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ABSTRACT

The Borel-Weil theorem is usually understood as a realization theorem for repre-

sentations that have already been shown to exist by other means (\Theorem of the

Highest Weight"). In this thesis we turn the tables and show that, at least in the

case of the classical groups G = U(n), SO(n) and Sp(2n), the Borel-Weil construc-

tion can be used to quite explicitly prove existence of an irreducible representation

with highest weight λ, for each dominant integral form λ on the Lie algebra of a

maximal torus of G.
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CHAPTER 1

INTRODUCTION

The classi�cation of all irreducible representations of a compact connected Lie group

G is given by the Theorem of the Highest Weight: Every irreducible G-module V

has a unique highest weight λ, which characterizes V and can be any so-called

\dominant integral form". One assertion of this statement, namely the existence

of the highest weight, is relatively easy. Indeed one can prove it in the SU(2) case

with raising/lowering operations; then once the SU(3) case is understood it quickly

becomes clear how to argue for general compact Lie groups. We refer the reader to

B. Hall's book [H03, Thm 7.15] for a nice exposition of this theory, which we brie
y

review in Chapter 3, after a few preliminaries dealt with in Chapter 2.

The hard part of the Theorem of the Highest Weight, the second part, tells us

that for every dominant integral form λ there exists an irreducible representation

Vλ with highest weight λ. There are four standard approaches to constructing Vλ:

1. Cartan's case-by-case construction [C13]

2. Weyl's theory [W25]

3. Verma modules [C48; H51]

4. Borel-Weil theory [S54]

Historically, Cartan's approach was the earliest; he constructed irreducible represen-

tations for each compact simple Lie group (four classical series and �ve exceptional),

considering them case-by-case. The other methods provide a more uni�ed approach

for all compact Lie groups at a time. In this exposition, we are interested in the

Borel-Weil theory, but take a case-by-case viewpoint much like Cartan's.

The Borel-Weil Theorem was presented by Serre at the May 1954 Bourbaki

seminar; Borel and Weil themselves never wrote it up for publication. This theorem

realizes Vλ as the space of (anti-)holomorphic sections of a certain holomorphic line

bundle. Namely, let G be a compact connected Lie group and λ a dominant integral

form. Now λ gives us a character on the maximal torus T of G by exp(H) 7→ ei〈λ,H〉,

which extends to a holomorphic character χ on a Borel subgroup B of GC. We

construct the line bundle over GC/B as follows

π : GC ×B C→ GC/B. (1.1)

Antiholomorphic sections of it are the antiholomorphic functions on GC such that

F(gb) = χ(b)F(g) for b ∈ B and g ∈ GC. We denote the space of antiholomorphic

sections by H0(λ). The group G acts on it by (gF)(g ′) = F(g−1g ′) and we have

the Borel-Weil Theorem: The space H0(λ) is non-zero and forms an irreducible

representation with highest weight λ.
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Traditionally this theorem has been understood as a realization theorem for

representations that were long known to exist. From this point of view the proof is

not hard either: assuming Vλ exists, we can map it into H0(λ) by ϕ 7→ F,

F(g) = (gv0,ϕ) (1.2)

where v0 is a highest weight vector and (·, ·) is a G-invariant inner product on Vλ.
That this map is one-to-one and onto follows from a nice argument of Kobayashi and

Kunze [K61; K62], who use the fact that the space H0(λ) has a reproducing kernel

(equivalently, point evaluations on it are continuous) to show that it is automatically

irreducible (or zero).

Borel and Weil also gave a second realization of Vλ as H0(L), the module of

antiholomorphic sections of a line bundle L→ X over a deeper quotient X = GC/P.

Nowadays one recognizes X as the coadjoint orbit of λ in g∗, and this construction

as an instance of geometric quantization or the orbit method [K70; S70; K72].

Chapters 4 and 5 are devoted to an exposition (with proofs) of this theory and

both realizations of Vλ.

Now it is natural to ask whether the tables can be turned and the Borel-Weil

construction (1.1) used to establish Vλ's very existence. In view of the Kobayashi-

Kunze result, this amounts to showing that H0(λ) 6= 0 without assuming Vλ exists.

To our knowledge this was �rst done in [S68, pp. 216{217], by a method also exposed

in [H75, 31.4] and modi�ed in [J87, p. 201]. These authors set out to �nd a nonzero

highest weight vector F ∈ H0(λ), and observe that this F should satisfy

F(nb) = χ(b)F(1) (1.3)

for all b ∈ B and n ∈ N−, the unipotent radical of the opposite Borel subgroup.

So apart from a constant factor, F is known on the open dense \big cell" N−B ⊂ GC

of the Bruhat decomposition (see Appendix), and matters are reduced to showing

that (1.3) extends antiholomorphically from N−B to all of GC. This Steinberg does

by invoking two rather deep results of Chevalley [H75, 5.3B and 11.2], and Jantzen

by �rst extending (1.3) to codimension 1 Bruhat cells and then applying a version

of the Riemann Extension Theorem [G84, p. 132].

The main observation of this Thesis, inspired by Problems of Goodman-Wallach

[G98, 12.1.4.5] and Hall [H03, 7.7.6], is that in the case of the classical groups U(n),

SO(n) and Sp(2n) one can bypass this tedious and non-constructive procedure,

and instead heuristically derive and then prove explicit formulas for F. Thus for

instance in the case of G = U(n), where λ is a diagonal matrix with integer entries

λ1 > λ2 > · · · > λn, we �nd that the extension of (1.3) to GC = GL(n,C)|and

thus a highest weight vector in H0(λ)|is given by the formula (already known to
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Cartan [C13, x36]!)

F(g) = det1(g)λ1−λ2det2(g)λ2−λ3 . . .detn(g)λn−λn+1 (1.4)

where deti(g) denotes the i-th principal minor of the matrix g and we have set

λn+1 = 0. Note that since the exponents λi − λi+1 are integers and non-negative

except perhaps the last one, the function (1.4) is indeed well-de�ned and antiholo-

morphic on all of GC. Our concluding Chapter 6 is devoted to establishing this

formula and similar ones for SO(n) and Sp(2n).

Thereby the non-vanishing of H0(λ), the existence of Vλ (Theorem of the

Highest Weight), and the equality of the two (Borel-Weil Theorem) are simul-

taneously and constructively proved for each dominant integral form λ on each

compact classical group.



CHAPTER 2

BASIC DEFINITIONS

In this chapter we give basic de�nitions and theorems.

2.1 Lie groups and Lie algebras

Definition 2.1. A Lie group G is a di�erentiable manifold which is also endowed with

a group structure such that multiplication and inversion are smooth maps.

A map ϕ : G→ H is a Lie group homomorphism if ϕ is both smooth and a group

homomorphism. We call ϕ an isomorphism if, in addition, ϕ is a di�eomorphism.

Definition 2.2. A Lie algebra g over R is a real vector space g together with a bilinear

operator [·, ·] : g× g→ g (called the bracket) such that for all X, Y,Z ∈ g,

(a) [X, Y] = −[Y,X] (skew-symmetry)

(b) [[X, Y],Z] + [[Y,Z],X] + [[Z,X], Y] = 0 (Jacobi identity).

A morphism of Lie algebras is a linear map α : g→ h which preserves the bracket.

To de�ne the Lie algebra of a Lie group we need the following:

Definition 2.3. Let g ∈ G. Left translation by g is the di�eomorphism lg : G → G

de�ned as follows:

lg(g
′) = gg ′

for all g ′ ∈ G.

Definition 2.4. A vector �eld X on G is called left invariant, if

dlg ◦ X = X ◦ lg

for each g ∈ G.

Proposition 2.5. Let G be a Lie group and g its set of left invariant vector �elds.

(a) g is a real vector space isomorphic to the tangent space Te(G) to G at the

identity;

(b) g forms a Lie algebra under the Lie bracket operation on vector �elds,

namely

[X, Y] = X ◦ Y − Y ◦ X.

Definition 2.6. We de�ne the Lie algebra of the Lie group G to be the Lie algebra

g of left invariant vector �elds on G. Alternatively, we could take as the Lie algebra

of G the tangent space Te(G) at the identity.
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Example 2.7. The group GL(n,C) of all invertible complex matrices is a Lie group.

Its Lie algebra is the vector space gl(n,C) of all n × n complex matrices. The

bracket is given by the commutator

[A,B] = AB− BA.

The Lie groups that are subgroups of GL(n,C) are called matrix Lie groups.

2.2 Exponential map

The existence and uniqueness theorem for �rst-order di�erential equations gives us

the next result:

Proposition 2.8. Let G be a Lie group together with its Lie algebra g. Then

for each X ∈ g there exists a unique morphism of Lie groups expX : R → G

such that d
dt
expX(t)|t=0 = X. We call this map the one-parameter subgroup

corresponding to X.

Definition 2.9. We de�ne the exponential map

exp : g→ G

by setting

exp(X) = expX(1).

The exponential map for matrix groups is given by ordinary exponentiation

of matrices. For example, the map exp : gl(n,C) → GL(n,C) sends a matrix

A ∈ gl(n,C) to the invertible matrix eA, where

eA = I+A+
A2

2!
+ · · ·+ Aj

j!
+ . . . .

Every morphism of Lie groups ϕ : G → H de�nes a morphism of Lie algebras

dϕ : g → h. We can construct it as follows. The derivative at the identity of the

map

ϕ : G→ H

is

(dϕ)e : Te(G)→ Te(H)

which is essentially the same as

(dϕ)e : g→ h.
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We denote this map again by dϕ. It happens that dϕ preserves the bracket [H03,

Thm 2.21], so it's actually a morphism between the Lie algebras g and h.

Using the exponential map we can establish the following: For ϕ : G→ H and

corresponding dϕ : g→ h

ϕ(etX) = etdϕ(X);

in particular,

ϕ(eX) = edϕ(X) (2.1)

and

dϕ(X) =
d

dt
ϕ(etX)

∣∣∣∣
t=0

. (2.2)

2.3 Representations

Definition 2.10. A representation of a Lie group G is a complex vector space V

together with a Lie group homomorphism Π : G→ GL(V). Analogously, we de�ne

a representation of a Lie algebra g as a complex vector space V together with a

Lie algebra morphism π : g→ gl(V).

Often we use a module notation, writing gv for Π(g)v and Zv for π(Z)v. A

morphism (or an intertwining operator) between representations V,W is a linear

map Φ : V →W such that

Φ(gv) = gΦ(v),

for all g ∈ G and v ∈ V.

Definition 2.11. A subspace U of V is called invariant if for all u ∈ U and g ∈ G
there holds gu ∈ U.

Definition 2.12. A representation is called irreducible if it is nonzero and has no

non-trivial invariant subspaces.

Every �nite-dimensional representation Π of G gives rise to an in�nitesimal

representation π = dΠ of g:

Π : G→ GL(V)

gives

π : g→ gl(V).

