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ABSTRACT

Change point is a statistic phenomenon, which has many direct applications in

climatology, bioinformatics, finance, oceanography and medical imaging. In this

thesis, we investigate the sensitivity of the F -test for detecting change points in linear

regression, using a two-phase linear regression model. The two-phase regression model

was first introduced by Lund and Reeves [9]; it offers an effective method to detect

“undocumented” change points using a form of an F -test. Using simulated data,

we explore its sensitivity and accuracy with respect to different parameters in the

model.
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CHAPTER 1

INTRODUCTION

1.1 Change Point Detection in Linear Regression

Linear regression analysis is perhaps the most widely used statistical technique.

It has many important applications, including finance, clinical trials, economics,

management, biology, physics and many other areas. As stated in [4], there are

three main reasons for its popularity:

� the relative easiness and usefulness

� the wide integration into every statistical software package

� the power and flexibility in tackling big data

The reason why we assume the relationship between variables is linear is not

only because this is the simplest relationship between quantitative variables, but also

the true relationship between variables is often approximately linear over the range

of observed values. Even if the ”true” relationship is not linear, it might be possible

to transform the data into a linear form.

However, it is not always true that the same linear model holds for the whole

data set. The model may change after a specific point which partitions the data into

two segments which have different models. Thus, a linear model with a change point

is fitted for data sets where the structure of the linear model changes after a specific

point.

According to Killick[6], change point detection means estimating the point at

which the statistical properties of a sequence of observations change. There is a

growing need to be able to identify the change point in a linear regression model.

Detecting such changes is widely used in climatology, bioinformatic applications,



2

finance, oceanography and medical imaging. In 2002, Lund and Reeves [9] proposed

a revision of the two-phase linear regression test for change point detection at an

undocumented time. The main interest of this thesis is to investigate the sensitivity

of this F test in locating a change point in linear regression.

1.2 Linear Regression Model

Generally, linear regression analysis is categorized according to the number of predictor

variables. The simple linear regression model only has one predictor variable and is

linear in the parameters. It means that no parameter appears as an exponent or

a multiplication or division with another parameter. Thus, we typically present a

simple linear regression model using the following function:

Yi = α + βXi + εi, (1.1)

where

� Yi is the response variable value of an observation.

� Xi is the predictor variable value.

� α is the intercept, β is the slope; both of them are parameters.

� εi is a random error term with a normal distribution: εi ∼ N (0, σ2).

The error terms are assumed to be independent, with a mean of zero and constant

variance, and normally distributed. The concept is illustrated in the Figure 1.1 below

as a line on a scatterplot.

A multiple linear regression model, as indicated by its name, has several predictor

variables and a linear regression function. The multiple regression model has the form:

Yi = α + β1X1i + β2X2i + · · ·+ βkXki + εi, (1.2)
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Figure 1.1: An example of a Regression Line

where ε is also N (0, σ2). As in the simple linear regression model, the error terms in

the multiple linear regression model are also assumed to be independent.

1.3 The method of Least Squares

Following [7], we use the least squares method to find good estimators for the regression

parameters α and β. Define the deviation as the difference between Yi and its expected

value (α + βXi), and denote Q as the sum of the n squared deviations; we have

Q =
n∑

i=1

(Yi − α− βXi)
2 (1.3)

The goal is to find the value of α and β such that the sum of the n squared

deviations for the given sample observations is minimized. In order to minimize Q,

we should find the partial derivatives with respect to α and β.

∂Q

∂α
= −2

∑
(Yi − α− βXi), (1.4)

∂Q

∂β
= −2

∑
Xi(Yi − α− βXi). (1.5)
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Letting the partial derivatives equal zero and using α̂ and β̂ to represent the

estimators of α and β gives

−2
∑

(Yi − α̂− β̂Xi) = 0 (1.6)

−2
∑

Xi(Yi − α̂− β̂Xi) = 0. (1.7)

Dividing both sides by the constant term yields∑
(Yi − α̂− β̂Xi) = 0 (1.8)∑
Xi(Yi − α̂− β̂Xi) = 0. (1.9)

Expanding the total sum of the quantities, we have∑
Yi − nα̂− β̂

∑
Xi = 0 (1.10)∑

XiYi − α̂
∑

Xi − β̂
∑

x2i = 0. (1.11)

The solutions α̂ and β̂ are as follows:

β̂ =

∑
(Xi − X̄)(Yi − Ȳ )∑

(Xi − X̄)2
(1.12)

α̂ =
1

n

(∑
Yi − β̂

∑
Xi

)
= Ȳ − β̂X̄. (1.13)

1.4 Basic Notation

Considering a set of observations (Xi, Yi), we set up a few simple notations and

terminologies for the sake of simplicity of later use.

