
Georgia Southern University 

Digital Commons@Georgia Southern 

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of 

Spring 2015 

Automorphisms of Graph Curves on K3 Surfaces 
Joshua C. Ferrerra 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd 

 Part of the Algebraic Geometry Commons 

Recommended Citation 
Ferrerra, Joshua C., "Automorphisms of Graph Curves on K3 Surfaces" (2015). Electronic 
Theses and Dissertations. 1268. 
https://digitalcommons.georgiasouthern.edu/etd/1268 

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. 
Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia 
Southern. For more information, please contact digitalcommons@georgiasouthern.edu. 

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/176?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1268?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


AUTOMORPHISMS OF GRAPH CURVES ON K3 SURFACES

by
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ABSTRACT

We examine the automorphism group of configurations of rational curves on K3

surfaces. We use the properties of finite automorphisms of P1 to examine what re-

strictions a given elliptic fibration imposes on the possible finite order non-symplectic

automorphisms of the K3 surface. We also examine the fixed loci of these automor-

phisms, and construct an explicit fibration to demonstrate the process.
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2.12 Alternate action of 1 ∈ Z2 on the graph Ẽ7 . . . . . . . . . . . . . . . . 19
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CHAPTER 1

INTRODUCTION TO K3 SURFACES

Over recent decades, much work has been done to study the automorphism group of

K3 surfaces by authors such as V.V. Nikulin, D. Zhang, M. Artebani, A. Sarti, and

many more [1]. When a K3 surface X has Picard rank ≥ 5, it admits an elliptic

fibration over P1. The singular fibers of such a fibration are also well studied, and

were classified by Kodaira in the 1960’s [9][10]. Many of the singular fibers are con-

figurations of intersecting rational curves, which we will call graph curves. We use

these results along with properties of Aut(P1) to examine what restrictions a given

fibration imposes on the possible finite order symplectic and non-symplectic automor-

phisms of the K3 surface. We also examine the fixed loci of these automorphisms,

and construct an explicit fibration to demonstrate the process.

1.1 Definitions

We begin by defining the objects that interest us, beginning with divisors. Through-

out this section, assume X is a smooth compact complex variety.

Definition 1.1. A subset H of X is called a hypersurface if it is the zero set of a

single polynomial f : X → C. We use the notation

H = V (f).

If f is irreducible over C, then we say that H is an irreducible hypersurface of X.

Definition 1.2. A divisor of X is a finite formal sum

D :=
∑
i

aiCi

where each ai ∈ Z and each Ci is an irreducible hypersurface of X. We call the union

∪iCi the support of D. The set of all divisors of X form a free abelian group, denoted

Div(X).
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Definition 1.3. Let f be a rational function on X. We define the principal divisor

of f to be the divisor

div(f) :=
∑
C⊂X

νC(f)C,

where the sum runs over all hypersurfaces C in X, and νC(f) is the multiplicity of

the zero or pole of f on C. If f is zero on C, then νC(f) > 0 and if f is infinite on

C, then νC < 0. We denote the set of principal divisors by PDiv(X).

The set PDiv(X) is a normal subgroup of Div(X) since

div(f)− div(g) = div(f/g).

Hence, the quotient Div(X)/PDiv(X) is well defined.

Definition 1.4. The quotient group Pic(X) := Div(X)/PDiv(X) is called the Picard

group of X. Two divisors from the same class in Pic(X) are called linearly equivalent.

Example 1.5. Let X = Pn. Then Pic(X) ' Z. To see this, first define the map

deg : Div(X) → Z by
∑

i aiCi 7→
∑

i ai. First let f be a polynomial on X. Since f

has the same total multiplicity of roots as it does poles, then we have deg(div(f)) = 0.

Now, for any rational polynomial f/g, we have

deg(div(f/g)) = deg(div(f))− deg(div(g)) = 0,

showing that PDiv(X) ⊂ ker(deg). Now, suppose that α =
∑m

i=1 aiCi ∈ ker(deg).

