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A COMPARISON OF BRIDGE DETERIORATION MODELS

by

TOKTAM NADERIMOGHADDAM

(Under the Direction of Stephen Carden)

ABSTRACT

Predicting how bridges will deteriorate is the key to budgeting financial and personnel

resources. Deterioration models exist for specific components of a bridge, but no models

exist for the sufficiency rating which is an overall measure of the condition and relevance

of a bridge used for determining eligibility for federal funds.

We have 25 years worth of data collected by the Georgia Department of Transportation

from 1992 to 2016 about all bridges in the State of Georgia. More precisely, each row in

this data set includes the characteristics of each bridge along with the sufficiency rating of

that bridge in a specific year which was inspected by engineers.

In this thesis we introduce two models (Mixed Logistics-Gamma model and Poisson

model) that predict the change of sufficiency rating of each bridge and tell us how much

a specific bridge deteriorates in a specific period of time. We then compare these two

models.
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CHAPTER 1

INTRODUCTION

The government of Georgia budgets around 162 million dollars to help maintain the state’s

roads and bridges [1]. The Georgia Department of Transportation (GDOT) inspects all

bridges and bridge culverts of the State of Georgia (including county bridges) every two

years. In 2017 there were 6,688 state-owned and 7,904 locally-owned bridges in Geor-

gia [2]. Ninety-eight-percent of state-owned bridges are in fair to excellent condition and

2-percent of state-owned bridge structures are structurally deficient [2]. Eighteen-percent

of local bridges are structurally deficient and functionally obsolete [3]. Bridges have a 75-

year life cycle on average [4]. For years, the deficiency and uncertainty of federal funding

have slowed down the maintenance of the bridges of the state and caused some mainte-

nance projects to stop. To close any additional funding problems, FY 2016 budget contains

100 million dollars in bonds specifically for bridge maintenance and repair [4].

Budget authors have to predict how bridges will deteriorate in order to plan for main-

tenance costs and request funds from federal sources. Therefore, accurate prediction of

bridge deterioration is of critical importance. There are two main methods of measuring

the condition of a bridge.

1. Element-level Condition Assessment Method

Each bridge is constructed from a number of distinct elements (pieces of a bridge)

generally ranging between 10 and 25. Some examples of elements are timber bridge rail-

ing, reinforced concrete bridge railing, metal bridge railing, steel open beam, timber open
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beam, reinforced concrete stringer, steel truss, etc. In this method, engineers inspect all the

elements of bridges every two years and rate the condition of all those specific elements.

The number of condition levels in the standard rating system is 4. These standard condition

levels are GOOD, FAIR, POOR, and SEVERE. So this method uses a 1 through 4 system

to assess the condition of each element in which 1 stands for good, 2 for fair, 3 for poor,

and 4 for severe [6].

The standard models currently in use do not predict the condition rating directly, but

they predict the change in condition rating that we call the “Drop”. The two most popular

models currently in use for modeling the drops in condition of elements include

• Markov chain models where the number of drops in condition rating between in-

spections is modeled with Poisson regression [5].

• Weibull models which count the time between drops. When a drop occurs, it is

precisely one level [5].

Because there is a big difference between condition states, changes of more than one level

at a time are rare. So the Weibull random variable model works well for this method.

Also the drops are always integer in this method, so Poisson random variable works for the

number of drops.

2. Overall Sufficiency Rating Assessment Method

In this method, the bridge as a whole is measured with a sufficiency rating. This is a

real-valued number in [0,100], where 100 represents an entirely sufficient bridge and zero

represents an entirely deficient bridge. Sufficiency rating is calculated by combining four



12

different factors listed below [7].

- Structural adequacy and safety factor which is calculated from superstructure, sub-

structure, culverts, and inventory rating items.

- Serviceability and functional obsolescence factor which is calculated from lanes on

structure, average daily traffic, approach roadway alignment, main structure type, bridge

roadway width, minimum vertical clearance(VC) over deck, deck condition, structural

evaluation, deck geometry, under-clearances, waterway adequacy, STRAHNET(Strategic

Highway Corridor Network) highway designation.

- Essentiality for public use factor which is calculated from detour length, average

daily traffic, and STRAHNET(Strategic Highway Corridor Network) highway designation.

- Special reductions factor which is calculated from detour length, traffic safety fea-

tures, and main structure type.