1.4.1 SSTO

SSTO stands for the total sum of squares, which is a measure of the total variation in

the response variable. It is the sum of the squared distances between the observations

Yi and the mean of the observed values Ȳ . The Ȳ is calculated as
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Figure 1.2: An illustration of the Total Sum of Squares.

Ȳ =

∑n
i=1 Yi
n

, (1.14)

SSTO =
∑

(Yi − Ȳ )2. (1.15)

The larger the variation is, the larger the SSTO. See Figure 1.2 for an illustration.

1.4.2 SSE

SSE is an abbreviation for the error sum of squares; it measures the deviation between

the observation Yi and the expected value Ŷ . The mathematical expression for SSE

is

SSE =
∑

(Yi − Ŷi)2. (1.16)

If the observations of Yi have larger variation around the fitted regression line, we get

a larger SSE, which indicates a poorer fit of the model to the data. For illustration,

see Figure 1.3.
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Figure 1.3: An illustration of the Error Sum of Squares.

1.4.3 SSR

SSR is an abbreviation for the regression sum of squares; it measures the deviation

between the expected value Ŷ and the mean value Yi, which is the amount of variation

in Y explained by the model. For illustration, see Figure 1.4. SSR is given by

SSR =
∑

(Ŷi − Ȳ )2. (1.17)

It can be proved that the total sum of squares is the sum of the regression sum

of squares and the error sum of squares, i.e.

SSTO = SSR + SSE. (1.18)

1.5 Change point models

Johannes Hofrichter, when writing his Ph.D. dissertation [5], distinctly separated two

main types of change points regarding the continuity of the data set: discontinuous

and continuous change points.
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Figure 1.4: An illustration of the Regression Sum of Squares.

1.5.1 Discontinuous change point model

Denote Y as the response variable and X as the explanatory variable. It is assumed

that the relationship between X and Y is a simple linear regression in a neighborhood.

In this model, after the change point, the regression equation abruptly changes.

Therefore, the discontinuous change point model has no continuity constraint at the

point of change. The concept is illustrated in Figure 1.5.

This model can be further extended to the case of multiple discontinuous change

points. Again, α and β are the parameters, while ε are independent errors with

normal distribution ε ∼ N (0, σ2). The concept is illustrated in Figure 1.6.

1.5.2 Continuous change point model

The second type of change point model is the continuous change point model. At

the point of change, the mean of the data set does not jump, but instead, smoothly

follows another regression line. A continuity constraint is thus imposed on the point

of change. Mathematically, if we denote the point of change of change as c, the model
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Figure 1.5: Discontinuous change point model with only one change point.

Figure 1.6: Discontinuous change point model with multiple change points.

can be rewritten as

Yi =


α1 + β1Xi + εi, Xi < c,

α2 + β2Xi + εi, Xi > c

(1.19)

with continuity constraint at the point of change c

α1 + β1c = α2 + β2c. (1.20)
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This model can also be extended to multiple continuous change points. At

each change point, an additional continuity constraint is imposed. The concepts

are illustrated in Figure 1.7 and Figure 1.8.

Figure 1.7: Continuous change point model with only one change point

Figure 1.8: Continuous change point model with multiple change points.
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1.5.3 The sensitivity of a test

The discontinuous change point model is quite obvious, compared to the continuous

model, due to the abrupt change of the mean at the point of change.

Strictly speaking, the sensitivity to detect the point of change c depends largely

on three quantities: the slopes βi before and after the change, the standard deviation

of the error σ : ε ∼ N (0, σ2) and the sample size, i.e. n1 = |{x : x < c}| and

n2 = |{x : x > c}|.

Because of numerous permutations of different parameters involved in the test,

we limit our work to only one change point model, as in Figure 1.7.

1.6 Work outline

In Chapter 1, we introduced the readers to the relative concepts of change point in

regression analysis. Chapter 2 provides a theoretical background of the F -test, first

derived by Lund and Reeves [9], to detect the change point. In Chapter 3, we propose

a parametric study framework to investigate the sensitivity of the F -test, with respect

to different parameters. Chapter 4 presents the simulation results analysis based on

the designed guideline of Chapter 3. The SAS codes used in this thesis to run the

statistical simulation is documented in Appendix A for future reference.