That is,
∑
ai = 0. Without loss of generality, assume that ai > 0 for i = 1, . . . , k

and ai < 0 for i = k + 1, . . . ,m. Let fi be the irreducible polynomials such that

Ci = V (fi) for i = 1, . . . ,m. We have

α = div

(
fa11 · · · f

ak
k

f
ak+1

k+1 · · · famm

)
,

which shows that ker(deg) = PDiv(X). Since deg is clearly surjective, then

Pic(X) =
Div(X)

PDiv(X)
=

Div(X)

ker(deg)
∼= Z.
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Hence, Pic(X) is generated by the class of a single hyperplane [H]. That is,

Pic(X) = Z[H].

Remark 1.6. For a K3 surface X, the Picard group Pic(X) is isomorphic to NS(X),

the so called Nerón-Severi group of X.

While a divisor D may not globally be a principal divisor, there exists an open

covering {Ui} of X and rational functions fi such that D|Ui
= div(fi|Ui

) for all i.

Let C ⊂ X be a curve not contained in the support of D. We denote by D|C , the

restriction given locally by div(fi|Ui∩C).

Definition 1.7. Suppose X is an n dimension variety. Let ω be a meromorphic top

form on X. Let {Ui} be an open covering of X with local coordinates {zi,1, . . . , zi,n}.

Then locally we can write ω|Ui
= fi dzi,1 ∧ . . . ∧ dzi,n. The collection of principal

divisors div(fi) defines a divisor of X that we call the canonical divisor of X. We

denote the canonical divisor of X by KX .

Proposition 1.8. The class of KX in Pic(X) is independent of choice of meromor-

phic form.

Proof. Let ω and ω′ be meromorphic top forms on X, with fi and f ′i being the maps

associated to the cover {Ui}. Suppose KX and K ′X are the divisors determined by ω

and ω′, respectively. On any overlap Ui ∩Uj, we have fi = Jijfj and f ′i = Jijf
′
j where

Jij is the jacobian of the change of coordinates. This shows that fi/f
′
i is the same

over all X. We have KX −K ′X = div(fi/f
′
i).

Example 1.9. Let X = P1. For homogeneous coordinates [z1 : z2], define an open

covering {Ui} where Ui = {[z1 : z2] : zi 6= 0} for i = 1, 2. We have the local

coordinates Z1 = z2/z1, Z2 = 1/Z1. Define the one form ω where on U1, we have

ω|U1 = Z2 dZ1. Here we have a pole at [1 : 0]. Note that Z2 dZ1 = −Z1 dZ2 on
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U1 ∩U2, so ω|U2 = −Z1 dZ2, which has a pole at [0 : 1]. Thus, KX = −([1 : 0])− ([0 :

1]) = −2[pt] ∈ Pic(X) where [pt] is the class of a point in Pic(X).

Definition 1.10. A K3 surface is a surface X such that

KX ≡ 0 and π1(X) = 0.

where π1(X) denotes the fundamental group of X.

Remark 1.11. The condition π1(X) = 0 excludes Abelian surfaces.

Example 1.12.

• A double cover of P2 branched along a smooth sextic is a K3 surface.

• A non-singular degree 4 surface in P3 is a K3 surface (see example 1.15).

The Hodge diamond of a K3 surface X is a diagram containing the dimensions of

each of the spaces hp,q(X). These spaces are computed in [8] and the hodge diamond

is shown in figure 1.1.

1

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

1

1

0 0

1 20 1

0 0

1

Figure 1.1: The Hodge diamond of a K3 surface

Proposition 1.13. (see [8]) Let C be a smooth curve on a surface X. Then

KC = (KX + C) |C .

The formula above is called the adjunction formula.
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Example 1.14. Let X = P2 and C = P1. We can use adjunction to show that

KX = −3[pt]. Since C is linearly equivalent to a line L in P2, then by proposition

1.13 and example 1.9, we have

−2[pt] = (KX + L)|L = KX |L + [pt].

Thus, KX |L = −3[pt], which implies KX = −3[L] where [L] is the class of a line in

Pic(X). This process can be applied inductively to deduce that

KPn = −(n+ 1)[H]

where [H] is the class of a codimension 1 hypersurface in Pic(Pn).