Twenty National Bridge Inventory items are used to calculate these four factors [7].

After calculating these four factors the sufficiency rating formula is:

Sufficiency rating (or SR for short) is defined to be S1 + S2 + S3 − S4 , where

• S1 is the structural adequacy and safety factor and ranges from 0 to 55.

• S2 is the serviceability and functional obsolescence factor and ranges from 0 to 30.

• S3 is the essentiality for public use factor and ranges from 0 to 15.

• S4 is the special reductions factor and ranges from 0 to 13.

If the sufficiency rating is less than or equal to 80-percent the bridge is eligible for

federal funds for rehabilitation, and if the sufficiency rating is less than 50-percent it is
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eligible for federal funds for replacement [8]. Some states use the sufficiency rating as the

basis for establishing priority for repair or replacement of bridges; the lower the rating, the

higher the priority. Therefore predicting how sufficiency rating will change could aid state

agencies in predicting how much federal funds they are eligible for.

In the literature there is no research for modeling the sufficiency rating. In this thesis

two models will be investigated to predict sufficiency rating to see which one works better.

We will not be able to investigate the Weibull model because it assumes constant changes

in rating which is reasonable for elements but not for sufficiency rating.

The Poisson model assumes integer drops, so it breaks the assumption in individual

changes in sufficiency rating since reports are often not integer but it may be useful for

predicting the average amount of change.

This suggests using a continuous random variable, but P (DROP = 0) > 0 which is

not possible for a continuous random variable. Therefore we need a mixed-type random

variable. We will consider setting Z = XY , where X is a Bernoulli(p) and Y is a

Gamma(α,β) random variable. Bernoulli random variable tells us if there is a drop in

sufficiency rating or not. If there is a drop, then X = 1 and else, X = 0. Then if the

drop exits the Gamma random variable says how much the drop is. Note that P (Z = 0) =

P (X = 0) = 1− p > 0 and for all A ⊆ R we have P (Z ∈ A | X = 1) = P (Y ∈ A), that

is, the probability function for the Gamma random variable.

The remainder of this thesis is organized as follows:

Chapter 2 describes the raw data and steps needed to transform it into something

useable.
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Chapter 3 describes the fitted models and variable selection to choose the best models.

Chapter 4 describes the simulations and curves to predict the deterioration under each

model.

Chapter 5 has the comparison of our two models to see which model fits better.

Chapter 6 is the conclusion.
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CHAPTER 2

DATA CLEANING

The data used in our investigation comes from the National Bridge Inventory (NBI) web-

site. States, federal agencies, and tribal governments submit the data on bridges on an

annual basis in the spring to the Federal Highway Administration. This data may be up-

dated during the year in a way that complies with the National Bridge Inspection Standards,

the Recording and Coding Guide for the Structure Inventory, and with the evaluation of the

Nations Bridges. At the end of each year the data is finalized and published on the website

of the NBI [8].

Data used in this thesis was collected during 25 years; from 1992 to 2016 about all

bridges in state of Georgia. The number of bridges described per yearly files is shown in

Table 2.1. In this thesis names of variables are denoted by capital letters and underscore

symbols. Also data frames and models are respectively denoted by bold and italic font.

Data consists of 134 variables that represent several properties of the bridges. Some

of the variables are related to the material used in the bridges like STRUCTURE KIND,

some others are about traffics like TRAFFIC LANES on the bridge or under, some of

the variables are related to the structure’s measures like BYPASS, DETOUR LENGTH

or LONGTITUDE, etc., some others are about the geographic location of the bridge like

ROUTE PREFIX and DESIGNATED LEVEL OF SERVICE, and others.

To keep the size of the data manageable we picked 13 variables that seem to be po-

tentially more significant among 134 variables. Table 2.2 shows all the variables we used
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Table 2.1: Yearly Number of Bridges
Year Number of Bridges Year Number of Bridges
1992 16472 2005 16894
1993 16514 2006 16944
1994 16572 2007 16987
1995 16603 2008 17025
1996 16645 2009 17151
1997 16656 2010 17119
1998 16696 2011 17165
1999 16817 2012 17256
2000 11807 2013 14769
2001 11772 2014 14795
2002 16838 2015 14790
2003 16845 2016 14835
2004 16845

along with their description, type of the variable and range or level of the variables.
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Table 2.2: Variable Description

Variable Description Type of Variable Range/Level

STRUCTURE NUMBER
Unique identifier for
each bridge/structure Categorical Represented as a variable-length integer.