CHAPTER 2

METHODOLOGY AND ARGUMENTS

2.1 Two-phase linear model

Recently, the area of regression change point analysis has drawn much attention from

statistical researchers. Numerous papers have been published with respect to many

different methods to detect the change point. In 2002, Lund and Reeves [9] proposed

a revision of the two-phase linear regression test for change point detection at an

undocumented time. Statistically speaking, change point is defined as the position

where the series shifts dramatically.

The model we considered can be succinctly expressed as

Yi =


α1 + β1Xi + εi, Xi < c

α2 + β2Xi + εi, Xi > c

(2.1)

where αi, βi and σ are all parameters, and thus, subject to change under the user’s

will in a simulation setting. We will investigate the successful rate by detection by

varying the parameters αi, βi and σ.

Suppose that c is known to be the only point of change, then the least squares

estimates of the trend parameters in Equation 2.1 are

β̂1 =

∑
Xi<c(Xi − X̄1)(Yi − Ȳ1)∑

Xi<c(Xi − X̄1)2
(2.2)

and

β̂2 =

∑
Xi>c(Xi − X̄2)(Yi − Ȳ2)∑

Xi>c(Xi − X̄2)2
, (2.3)

where

Ȳ1 =

∑
Xi<c Yi

n1

(2.4)
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and

Ȳ2 =

∑
Xi>c Yi

n2

(2.5)

are the average series Y values before and after c, respectively; and

X̄1 =

∑
Xi<cXi

n1

(2.6)

and

X̄2 =

∑
Xi>cXi

n2

(2.7)

are the average X values before and after c, respectively.

The least squares estimates of the location parameters α1 and α2 in (2.1) are

α̂1 = Ȳ1 − β̂1X̄1 (2.8)

and

α̂2 = Ȳ2 − β̂2X̄2. (2.9)

2.2 The Full Model

In the simple linear regression change point case, the full model is the normal error

regression model with two lines:

Yi =


α1 + β1Xi + εi, Xi < c

α2 + β2Xi + εi, Xi > c

(2.10)

Figure 2.1 shows a typical graph of two regression llines, which demonstrates the

fundamental concept underlying the full model.

We fit this full model by the method of least squares and obtain the error sum

of squares. The error sum of squares is the sum of the squared deviations of each

observation Yi around its estimated expected value. In this context, we shall denote
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Figure 2.1: An illustration for the full model.

this sum of squares by SSE(F ) to indicate this it is the error sum of squares for the

full model. Here, we have:

SSEFull =
∑
Xi<c

(Yi − α̂1 − β̂1Xi)
2 +

∑
Xi>c

(Yi − α̂2 − β̂2Xi)
2

SSEFull = SSE1 + SSE2.

(2.11)

Thus, for the full model, the error sum of squares is (SSE1 + SSE2), which

measures the variability of the Yi observations around the fitted regression model.

The sum of squares SSE1 has (n1 − 2) associated degrees of freedom. The sum of

squares SSE2 has (n2−2) associated degrees of freedom. Two degrees of freedom are

lost because both αi and βi had to be estimated in obtaining the estimated means Ŷi.

2.3 The Reduced Model

Next, we consider H0. In this situation, we have:

H0 : α1 = α2, β1 = β2 (2.12)
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Figure 2.2: An illustration for the reduced model.

Ha : α1 6= α2 or β1 6= β2. (2.13)

The model when H0 holds is called the reduced model. When α1 = α2, β1 = β2,

the model is reduced to:

Yi = α + βXi + εi. (2.14)

Figure 2.2 shows a typical graph of one regression lline, which demonstrates the

fundamental concept underlying the reduced model.

We fit this reduced model, by the method of least squares, obtain the error sum

of squares for this reduced model, denoted by SSE(R). Mathematically,

SSE(R) =
n∑

x=1

[Yi − (α + βxi)]
2 =

n∑
x=1

[Yi − Ŷi]2 = SSE (2.15)

2.4 An introduction to Fmax statistics

Equation 2.1 is considered as the simplest two-phase regression model. There are two

types of change points associated with this model, namely step change point (sudden
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jump in intercept) and trend change point (sudden jump in slope). We illustrate

these two concepts by Figure 2.3 and Figure 2.4.