Using the exponential map

exp : g→ G
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the relations (2.2) and (2.1) for the representation Π : G → GL(V) become as

follows:

π(X) =
d

dt
Π(etX)

∣∣∣∣
t=0

(2.3)

and

Π(eX) = eπ(X). (2.4)

2.4 The adjoint representation

Let G act on itself by conjugation:

g ∈ G 7→ cg (cg : G→ G)

where cg denotes the inner automorphism

cg : g ′ 7→ gg ′g−1.

Passing to the tangent spaces we obtain a Lie algebra automorphism

d(cg) : g→ g.

Denoting by gXg−1 the image of X under d(cg) we get the so-called adjoint action

of G on g:

g 7→ Ad(g), Ad(g)(X) = gXg−1.

From Ad we can obtain in�nitesimally

ad : g→ gl(g).

Then

ad(X)(Y) = [X, Y],

where [X, Y] is the Lie bracket in g.

2.5 Matrix Lie groups

Let G be a matrix Lie group, i.e. G ⊂ GL(n,C). Then its Lie algebra g is

g =
{
H ∈ gl(n,C) : etH ∈ G for all t ∈ R

}
.

The bracket in this case is the commutator of two matrices X and Y, or

[X, Y] = XY − YX in gl(n,C).

And the adjoint action becames the matrix conjugation

Ad(g)(X) = gXg−1.
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2.6 Unitary representations

Definition 2.13. A complex representation Π of a group G is called unitary if there

is a G-invariant inner product 〈·, ·〉 on V:

〈gv,gw〉 = 〈v,w〉

for all g ∈ G and v,w ∈ V. Equivalently, Π(G) lies in the unitary group U(V).

Proposition 2.14. Every �nite-dimensional unitary representation is completely

reducible.

Proof. Suppose W ⊂ V is an invariant subspace. Then V = W ⊕W⊥ and W⊥ is

an invariant subspace too. Indeed, for any w ′ ∈W⊥:

〈gw ′, v〉 = 〈w ′,g−1v〉 = 0, for all v ∈W,

hence gw ′ ∈W⊥. Repeating this procedure, we decompose V into a direct sum of

irreducible invariant subspaces (this process stops because V is �nite dimensional;

we reduce its dimension at each step).

2.7 Representations of compact groups

Proposition 2.15. Let G be a compact Lie group. There is a unique measure on

G, the so-called left Haar measure dg, such that∫
G

dg = 1

and which is invariant under the left action of G on itself (De�nition 2.3).

The existence of Haar measure on compact Lie groups [H63, p. 185] gives us

the next result, which is analogous to the case of �nite groups:

Proposition 2.16. Any �nite-dimensional representation of a compact Lie group

is unitary and thus completely reducible.

Proof. This argument is often called Weyl's unitarian trick. Suppose that Π is a

�nite-dimensional representation of a compact group G acting on a space V. We

start from any inner product 〈·, ·〉 on V and then \average" it by using the group

action:

〈v,w〉G =

∫
G

〈gv,gw〉dg
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where dg is Haar measure on G. Then 〈v, v〉G > 0 as an integral of a positive

function, and by the left invariance of Haar measure

〈hv,hw〉G =

∫
G

〈ghv,ghw〉dg = 〈v,w〉G (2.5)

for h ∈ G. Hence Π is a unitary representation with respect to 〈·, ·〉G and thus

completely reducible by Proposition 2.14.

2.8 Schur’s Lemma

Theorem 2.17 (Schur's Lemma). Let V, W be two complex G-modules.

(1) If V and W are irreducible, then any morphism Φ : V → W is either zero

or isomorphism.

(2) If V is irreducible and Φ : V → V is an (auto)morphism, then Φ = λ1 for

some λ ∈ C.

(3) Let V and W be irreducible and let Φ1,Φ2 be two nonzero morphisms

V →W, then Φ1 = λΦ2 for some λ ∈ C.

Theorem 2.18. Every irreducible representation of a compact group is �nite-

dimensional.

Proof. (Cf. [H63, p. 344].) Let V be an irreducible G-module together with the

G-invariant Haar measure dg. We �x a unit vector v ∈ V and consider

Φ =

∫
G

gv〈gv, ·〉dg.

For h ∈ G,

hΦh−1 =

∫
G

hgv〈gv,h−1·〉dg

=

∫
G

hgv〈hgv, ·〉dg =

∫
G

kv〈kv, ·〉dk = Φ.

So hΦ = Φh i.e Φ : V → V is an intertwining map. By Schur's lemma (2.17)

Φ = λ1

where

λ = 〈v,Φv〉 =
∫
G

|〈v,gv〉|2dg > 0.
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Suppose now that E is any �nite-dimensional subspace of V, together with the

orthogonal projector p : V → E. Then Φ = λ1 implies pΦp = λp2 = λp, i.e.∫
G

pgv〈gv,p·〉dg = λp.

Taking the trace of both sides gives us∫
G

‖pgv‖2dg = λdim(E).

At the same time,
∫
G
‖pgv‖2dg 6

∫
G
‖gv‖2dg = Vol(G), so that

dim(E) 6
Vol(G)

λ

which gives an upper bound on the dimension of any E and completes the proof.



CHAPTER 3

HIGHEST WEIGHT THEORY FOR COMPACT GROUPS

Definition 3.1. Let G be a compact connected Lie group. A maximal torus T ⊂ G
is a maximal connected abelian subgroup of G.

Theorem 3.2. In general, in every compact Lie group there are maximal tori and

they are conjugate, i.e. if T and T ′ are two maximal tori then T ′ = gTg−1 for

some g ∈ G.

Proof. For the existence part, take a nonzero X ∈ g, and consider U = exp(RX).
Clearly U is a connected abelian subgroup of G and hence is a torus in G. Now,

either U is maximal or U is contained in a larger torus. The existence of a maximal

torus now follows from dimension reasons.

We prove the conjugacy part of this theorem in Chapter 4 (Theorem 4.5).

A maximal torus T has a Lie algebra t, a so-called Cartan subalgebra, together

with its dual, denoted by t∗.

We �x a maximal torus T in G throughout. The conjugacy property assures us

that all subsequent constructions (root system, Weyl group, etc.) do not depend

on the choice of the maximal torus.

3.1 Weights

Definition 3.3. Let g be the Lie algebra of a Lie group G. The complexi�cation gC
of g is de�ned as gC = g ⊕ ig. Let π : g → gl(V) be a representation of g. We can

extend the domain of π to gC by C-linearity, in order to obtain π : gC → gl(V).

Let G be a compact Lie group and Π : G → GL(V) a �nite-dimensional rep-

resentation of G. We �x a Cartan subalgebra t of g and write tC for its complex-

i�cation. There exists a G-invariant inner product (·, ·) on V by Proposition 2.16.

Also, π = dΠ : gC → gl(V) is skew-Hermitian on g and Hermitian on ig. Hence tC
acts on V as a family of commuting normal operators and so V is simultaneously

diagonalizable under the action of tC. Then we can de�ne:

Definition 3.4. We call a form µ ∈ t∗ a weight of V if

Vµ = {v ∈ V : Hv = i〈µ,H〉v ∀H ∈ tC}

is non-zero. This gives us a decomposition

V =
⊕

µ: weight

Vµ,

which is called the weight space decomposition of V with respect to tC.
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3.2 Roots

Consider the adjoint action Ad : G → GL(g). For every Ad(g) we can extend

its domain from g to gC. Then Ad : G → GL(gC) is a representation of G with

di�erential ad extended by complex linearity. It has a weight space decomposition

gC =
⊕

α: weight

gα

Notice the zero weight space is g0 = {Z ∈ gC : [H,Z] = 0,H ∈ tC}. Then g0 = tC
since t is a maximal abelian subspace of g.

Definition 3.5. The nonzero weights of Ad are called the roots. Hence, we have the

root space decomposition of gC,

gC = tC ⊕
⊕
α: root

gα

where gα = {Z ∈ gC : [H,Z] = α(H)Z,H ∈ tC}. We denote the set of all roots by R.

Theorem 3.6. Let Π : G→ GL(V) be a representation of G,and t a Cartan subal-

gebra of g. For any root α and weight µ

1. π(gα)Vµ ⊂ Vµ+α

2. in particular, for roots α and β, [gα, gβ] ⊂ gα+β.

Definition 3.7. A form µ ∈ t∗ is called integral if the character ei〈µ,·〉 of t factors

through the covering exp : t→ T .

3.3 Weyl group

Definition 3.8. The Weyl group of G is N(T)/T . Here T is the maximal torus and

N(T) = {n ∈ G : nTn−1 ⊂ T } is its normalizer.

Up to isomorphism, the Weyl group is independent of the choice of maximal

torus. Given w ∈ N(T),H ∈ t, and λ ∈ t∗, de�ne an action of N(T) on t and t∗ by

w(H) = Ad(w)(H),

〈w(λ),H〉 = 〈λ,Ad(w−1)(H)〉.

As Ad(T) acts trivially on t, the action of N(T) descends to an action of W =

N(T)/T .

Theorem 3.9 (Elementary properties of the action of the Weyl group).
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1. W is a (compact and discrete, hence) �nite group.

2. The set of roots R is W-invariant.

3. Ad(w)(gα) = gw(α).

Definition 3.10. A Weyl chamber C ⊂ t is a chosen connected component of

t \
⋃
α∈R

Ker(α).

Definition 3.11. The system of positive roots R+ associated to C is the set

R+ = {α ∈ R : 〈α,H〉 > 0 for all H ∈ C}.

In the same way, we de�ne the system of negative roots

R− = {α ∈ R : 〈α,H〉 < 0 for all H ∈ C}.

We write

n± =
⊕
α∈R±

gα,

so that we have

gC = n− ⊕ tC ⊕ n+

by the root space decomposition. This is called the triangular decomposition, in

analogy with the decomposition of gl(n,C) into diagonal and strictly upper/lower

triangular matrices.

3.4 Order on t∗

We can de�ne a partial order 6 on t∗ as follows:

λ 6 µ i� µ− λ is non-negative on �C.

Definition 3.12. The dominant chamber D ⊂ t∗ consists of those µ ∈ t∗ such that

w(µ) 6 µ for all w ∈W.

3.5 Highest weight

Now, as explained in [B05, xIX.7], �C and D are fundamental domains for the action

of W on t and t∗, in the sense that each orbit intersect �C and D in a single point,

and we have:
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Theorem 3.13 (Half the Theorem of the Highest Weight). Every irreducible G-mod-

ule V has a unique 6-maximal weight λ, which characterizes V. The highest

weight λ is an integral point of D, and we have dim(Vλ) = 1.