SUFFICIENCY RATING
An overall measure for
structural quality Continuous Real number [0,100]

YEAR BUILT Obvious Discrete Integers from 1850 to 2015

TRAFFIC LANES ON
Number of lanes on the
structure Discrete Integers 1, 2, ..., 19

TRAFFIC LANES UND
Number of lanes under
the structure Discrete Integers 0, 1, ..., 34

ROUTE PREFIX
Classifies according to
government level and
throughput

Categorical

1- Interstate
2- US numbered highway
3- State highway
4- County highway
5- City street
6- Federal lands road
7- State lands road
8- Other

SERVICE LEVEL
Identifies the designated
level of service Categorical

0- None of the below
1- Mainline
2- Alternate
3- Bypass
4- Spur
6- Business
7- Ramp, Wye, Connector, etc
8- Service and/or/unclassified
frontage road
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Table 2.2: Variable Description

Variable Description Type of Variable Range/Level

MEDIAN CODE
A number (code) classifying
the median into one of four
levels

Categorical

0- No median
1- Open median
2- Closed median with no barrier
3- Closed with non-mountable barrier

NAV VERT Minimum Vertical Clearance Continuous
Closed as a 4 digit value. Includes
the hundreds, tens, units, and tenths
place. Measured in decimeters.

STRUCTURE KIND
Designated the primary
construction material Categorical

0- Other
1- Concrete
2- Concrete continuous
3- Steel
4- Steel continuous
5- Prestressed concrete
6- Prestressed concrete continuous
7- Wood or timber
8- Masonry
9- Aluminum, Wrought Iron, or
Cast Iron

MAX SPAN
Maximum length between
supports Continuous

Coded as a 4 digit value. Includes
the hundreds, tens, units, and tenths
place. Measured in decimeters.

STRUCTURE LEN Overall length of structure Continuous
Coded as a 4 digit value. Includes
the hundreds, tens, units, and tenths
place. Measured in decimeters.
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Table 2.2: Variable Description

Variable Description Type of Variable Range/Level

STRUCTURE TYPE

Designated the structural
design of the structure, or
even the type of the structure
itself

Categorical

00- Other
01- Slab
02- Stringer/Multi-beam or Girder
03- Girder and floor-beam system
04- Tee Beam
05- Box Beam or Girders - Multiple
06- Box Beam or Girder - Single or
spread
07- Frame (except frame culverts)
08- Orthotropic
09- Truss - Deck
10- Truss - Thru
11- Arch - Deck
12- Arch - Thru
13- Suspension
14- Stayed Girder
15- Movable - Lift
16- Movable - Bascule
17- Movable - Swing
18- Tunnel
19- Culvert (includes frame culverts)
20- Mixed Types
21- Segmental Box Girder
22- Channel Beam
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In Table 2.3 some statistics of the quantitative variables such as mean, standard devi-
ation, minimum and maximum of variables in the data set are summarized. Also there are
five qualitative variables in our models and their level’s frequency is shown in Table 2.4. In
this table N is the number of bridges multiplied by 25 (years).

Table 2.3: Summary Table

Statistic N Mean St. Dev. Min Max

YEAR BUILT 293,993 1,969.076 19.242 1,872 2,014
TRAFFIC LANES ON 293,993 2.342 1.261 1 19
TRAFFIC LANES UND 293,993 0.565 1.950 0 34
NAV VERT 293,993 0.023 0.567 0.000 20.400
MAX SPAN 293,993 10.682 10.540 0.000 229.800
STRUCTURE LEN 293,993 41.767 63.799 5.800 1,823.900
OLD DATE 293,993 2,003.584 7.062 1,992 2,015
NEW DATE 293,993 2,004.596 7.056 1,993 2,016
AGE 293,993 34.509 19.381 2 145
INSPECTION GAP 293,993 1.012 0.155 1 16
SUFFICIENCY RATING Beg 293,993 79.015 21.124 0.000 100.000
DROP 293,993 0.670 3.173 0.000 76.900
DETPRES 293,993 0.174 0.379 0 1

Table 2.4: Categorical Variables Frequency Table

Categorical Variables Levels Frequency

ROUTE PREFIX

1
2
3
4
5
6
7
8

1221
2152
3561
8838
1368
0
0
276

SERVICE LEVEL

0
1
2
3
4
6
7
8

209
16738
59
42
50
63
243
12
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Table 2.4: Categorical Variables Frequency Table