Figure 2.3: Step change in constant term αi: σ = 12;α1 = 20;α2 = −20; β1 = β2 = 20

Figure 2.4: Trend change in slope term βi: σ = 12; β1 = 20; β2 = −20

The null hypothesis H0 is that there is no change point, and the alternative

hypothesis is that there is an undocumented change point. These expressions are
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mathematically written as,

H0 : α1 = α2, β1 = β2 (2.16)

and

Ha : α1 6= α2, β1 6= β2. (2.17)

The aforementioned model allows both intercept (α1 6= α2) and slope (β1 6= β2)

types of change points. Therefore, the formal definition of change point c if either

intercept α1 6= α2 or slope β1 6= β2.

A comprehensive change point detection method will check for both intercept

and slope changes.

The null hypothesis model of one regression line can be stated as α̂1 − α̂2 and

β̂1 − β̂2 should be statistically close to zero for each Xi∈{1,··· ,n}, and a general linear

test statistic

F =
(SSERed − SSEFull)/2

SSEFull/(n− 4)
(2.18)

should be small when there is no change point. So the goal is to figure out when F

achieves its maximum value by testing each Xi as the change point. Based on the

definition of change point c, we can see that

c = arg max
x∈{1,2,··· ,n}

F (2.19)

A natural question is how the two error sums of squares SSE(F ) and SSE(R) are

compared relative to each other. In fact, SSE(F ) is never greater than SSE(R). The

main reason is that if more parameters are included in the model, it helps the process

of fitting the data and reduces the standard deviation around the fitted regression

function. When SSE(F ) is not much less than SSE(R), the full model does not

yield much more explanation of the Yi than the reduced model does, in which case
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the data suggests that the reduced model is adequate (i.e. H0 holds). On the other

hand, a large difference suggests that Ha holds because the additional parameters in

the model do help to reduce substantially the variation of the observations Yi around

the fitted regression function.



CHAPTER 3

PARAMETRIC STUDY: NUMERICAL SIMULATION AND RESULTS

ANALYSIS

3.1 Design of numerical simulation and its purpose

As mentioned in the previous chapters, we examine the model
Ŷ1 = α̂1 + β̂1Xi + εi, Xi < c,

Ŷ2 = α̂2 + β̂2Xi + εi, Xi > c

(3.1)

and

ε ∼ N (0, σ2). (3.2)

and its associated statistic for the ability to detect a change point. We consider

the following terms to be varying parameters:

1. β2: while keeping β1 = 1 as a constant, the second slope value β2 is considered

to be one of these values

β2 ∈ {1.5, 2, 3, 5}

We vary β2 to study the sensitivity of the proposed method to the amount of

change in the slope. The numerical experiment results are analyzed in Section

4.1.

2. n2: parameter n2 gives us a general idea about the efficiency of the proposed

method. The second sample size (number of points after the change) was allowed

to take these following values:

n2 ∈ {10, 20, 30, 40, 50}

while n1 is held constant at 50. The numerical results are collected and analyzed

in Section 4.2.
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3. (n1, n2): while keeping the ratio of
n1

n2

=
5

2
as a constant, increased the overall

sample size to examine whether detection of the change point was influenced

by the number of points before the change. The following values were used for

(n1, n2):

(n1, n2) ∈ {(50, 20), (100, 40), (150, 60), (200, 80)}.

Its results are collected and tabulated in Section 4.3.

4. σ is ε ∼ N (0, σ2): we also vary σ to investigate the sensitivity of the proposed

method with respect to variability in the data around the true model.

σ ∈ {1, 2, 3, 4}.

The numerical results of σ change are listed in Section 4.4.

Due to the considerable number of different permutations in the nature of the

parametric study, a baseline for all the numerical simulations is proposed. In fact, we

only consider changing one value at a time; the results are to be compared with the

baseline and other possibilities with respect to change in only one parameter. In this

work, the standard baseline for simulation is:



n1 = 50

n2 = 20

β1 = 1

β2 = 2

σ = 1

(3.3)
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3.2 Simulation Procedure Description

It is noted that this Fmax test statistic no longer has an exact F distribution. The

simulation is executed as the following procedures:

Procedures A: Generating data

Step-1: Generate n1 simulated data with a regression line

Ŷ1 = α̂1 + β̂1Xi + εi (3.4)

for the first interval

0 ≤ Xi ≤ 10 (3.5)

with α̂1 = 0.

Step-2: Generate n2 simulated data with a regression line

Ŷ2 = α̂2 + β̂2Xi + εi (3.6)

for the second interval

10 ≤ Xi ≤ 10
n2

n1

. (3.7)

Step-3: Order the simulated data

Procedures B: Analyzing data

Step-1: Fit the reduced model for all the data pointsX1, X2, · · · , Xc, · · · , Xn

with one regression line.