Example 1.15. Let X = P3 and C be a non-singular degree 4 surface in X. We

can use adjunction to show that KC ≡ 0. By example 1.14, KX = −4[H]. Also, in

Pic(X), we have [C] = 4[H]. Hence,

KC = (KX + C)|C ≡ (−4[H] + 4[H])|C = 0.

1.2 The Picard Lattice

Definition 1.16. Let D be a divisor of X and let C ⊂ X be an irreducible curve

not contained in the support of D. Define the intersection D · C to be the integer

D · C := deg(D|C), where deg is the map described in example 1.5.

Lemma 1.17. If D and D′ are linearly equivalent divisors of X, and C ⊂ X is a

curve not contained in the support of D or D′, then D · C = D′ · C.
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Proof. Suppose D = D′ + div(f). Then

D · C = (D′ + div(f)) · C

= deg((D′ + div(f))|C)

= deg(D′|C) + deg(div(f)|C)

= deg(D′|C) + deg(div(f |C)

= deg(D′|C).

Corollary 1.18. The intersection D·C is well defined even if the curve C is contained

in the support of D.

Proof. Suppose C is contained in the support of D. Write D :=
∑

i aiCi as in

definition 1.2. Since C is irreducible, then C = Cj for some j and aj 6= 0. Let f be a

rational function such that νC(f) = aj. Then D is linearly equivalent to D − div(f)

and C is not contained in the support of D − div(f). Define

D · C := (D − div(f)) · C.

For divisors D and
∑

i aiCi we can express their intersection number as

D ·
∑
i

aiCi :=
∑
i

ai(D · Ci).

Lemma 1.19. For divisors D and D′ on X, we have

i. D · (aD′) = a(D ·D′) for all a ∈ Z,

ii. D ·D′ = D′ ·D.

Proposition 1.20. The intersection number defines an integer valued symmetric

bilinear form on Pic(X).
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Proof. This follows from lemma 1.17 and lemma 1.19.

Definition 1.21. Let G be a finitely generated free abelian group, and let

q : G × G → Z be a quadratic form. The pair (G, q) is called a lattice. The lattice

(G, q) is called even if q(x) ∈ 2Z for all x ∈ G. Let V be the real vector space G⊗ZR

and let Q be the extension of q to V . The rank of (G, q) is defined to be dimV and

the signature of (G, q) is the pair of positive integers (b+, b−) where b+ is the number

of positive eigenvalues of Q and b− is the number of negative eigenvalues of Q. The

Gram matrix of a lattice is a matrix representation of the form Q. If the determinant

of the Gram matrix of G is ±1, then we say that (G, q) is unimodular.

Example 1.22. The following are some well known lattices.

• The U lattice has rank 2, is unimodular, and has signature (1, 1). Its Gram

matrix is 0 1

1 0


• The E8 lattice has rank 8, is unimodular, even, and has signature (0, 8). Its

Gram matrix is 

−2 0 1 0 0 0 0 0

0 −2 0 1 0 0 0 0

1 0 −2 1 0 0 0 0

0 1 1 −2 1 0 0 0

0 0 0 1 −2 1 0 0

0 0 0 0 1 −2 1 0

0 0 0 0 0 1 −2 1

0 0 0 0 0 0 1 −2


Corollary 1.23. The group Pic(X) together with the intersection number defines a

lattice called the Picard Lattice of X.
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1.3 The K3 Lattice

Recall that an isometry of lattices is an isomorphism φ of groups such that φ(x)·φ(y) =

x·y. It is well known that the K3 lattice, ΛK3 is isometric to E2
8⊕U3. For an in depth

justification of this fact, see [8]. The argument follows from the fact that the lattice

H2(X,C) with intersection is even, unimodular, and has signature (b+, b−) = (3, 19).

Then refer to the theorem by Milnor [11].

Theorem 1.24. Let Λ be an indefinite unimodular lattice. If Λ is even, then Λ '

E8(±1)m ⊕ Un for some integers m and n.

Thus, the Picard lattice of a K3 surface is a sub-lattice of E2
8 ⊕ U3.