Categorical Variables Levels Frequency

MEDIAN CODE

0
1
2
3

15645
1198
268
305

STRUCTURE KIND

0
1
3
5
7
8

6
8972
5327
2392
611
108

STRUCTURE TYPE
(23 levels; from 0 to 22)

1
2
4
5
6
11
19
other levels

1433
7284
2337
282
119
61
5900
0

One of the major tasks is to transform the data from a set of 25 yearly data sets to a sin-

gle large data set that includes all the years with changes in sufficiency ratings. Algorithm

1 gives the pseudocode for the script that performs the transformation.

We noticed a minor and ultimately inconsequential error that the minimum AGE is

−1 and the maximum AGE is 142 years but it doesn’t match with the year built. The

minimum and maximum of AGE should be 2 and 145 respectively to match with the year

built. So we looked in the code and we found out that in the read bridge data function

in import script file, instead of defining AGE to be one more than the NEW DATE minus

the YEAR BUILT, we set it to be the OLD DATE minus the YEAR BUILT. Therefore all

AGEs are shifted by three. We wanted to fix this, but it was too late, since the data is huge

and it takes days to run the code again and change all numbers. However, since shifting in
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a variable’s value does not affect the model’s predictions or significance of variables, the

error is inconsequential and we still can work with the shifted AGE. The result would be

the same. So we kept our shifted AGE. In our paper we will fix that.

As part of the data cleaning, we saw a bridge with zero inspection gaps that showed

up multiple times. This appeared to be an error so we removed that bridge from the data

frame.

Some variables had levels with few observations taking those levels. Since they could

be considered similar to other levels, some were combined. For ROUTE PREFIX, cate-

gories 6, 7, and 8 are combined into the level 8. For STRUCTURE KIND, categories 1

and 2 are combined into 1; Categories 3 and 4 are combined into 3; Categories 5 and 6 are

combined into 5; Categories 8 and 9 are combined into 8. This new data frame is named

“reduced df”.

To make a logistic model, we needed to classify “DROP” whether “DROP” is zero

or non-zero. Algorithm 2 gives the pseudo code for the script that adds a new variable

“DETPRES” that shows the presence of deterioration.

After we added the new variable DETPRES in reduced df, we made logistic data

frame which is one of the main data frames we used in our modeling.

The second main data frame that we used in modeling is Gamma data frame. As

we know for any random variable Y that has Gamma distribution, since it is a continuous

variable, P (Y = 0) = 0. Thus for Gamma data frame we just need the observations for

which the “DROP” is non-zero and deterioration is present. So the data frame in use for

Gamma model is a subset of logistic data frame with all DETPRES= 1 or DROP> 0. So
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Algorithm 1 Pseudocode for the script that performs the transformation
Require: A collection of yearly data frames.

Take a subset of variables for use in models later.
Add the year as a new variable to every observation in every data frame.
Combine all the data frames.
Remove rows with missing observations.
Initialize empty vectors for all variables to be stored.
Make index n for the rows of the data frame. Initialized at 1.
Make a list of all bridges
for i from 1 to number of bridges do

make a temporary data frame that contains only rows from bridge i.
Make index j for the rows of the new temporary data frame. Initialized at 1.
while Row j has missing value and j is less than the number of rows do

j = j + 1 . Go to the next row
end while
while j < numberofrows+ 1 do . j reaches the end of the data frame.

Make two new variables OLD CONDITION and OLD DATE and set them to be
the SUFFICIENCY RATING and YEAR of row j respectively.
Until reaching the end of the data frame enter the while loop.
Go to the next row.
while j < numberofrows+ 1 do . The stopping condition is false.

Search for the next non-missing value.
while Row j has a missing value and the stopping condition is false. do

Go to the next row.
end while
if j is greater than the number of rows. then . You reach the end.

STOP!
else . You haven’t reached the end yet

CURRENT CONDITION = next non-missing value row’s SUFFI-
CIENCY RATING.

CURRENT DATE = next non-missing value row’s YEAR.
DROPPING = OLD CONDITION - CURRENT CONDITION.
if DROPPING>= 0 then . Condition did not improve.