As explained in the Introduction, the harder step (the other half) is to prove the

converse of Theorem 3.13: Every dominant integral form is the highest weight

of some irreducible representation. In what follows we will show how to construct

an irreducible representation with given highest weight by the Borel-Weil method.



CHAPTER 4

COADJOINT ORBITS

4.1 The coadjoint action

We have the natural adjoint action (x2.4) of the Lie group G on its Lie algebra g:

Ad(g) : g→ g.

This gives rise to the coadjoint action of G on the dual space g∗ as follows:

coAd(g) : g∗ → g∗

given by

〈coAd(g)(x),Z〉 = 〈x,Ad(g−1)(Z)〉

for x ∈ g∗,g ∈ G,Z ∈ g. In�nitesimally,

coad(X) : g∗ → g∗

is given by

〈coad(X)(y),Z〉 = 〈y,−ad(X)(Z)〉 = 〈y, [Z,X]〉,

where X,Z ∈ g and y ∈ g∗.

Theorem 4.1. Let G be a compact Lie group, T ⊂ G a maximal torus, t its Lie

algebra. Then t = {T -�xed points in g}.

Proof. \⊂" part. Let H ∈ t, then esH ∈ T for all s ∈ R. Then

Ad(t)(H) =
d

ds
(tesHt−1)|s=0 =

d

ds
(esH)|s=0 = H,

since t and esH are elements in T and thus commute.

\⊃" part. Take Z ∈ g. Suppose that Ad(t)(Z) = Z for all t ∈ T . As we know,

eAd(t)(sZ) = tesZt−1, ∀s ∈ R

which in our case becomes

esZ = tesZt−1, ∀t ∈ T .

Thus esZ commutes with all elements in T . So T and {esZ} generate a larger torus.

But T is maximal, hence esZ ∈ T , for all s ∈ R, and therefore Z ∈ t.
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Hence we have a natural projection

Π =

∫
T

Ad(t)dt : g→ t,

which is onto. Indeed, for all t ∈ T : Ad(t)(Π(Z)) = Ad(t)
∫
T
Ad(s)(Z)ds =∫

T
Ad(ts)(Z)ds =

∫
T
Ad(r)(Z)d(t−1r) = Π(Z).

Therefore we have a natural injection Π∗ : t∗ → g∗. (We de�ne a transpose

map 〈Π∗(λ),Z〉:=〈λ,Π(Z)〉, where Z ∈ g, Π(Z) ∈ t and λ ∈ t∗.)

Lemma 4.2. Π∗ identi�es t∗ with the set of all T-�xed points in g∗.

Proof. \⊂": We want to show that Π∗(t∗) consists of T -�xed points.

Let x = Π∗(λ) and s ∈ T , we want to show s(x) = x. But for Z ∈ g :

〈s(x),Z〉 = 〈x,Ad(s−1(Z))〉
= 〈λ,Π(Ad(s−1(Z)))〉

= 〈λ,
∫
T

Ad(ts−1)(Z)dt〉

by invariance of dt = 〈λ,Π(Z)〉 = 〈x,Z〉

\⊃": We want to show that every T -�xed point in g∗ belongs to Π∗(t∗).

Let x ∈ g∗ be T -�xed, put λ = x|t. Then, for Z ∈ g hence for Π(Z) ∈ t we have:

〈Π∗(λ),Z〉 = 〈λ,Π(Z)〉 = 〈x,Π(Z)〉

= 〈x,
∫
T

Ad(t)(Z)dt〉 = 〈
∫
T

t−1(x)dt,Z〉.

But x is T -�xed, hence 〈Π∗(λ),Z〉 = 〈x,Z〉.

Definition 4.3. Given x ∈ g∗, the coadjoint orbit X = G(x) is the image of the map

g ∈ G 7→ coAd(g)(x) ∈ g∗.

Such an orbit has the form G/Gx, where Gx is stabilizer of x ∈ g∗ under the

coadjoint action.

4.2 Hunt’s argument and its consequences

Theorem 4.4. Every coadjoint orbit X of G meets t∗.

Proof. (Cf. [H56; B79].) Let A ∈ t generate a dense 1-parameter subgroup in T :

exp(RA) = {esA : s ∈ R} = T . And let x ∈ X be a point where the \hamiltonian"

HA(x) := 〈x,A〉 attains its minimum (exists by compactness of the orbit as image
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of a compact group). Then DHA(x) = 0, DHA(x) : TxX → R. Evaluating DHA(x)
on the tangent vectors1 Z(x) = d

dt
etZ(x)|t=0 we get

0 = DHA(x)(Z(x)) = 〈Z(x),A〉

In our case x ∈ g∗ and 〈Z(x),Z ′〉 = 〈x, [Z ′,Z]〉. Then,

〈Z(x),A〉 = −〈x, [Z,A]〉 = −〈A(x),Z〉.

As this vanishes for all Z ∈ g, we conclude that A(x) = 0 and hence

t(x) = x ∀t ∈ exp(RA) = T .

Hence, x is a �xed point and x ∈ t∗= {T -�xed points in g∗}.

Theorem 4.5 (Corollary). Any two maximal tori are conjugate.

Proof. Let T = exp(RA) and U = exp(RB) be two maximal tori. We can identify

g with g∗ by a G-invariant inner product on g. By the theorem above there is a

g ∈ G such that Ad(g)(B) ∈ t. Thus gexp(tB)g−1 = exp(tAd(g)(B)) ⊂ T ∀t ∈ R.
Hence gUg−1 ⊂ T by continuity. Hence gUg−1 = T by maximality.

Theorem 4.6 (Corollary). The intersection G(λ) ∩ t∗ = W(λ) (is an orbit of the

Weyl group).

Proof. \⊃": Consider the Weyl group W = N(T)/T . Take w = nT ∈ N(T)/T .

Then w(λ) = (nT)(λ) = n(λ) ∈ G(λ).
\⊂": Suppose g(λ) ∈ t∗, then g(λ) is T -�xed

t(g(λ)) = g(λ), ∀t ∈ T .

Hence g−1Tg lies in the stabilizer Gλ of λ. Now, T and gTg−1 are two maximal tori

in Gλ. So they are conjugate; let h ∈ Gλ be such that

T = h−1g−1Tgh.

So gh belongs to the torus's normalizer, N(T). Let w be the corresponding class in

the Weyl group: w = ghT . The action of w on λ ∈ t∗ gives us

w(λ) = gh(λ) = g(λ),

hence g(λ) ∈W(λ) which completes the proof.

1Given x ∈ g∗, the vectors Z(x) with Z ∈ g, constitute the tangent space to the coadjoint orbit

at the point x. See Section 4.3 on symplectic manifolds for details.
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Theorem 4.7 (Corollary). The (co)adjoint stabilizer GB = {g ∈ G : gBg−1 = B} of

any B ∈ g (or g∗) is connected.

Proof. Let a ∈ GB. Then exp(RB) is a torus contained in the centralizer ZG(a) =

{g ∈ G : gag−1 = a}, hence contained in a maximal torus U of ZG(a). Claim:

a ∈ U ⊂ G0
B, the connected component of the identity in GB.

Proof of U ⊂ G0
B: We need only show U ⊂ GB since U is connected. But that's

clear since elements of U commute with exp(RB) and hence with B.

Proof of a ∈ U: Let a = exp(A) (such an A exists by surjectiveness of the

exponential map [B05, Cor. IX.2.2.1]), then exp(RA) is another torus in ZG(a) ⇒
it is conjugate by Theorem 4.5. ∃g ∈ ZG(a) such that gexp(RA)g−1 ⊂ U. In

particular U contains gexp(A)g−1=gag−1=a.

Theorem 4.8 (Corollary). (Co)adjoint orbits of a compact connected Lie group

are simply connected.

Proof. Consider the diagram

H → G → G/H.
closed Lie

subgroup group

It gives rise to a long exact sequence of homotopy groups, including the following

piece [S51, x17]:

· · · → π1(G)→ π1(G/H)→ π0(H)→ π0(G)→ π0(G/H)→ . . . (4.1)

Let H be a stabilizer of the (co)adjoint action. Without loss of generality we can

replace G with the universal cover ~G, since both G and ~G have the same (co)adjoint

orbits. Then the above (4.1) becomes

· · · → 0→ π1(G/H)→ 0→ 0→ π0(G/H)→ . . .

and thus forces π1(G/H) to be trivial.

4.3 The coadjoint orbits as symplectic manifolds

Definition 4.9. A symplectic manifold is a smooth manifold X with a nondegenerate,

closed 2-form σ.

Definition 4.10. A smooth action of G on a manifold X is a group morphism ρ : G→
Diff(X) of G into the di�eomorphisms of X, such that (g, x) 7→ ρ(g)(x) is a smooth

map G× X→ X.
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It is customary to drop ρ from the notation and write g(x) for ρ(g)(x). The

orbit of x is

G(x) = {g(x) : g ∈ G}.

Every orbit of a smooth action of G on a manifold X is di�eomorphic to the quotient

manifold G/Gx, where Gx = {g ∈ G : g(x) = x} is the stabilizer of x. If there is

just one orbit, the action is called transitive and X is called a homogeneous space

of G.

Every smooth action ρ of G on a manifold X induces an in�nitesimal action

of the Lie algebra ρ∗ : g→ Vect(X) by ρ∗ : Z 7→ (dρ)e(Z), or, using the exponential

map

ρ∗(Z)(x) =
d

dt
etZ(x)

∣∣∣∣
t=0

.

As with ρ one usually drops ρ∗ from the notation and writes Z(x) instead of

ρ∗(Z)(x). If the action is transitive, the di�eomorphism G/Gx → G(x) ensures

that the tangent space to an orbit G(x) at x is

TxG(x) = {Z(x) : Z ∈ g} = g/gx

where gx is the Lie algebra of the stabilizer Gx.

Let X be a coadjoint orbit of G acting on g∗. Then X admits a G-invariant

symplectic structure given by the Kirillov-Kostant-Souriau 2-form:

Theorem 4.11 (The Kirillov-Kostant-Souriau Theorem [K72; K70; S70]).

1. Every coadjoint orbit of a Lie group is a homogeneous symplectic mani-

fold when endowed with the KKS 2-form

σ(Z(x),Z ′(x)) = 〈x, [Z ′,Z]〉.

2. Conversely, every homogeneous symplectic manifold of a connected Lie

group G is, up to a possible covering, a coadjoint orbit of some central

extension of G.

4.4 An example of coadjoint orbits: Grassmannians

In this section we are going to illustrate the notion of coadjoint orbits and exhibit

the Kirillov-Kostant-Souriau 2-form on them in the special case of Grassmannians

(and projective spaces in particular).

Let V be a �nite dimensional Hilbert space, so it comes equipped with a com-

plex inner product. Based on this product we consider the group of all unitary



CHAPTER 4. COADJOINT ORBITS 20

operators, G = U(V), together with its Lie algebra g = u(V):

G = U(V) = {g ∈ GL(V) : �gg = 1},

g = {Z ∈ gl(V) : �Z+ Z = 0}.