CHAPTER 2

ACTION ON ELLIPTICALLY FIBERED K3 SURFACES

2.1 Preliminaries

Now we look at how configurations of rational curves arise from K3 surfaces1. Let

X be a K3 surface with an elliptic fibration π : X → P1. By this we mean that the

generic fiber π−1(t) is a smooth elliptic curve. If the rank of Pic(X) ≥ 5, then such a

fibration exists [7]. Recall that a section s of the fibration is a map s : P1 → X, such

that π◦s = id. We will often refer to the image a section s by simply s. If the fibration

admits a section, then we can express the fiber at t using the Weierstrass equation

y2 = x3 +f(t)x+g(t). Recall that this expression defines a non-singular elliptic curve

if and only if the discriminant ∆ = 4f 3 + 27g2 is non-zero. As one might expect,

the most interesting fibers are those at which ∆ = 0, the singular fibers. Depending

on the vanishing orders of ∆, singular fibers have 11 different configurations. These

make up the famous Kodaira’s list of singular fibers (see appendix A.1). Many of

these curves are indeed configurations of rational curves. So, it will be useful to

remind ourselves of some properties of Aut(P1).

For an automorphism φ of P1, there is a transformation A ∈ GL2(C) such that

the following diagram commutes for the coordinate maps X1, X2.

C2 A−−−→ C2

Xi

y yXi

P1 −−−→
φ

P1

Up to a change of coordinates, either

A =

λ1 0

0 λ2

 or A =

λ 1

0 λ

 ,

1Not all rational curves on K3 surfaces come from elliptic fibrations, but we will focus on the

rational curves that do for this work.
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with non-zero eigenvalues. If we consider only finite automorphisms of P1, say φn = 1,

then the only possibility is

A =

λ1 0

0 λ2


where λn1 = λn2 , or equivalently, λ1/λ2 is an nth root of unity. Notice that, with these

coordinates, we immediately have two fixed points. Namely, φ fixes 0 and ∞. Now,

suppose that there is another fixed point [x : y] not equal to 0 or∞. That is, suppose

we have non-zero x, y ∈ C such that [λ1x : λ2y] = [x : y]. This implies λ1 = λ2, which

means φ = id. We have proved the following useful fact.

Proposition 2.1. Let φ ∈ Aut(P1) be an automorphism of finite order n. Then φ

either has exactly two fixed points, or is the identity.

We can also examine how φ acts near fixed points. Near zero, we have

X =
x

y
7→ λ1x

λ2y
=
λ1

λ2

X,

and near ∞ we have

Y =
y

x
7→ λ2y

λ1x
=
λ2

λ1

Y =

(
λ1

λ2

)−1

Y.

As stated above, λ1/λ2 is an nth root of unity. So, we could say that near zero,

X 7→ ζknX, and near infinity, Y 7→ ζ−kn Y for some k ∈ Z.

Let σ ∈ Aut(X) be an automorphism of order n < ∞. Since KX = 0, then

there exists a nowhere vanishing holomorphic volume form ω, and since h2,0 = 1,

then σ∗ω = λω for some λ ∈ C satisfying λn = 1.

Definition 2.2. If λ = 1, then σ∗ω = ω and we say that σ is a symplectic automor-

phism. Otherwise, λ = ζkn 6= 1 and we say that σ is non-symplectic. If, in addition,

gcd(n, k) = 1, then σ is called purely non-symplectic.



11

Let x be an intersection point of two stable curves under σ. Locally, we have the

action σ∗ ∈ Aut(TxX). If σ is non-symplectic, then detσ∗ = ζn and, up to a change

of coordinates, σ∗ is given by

σ∗ =

ζkn 0

0 ζ1−k
n

 (2.1)

for some integer k. If σ is symplectic, then det σ∗ = 1 and, up to a change of

coordinates, σ∗ is given by

σ∗ =

ζkn 0

0 ζ−kn

 (2.2)

for some integer k. Since the two curves in question are stable under σ then in

both cases the eigendirections of σ∗ are along the intersecting curves.