Make a vector for row n that contains all the variables we need
including DROP and INSPECTION GAP.
n = n+ 1. . Go to the next row of the data frame

end if
end if

end while
end while

end for
Construct a data frame with all DROP>= 0. . Take and turn all vectors into a data
frame.
Cast all categorical variables as factors.
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Algorithm 2 Pseudocode for Adding the new variable to make the Logistic data frame.
Require: reduced df data frame.

Find out the sample size n; Number of rows of the required data frame.
Initialize a vector of all zeros for DETPRES.
Turn zeros into ones when deterioration presents. . A for loop is used.
for i from 1 to the sample size n do

if The DROP of the observation i is greater than zero then
Set DETPRES=1.

else
DETPRES=0.

end if
end for
Add the new variable DETPRES to the data frame.

we set Gamma df to be a subset of reduced df with all DROP> 0.
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CHAPTER 3

FITTED MODELS AND VARIABLE SELECTION

As we know, the Poisson model has only one parameter λ, but the other model (which is

a combination of Bernoulli and Gamma random variables) has three parameters p, α and

β. The model with more parameters has more complexity so it will more closely fit the

particular data in training. Therefore the model with more parameters has more chance of

over-fitting. One way to control this is dividing our data into two sets of training and testing,

and evaluate the model on data different from what it is trained on. Hence we built our

models based on training sets and tested them based on the testing sets. We set the training

set for Logistic model to be 75-percent of the Logistic data frame and the remainder for the

testing set. We named them training set logistic and test set logistic respectively. Then

we eliminated STRUCTURE NUMBER variable because the data frame was huge and we

did not have access to super fast computers. With STRUCTURE NUMBERs, the program

took more than 3 days to run but at the end we did not get any result. (The computers ran out

of memory; 16 Gigabyte was not enough.) Also we dropped the OLD DATE, NEW DATE

and YEAR BUILT from our data frame, since they were related to INSPECTION GAP

and AGE. These variables were set to be NULL in order to make the models from the rest

of variables. The new training set is named training set logistic2.

Then we defined training set gamma which is the training set for Gamma model to

be a subset of training set logistic2 with all DROP> 0. Also we set the test set gamma

to be a subset of test set logistic with all DROP> 0.
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3.1 LOGISTIC MODEL

To make the Logistic model first we set DROP to be NULL in the data frame because

DETPRES is the response variable and we do not need the DROP in logistic model. Then

we write the full logistic model with all the 13 variables. The model that we got which is

named fullmodel logistic is shown in the Table 3.1 with all the coefficients.

By looking at the summary of this model we see some of the variables are not sig-

nificant and some of them are. Thus we tried stepwise variable seletion to get a possibly

better model. Since we have some categorical variables with more than two levels, back-

ward elimination method works better than forward selection method. This is because

when we have categorical variables with more than two levels in our model the forward

selection might wrongly show that our categorical variable is not significant [9]. Therefore

we used backward elimination to get a smaller model[9]. Backward elimination method

dropped TRAFFIC LANES ON and NAV VERT. The result from backward method is

stepmodel logistic.

Based on smaller Akaike Information Criterion (AIC), we got the stepmodel logistic

out of fullmodel logistic. Now we check it by ANOVA (Analysis of variance) and p-value

= 0.4521 which is a large number so do not reject the null hypothesis (which is dropping

TRAFFIC LANES ON and NAV VERT), and support stepmodel logistic.

Still in stepmodel logistic, STRUCTURE KIND is not significant. We thought it

might be interactions between the levels of this variable. But since the data frame was huge
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Table 3.1: Regression Results of Full Model Logistic