Here and in what follows the bar � denotes adjoint. Thus g consists of skew-adjoint

operators. We identify g∗ with the space of all self-adjoint operators as follows:

ig→ g∗

x 7→ 1

i
Tr(x ·),

(4.2)

so that g∗ becomes

g∗ = {x ∈ gl(V) : �x = x}.

Now we restrict our attention to the case V = Cn in order to be more explicit,

however the case of an arbitrary space V can be treated in the same way. Then G

becomes U(n) and the coadjoint orbits are conjugacy classes of self-adjoint matrices:

G(x) = {gxg−1 for all g ∈ G}. Each orbit intersects the dominant chamber

D =


 λ1

. . .

λn

 : λ1 > · · · > λn


in exactly one point (compare x3.5 and Theorem 4.6). The orbit is integral (i.e. it

goes through an integral point), when all λi are integers.

Consider the remarkable orbits

Xk =
{
x ∈ g∗ : x2 = x, Tr(x) = k

}
= {rank k self-adjoint projectors x : V → V}

= G

(
1k 0

0 0n−k

)
,

where n is the complex dimension of V. Note that X1 is just P(V). Indeed, the map

V \ {0}→ X1, de�ned by

ξ 7→ ξ(ξ, ·)
‖ξ‖2

,

(where ( , ) is the inner product on V), induces a bijection between P(V) and X1.

Similarily, Xk is nothing but the Grassmannian of k-dimensional subspaces of V.

Proposition 4.12. The 2-form on Xk is given by

σ(δx, δ ′x) =
1

i
Tr(x[δx, δ ′x]) = Tr(δ ′xJδx),

where δx, δ ′x ∈ TxXk and Jδx =
1

i
[x, δx] is a complex structure on Xk (J2 = −id).
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Proof. Recall that the Kirillov-Kostant-Souriau 2-form (Theorem 4.11) is given by

σ(Z(x),Z ′(x)) = 〈x, [Z ′,Z]〉. First, given δx we want to �nd Z such that Z(x) = δx.

Consider the pairing

〈Z(x),Z ′〉 = 〈x, [Z ′,Z]〉 = 1

i
Tr(x[Z ′,Z]) =

1

i
Tr(xZZ ′ − xZZ ′)

=
1

i
Tr((Zx− xZ)Z ′) =

1

i
Tr([Z, x]Z ′) = 〈[Z, x],Z ′〉.

Thus Z(x) = [Z, x]. Our claim is that given δx, Z can be taken equal to [δx, x].

Indeed, x2 = x implies xδxx = 0, and Z(x) becomes

Z(x) = [Z, x] = [[δx, x], x] = [δxx− xδx, x]

= δxx− xδxx− xδxx+ xδx = δxx+ xδx = δ[x2] = δx.

Therefore we can compute

σ(δx, δ ′x) = 〈x, [Z ′,Z]〉 = 〈Z(x),Z ′〉 = 〈δx, [δ ′x, x]〉 = 1

i
Tr(δx[δ ′x, x])

=
1

i
Tr(δxδ ′xx− δxxδ ′x) =

1

i
Tr(x[δx, δ ′x]).

Also de�ning a linear operator J on each tangent space by Jδx = 1
i
[x, δx] we get

J2δx = −[x, [x, δx]] = −δx so that J is an almost complex structure on Xk. That

gives another expression for the 2-form σ:

σ(δx, δ ′x) =
1

i
Tr(δ ′xxδx− δ ′xδxx) = Tr(δ ′x

1

i
[x, δx]) = Tr(δ ′xJδx).

Together σ and J de�ne a pseudo Riemannian metric g(·, ·) on Xk

g(δx, δ ′x) = σ(Jδx, δ ′x) = −Tr(δxδ ′x)

which is negative de�nite: g(δx, δx) = −Tr(δx2) < 0. Each two structures of (σ, J,g)

determine the third. In that way we obtain a K�ahler structure on Xk.



CHAPTER 5

NON-CONSTRUCTIVE PROOF OF THE BOREL-WEIL THEOREM

In this chapter we consider the coadjoint orbit X that goes through the highest

weight λ of an irreducible representation V. Then we relate V to the symplectic

G-manifold X as follows (cf. [Z96, pp. 47{50]):

First, we embed X into the projective space P(V), which gives us a hermitian

line bundle with connection L → X with base X. The curvature of the connection

of L equals the orbit's 2-form. (This is called prequantization.)

Second, the square integrable sections for Liouville measure on X make a uni-

tary G-module. We extract the submodule of antiholomorphic sections H0(L) from

it. (This is called polarization.)

Now in Theorem 5.4 we show that H0(L) is isomorphic to V; and in Section

5.5 we show that both are also isomorphic to the representation H0(λ) discussed in

the Introduction.

5.1 The tautological line bundle over projective space

In this section we return our attention to the unitary G-module V. Adopting the

constructions from the previous section, we consider the projective space P(V) as
the space X1 of all rank one self-adjoint projectors x in V:

P(V) =
{
x ∈ u(V)∗ : x2 = x, Tr(x) = 1

}
.

The tautological line bundle over P(V) is

L = {(x, ξ) ∈ P(V)× V : ξ ∈ Im(x)}

together with the projection p : L→ P(V)

p : (x, ξ) 7→ x.

As we can see the �ber above x is just the complex line Im(x) = Cξ. Note that

every ξ 6= 0 in V determines a projector x =
ξ�ξ

‖ξ‖2
, where �ξ = (ξ, ·). So we can

identify L× = L \ {(x, 0) : x ∈ P(V)} with V× = V \ {0} using the map (x, ξ) 7→ ξ.

We continue writing p for the projection L× = V× → P(V).
In�nitesimally one can write

T(x,ξ)L
× = TξV

× = ξ⊥ ⊕ Cξ = Ker(x)⊕ Im(x).

We write Hor : TξV
× → Ker(x) and Vert : TξV

× → Im(x) for the projections

associated to this decomposition (i.e. δξ = (1− x)δξ+ xδξ, where x =
ξ�ξ

‖ξ‖2
). This

splitting is called a connection on the line bundle L.
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By de�nition $ is the connection 1-form on L× such that

Vert(δξ) = iξ$(δξ).

Explicitly,

xδξ = iξ$(δξ),

hence

$(δξ) =
(ξ, δξ)

i‖ξ‖2
is a 1-form on L×.

Theorem 5.1. This connection has curvature σ.

Note: Given a connection $ on L
p−→ P(V) its curvature is the 2-form ω such

that

d$ = p∗ω.

Proof. We compute

[d$](δξ, δ ′ξ) = [δ$](δ ′ξ) − [δ ′$](δξ)

=
1

i

{
(δ

ξ

‖ξ‖2
, δ ′ξ) − (δ ′

ξ

‖ξ‖2
, δξ)

}
=

1

i

{
(
δξ‖ξ‖2 − ξ[(δξ, ξ) + (ξ, δξ))]

‖ξ‖4
, δ ′ξ) − (

δ ′ξ‖ξ‖2 − ξ[(δ ′ξ, ξ) + (ξ, δ ′ξ))]

‖ξ‖4
, δξ)

}
=

1

i

{
(δξ, (1− x)δ ′ξ) − (δ ′ξ, (1− x)δξ)

‖ξ‖2

}
Now observe that1 xξ = ξ gives δxξ+xδξ = δξ, or δxξ = (1−x)δξ. Also (1−x)2 =

(1− x). Hence

[d$](δξ, δ ′ξ) =
1

i

(δxξ, δ ′xξ) − (δ ′xξ, δxξ)

‖ξ‖2
.

In general, (u, v) = Tr(v�u) gives

[d$](δξ, δ ′ξ) =
1

i

{
Tr(δ ′x

ξ�ξ

‖ξ‖2
δx) − Tr(δx

ξ�ξ

‖ξ‖2
δ ′x)

}
=

1

i
Tr(δ ′xxδx− δxxδ ′x)

=
1

i
Tr(δ ′x[x, δx])

= Tr(δ ′xJδx)

= σ(δx, δ ′x).

1 xξ is a product of square matrix and column vector; δx and δξ are the derivatives (tangent

vectors) in Frechet notation.
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Note that every complex submanifold W of P(V) is symplectic for the restric-

tion of σ:

(a) The 2-form on the manifoldW is i∗σ, where i :W → P(V) is the inclusion map.

Now d[i∗σ] = i∗dσ = 0, thus i∗σ on W is closed.

(b) This 2-form is non-degenerate. Indeed, σ(Jδw, δw) = g(δw, δw) < 0 unless

δw = 0.

5.2 The orbit of the highest weight vector

We saw that P(Cn) is a coadjoint orbit of U(n). In analogy with it, we consider

P(V) as a coadjoint orbit of U(V).

Now we return to our original notation: G is any compact connected Lie group

and Π : G→ U(V) is an irreducible representation of it. Let λ be its highest weight

(so that V = Vλ) and let v0 be a highest weight vector and w0 =
v0�v0
‖v0‖2

be the

corresponding point in P(V).

Theorem 5.2. The orbit W := G(w0) is a complex (hence symplectic) submanifold

of P(V).

Proof. We can replace G and g by their images in End(V). For V = Vλ we have

V =
⊕

µ: weight

Vµ,

where

Vµ = {v ∈ V : Hv = i〈µ,H〉v ∀H ∈ t}.

Also

gC =
⊕

α∈R∪{0}

gα,

where

gα = {Z ∈ gC : [H,Z] = i〈α,H〉Z ∀H ∈ t}.

We have gαVµ ⊂ Vµ+α by Theorem 3.6. Each α ∈ R is either > 0, or < 0 (sign in

the chamber C).

Claim:

1. if α > 0 then gα(w0) = 0,

2. g0(w0) = 0,

3. if α < 0, then gα(w0) ⊂ g(w0) where g is the (real!) Lie algebra of G.
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From this it follows that gC(w0) = g(w0) and by equivariance that gC(g(w0)) =

g(g(w0))∀g ∈ G. Indeed, suppose Z ∈ gC and g ∈ G. Then

Z(g(w0)) =
d

dt
etZ(g(w0))|t=0,

here the group action is g(w0) = gw0g
−1 (composition of operators g ∈ U(V)).

Now

Z(g(w0)) =
d

dt
gg−1etZ(g(w0))|t=0

=
d

dt
g(etg

−1Zg(w0))|t=0 (=
d

dt
g(etAd(g

−1Z))|t=0)

= Dg(w0)(Ad(g
−1)(z)(w)) ∈ g(g(w0)).

This shows that gC(g(w0)) ⊂ g(g(w0)) with trivial reverse inclusion.