The curves we will be considering are rational curves. Hence, we now apply the

properties of Aut(P1) above. First, by proposition 2.1, if an automorphism of P1 has

three distinct fixed points, then it is the identity map. This allows us to say that if

a stable curve intersects three other stable curves, then it is a fixed curve. Suppose

a stable curve ` intersects two other stable curves. Then we have two fixed points on

`, which can be identified with 0 and ∞ by using a proper change of coordinates. By

looking at the action σ∗ near one fixed point 0 described in (2.1) and (2.2), we can

assume that X 7→ ζknX near 0. By the above discussion, we then know that Y 7→ ζ−kn

near the other intersection point (at infinity). Using this process along the curves

and the determinant restriction at intersection points, we can determine the action

of σ on all curves adjacent to `.

We demonstrate this process in figure 2.1. Notice that for this to be consistent,

we must have 1 − k ≡ −3 − k (mod n), which implies 4 ≡ 0 (mod n). We explore

more restrictions such as this in section 2.2.
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Figure 2.1: Computing a symplectic action on I4.

2.2 Graph Curves

As mentioned above, many of the singular fibers in Kodaira’s list are configurations

of rational curves. In particular, the Iv, I
∗
v , II

∗, III∗, IV, and IV ∗ fibers are called

graph curves.

Definition 2.3. A graph curve Γ is a connected collection of rational curves.

Note that this definition is a relaxed version of what may be used in other work.

These types of fibers offer some restrictions on the order of automorphisms that we

may have.

As mentioned in [5], the rational curves in a K3 surface are “rigid” in X, meaning

that we can characterize automorphisms of X by the action on the rational curves in

X.

Singular fibers are also divisors of X, so let us focus on the subgroup H(n) of

Aut(X) given by

H(n) = {σ ∈ Aut(X) : σ∗|Pic(X) = id, σn = id, σ is non-symplectic}

for n ∈ Z. Let Γ be a graph curve that is a singular fiber of X. Let σ ∈ H(n). Then

σ induces an action σ|Γ on Γ and we know several facts about this action. We can

apply this knowledge to induce an action on the Gram graph of Γ. The Gram graph

of Γ is the simple graph with vertices representing rational curves of Γ, such that
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two vertices are connected by an edge if and only if the curves that they represent

intersect. The induced action on the Gram graph of Γ will give us a simple way to

compute invariants of a fibration.

2.3 Non-Symplectic Action on Gram Graphs

We begin by constructing a convenient way to represent the action of σ ∈ H(n) on Γ

using the Gram graph of Γ. As seen in figure 2.1, locally σ acts by multiplication of

an nth root of unity. To simplify notation, we use the isomorphism {ζ in} → Zn given

by ζ in 7→ i.

We will now construct an action of Zn on a Gram graph G which has at least one

vertex of degree > 2. We will see that this condition does not cause any problems.

Since each edge of G represents a fixed point of σ that has two eigenvalues, we need

a way to temporarily decide which value to place on the edge. The choice will not

matter in the end since, as discussed in section 2.1, we can determine the action on all

of G based on how σ acts at one fixed point. We only need to find some restrictions

that keep our model consistent with the observations in section 2.1.

Let G′ be the graph G with an arbitrary direction and a weight of 0 (mod n)

given to each edge.

Figure 2.2: Example of a Gram graph G

Recall that vertices of our graphs represent rational curves, and edges represent

intersection points. To see what these directions and weights represent, see figure 2.4,



14

Figure 2.3: Example of G′

which on the left is two different representations of the same action on the right.

Figure 2.4: Translation between directed graph and graph curve

Let k ∈ Zn. In order to define the action of k on G that represents σk(Γ), we first

define the action of k on G′. Starting at any vertex v with degree at least 3, place

weights from Zn as follows. Following a path starting at v, add w(j) to the weight

on the j-th edge in the path where

w(j) =


j · k if the direction of the edge is the same as the path taken

k − j · k if not

See figure 2.5 for an example of how these weights are added.