Coefficients

(Intercept) −3.3938717
factor(ROUTE PREFIX)2 0.0169451
factor(ROUTE PREFIX)3 −0.0459059
factor(ROUTE PREFIX)4 −0.4588441
factor(ROUTE PREFIX)5 −0.3182604
factor(ROUTE PREFIX)8 −0.4499164
factor(SERVICE LEVEL)1 0.8098013
factor(SERVICE LEVEL)2 0.6781804
factor(SERVICE LEVEL)3 0.3948153
factor(SERVICE LEVEL)4 0.7683180
factor(SERVICE LEVEL)6 0.6164090
factor(SERVICE LEVEL)7 0.3257436
factor(SERVICE LEVEL)8 0.1559793
TRAFFIC LANES ON −0.0079939
TRAFFIC LANES UND 0.0404513
factor(MEDIAN CODE)1 −0.1852925
factor(MEDIAN CODE)2 0.0673280
factor(MEDIAN CODE)3 −0.1912694
NAV VERT 0.0015109
factor(STRUCTURE KIND)1 1.0021030
factor(STRUCTURE KIND)3 0.9550288
factor(STRUCTURE KIND)5 0.7353310
factor(STRUCTURE KIND)7 0.7211976
factor(STRUCTURE KIND)8 1.3248433
factor(STRUCTURE TYPE)2 0.0848590
factor(STRUCTURE TYPE)4 −0.0354322
factor(STRUCTURE TYPE)5 0.0903704
factor(STRUCTURE TYPE)6 0.0951179
factor(STRUCTURE TYPE)11 −0.1754007
factor(STRUCTURE TYPE)19 −0.6044322
MAX SPAN −0.0047625
STRUCTURE LEN 0.0004371
AGE −0.0017637
INSPECTION GAP 0.9253346
SUFFICIENCY RATING BEG −0.0040583

Observations 220,494
Akaike Inf. Crit. 197,842.500
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every way we tried to check the interactions took lots of time and it ran out of memory and

stopped working before giving us a result. Thus we decided to find out how the proportion

of DETPRES varies among levels of STRUCTURE KIND in a way that is explained in

Algorithm 3.

Algorithm 3 Pseudocode to see if proportion of DETPRES varies among levels of STRUC-

TURE KIND.
Require: matrix A which is training set logistic2.

Find out the levels of STRUCTURE KIND.

for i in levels of STRUCTURE KIND do

print levels.

Print the average of DETPRESs for each level.

end for

We observed that all proportions of the response variable being 1, are between 0.15

and 0.2 except for level 0. Then we checked if group zero has lots of observations or not.

We saw that group 0 has just 18 observations which is very small compared to the size

of data frame. Thus all the levels of STRUCTURE KIND have almost the same effect on

presence of deterioration in the way that we checked.

Then we did the same for STRUCTURE TYPE to see if proportion of DETPRES

varies among levels of STRUCTURE TYPE or not. We observed that all proportions for

STRUCTURE TYPE are between 0.17 and 0.2, except for level 19, which has 85K obser-

vations. So STRUCTURE TYPE is effective on DETPRES.
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Therefore we decided to drop STRUCTURE KIND and keep STRUCTURE TYPE

and make a new model. After we dropped STRUCTURE KIND from stepmodel logistic,

we got a model named Redmodel logistic. We checked by ANOVA and we saw that the

p-value compared to the stepmodel logistic is too small (p-value = 2.2e-16 ). We should

reject the null based on the p-value. That means stepmodel logistic was better and we

do not need to drop STRUCTURE KIND. But since when we drop STRUCTURE KIND

everything gets significant, we checked the models on the test set to see which one predicts

better.

Then we thought there might be a correlation between our variables. For this reason

we checked the correlation matrix for all continuous variables. We observed that X9 and

X10, which are STRUCTURE LEN and MAX SPAN have relatively high correlation (r =

0.82042742). We decided to drop MAX SPAN from our fullmodel logistic and make a

new model named model logistic and repeat all the process on it again. After backward

elimination on model logistic we got a new model without NAV VERT and MAX SPAN

named smodel logistic.

The p-value of ANOVA comparing model logistic and smodel logistic was 0.8452

which is a large number. Hence smodel logistic is a better model than model-logistic. Now

we drop the STRUCTURE KIND as we tried for fullmodel logistic. But after we got this

new model named Rmodel logistic we checked the p-value of ANOVA and it was 2.2e-16

which is a very small number. Hence we reject the null and keep smodel logistic compare

to Rmodel logistic.

Then it was time to check all of the models on the test set to see which model predicts
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better. We checked SSE of each model and we obtained the following results:

SSE(fullmodel logistic) = 10393.81

SSE(Redmodel logistic) = 10400.91

SSE(stepmodel logistic) = 10393.84

SSE(smodel logistic) = 10395.26

SSE(Rmodel logistic) = 10402.05

SSE(model logistic) = 10395.27

This shows that SSE of smodel logistic is a little bit more but very close to the SSE

of stepmodel logistic and fullmodel logistic. We preferred to keep smodel logistic as our

final logistic model because it does not have correlated variables. Furthermore, the test-set

performance (SSE) is very close to the stepmodel logistic. We renamed smodel logistic to

finalmodel logistic.