Thus we have gC(w) ⊂ g(w) for all w ∈ W = G(w0). It follows that G(w0)

is open in GC(w0). Also G(w0) is compact, hence closed in GC(w0). Since GC(w0)

is connected, we conclude that W = G(w0) = GC(w0). So W is a complex orbit,

hence a complex manifold.

It remains to show our 3 claims:

1) α > 0⇒ gα(w0) = 0.

The action on w0 ∈ P(V) is de�ned by Z(w0) = p∗(Zv0) where p∗ is the

derivative of p : V \ {0}→ P(V). But for Z ⊂ gα,α > 0:

Zv0 ∈ Vλ+α = {0}

since λ is the highest weight. Thus Zv0 = 0.

2) g0(w0) = 0

Indeed, for Z ∈ g0 = tC we have

Z(w0) = p∗(Zv0)

= p∗(i〈λ,Z〉v0)

=
d

dt
p(eit〈λ,Z〉v0)|t=0

=
d

dt
p(v0)|t=0 = 0.

3) If α < 0, then gα(w0) ⊂ g(w0).

Suppose Z ∈ gα. Claim: �Z ∈ g−α (adjoint of Z ∈ End(V)).
Indeed, for H ∈ t we have

[H, �Z] = H�Z− �ZH = −�H�Z+ �Z�H = HZ− ZH = i〈α,H〉Z = −i〈α,H〉�Z.

In particular �Z(w0) = 0 hence Z(w0) = (Z − �Z)(w0) ⊂ g(w0). ((Z − �Z) is skew-

adjoint, hence in g.)
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5.3 The moment map and coadjoint orbits

In the previous section we showed that the orbit W of the projectivized highest

weight vector w0 ∈ P(V) is a homogeneous symplectic manifold. By the Kirillov-

Kostant-Souriau Theorem 4.11, the resulting moment map Φ : W → g∗ will make

W = G(w0) (a covering of) a coadjoint orbit of G. In this section we verify that

this orbit is exactly G(λ).

To this end we observe that G preserves $: indeed

(g∗$)(δξ) =
(gξ,gδξ)

i‖gξ‖2
=

(ξ, δξ)

i‖ξ‖2
= $(δξ).

It follows that the Lie derivative L(Z)$ vanishes for all Z ∈ g. By Cartan's formula

for the Lie derivative, L(Z)$ = i(Z)d$+ di(Z)$, it follows that

i(Z)d$ = −d〈Φ(·),Z〉

where 〈Φ(·),Z〉 = i(Z)$, or 〈Φ(ξ),Z〉 = $(Zξ). By de�nition of a moment map

[S70], this means that

〈Φ(ξ),Z〉 = $(π(Z)ξ) =
(ξ,π(Z)ξ)

i‖ξ‖2
.

de�nes a moment map Φ for the action of G on (L×,d$). We can write it equiva-

lently as

〈Φ(ξ),Z〉 = 1

i
Tr

(
ξξ

‖ξ‖2
π(Z)

)
= 〈x,π(Z)〉
= 〈π∗(x),Z〉

where π∗ : u(V)∗ → g∗ is dual to the representation π : g→ u(V). In other words,

Φ(ξ) = π∗
(
ξξ

‖ξ‖2

)
.

This is constant on �bres of p : L× → P(V), hence descends to a moment map on

P(V), also denoted by Φ and Φ(x) = π∗(x). This restricts to a moment map on

W = G(λ), again denoted by Φ:

〈Φ(w),Z〉 = 1

i
Tr(wπ(Z)) =

(v,Zv)

i‖v‖2
(v ∈ Im(w)).
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This moment map is equivariant. Indeed

〈Φ(gξ),Z〉 = (gξ,Zgξ)

i‖gξ‖2

=
(ξ,g−1Zgξ)

i‖ξ‖2

= 〈Φ(ξ),g−1Zg〉
= 〈g(Φ(ξ)),Z〉.

So Φ :W → g∗ is a covering map onto a coadjoint orbit, namely G(λ) since we have

Φ(w0) = λ. Indeed:

1) Φ(w0) ∈ t∗ = (g∗)T . To verify it, take t in T such that t = eH, then

t(Φ(w0)) = Φ(t(w0)) = π
∗
(
tv0tv0

‖tv0‖2

)
= π∗

(
ei〈λ,H〉v0e

i〈λ,H〉v0

‖ei〈λ,H〉v0‖2

)

= π∗
(
v0v0

‖v0‖2

)
= Φ(w0)

(T -invariant).

2) For H ∈ t

〈Φ(w0),H〉 =
(v0,Hv0)

i‖v0‖2
=

(v0, i〈λ,H〉v0)
i‖v0‖2

= 〈λ,H〉,

hence Φ(w0) = λ.

Finally, this covering is trivial (a di�eomorphism) because it's a covering of a

simply connected orbit (Theorem 4.8).

5.4 The space H0(L) of antiholomorphic sections

Again, we now have di�eomorphism Φ : W → X identifying the submanifold W =

G(w0) of P(V) with the coadjoint orbit X = G(λ). Denote its inverse by I : X→W.

We have the following diagram:

L

↓
X

I−→ W ⊂ P(V)

We can pull-back the bundle L = {(w, ξ) ∈ W × V : ξ ∈ Im(w)} and its

connection $(δξ) =
(ξ, δξ)

i‖ξ‖2
which satis�es d$ = p∗σ. Let us denote this pull-back

again by p : L→ X. Then L× is a complex submanifold of V \ {0}.

We are going to identify V with the space H0(L) of antiholomorphic sections

of L. A section of L can be de�ned
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� either as a map s : X→ L such that

p(s(w)) = w

� or as a map f : L× → C such that

f(zξ) = �zf(ξ).

with the relation

s(w) =
ξf(ξ)

‖ξ‖2
, ξ ∈ Im(w)

and conversely:

f(ξ) = (ξ, s(w))

which is antilinear in its �rst entry ξ.

This is called antiholomorphic, if f is antiholomorphic, i.e. Df(ξ) : TξL
× → C is

complex antilinear for each ξ.

We make the space H0(L) into a (pre-)Hilbert space by putting

(f, f ′) =

∫
X

f(ξ)f ′(ξ)

‖ξ‖2
dx

(the integrand depends only on x, ξ ∈ Im(x)), where dx is the volume form on X

coming from σ ∧ . . . ∧ σ (the number of factors is dim(X)/2), normalized so that∫
X
dx = dim(V) | the so-called Liouville measure on X.

Lemma 5.3. Point evaluations on H0(L) are continuous. (Point evaluation at ξ

is the linear form f 7→ f(ξ)) ∀ξ∃Kξ s.t.

|f(ξ)| 6 Kξ‖f‖.

Proof. See Remark 6.4.

Note, G acts on H0(L) by (gf)(ξ) = f(�gξ) (naturally and unitarily).

Theorem 5.4 (Borel-Weil, non-constructive proof). H0(L) is isomorphic to V.

Proof. De�ne a map
V → H0(L)

ϕ 7→ f

by

f(ξ) = (ξ,ϕ),

where (·, ·) is the scalar product on V.
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1. This map is well-de�ned, i.e. f is antiholomorphic in ξ:

Df(ξ)(δξ) = (δξ,ϕ)

is indeed antilinear.

2. This map is isometric (hence injective). Schur's Lemma (2.17) gives us

A :=

∫
X

ξ(ξ, ·)
‖ξ‖2

dx =

∫
X

xdx = λ · 1,

because

gAg−1 =

∫
X

g(x)dx =

∫
X

xdx = A.

(dx is invariant on X under the G-action). Taking trace

Tr(A) =

∫
X

Tr(ξ(ξ, ·))
‖ξ‖2

dx = λdim(V).

We have chosen dx such that ∫
X

dx = dim(V),

so λ = 1. Now with f(ξ) = (ξ,ϕ) we get

‖f‖2 =
∫
X

f(ξ)f(ξ)

‖ξ‖2
dx =

∫
X

(ϕ, ξ)(ξ,ϕ)

‖ξ‖2
dx

= (ϕ,

∫
X

ξ(ξ, ·)
‖ξ‖2

dxϕ) = ‖ϕ‖2.

Thus, ϕ 7→ f = (·,ϕ) preserves norm.

3. The map ϕ 7→ f is onto H0(L).

Indeed, by the previous Lemma 5.3 and the Riesz representation theorem: For

each ξ ∈ L× there is a vector eξ ∈ H0(L) such that

f(ξ) = (eξ, f) ∀f ∈ H0(L).2

Now,

(eξ, f) =

∫
X

eξ(η)f(η)

‖η‖2
dy =

∫
X

(eξ, eη)

‖η‖2
f(η)dy.

(The function K(ξ,η) = (eξ, eη) is called the reproducing kernel of H0(L).)

2Inner product in H0(L).
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We are going to show that

(eξ, eη)H0(L) = (ξ,η)V .

This will �nish the proof since

f(ξ) =

∫
X

(ξ,η)

‖η‖2
f(η)dy = (ξ,ϕ),

where

ϕ =

∫
X

ηf(η)

‖η‖2
dy.

Observe:

1) egξ = geξ ∀g ∈ G,
2) ezξ = zeξ ∀z ∈ S1.
Proof of 1)

(egξ, f) = f(gξ) = (�gf)(ξ) = (eξ, �gf) = (geξ, f) ∀f ∈ H0(L).

Proof of 2)

(ezξ, f) = f(zξ) = �zf(ξ) = �z(eξ, f) = (zeξ, f) ∀f ∈ H0(L).

Claim 5.5. (eξ, eξ) = c‖ξ‖2 for some c > 0.

Proof. Consider the function on the orbit Φ(x) = (eξ,eξ)

‖ξ‖2 , for ξ ∈ Im(x).

Now Φ(g(x)) =
(egξ,egξ)

‖gξ‖2 = (geξ,geξ)

‖gξ‖2 = Φ(x), for all g ∈ G. Hence, Φ(x) is

constant.

Consequence of the claim:

(eξ, eη) = c(ξ,η), ∀ξ,η.

This holds because the LHS (eξ, eη) = eη(ξ) = eξ(η) is antiholomorphic in ξ

and holomorphic in η. At the same time the RHS (ξ,η) is antiholomorphic

in ξ and holomorphic in η too. Hence these functions are equal by analytic

continuation [B67, 5.14.7].

Now, c 6= 0, because if

f(ξ) =

∫
X

(eξ, eη)

‖ξ‖2
f(η)dy = 0, ∀ξ
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then H0(L) = 0. Which is not true, because we have already put V injectively

there. Finally, c = 1:

c‖ξ‖2 = (eξ, eξ)

=

∫
X

eξ(η)eξ(η)

‖η‖2
dy

=

∫
X

(eξ, eη)(eη, eξ)

‖η‖2
dy

= c2
∫
X

(ξ,η)(η, ξ)

‖η‖2
dy

= c2(ξ, ξ) (by Schur's Lemma)

= c2‖ξ‖2.