Of course, we want the action to be well defined in the sense that it should not

matter which vertex we start with or which paths we take. In order to accomplish

this, we see that the following conditions need to hold. Let c1, . . . , cr be the lengths

of all of the cycles in G and let p1, . . . , ps be the lengths of all paths connecting two

vertices of G which have degree > 2. We require

n| gcd(kc1, . . . , kcs, kp1, . . . , kps).
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Figure 2.5: Action of k on G′

So, for the example in the figures above, we require that n| gcd(3k, 6k). Thus, if

we assume for this example that n does not divide k, we can simplify the action as

seen in figure 2.6. Following the convention used in [5], the grey vertices in figure

2.6 correspond to curves that would be fixed under the corresponding automorphism

on the singular fiber. Edges between vertices not representing fixed curves represent

isolated fixed points. Those edges are highlighted with a diamond in the middle of

the edge.

Figure 2.6: Reduced action of k on G′

Regardless of how we choose G′, the positions of these highlighted vertices and

edges will be the same. So we have a well defined action of k on G (as seen in figure

2.7) that allows us to quickly see how many fixed curves and isolated fixed points

there are under a specified automorphism.

Something that this example did not illustrate is what happens with vertices of

degree 1. These curves intersect only one other curve in Γ. If the curve ` represented

by this vertex is not fixed, then by proposition 2.1, there is a second fixed point on
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Figure 2.7: Action of k on G

`. For the time being, we will count this as another isolated fixed point, as we do

not know what type of curve intersects ` here. This is illustrated in the next section,

when we look at the action of automorphisms on the I∗v , II
∗, III∗ and IV ∗ fibers.

2.4 Examples: Iv, I
∗
v , II

∗, III∗ and IV ∗ fibers

As an easy example the process outlined in section 2.3, we examine how automor-

phisms from H(n) act on some simple singular fibers. Note that the Gram graph

of Iv is the affine Dynkin diagram Ãv−1, which has no vertex of degree > 2. This

does not cause a problem for our purposes, since our restrictions and number of fixed

points and curves are invariant under rotation of Ãv−1. We simply choose a vertex to

start on, without sacrificing generality. For this section, assume k = 1. This is not

a dangerous assumption, since if k > 1 and gcd(n, k) > 1, then for the purposes of

counting, we can just make the transformation n 7→ n/ gcd(n, k) and get the infor-

mation attained below. If k > 1 and gcd(n, k) = 1, then ζkn is a primitive nth root of

unity, and will yield the exact same results as k = 1. The only two fibers that place

restrictions on n by themselves are the Iv and I∗v fibers, which both require n to divide

v, as summarized in table 2.1. The fixed loci for non-symplectic automorphisms of

various orders n are summarized in tables 2.2 and 2.3.

For the remainder of this section, assume n > 1. We now demonstrate how the

results in table 2.3 were obtained for the fiber III∗. The corresponding Gram graph
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Fiber Type Iv I∗v

Gram Graph Ãv−1 D̃v+4

Restriction on n v ≡ 0 (mod n) v ≡ 0 (mod n)

Table 2.1: Restrictions on n from Iv and I∗v fibers

Fiber Type Iv I∗v

Gram Graph Ãv−1 D̃v+4

Fixed (lines, points)

(
v

n
, v − 2v

n

) (
v

n
+ 1, 4 + v − 2v

n

)
Table 2.2: Fixed rational curves and isolated points of Iv and I∗v fibers

Fiber Type IV ∗ III∗ II∗

Gram Graph Ẽ6 Ẽ7 Ẽ8

Fixed (lines, points)

n = 2 (4,0)

n > 2 (1,6)

n ≤ 3 (3,3)

n > 3 (1,7)

n = 2 (4,2)

2 < n ≤ 5 (2,6)

n > 5 (1,8)

Table 2.3: Fixed rational curves and isolated points of IV ∗, III∗, and II∗ fibers

to III∗ is the affine Dynkin diagram Ẽ7 as shown in figure 2.8.

Figure 2.8: Gram graph of the fiber III∗

For the case n = 2, we have the action shown in figure 2.9. There are three fixed

rational curves and three isolated fixed points. The edges that are shown in dashes

represents the second fixed point of the curves with only one intersection point in the
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fiber as described at the end of section 2.3.