In Table 3.2, finalmodel logistic model is summarized along with its coefficients.

3.2 GAMMA MODEL

To make the Gamma model first we set the training set gamma to be a subset of train-

ing set logistic2 with all DROP> 0. Then we set DETPRES to be NULL in the data frame

since DROP is the response variable for the Gamma model.

In Table 3.3, fullmodel gamma is summarized with its coefficients.

Then we calculated the correlation matrix on our training set gamma and we ob-

served that there is a relatively high correlation (Correlation = 0.81285040 ) between the
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Table 3.2: Regression Results of Logistic Final Model

Coefficients

(Intercept) −3.3609934
factor(ROUTE PREFIX)2 0.0198100
factor(ROUTE PREFIX)3 −0.0433376
factor(ROUTE PREFIX)4 −0.4518490
factor(ROUTE PREFIX)5 −0.3169842
factor(ROUTE PREFIX)8 −0.4610080
TRAFFIC LANES ON −0.0092198
TRAFFIC LANES UND 0.0335640
factor(STRUCTURE KIND)1 0.9789940
factor(STRUCTURE KIND)3 0.9307112
factor(STRUCTURE KIND)5 0.7070793
factor(STRUCTURE KIND)7 0.7321097
factor(STRUCTURE KIND)8 1.3061054
factor(STRUCTURE TYPE)2 0.0492952
factor(STRUCTURE TYPE)4 −0.0450203
factor(STRUCTURE TYPE)5 0.0725919
factor(STRUCTURE TYPE)6 −0.0151191
factor(STRUCTURE TYPE)11 −0.2369287
factor(STRUCTURE TYPE)19 −0.5803623
STRUCTURE LEN 0.0002639
factor(SERVICE LEVEL)1 0.7867188
factor(SERVICE LEVEL)2 0.6494897
factor(SERVICE LEVEL)3 0.3746947
factor(SERVICE LEVEL)4 0.7489138
factor(SERVICE LEVEL)6 0.5850863
factor(SERVICE LEVEL)7 0.2955121
factor(SERVICE LEVEL)8 0.1519145
factor(MEDIAN CODE)1 −0.1889601
factor(MEDIAN CODE)2 0.0566482
factor(MEDIAN CODE)3 −0.1912564
AGE −0.0016159
INSPECTION GAP 0.9266020
SUFFICIENCY RATING BEG −0.0043992

Observations 220,494
Akaike Inf. Crit. 197,842.500
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Table 3.3: Regression Results of Full Model Gamma

Coefficients

(Intercept) −2.3886445
factor(ROUTE PREFIX)2 −0.0100282
factor(ROUTE PREFIX)3 −0.1451348
factor(ROUTE PREFIX)4 0.3904420
factor(ROUTE PREFIX)5 0.1083698
factor(ROUTE PREFIX)8 1.3680943
TRAFFIC LANES ON 0.0662082
TRAFFIC LANES UND −0.0073998
NAV VERT −0.0080975
factor(STRUCTURE KIND)1 2.2826648
factor(STRUCTURE KIND)3 3.0181367
factor(STRUCTURE KIND)5 2.5356099
factor(STRUCTURE KIND)7 3.2923866
factor(STRUCTURE KIND)8 3.5240320
factor(STRUCTURE TYPE)2 −0.8146550
factor(STRUCTURE TYPE)4 −0.3049735
factor(STRUCTURE TYPE)5 −0.7898207
factor(STRUCTURE TYPE)6 −0.9199491
factor(STRUCTURE TYPE)11 −0.1805673
factor(STRUCTURE TYPE)19 −1.0346060
STRUCTURE LEN 0.0007688
factor(SERVICE LEVEL)1 0.8993690
factor(SERVICE LEVEL)2 1.0027957
factor(SERVICE LEVEL)3 1.0805396
factor(SERVICE LEVEL)4 0.9608017
factor(SERVICE LEVEL)6 0.8902926
factor(SERVICE LEVEL)7 1.1506481
factor(SERVICE LEVEL)8 1.5688987
factor(MEDIAN CODE)1 −0.0057909
factor(MEDIAN CODE)2 0.0891645
factor(MEDIAN CODE)3 −0.1134823
MAX SPAN −0.0089077
AGE 0.0045925
INSPECTION GAP 0.1210749
SUFFICIENCY RATING BEG 0.0045623

Observations 38,135
Akaike Inf. Crit. 155,308.900
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two variables STRUCTURE LEN and MAX SPAN. Hence we decided to drop MAX SPAN

from the fulmodel gamma and create a new model named model-gamma. Then we checked

the summary of this model and we saw that NAV VERT and MEDIAN CODE are not sig-

nificant. Thus we tried backward elimination to make a new model with a better AIC.