Together c = c2 and c 6= 0 give us c = 1. This ends the proof of the Borel-Weil

Theorem 5.4.

5.5 Realization in the space H0(λ) of functions on GC

In what follows it will be convenient to realize our representations more uniformly

in spaces of antiholomorphic functions on the group GC itself. To this end, consider

gC = n−⊕tC⊕n+, where n± = ⊕α∈R±gα. We de�ne the Borel subalgebra b = tC⊕n+
and the resulting standard Borel subgroup B = exp(b). As we can see from Claims

1-2 in Theorem 5.2, B acts trivially on w0. Then the action

bv0 = χ(b)v0, χ(b) ∈ C× (5.1)

gives us a character on B.3 The derived action de�nes an in�nitesimal character of

b:

Zv0 = i〈λ,Z〉v0 = i〈λ,H〉v0 (5.2)

where Z = H + U ∈ tC ⊕ n+ ⊂ gC and we recall that λ ∈ t∗ ⊂ g∗ extends to gC by

complex linearity. In addition to our space

H0(L) =

{
f : L× → C :

f is antiholomorphic

f(zξ) = zf(ξ) ∀z ∈ C×

}
,

we now consider the space

H0(λ) =

{
F : GC → C :

F is antiholomorphic

F(gb) = χ(b)F(g) ∀b ∈ B

}
.

3It's actually a character; indeed (bb ′)v0 = χ(b)χ(b ′)v0 and χ(bb ′) = χ(b)χ(b ′).
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Claim 5.6. H0(L) is isomorphic to H0(λ) with G-action4

(gF)(g ′) = F(�gg ′)

by

f 7→ F, where F(g) = f(gv0).
5

Proof. Let us denote the above map by Φ : H0(L)→ H0(λ), then

Φ : f 7→ F

F(g) = f(gv0), for g ∈ GC.

First of all, Φ indeed maps H0(L) to H0(λ). To check this consider the derivative

DF(g)(iδg) = [δg = Zg] =
d

dt
F(eitZg)|t=0

=
d

dt
f(eitZgv0)|t=0 = Df(gv0)(iZgv0)

= −iDf(gv0)(Zgv0) (f is antiholomorphic)

= −iDF(g)(Zg) = −iDF(g)(δg).

Hence, F is antiholomorphic. Also, (5.1) gives us

F(gb) = f(gbv0) = f(gχ(b)v0) = χ(b)f(gv0) = χ(b)F(g).

Thus F is in H0(λ).

Second, Φ is an intertwining map between H0(L) and H0(λ). Indeed:

(a) Consider Φ(gf) ∈ H0(λ). We have Φ(gf)(g ′) = (gf)(g ′v0) = f(�gg
′v0).

(b) At the same time, g(Φf)(g ′) = (gF)(g ′) = F(�gg ′) = f(�gg ′v0).

Together with the fact thatH0(λ) is irreducible as will be proved presently (Theorem

6.2) this completes the proof.

4We write g 7→ g for the antiautomorphism of GC whose di�erential at the identity is −1 on g

and 1 on ig. Note that for g ∈ G we have g = g−1; our formula then extends the action to GC.
5Here by gv0 we mean the GC-action on the line bundle L× ⊂ V×.
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CONSTRUCTIVE PROOF OF THE BOREL-WEIL THEOREM

Our goal now is to prove the following theorem:

Theorem 6.1 (Borel-Weil construction). Assume G is one of the classical groups

U(n), SO(n), or Sp(2n). Let λ be a dominant integral element of t∗. Then

H0(λ) is nonzero and forms an irreducible G-module with highest weight λ.

We have

H0(λ) =

{
F : GC → C :

F is antiholomorphic

F(gb) = χ(b)F(g) ∀b ∈ B

}
(6.1)

together with

χ : B→ C.

Our steps to prove Borel-Weil:

� H0(λ) is irreducible or zero

� H0(λ) is non-zero (in a constructive way).

6.1 H0(λ) is irreducible or zero

We start by making H0(λ) into a unitary G-module, as follows. The functions in

(6.1) are sections of the bundle GC ×B C → GC/B associated to the character χ

of B. The Iwasawa decomposition GC = GB [B04, p. 203] allows us to identify its

(complex) base GC/B with the (compact) manifold G/(G∩B) = G/T , and thus our

bundle with the bundle

G×T C→ G/T

associated to the character χ restricted to T . Sections of it (thought of as functions

F : G→ C such that F(gt) = χ(t)F(g) then carry a natural inner product given by

(F, F ′) =

∫
G/T

FF ′vol (6.2)

where vol is the (unique up to scale) G-invariant volume form on G/T . This inner

product is invariant under the action (5.6)

(gF)(g ′) = F(gg ′), for F ∈ H0(λ) and g ∈ G.

Using the Kobayashi-Kunze argument [K61; K62] we prove the next

Theorem 6.2. H0(λ) is irreducible or zero.
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Proof. First we need the following lemma:

Lemma 6.3. Point evaluations on H0(λ) are continuous.

Proof. The point evaluations are the functionals Ag : H0(λ)→ C de�ned by

Ag(F) = F(g)

where F ∈ H0(λ) and g ∈ GC.

It is su�cient to prove that point evaluations functionals are bounded. Take g

in GC. We want to prove that

|F(g)| 6 Cg‖F‖, ∀F ∈ H0(λ).

Let (U,ϕ) be a holomorphic chart of G/T = GC/B such that gT ∈ U. Then ϕ maps

U→ ϕ(U) ⊂ Cn and we have

‖F‖2 =
∫
G/T

|F(uT)|2vol (6.3)

>
∫
U

|F(uT)|2vol (6.4)

=

∫
ϕ(U)

(ϕ−1)∗(|F(uT)|2vol) (6.5)

Now, (ϕ−1)∗(|F(uT)|2vol) is the pull-back of the top-degree form |F(uT)|2vol, hence

(ϕ−1)∗(|F(uT)|2vol) = |F ◦ϕ−1(z)|2[(ϕ−1)∗vol]

= |F ◦ϕ−1(z)|2p(z)dz,

where p(z) is a function on ϕ(U), either positive or negative everywere. Now, (6.5)

becomes

‖F‖2 >
∫
U

|F(uT)|2vol =

∫
ϕ(U)

|F ◦ϕ−1(z)|2p(z)dz

and the last equality forces p(z) to be positive on ϕ(U).

Suppose z ∈ ϕ(U) is the image of gT under ϕ : ϕ(gT) = z. Let D be a ball

around z contained in ϕ(U). Denote F ◦ ϕ−1 by ~F. The application of the Mean

Value Theorem for the harmonic function ~F [A01, p. 6; F00, p. 8] together with the

Cauchy-Schwarz inequality gives us

|~F(z)| 6
1

Vol(D)

∫
D

|~F(t)|dt =
1

Vol(D)

∫
D

1√
p(t)

|~F(t)|
√
p(t)dt

6
1

Vol(D)

(∫
D

1

p(t)
dt

)1/2(∫
D

|~F(t)|2p(t)dt

)1/2

6 Cz‖F‖

which completes the proof of the lemma.
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Remark 6.4. Arguing in the same manner, we obtain the continuity of point evalua-

tions in the space H0(L) (Lemma 5.3).

Now we shall prove Theorem 6.2. If H0(λ) = 0 we are done. Else, we argue

much as in the proof of Theorem 5.4, part 3: Consider the G-invariant inner product

(·, ·) on H0(λ), given by (6.2). By the Riesz representation theorem, for every z ∈ GC

there exists a unique vector Ez ∈ H0(λ) such that

F(z) = (Ez, F), ∀F ∈ H0(λ). (6.6)

For w ∈ GC that gives us

Ez(w) = (Ew,Ez). (6.7)

For all z,w ∈ GC

Ez(w) = �Ew(z). (6.8)

Now, for g ∈ GC one has

Egz = gEz. (6.9)

Indeed, for all F ∈ H0(λ),

(Egz, F) = F(gz) = (�gF)(z) = (Ez, �gF) = (gEz, F).

Hence Egz = gEz. Suppose that H
′ is a nonzero closed subspace of H0(λ) invariant

under the G-action. Let E ′z be the orthogonal projection of Ez on H ′. Then E ′z

satis�es analogs of (6.6{6.9). Consider the function Φ(z) =
E ′z(z)

Ez(z)
. Using the

Iwasawa decomposition [B04, p. 203] GC = GB together with the fact that G acts

unitarily (but not GC), we get:

For g ∈ GC,g = ub, where u ∈ G, b ∈ B,

Φ(g) =
E ′g(ub)

Eg(ub)
=
χ(b)E ′g(u)

χ(b)Eg(u)
=
E ′u(g)

Eu(g)
=
E ′u(ub)

Eu(ub)

=
χ(b)E ′u(u)

χ(b)Eu(u)
=
E ′u(u)

Eu(u)
=

(uE ′e,uE
′
e)

(uEe,uEe)
=

(E ′e,E
′
e)

(Ee,Ee)
= Φ(e)

so Φ(z) is constant. That gives us

E ′z(z) = cEz(z), ∀z ∈ GC. (6.10)

For �xed z both E ′z(w) and cEz(w) are antiholomorphic as functions of w and by

(6.8) both are holomorphic functions of z, w being �xed. Since they coincide on the

diagonal z = w, it follows by analytic continuation that they coincide everywhere

[B67, 5.14.7]. Therefore (6.10) becomes

E ′z(w) = cEz(w).
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The condition above easily gives us H ′ = H0(λ) since any F orthogonal to H ′ in

H0(λ) is orthogonal to E ′z for every z and hence is zero by (6.6). Thus H0(λ) is

irreducible.

6.2 H0(λ) is non-zero

In this section we consider a compact Lie group G together with a dominant integral

form λ ∈ t∗. We want to show that the resulting space H0(λ) does not reduce to

the zero function.

6.2.1 Heuristics and U(n)

Heuristics 1: Instead of looking for an arbitrary nonzero F ∈ H0(λ) we will focus on

�nding a (nonzero) highest weight vector F ∈ H0(λ). Then F is going to satisfy

uF = F ∀u ∈ N+ = exp(⊕α>0g
α).

Now,

uF = F

(uF)(g) = F(g)

F(ug) = F(g).

Hence we will have

F(ub) = F(b) = χ(b)F(1)

for all u ∈ N+ and b ∈ B. Picking F(1) = 1 de�nes it entirely in N−B:

F(ub) = χ(b). (6.11)

But N−B is known to be open dense in GC (by the Bruhat decomposition recalled

in the Appendix), so our task is to show that (6.11) extends from N−B to an

antiholomorphic function F on all GC.