Step-2: Compute SSE for the reduced model.

SSERed =
n∑

Xi=1

(Yi − α̂Red − β̂RedXi)
2. (3.8)

Note that the degrees of freedom of the reduced model are

(n− 2).
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Step-3: Fit the full model for the first interval X1, X2, · · · , Xc and

the second interval Xc+1, · · · , Xn with two different regression

lines.

Step-4: Compute SSE1 and SSE2 for the full model as

SSEFull =
∑
Xi<c

(Yi − α̂1 − β̂1Xi)
2 +

∑
Xi>c

(Yi − α̂2 − β̂2Xi)
2

SSEFull = SSE1 + SSE2.

(3.9)

Note that the degrees of freedom of the full model is

n1 − 2 + n2 − 2 = n− 4.

Step-5: Put Step-3 and Step-4 inside a for loop, to include all possible

two line models.

Step-6: Compute the F statistic for each of substep as

F =
(SSERed − SSEFull)/2

SSEFull/(n− 4)
. (3.10)

Step-7: Find Fmax and the index in Xi that gives Fmax.

Procedures C: Sample the statistical process by repeating procedures A and B described

above 1000 times to get a stable empirical distribution of Fmax.



CHAPTER 4

SIMULATION RESULTS ANALYSIS

4.1 Slope change

Constant parameters: 

n1 = 50

n2 = 20

β1 = 1

σ = 1

(4.1)

Varying parameters:

β2 ∈ {1.5, 2, 3, 5} (4.2)

We generate the first portion of a sample dataset with sample size n1 = 50, and

slope β1 = 1, the regression line of these data is:

Ŷ1 = Xi + εi, 0 ≤ Xi ≤ 10. (4.3)

We then generate the second portion with sample size n2 = 20, with the slope β2

separately, i.e.

Ŷ2 = α2 + β2Xi + εi, 10 < Xi ≤ 14, (4.4)

where β2 ∈ {1.5, 2, 3, 5}.

The numerical results are tabulated in Table 4.1.

In order to recognize the pattern, Minitab is employed to graphically plot the

tabulated results, as β2 varies.

When β2 was changed to 1.5, the method failed 8 times (i.e., The change point

index c was 1 or 2) to detect a change point in 1000 trials. As the difference of two

slopes |β1−β2| is larger, the mean of change point index Cmean is moving closer to 50
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n1 n2 Slope1 Slope2 Std dev C mean C std dev C min C max

50 20 1 1.5 1 43.54 15.578 1 67

50 20 1 2 1 47.381 8.302 4 67

50 20 1 3 1 48.477 3.963 34 60

50 20 1 5 1 48.835 2.237 42 57

Table 4.1: Slope change - Tabulated simulations inputs and outputs

Figure 4.1: β̂2 vs. C mean in Slope change simulation

which is the number of points before the change; also, the standard deviation of the

position of point of change Cstd dev is smaller. It means the detection of change point

is more precise. Concluding, the slope change will affect the accuracy of detection:

the bigger the difference of the slopes is, the more accurate and precise it can get.
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Figure 4.2: β̂2 vs. C std dev in Slope change simulation

4.2 The proportion of sample size change

Constant parameters: 

n1 = 50

β1 = 1

β2 = 2

σ = 1

(4.5)

Varying parameters:

n2 ∈ {10, 20, 30, 40, 50}. (4.6)

Here, we want to examine the dependency of the detection on the proportion of

total sample size n2. To do that, we generate the first portion of a dataset with slope

β1 = 1 with sample size n1 = 50 , the regression line of these data is:

Ŷ1 = Xi + εi, 0 ≤ Xi ≤ 10. (4.7)

We then generate the second portion with slope of β2 = 2 with sample size n2 ∈
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{10, 20, 30, 40, 50} separately. The regression lines of these data are

Ŷ2 = −10 + 2Xi + εi, 10 < Xi ≤ 10 + 10
n2

50
(4.8)

where n2 ∈ {10, 20, 30, 40, 50}.

