Note that, from Remark 3.11, only two colors are

needed to consider all patterns with up to three colored blocks, in what follows

we use a and a′ to denote a number a with different colors.

Many interesting observations can be made through Figure 10. It is easy to

see that δ(φ) = 1 if φ is a single colored pattern 1 . . . k or k . . . 1 for some k.

Many other packing densities are obviously shared by different patterns. For

instance,

δ(12′3′) = δ(13′2′) = δ(123′) = δ(213′) = δ(31′2′) = δ(321′) = ...

follows directly from Theorem 3.3 and the equivalence between subpatterns

formed by a colored block.

Other less trivial identities include

(3.1) δ(2143) = δ(124′3′),

which follows from the equivalent layers and colored blocks in the corresponding

optimal permutations.
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φ δ(φ) φ δ(φ)

1 1 124′3′ 0.375

12 1 12′34 0.1875

12′ 0.5 12345 1

123 1 12543 0.3456

132 0.464... 12′3′4′5′ 0.4096

12′3′ 0.444... 12′5′4′3′ 0.173...

12′3 0.222... 13′2′5′4′ 0.1536

1234 1 123′4′5′ 0.3456

1432 0.424... 123′5′4′ 0.160...

2143 0.375 12′345 0.1728

12′3′4′ 0.421875 12′354 0.080...

12′4′3′ 0.196... 123′45 0.1536

Figure 10.

Following (3.1) it is then easy to see that

δ(13′2′5′4′) = δ(123′45),

as the colored block 3′2′5′4′ (from 13′2′5′4′) yields the same packing density as

two disjoint blocks 32 and 54, which in turn is equivalent to that of 12 and 45

(in 123′45).
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Another interesting observation from Figure 10 is that

δ(124′3′) = 2δ(12′34) = 2δ(12′43),

and

δ(123′4′5′) = 2δ(12′345).

It is not difficult to see that the above relations were resulted from the simple

fact δ(12) = 2δ(12′). A more general statement is as follows.

Proposition 3.12. Let φ1 = 12A′ and φ2 = 12′A for some A with different

colors in φ1 and φ2 respectively, then

δ(φ1) = 2δ(φ2).
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