Heuristics 2: Starting withG = U(n) we consider its complexi�cationGC = GL(n,C).
The Lie algebra gl(n,C) of GC = GL(n,C) has a root space decomposition

gl(n,C) = n− ⊕ tC ⊕ n+

Here tC consists of all diagonal matrices. The subalgebras n− and n+ are of the

following form:

n− =


 0 0

. . .

∗ 0


 , n+ =


 0 ∗

. . .

0 0



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We denote tC ⊕ n+ by b, that gives us

b =


 d1 ∗

. . .

0 dn


 .

Recall that the maximal torus in U(n) consists of all diagonal matrices in U(n).

From n− and b we get N−

N− =


 1 0

. . .

∗ 1




and the Borel subgroup B:

B =


 b11 ∗

. . .

0 bnn


 .

Under the identi�cation (4.2), the dominant integral elements λ ∈ t∗ take the form

λ =

 λ1 0
. . .

0 λn


with the conditions λi ∈ Z and λ1 > λ2 > · · · > λn. That gives us a character χ on

T in the following way. Write H for the element in t,

H =

 iθ1
. . .

iθn


so that 〈λ,H〉 = λ1θ1+ · · ·+ λnθn. Then χ(exp(H)) = ei〈λ,H〉 = (eiθ1)λ1 . . . (eiθn)λn

or

χ :

 z1
. . .

zn

 7→ (z1)
λ1 . . . (zn)

λn . (6.12)

As soon as we are going to extend the character χ from T to B and then to a function
�F on N−B and eventually on all of GC, we need to use a form other than (6.12) for
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χ. Putting li = λi − λi+1 (with λn+1 := 0) we have

λ =


l1 + · · ·+ ln

l2 + · · ·+ ln
. . .

ln


with l1, l2, . . . , ln−1 ∈ Z+ and ln ∈ Z, and (6.12) becomes

χ :

 z1
. . .

zn

 7→ (z1)
l1(z1z2)

l2 . . . (z1z2 . . . zn)
ln ,

where l1, l2, . . . , ln−1 are non-negative integers and ln a (possibly negative) integer.

As in (5.2) this extends to a character on B. This de�nes the function (6.11) (highest

weight vector) on the big cell N−B ⊂ GL(n,C) as follows:

F(ldu) = F(lb) = χ(b) = χ(d) (6.13)

for l ∈ N−,d ∈ TC, and u ∈ N+. Explicitly, in GL(n,C), this map is

F : ldu =


1

l21 1

l31 l32 1
. . .

ln1 ln2 1




d1

d2
d3

. . .

dn




1 u12 u13 u1n

1 u23 u2n

1
. . . un−1n

1



7→ (d1)l1(d1d2)l2 . . . (d1d2 . . .dn)ln .

We have de�ned the function F on the \big cell" N−B ⊂ GC and our task is to

show that it extends to an antiholomorphic function on all of GC. We know by

the Bruhat decomposition (reviewed in the Appendix) that Weyl group translates

_wN−B of the big cell make a covering of GC by open dense sets. So it is enough to

show that (6.13) extends to each translate.

Heuristics 3: Consider the case GC = GL(4,C). As we know on the big cell N−B the

function F sends

ldu =


1

a 1

b c 1

d e f 1



x

y

z

t




1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1


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to

(x)l1(xy)l2(xyz)l3(xyzt)l4.

We consider di�erent translates _wldu of the element ldu, assuming they belong to

the big cell, which is open dense in GC. Hereafter R .E.F. stands for row echelon

form: R.E.F.(ldu) = du. Note that under our assumptions, _wl is in the big cell

too, so we can decompose it as _wl = l1d1u1. Now F( _wldu) = F(l1d1u1du) =

F(d1u1du) = F(R.E.F.( _wl)du) for _wldu from the big cell N−B.

� Case w = (12): then

F( _wldu) = F




0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1



1

a 1

b c 1

d e f 1



x

y

z

t



1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1




= F

R.E.F.


a 1 0 0

−1 0 0 0

b c 1 0

d e f 1




x

y

z

t



1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1




= F



a 1 0 0

a−1 0 0

1 0

1



x

y

z

t



1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1




= F


ax ∗ ∗ ∗

a−1y ∗ ∗
z ∗
t


= (ax)l1(xy)l2(xyz)l3(xyzt)l4

� Case w = (123) = (12)(23) :

F( _wldu) = F



0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1



1

a 1

b c 1

d e f 1



x

y

z

t



1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1




= F

R.E.F.


a 1 0 0

b c 1 0

1 0 0 0

d e f 1




x

y

z

t



1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1



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= F



a 1 0 0

c− a−1b 1 0

(c− a−1b)−1a−1 0

1



x

y

z

t



1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1




= F


ax ∗ ∗ ∗

(c− a−1b)y ∗ ∗
(c− a−1b)−1a−1z ∗

t


= (ax)l1((ac− b)xy)l2(xyz)l3(xyzt)l4

� Case w = (1234) = (12)(23)(34):

F( _wldu) = F




0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0



1

a 1

b c 1

d e f 1



x

y

z

t



1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1




= F

R.E.F.


a 1 0 0

b c 1 0

d e f 1

−1 0 0 0




x

y

z

t



1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1




= F



a 1 0 0

c− a−1b 1 0

f− (c− a−1b)−1(e− a−1d) 1

∗



x

y

z

t



1 a ′ b ′ c ′

1 d ′ e ′

1 f ′

1




= F


ax ∗ ∗ ∗

(c− a−1b)y ∗ ∗
(f− (c− a−1b)−1(e− a−1d))z ∗

∗


= (ax)l1((ac− b)xy)l2((acf− ae− bf+ d)xyz)l3(xyzt)l4

= al1

∣∣∣∣∣a 1

b c

∣∣∣∣∣
l2

∣∣∣∣∣∣∣
a 1 0

b c 1

d e f

∣∣∣∣∣∣∣
l3

(x)l1(xy)l2(xyz)l3(xyzt)l4.

We can see that in each case we have

F( _wg) = F( _wldu) = det1( _wl)l1det2( _wl)l2det3( _wl)l3xl1(xy)l2(xyz)l3(xyzt)l4,
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where deti(m) denotes the i-th principal minor of a matrix m. Observe that

deti( _wldu) = deti( _wl)deti(d). Indeed, writing matrices in block form, where

the �rst block has size i× i, we have

_wldu =

(
( _wl)1 ( _wl)2
( _wl)3 ( _wl)4

)(
d1 0

0 ∗

)(
u1 ∗
0 ∗

)

=

(
( _wl)1 ( _wl)2
( _wl)3 ( _wl)4

)(
d1u1 ∗
0 ∗

)
=

(
( _wl)1d1u1 ∗
∗ ∗

)

This con�rms deti( _wldu) = deti( _wl)deti(d).

After this consideration, F( _wg) above becomes F( _wg) = det1( _wg)l1 . . .detn( _wg)ln

or in other words, renaming _wg as g,

F(g) = det1(g)l1det2(g)l2 . . .detn(g)ln . (6.14)

Now, taking F : GC → C of the form (6.14) we get an antiholomorphic function that

clearly extends F from the big cell. This concludes our heuristics and we state:

Theorem 6.5. H0(λ) is non-zero for the U(n) case.

Proof. We check that the function (6.14) is really in H0(λ). Indeed, by the same

block multiplication argument as above we have

deti(gb) = deti(gd
′u ′) = deti(gd

′) = deti(g)deti(d
′) = deti(g)deti(b).

Hence

F(gb) =

n∏
i=1

deti(gb)li =

n∏
i=1

(deti(g)deti(b))li

= χ(b)

n∏
i=1

deti(g)li = χ(b)F(g).

We have constructed a nonzero vector F in the G-module H0(λ).

Remark 6.6. The function F in (6.14) is indeed antiholomorphic, as the conjugate

of a polynomial map. Moreover, if λ ∈ t∗ is not dominant, then some of the li
in (6.14) would be negative, forcing F (or even the character (6.12)) to not be

(anti)holomorphic. Hence, if λ is not dominant, then the space H0(λ) is zero. Also

note that Theorems 6.2 and 2.18 imply that H0(λ) is �nite-dimensional.
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6.2.2 Sp(2n)

Let J denote the n × n matrix


0 1

1

. .
.

1 0

. Let M =

(
0 J

−J 0

)
. De�ne

Sp(2n,C) = {g ∈ SL(2n,C) : tgMg = M}. In other words, Sp(2n,C) is the set of
�xed points of the involution σ of SL(2n,C):

Sp(2n,C) = {g ∈ SL(2n,C) : σ(g) = g}, (6.15)

given by σ(g) =M(tg−1)M−1.

In this setting, the maximal torus T of Sp(2n) = Sp(2n,C)∩U(2n) consists of
the following matrices

eiθ1

. . .

eiθn

e−iθn

. . .

e−iθ1


, θi ∈ R

together with the Cartan subalgebra

t =





iθ1
. . .

iθn
−iθn

. . .

−iθ1


: θi ∈ R


.

The groups N− and B in SL(2n,C) are the unipotent lower triangular and

the upper triangular matrices of determinant 1. Taking their σ-�xed elements we

obtain N− and B for Sp(2n,C):

N− =

�u =

 1 0
. . .

∗ 1

 : �u ∈ Sp(2n,C)

 ,
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B =


b =



b1
. . . ∗

bn
b−1
n

0
. . .

b−1
1


: b ∈ Sp(2n,C)


.

Now, the dominant integral elements λ ∈ t∗ under the identi�cation

ig→ g∗

x 7→ 1

2i
Tr(x ·),

(6.16)

are as follows

λ =



λ1
. . .

λn
−λn

. . .

−λ1


where λ1 = l1 + · · ·+ ln, λ2 = l2 + · · ·+ ln, . . . , λn = ln for non-negative integers li.

That gives us a character on T as follows. For H ∈ t,

H =



iθ1
. . .

iθn
−iθn

. . .

−iθ1


we have 〈λ,H〉 =

∑
i λiθi. Now, χ(exp(H)) = e

i〈λ,H〉 = (eiθ1)λ1 . . . (eiθn)λn and on

T :

χ :



eiθ1

. . .

eiθn

e−iθn

. . .

e−iθ1


7→ (eiθ1)l1(eiθ1eiθ2)l2 . . . (eiθ1eiθ2 . . . eiθn)ln
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As in (5.2) this extends to a character of B

χ :



b1
. . . ∗

bn
b−1
n

0
. . .

b−1
1


7→ (b1)

l1(b1b2)
l2 . . . (b1b2 . . .bn)

ln .

This de�nes the function (6.11) (highest weight vector) on the big cell N−B ⊂
Sp(2n,C) as follows:

F(ldu) = F(lb) = χ(b) = χ(d) (6.17)

for l ∈ N−,d ∈ TC, and u ∈ N+.

Arguing in the same way as for the GL(n,C) case we obtain the antiholomor-

phic function F ∈ H0(λ) of the following form

F(g) = det1(g)l1det2(g)l2 . . .detn(g)ln , (6.18)

and we prove

Theorem 6.7. H0(λ) is non-zero for the Sp(2n) case.