The numerical results are tabulated in the following table:

n1 n2 Slope1 Slope2 Std dev C mean C std dev C min C max

50 10 1 2 1 39.774 14.644 1 57

50 20 1 2 1 47.381 8.302 4 67

50 30 1 2 1 48.605 6.993 4 66

50 40 1 2 1 48.616 6.236 21 72

50 50 1 2 1 49.168 6.137 34 67

Table 4.2: Proportion sample size change - Tabulated simulations inputs and outputs

Figure 4.3: n2 vs. C mean in Proportion sample size change simulation

When n2 was changed to 10, this F test failed 18 times (i.e., The change point

index was 1 or 2) to detect a change point in 1000 trials. We observe that when the
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Figure 4.4: n2 vs. C std dev in Proportion sample size change simulation

proportion of the sample size n2 is larger, the mean of change point position is closer

to n1 = 50; the standard deviation of change point gets smaller almost exponentially.

It implies that the detection of change point is more accurate; so in this F test, the

proportion of the total sample size after the change dramatically affects the accuracy

of detection.

4.3 The sample size change

Constant parameters: 
β1 = 1

β2 = 2

σ = 1

(4.9)

Varying parameters:

(n1, n2) ∈ {(50, 20), (100, 40), (150, 60), (200, 80)}. (4.10)

Thirdly, we investigate the dependency of the detection on the sample size
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change, while keeping the sample ratio
n1

n2

=
5

2
. We generate the first portion of

a sample dataset with the slope of β1 = 1 with sample size of n1 ∈ {50, 100, 150, 200}

separately. The regression line of these data is:

Ŷ1 = Xi + εi, 0 ≤ Xi ≤ 10 (4.11)

We then generate the second portion with the slope of β2 = 2 with the sample size

n2 of n2 ∈ {20, 40, 60, 80} respectively. The regression line is

Ŷ2 = −10 + 2Xi + εi, 10 < Xi ≤ 14, (4.12)

The simulation results regarding the position of the change point is tabulated below:

n1 n2 Slope1 Slope2 Std dev C mean C std dev C min C max Bias

50 20 1 2 1 47.381 8.302 4 67 2.619

100 40 1 2 1 97.29 10.848 57 130 2.71

150 60 1 2 1 147.578 13.914 108 178 2.422

200 80 1 2 1 197.51 16.598 162 239 2.49

Table 4.3: Sample size change - Tabulated simulations inputs and outputs

We can see that as the sample size gets larger, the bias of change point fluctuates

from around 2.4 to 2.7 and the standard deviation of the change point estimate

increases almost linearly. It means the detection of change point is almost the same,

but the variance of the change point estimate becomes larger and larger.
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Figure 4.5: n2 vs. C std dev in Sample size change simulation

4.4 The Standard Deviation change

Constant parameters: 

n1 = 50

n2 = 20

β1 = 1

β2 = 2

(4.13)

Varying parameters:

σ ∈ {1, 2, 3, 4}. (4.14)

Fourthly, we investigate whether the standard deviation of the random noise

error will affect the accuracy of detection. We generate the first portion of a sample

dataset with slope of β1 = 1 with the sample size of n1 = 50, the regression line is:

Ŷ1 = Xi + εi, 0 ≤ Xi ≤ 10. (4.15)

We then generate the second portion with the slope of β2 = 2 with sample size
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n2 = 20. The regression line is:

Ŷ2 = −10 + 2Xi + εi, 10 < Xi ≤ 14. (4.16)

The standard deviation for both regression lines are σ ∈ {1, 2, 3, 4} respectively. We

tabulated the results in the following table:

n1 n2 Slope1 Slope2 Std dev C mean C std dev C min C max

50 20 1 2 1 47.381 8.302 4 67

50 20 1 2 2 42.738 16.111 1 67

50 20 1 2 3 38.722 19.735 1 67

50 20 1 2 4 38.16 20.9237 1 67

Table 4.4: Standard deviation change - Tabulated simulations inputs and outputs

Figure 4.6: Std dev vs. C mean in Standard deviation change simulation

As the standard deviation gets larger, the mean of change point distribution

drops down dramatically and the method quickly loses its stability. The standard

deviation of the change point distribution also increases at a relatively fast pace.
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Figure 4.7: Std dev vs. C std dev in Standard deviation change simulation

We see clearly that the efficiency of the proposed method strongly depends on the

standard deviation of the noise error, thus the standard deviation strongly affects the

accuracy of detection.
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4.5 Sensitivity as a function of two variables

By previous results, increasing the variance of the error decreases the accuracy of the

F -test; however, increasing the proportion sample size adds some degrees of accuracy

toward estimating the change point. A natural question to ask is how accuracy is

affected by varying two parameters at the same time.