Figure 2.9: Action of 1 ∈ Z2 on the graph Ẽ7

For the case n = 3, we have the action shown in figure 2.10. There are three

fixed rational curves and three isolated fixed points.

Figure 2.10: Action of 1 ∈ Z3 on the graph Ẽ7

For the case n > 3, we have the action shown in figure 2.11. There is one fixed

rational curve and seven isolated fixed points.

Figure 2.11: Action of 1 ∈ Zn (n > 3) on the graph Ẽ7

One can carry out the same process for the remaining Dynkin diagrams to get

the rest of the results in tables 2.2 and 2.3.

2.5 Flaws of the Model

Of course, this model is missing several important aspects of Aut(X). We still have to

include the symmetries that do not stabilize all of the rational curves. For example,
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one might notice that Z2 could also act on the graph Ẽ7 shown in figure 2.12 by

reflecting the graph about the middle two vertices. For this action we have one

Figure 2.12: Alternate action of 1 ∈ Z2 on the graph Ẽ7

stable curve (shown with stripes)2, one isolated fixed point, and one fixed curve.

Notice that can we now have vertices of degree > 2 that are not fixed curves. These

automorphisms can be combined with our current method in the following way. Apply

some symmetry τ /∈ H(n), then use the procedure outlined in section 2.3 on the curves

that are stable under τ to deduce what orders are permitted, and describe the fixed

locus. We have also not considered the fact that if the fibration π : X → P1 has a

section s, then s is a rational curve and it intersects every fiber exactly once. We also

have the possibility of multisections, which intersect every fiber with some multiplicity

m. As a consequence, we should be able to decompose each of our graph curves into

sections, multisections, and singular fibers with appropriate intersections. If there are

more than one section, then the action of an automorphism σ of X must be consistent

on all sections, since σ induces an automorphism of the base curve P1 such that the

following diagram commutes.
X

σ−−−→ X

π

y yπ
P1 −−−→

φ
P1

2I am still using the convention from [5]
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If σ has finite order, then automorphism φ has two fixed points. In particular, this

means exactly two fibers are stable under σ.

In the next chapter we work out an example to address these flaws.



CHAPTER 3

EXAMPLE OF FIBRATIONS AND AUTOMORPHISM

3.1 A Picard rank 16 example

S.M. Belcastro has worked out configurations of curves for for 95 types of K3 surfaces

in [3]. The 62nd surface on the list is a K3 surface X with rank(Pic(X)) = 16 and

the configuration of curves shown in figure 3.1, where two different possible fibrations

are highlighted.

Figure 3.1: Two possible fibrations of X

The fibration on the left has four sections. The fibration on the right has two

2-sections. Let’s consider the fibration on the right. We begin by looking at the

simplest non-symplectic automorphisms, those that stabilize all of the curves on X.

In that case, the bottom 2-section is fixed, and hence, so is the other 2-section.

Since the degree 3 vertices in the Ẽ7’s are fixed curves, we must have n|2k. The

action is as shown in figure 3.2. We will denote the corresponding automorphism by

σ1. There are 8 fixed curves and no isolated fixed points. Now, we consider non-
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Figure 3.2: σ1 ∈ Aut(X)

symplectic automorphisms that have some curves that are not stable. Either the Ẽ7’s

are permuted, or they are stable. If they are permuted, then we have no fixed curves,

the sections are stable, and there are 4 isolate fixed points. The action is shown in

figure 3.3. We will call the corresponding automorphism σ2. Otherwise the Ẽ7’s are

Figure 3.3: σ2 ∈ Aut(X)

stable. Now each Ẽ7 can either permute its length 3 paths, or be stable. If the curves
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of one Ẽ7 are stable, then its degree 3 vertex is a fixed curve. We find that the action

at the top 2-section is 2k, while the action at the bottom 2-section is 4k. Again, we

must have n|2k, which fixes the degree 3 vertex in the other Ẽ7. Thus, both Ẽ7 fibers

permute their length 3 paths. We can have one of the two actions depicted in figure

3.4.