6.2.3 SO(2n+ 1)

Let N be the (2n + 1)×(2n + 1) matrix


1

1

. .
.

1

 . Replacing M by N in

the de�nition (6.15) of Sp(2n,C) we obtain the de�nition of

SO(2n+ 1,C) = {g ∈ SL(2n+ 1,C) : σ(g) = g}, (6.19)

where σ(g) = N(tg−1)N−1.

In the case of SO(2n + 1) = SO(2n + 1,C) ∩ U(2n + 1), the maximal torus T

consists of the following matrices

eiθ1

. . .

eiθn

1

e−iθn

. . .

e−iθ1


.
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The corresponding Cartan subalgebra t is



iθ1
. . .

iθn
0

−iθn
. . .

−iθ1




, (6.20)

where θi ∈ R. The dominant integral elements λ ∈ t∗ under the identi�cation (6.16)

take the form 

λ1
. . .

λn
0

−λn
. . .

−λ1


,

where λ1 = l1 + · · · + ln, λ2 = l2 + · · · + ln, . . . , λn = ln for non-negative integers

l1, . . . , ln.

Write H for element in t of the form (6.20) so that

〈λ,H〉 =
∑
i

λiθi = (l1 + · · ·+ ln)θ1 + (l2 + · · ·+ ln)θ2 + · · ·+ lnθn.

Then χ(exp(H)) = ei〈λ,H〉 or

χ :



z1
. . .

zn
1

z−1
n

. . .

z−1
1


7→ (z1)

l1(z1z2)
l2 . . . (z1z2 . . . zn−1)

ln−1(z1z2 . . . zn)
ln .

This de�nes the function (6.11) (highest weight vector) on the big cell N−B ⊂
SO(2n+ 1,C) as follows:

F(ldu) = F(lb) = χ(b) = χ(d) (6.21)
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for l ∈ N−,d ∈ TC, and u ∈ N+.

We argue in the same way as for the GL(n,C) case to obtain the antiholomor-

phic function F ∈ H0(λ) in the following form

F(g) = det1(g)l1det2(g)l2 . . .detn(g)ln , (6.22)

and we prove

Theorem 6.8. H0(λ) is non-zero for the SO(2n+ 1) case.

6.2.4 SO(2n)

Let N be the 2n×2n matrix


1

1

. .
.

1

 . ReplacingM by N in the de�nition

(6.15) of Sp(2n,C) we obtain the de�nition of

SO(2n,C) = {g ∈ SL(2n,C) : σ(g) = g}, (6.23)

where σ(g) = N(tg−1)N−1.

The maximal torus T of SO(2n) = SO(2n,C)∩U(2n) consists of the following
matrices: 

eiθ1

. . .

eiθn

e−iθn

. . .

e−iθ1


.

The corresponding Cartan subalgebra t is

iθ1
. . .

iθn
−iθn

. . .

−iθ1


, (6.24)
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where θi ∈ R. The dominant integral elements λ ∈ t∗ under the identi�cation (6.16)

take the form 

λ1
. . .

λn
−λn

. . .

−λ1


,

where λi ∈ Z and λ1 > λ2 > · · · > λn−1 > |λn|. De�ning li = λi − λi+1 for i < n

and ln = λn−1 + λn we have

λ1 = l1 + · · ·+ ln−1 +
ln−ln−1

2

λ2 = l2 + · · ·+ ln−1 +
ln−ln−1

2

. . .

λn−1 = ln−1 +
ln−ln−1

2

λn = ln−ln−1
2

where l1, . . . ln are non-negative integers such that ln − ln−1 ∈ 2Z. Writing H for

the element in t of the form (6.24), we have 〈λ,H〉 =
∑
i λiθi and the character is

given on T by χ(exp(H)) = ei〈λ,H〉 for H ∈ t. Take the element of T of the form

t =



z1
. . .

zn
z−1
n

. . .

z−1
1


.

Now we want to construct an antiholomorphic function on GC out of the character

χ. To succeed in that we write χ in two di�erent ways depending on the sign of

λn = ln−ln−1
2

. Namely,

χ(t) =


(z1)

l1(z1z2)
l2 . . . (z1z2 . . . zn−1)

ln−1(z1z2 . . . zn)
ln−ln−1

2 if λn = ln−ln−1
2

> 0,

(z1)
l1(z1z2)

l2 . . . (z1z2 . . . zn−1)
ln(z1z2 . . . z

−1
n )

ln−1−ln
2 if λn = ln−ln−1

2
< 0.

This de�nes the function (6.11) (highest weight vector) on the big cell N−B ⊂
SO(2n,C) as follows:

F(ldu) = F(lb) = χ(b) = χ(d) (6.25)
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for l ∈ N−,d ∈ TC, and u ∈ N+.

Arguing in the same way as for the GL(n,C) case we obtain the antiholomor-

phic function F ∈ H0(λ) in the following form

F(g) =


det1(g)l1det2(g)l2 . . .detn−1(g)ln−1detn(g)

ln−ln−1
2 if λn = ln−ln−1

2
> 0,

det1(g)l1det2(g)l2 . . .detn−1(g)lndetn(g0gg0)
ln−1−ln

2 if λn = ln−ln−1
2

< 0,

where g0 interchanges en with en+1:

g0 =



1
. . .

0 1

1 0
. . .

1


n

n+ 1.

Lemma 6.9. The function F(g), as de�ned above, indeed extends the function

(6.25) from the big cell.

Proof. When λn > 0, direct computation and the observation that deti(ldu) =

d11 . . .dii complete the proof. When λn < 0, the only di�erence is that there

remains to show that detn(g0gg0) extends F(ldu) = d11d22...d
−1
nn. To this end, note

that the lower (resp. upper) triangular matrices l ∈ N− and u ∈ N+ in SO(2n,C)
have zeros in the (n+ 1,n), resp. (n,n+ 1) entry (compare [B05, p. 212]). Indeed,

take l ∈ N− of the form

l =

(
A 0

C D

)
, so l−1 =

(
A−1 0

−D−1CA−1 D−1

)
.

We know that σ(l) = l and this gives us C = −DJtCJA. Now let e1, en be vectors

from the standard basis in Cn and compute

C1n = te1Cen

= −te1DJ
tCJAen

= −te1J
tCJen (because te1D = te1 and Aen = en by triangularity)

= −ten
tCe1

= −(tC)n1

= −C1n.
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Hence ln+1,n = C1n = 0. Likewise (taking the transpose) un,n+1 = 0 for u ∈ N+

in SO(2n,C). This observation con�rms that g0lg0 and g0ug0 are again unipotent

lower (resp. upper) triangular matrices in SO(2n,C). Now take g = ldu in the big

cell N−B of SO(2n,C) and compute

detn(g0gg0) = detn(g0lg0g0dg0g0ug0)

= detn(g0lg0)detn(g0dg0)detn(g0ug0)

= detn(g0dg0)

= d11d22...d
−1
nn.

Thus we can state our �nal result, which completes the proof of Theorem 6.1:

Theorem 6.10. H0(λ) is non-zero for the SO(2n) case.

Remark 6.11. In the case λn < 0 we could also write

χ(t) = (z1)
l1(z1z2)

l2 . . . (z1z2 . . . zn−1)
ln−1(z−1

1 z
−1
2 . . . z−1

n )
ln−1−ln

2 .

That gives us the function

F(g) = det1(g)l1det2(g)l2 . . .detn−1(g)ln−1detn(g−1)
ln−1−ln

2

on SO(2n,C) which is antiholomorphic for ln−ln−1
2

< 0 and coincides with (6.25)

on the big cell.



Appendix A

BRUHAT DECOMPOSITION

In this appendix we review the Bruhat decomposition of the classical complex

groups, namely, GL(n,C), Sp(2n,C), SO(2n,C) and SO(2n + 1,C), following the

exposition in [S74, pp. 72{75].

Let J denote the n × n matrix


0 1

1

. .
.

1 0

. Let M =

(
0 J

−J 0

)
. De�ne

Sp(2n,C) as the set of �xed points of the involution σ of SL(2n,C):

Sp(2n,C) = {g ∈ SL(2n,C) : σ(g) = g},

given by σ(g) =M(tg−1)M−1.

Recall that for a compact Lie group G we use T ,W, and B to denote a maximal

torus of G, the resulting Weyl group, and a standard Borel subgroup of GC.

Theorem A.1 (Bruhat Lemma). Let GC = Sp(2n,C). Then,

(a) GC can be written as GC =
⊔
w∈W BwB,

(b) BwB = Bw ′B i� w = w ′.

Proof. Recall that the Weyl group is W = N(T)/T and denote a representative of

the element w ∈ W in N(T) by _w. In GL(2n,C) the Bruhat lemma follows from

the Gaussian elimination process and can be stated as follows [H92, pp. 107{109]:

GL(2n,C) =
⊔
w∈W

U _wB,

and each element of U _wB is uniquely expressible in the form u _wb with b ∈ B and

u ∈ Uw=U ∩ _w�U _w−1. (Here U and �U are respectively the unipotent upper and

lower triangular groups.)

Note that σ keeps B, T and N(T) (of GL(2n,C)) invariant:

(a) Let x ∈ B. Then σ(x) = M(tx−1)M−1. Now x−1 ∈ B again, so let x−1 =(
X Y

0 Z

)
. Hence σ(x) =

(
JtZJ −JtYJ

0 JtXJ

)
is in B too.

(b) Similarly, σ(T) ⊂ T .

(c) Let n ∈ N(T). Then nTn−1 ⊂ T gives us σ(n)Tσ(n)−1 ⊂ T and thus σ(n) ∈ N(T).
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The automorphism σ acts on Uw as follows. If u ∈ Uw = U ∩ _w�U _w−1 then

σ(u) ∈ σ(U) ∩ σ( _w)σ(�U)σ( _w)−1.

Now, σ( _w) ∈ N(T),σ(�U) ⊂ �U and

σ(u) ∈ Uw ′.

Let g be an element in Sp(2n,C), then

g = u _wb uniquely in GL(2n,C)

and

g = σ(g) = σ(u)σ( _w)σ(b).

Hence

g = σ(g) = uw ′nw ′b
′

(with uw ′ ∈ Uw ′,nw ′ ∈ N(T) corresponding to w ′ ∈W,b ′ ∈ B).
Using uniqueness of the decomposition, we get w = w ′, σ( _w) ∈ T _w, σ(u) = u

and σ(b) = b(modT). Thus from the Bruhat decomposition in GL(2n,C) we

obtain the (unique) decomposition in Sp(2n,C).

Remark A.2. Replacing −J by J inM we obtain the Bruhat Lemma and its proof for

SO(2n,C) and SO(2n+ 1,C).
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