Constant parameters: 
n1 = 50

β1 = 1

β2 = 2

(4.17)

Varying parameters:

n2 ∈ {10, 20, 30}, (4.18)

σ ∈ {1, 2, 3, 4}. (4.19)

Figure 4.8: C mean vs. Std dev in Proportion Sample Size and Variance change

We observe that (1) as the standard deviation grows larger, the more failed trials

they have, and (2) as the proportion of the sample size n2 gets larger, the mean
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n1 n2 Slope1 Slope2 Std dev C mean C std dev C min C max Fail times

50 10 1 2 1 39.668 14.721 1 57 18

50 10 1 2 2 32.752 18.173 1 57 52

50 10 1 2 3 31.255 18.804 1 57 69

50 10 1 2 4 29.397 19.163 1 57 74

50 20 1 2 1 47.381 8.302 4 67 0

50 20 1 2 2 42.738 16.111 1 67 8

50 20 1 2 3 38.722 19.735 1 67 26

50 20 1 2 4 38.16 20.924 1 67 50

50 30 1 2 1 48.415 6.647 26 69 0

50 30 1 2 2 47.33 13.057 1 76 2

50 30 1 2 3 44.463 17.812 1 77 8

50 30 1 2 4 43.059 21.417 1 77 28

Table 4.5: Standard deviation change and proportion of sample size change-

Tabulated simulations inputs and outputs

of change point position is closer to n1=50 for each value of variables, (3) if the

standard deviation of the error σ grows larger, the mean of change point position is

shifted further from the real change point n1=50; it is true for every n2 value, as in

Figure 4.8.

On the other hand, the F -test quickly loses its stability as the variance grows

larger, regardless of the proportion of sample size n2, as illustrated in Figure 4.9. We

explain the reasoning logic as follows:

� When the standard deviation of the error σ is relatively small, roughly around 1

and 2, the more information after the change point, the more accurate the test

can be. This observation is made based on the unchanged order of n2, when
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Figure 4.9: C std dev vs. Std dev in Proportion Sample Size and Std dev change

σ ∈ {1, 2}.

� For relatively large variabilities, roughly around 3 or 4, increasing the number

of data points after the change does not necessarily increase the accuracy of the

test. This statement is most obvious when σ = 4.

As the standard deviation gets larger, the mean of the change point distribution

drops down dramaticallly and the method quickly loses its stability. On the

other hand, the standard deviation of change point distribution increases at a

relatively fast pace but then seems to stabilize. Concluding, the efficiency of the

proposed method strongly depends on the standard deviation of the niose error;

the standard deviation strongly affects the accuracy and precision of detection.



CHAPTER 5

SUMMARY

5.1 Discussion

The investigation into the sensitivity of the F -test reveals its strengths and weaknesses

in detecting a change point in a single, change point model. The F -test is most

applicable when change in slope is obvious, and is most ineffective when data are

scattered with large deviation away from the mean. The change point detection is a

fairly difficult technical problem with at least three main aspects: efficiency (detect

the change point as fast as possible), accuracy (detect the change point at its true

location) and precision (optimal deviation in change point distribution).

Besides this F -test, many other techniques can also be used to detect the change

point position, for instance, CUSUM procedure [12], Shiryayev-Robert procedure [14],

to list a few. Therefore, it might be necessary to do the sensitivity analysis to compare

the robustness and reliability of these techniques. For an example of comparison of

F -test with Empirical Likelihood Ratio (ELR), see [1]. Regardless of its power, the

F -test method perhaps seems to be somewhat computationally heavy compared to

other methods, and therefore, more likely geared toward post-processing of data which

allows more time and requires more accuracy and precision, instead of online change

point detection.

If detecting the change point as soon as it occurs is important, one automatically

encounters the trade-off of decreasing detection delay and increasing the frequency of

false alarms (type-I error). A popular method to resolve the problem is the maximum

likelihood theory; for more information, see [11].
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5.2 Conclusion

In this thesis, we studied the sensitivity of the F test with respect to the slope,

the proportion of the sample size after the change, and the standard deviation. We

conclude that the slope is an influential parameter to change point detection in the

change point model: a larger difference in slopes yields a more accurate and precise

detection (i.e. smaller deviation in the change point distribution). The numerical

evidence also points out that the F -test loses most of its effectiveness when the data

have much variability from increasing standard deviation error of the dataset. The

proportion sample size change also has considerable effect on the F -test result: more

information after the actual change point gives a more accurate and precise change

point location. Regarding the sample size change, the bias of the change point location

is relatively stable, but the variance of the change point location gets bigger as the

sample size increases.