Figure 3.4: σ3 (left) and σ4 (right)

Note that σ2
3 = σ1, while σ2

4 = id. This characterizes all finite order automorphisms

of this fibration. Table 3.1 summarizes these automorphisms.

σ1 σ2 σ3 σ4

Order 2 2 4 2

Fixed (lines, points) (8,0) (0,4) (0,8) (2,4)

Table 3.1: Summary of finite automorphisms
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3.2 A Picard rank 10 example

In [16], S. Taki shows that there is a Picard rank 10 K3 surface which admits a

non-symplectic automorphism σ of order 3. The Picard lattice of this surface is

U ⊕ E6 ⊕ A2. He also gives the fixed locus of the automorphism, which is a genus 2

curve, 2 rational curves, and 4 isolated point. We can find the Gram graph of rational

curves in this K3 surface in [3], as it is the 22nd surface on her list. The graph is

shown in figure 3.5.

Figure 3.5: The Gram graph of X

We will use this diagram to describe σ. The fibration we use is a type IV ∗ fiber

on the left and a type IV fiber on the right connected by a single section in the

middle of the graph. Since σ has order 3, then the type IV ∗ fiber is stable, so its

degree 3 vertex represents a fixed curve. From here we see that the section is also

fixed. Note that the Ã2 in our graph could have also been a type I3 fiber. We can

now see that this is impossible since that would force the curve from the type I3 fiber

that intersects the section to also be fixed. The action is as shown in figure 3.2.

It would appear that we have 4 too many isolated fixed points (the three edges

in the Ã2 graph represent the same intersection point), but this is where the fixed

genus 2 curve C that Taki found to be in the fixed locus of σ fits perfectly. Each fiber
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Figure 3.6: The action of σ

intersects C at two points (it is a 2-section) as shown in figure 3.7.

Figure 3.7: The genus 2 curve had been added.

Now, we proceed to complete the fibration so that we can write an explicit

Weierstrass equation and write out σ in terms of these coordinates. Since C is a

2-section with genus 2, then it is a double cover of P1 branched at 6 points. Neither

of our exhibited fibers intersect C at these branch points, as they intersect C at two

distinct points each. The remaining singular fibers that do not show up in the graph

curve found in [3] must be type II fibers whose cuspidal points intersect C at its

branch points. We can compute the Euler characteristic of the fibration:

χ(X) = χ(IV ∗) + χ(IV ) + 6 · χ(II) = 8 + 4 + 6 · 2 = 24,
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as required. Using table (IV.3.1) in [12], we can construct a Weierstrass model using

the number of each singular fiber in our fibration. The model is

y2 = x3 + t4(t6 − 1).

Since σ acts trivially on the base P1, we have the following action.

σ : (x, y, t) 7→ (ζ3x, y, t),

where ζ3 is a primitive third root of unity. We can quickly verify that the action is

primitive by checking that the volume form

dx ∧ dt
y

7→ ζ3
dx ∧ dt
y

.
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[14] M. Schütt, T. Shioda, Elliptic Surfaces, arXiv:0907.0298

[15] J. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, No.7,
Springer-Verlag, New York-Heidelberg, (1973).

[16] S. Taki, Classification of Non-Symplectic Automorphisms of Order 3 on K3 Sur-
faces, Math. Nachr. 284 No. 1, 124-135 (2011).

[17] D. Zhang, Automorphisms of K3 Surfaces, arXiv:0506612

https://math.berkeley.edu/~zhrosen/
https://math.berkeley.edu/~zhrosen/


Appendix A

APPENDIX

A.1 Kodaira Singular Fibers

Fiber Type Description Graph

I0 Smooth elliptic curve

I1 Nodal rational curve

In+1 n + 1 smooth rational curves forming the graph Ãn

I∗n n + 5 smooth rational curves forming the graph D̃n+4

mIn The fiber In with multiplicity m

II cuspidal rational curve

III Two smooth rational curves intersecting with multiplicity two

IV Three rational curves intersecting at one point

IV ∗ 7 smooth rational curves forming the graph Ẽ6

III∗ 8 smooth rational curves forming the graph Ẽ7

II∗ 9 smooth rational curves forming the graph Ẽ8
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