5.3 Future work

The work in this thesis points out to several directions, that might fit for future

development:

(i) change point detection for intercept change

(ii) change point detection for the multiple change point model (both discontinuous

and continuous)

(iii) sensitivity analysis of change point detection by F -test with different noise

distribution, for examples, standardized Gamma distribution, exponential distribution

and Student’s t distribution with different degrees of freedom.

(iv) sensitivity analysis of change point detection by moving average control charts
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(v) sensitivity analysis of change point detection by Page’s CUSUM procedure [12]

(vi) sensitivity analysis of change point detection by the Shiryayev-Robert procedure

[18]

(vii) compare the effectiveness of various change point detection techniques by using

statistical simulations
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Appendix A

SAS SOURCE CODES

options nonotes;

%let n1=50;

%let n2=20;

%let s1=1;

%let s2=2;

%let nsim=1000;

ods pdf file="C:\Users\js11718\Desktop\s5020121\s5020121.pdf";

%macro loop;

%do a = 1 %to &nsim;

/*get the first line y1=x1+error 0<x1<10*/

data Reg1(keep=x1 y1);

call streaminit(0);

do i=1 to &n1;

x1= rand("Uniform");

x1=10*x1;

eps=rand("Normal",0,1);

y1=&s1*x1+eps;

output;

end;

run;

/*get the second line y1=2x1-(s2-s1)*10+error 10<x1<20*/

data Reg2(keep=x1 y1);

call streaminit(0);

do i=1 to &n2;

x1= rand("Uniform");

x1=x1*10*(&n2/&n1);

x1=x1+10;

eps=rand("Normal",0,1);

y1=&s2*x1-(&s2-&s1)*10+eps;

output;

end;

run;
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/*combined two lines*/

data combined;

set Reg1 Reg2;

run;

proc sort data=combined;

by x1;

run;

/*get the sse for the reduced model*/

proc reg data=combined noprint

outest=result(drop=_model_ _type_ _depvar_ _rmse_ y1 _in_ _p_ _edf_ _rsq_);

model y1=x1/sse;

run;

quit;

/*get the sse1 for the front of full model*/

%macro test;

data _null_;

if 0 then set combined nobs=nobs;

call symput ('n',nobs);

run;

%do i=2 %to &n-2;

data want&i;

set combined (obs=&i);

run;

proc reg data=want&i noprint

outest=result&i(drop=_model_ _type_ _depvar_ _rmse_ y1 _in_ _p_ _edf_ _rsq_);

model y1=x1/sse;

ods exclude Nobs;

proc append base=fulla data=result&i;

proc append base=reduced data=result;

run;

quit;

%end;

%mend;

%test*/

run;
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proc sort data=combined;

by descending x1;

run;

/*get the sse2 for the back of full model*/

%macro test;

data _null_;

if 0 then set combined nobs=nobs;

call symput ('n',nobs);

run;

%do i=2 %to &n-2;

data want&i;

set combined (obs=&i);

run;

proc reg data=want&i noprint

outest=result&i(drop=_model_ _type_ _depvar_ _rmse_ y1 _in_ _p_ _edf_ _rsq_);

model y1=x1/sse;

ods exclude Nobs;

proc append base=fullb data=result&i;

run;

quit;

%end;

%mend;

%test*/

run;

/*calculate F values*/

data fulla;

set fulla;

indx = _n_;

run;

proc sort data=fulla;

by descending indx;

run;

data r(drop=intercept x1 indx) ;

set fulla(rename=(_sse_=sse1));

set fullb(rename=(_sse_=sse2));

set reduced(rename=(_sse_=sse _mse_=mse));

E=sse1+sse2;

F=((sse-E)*(&n1+&n2-4))/(E*2);
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run;

/*get the maximum of F*/

data r;

set r;

indx = _n_;

run;

proc sql;

create table Max AS

select indx,F as F

from r

having F= max(F);

quit;

proc datasets lib=work nolist;

delete fulla fullb reduced;

run;

proc append base=max1 data=max;

run;

%end;

%mend;

%loop;

proc means data=max1;

run;

proc print data=max1;

run;

libname s5020121 "C:\Users\js11718\Desktop\s5020121";

data s5020121.max1;

set Max1;

run;

data s5020121.max;

set Max;

run;

data s5020121.R;

set R;

run;
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data s5020121.combined;

set combined;

run;

ods pdf close;

run;
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