Backward method dropped MEDIAN CODE which was not significant from the model-

gamma. We named the new model Stepmodel gamma which contains all the 13 variables

of fullmodel gamma except MAX SPAN and MEDIAN CODE. The p-value of analysis of

variance related to the two models Stepmodel gamma and model gamma was 0.2197 which

is a relatively large number, so we didn’t reject the nul and we picked Stepmodel gamma.

But then we saw that NAV VERT is still in the model and still is not significant. We

dropped NAV VERT from the Stepmodel gamma and made a new model named Red-

model gamma. Checking the summary of Redmodel gamma we saw that all the variables

became significant. And also the p-value of ANOVA related to Redmodel gamma and Step-

model gamma was 0.459 which was large. Therefore we should not reject the null and we

should accept the Redmodel gamma.

STRUCTURE KIND is significant but not much, so we decided to check the box plot

of all the levels of this categorical variable against DROP. As we see the box plot in Figure

3.1, different levels of STRUCTURE KIND do not have similar affects on DROP. So this

variable is effective on DROP and it must be kept in the model.

Then it was time to check all of the models on the test set to see which model predicts

better. We checked SSE of each model and we obtained the following results:

SSE(fullmodel gamma) = 561186.9
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Figure 3.1: Box Plot for STRUCTURE KIND

SSE(Redmodel gamma) = 562069.4

SSE(Stepmodel gamma) = 562074.8

SSE(model gamma) = 562214.2

These numbers show that the SSE of Redmodel gamma is strictly less than the SSE

of model gamma, Stepmodel gamma, and Redmodel gamma. The only model that has less

SSE than Redmodel gamma is the fullmodel gamma that contains highly correlated vari-

ables. Since the difference between the SSE of fullmodel gamma and Redmodel gamma

is relatively very small (0.1 percent) and Redmodel gamma does not have high correlation

between its variables, we decided to pick Redmodel gamma as our final gamma model and

we renamed it as finalmodel gamma.

In Table 3.4, finalmodel gamma is summarized with its coefficients.
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Table 3.4: Gamma Regression Results

Coefficients
(Intercept) −2.4214972
factor(ROUTE PREFIX)2 0.0166055
factor(ROUTE PREFIX)3 −0.1187957
factor(ROUTE PREFIX)4 0.4219894
factor(ROUTE PREFIX)5 0.1336968
factor(ROUTE PREFIX)8 1.3850939
TRAFFIC LANES ON 0.0591078
TRAFFIC LANES UND −0.0194806
factor(STRUCTURE KIND)1 2.2868109
factor(STRUCTURE KIND)3 3.0183557
factor(STRUCTURE KIND)5 2.5264149
factor(STRUCTURE KIND)7 3.3593237
factor(STRUCTURE KIND)8 3.5366407
factor(STRUCTURE TYPE)2 −0.8769120
factor(STRUCTURE TYPE)4 −0.3230127
factor(STRUCTURE TYPE)5 −0.8090652
factor(STRUCTURE TYPE)6 −1.1081179
factor(STRUCTURE TYPE)11 −0.3024816
factor(STRUCTURE TYPE)19 −0.9875559
STRUCTURE LEN 0.0003616
factor(SERVICE LEVEL)1 0.9033829
factor(SERVICE LEVEL)2 1.0107013
factor(SERVICE LEVEL)3 1.0952076
factor(SERVICE LEVEL)4 0.9799581
factor(SERVICE LEVEL)6 0.8882317
factor(SERVICE LEVEL)7 1.1519028
factor(SERVICE LEVEL)8 1.5957498
AGE 0.0048954
INSPECTION GAP 0.1246739
SUFFICIENCY RATING BEG 0.0038034

Observations 51,052
Akaike Inf. Crit. 208,792.700
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3.3 POISSON MODEL

To make the Poisson model first we set DETPRES to be NULL in training set-logistic2,

since DROP is the response variable for the Poisson model. In Poisson model since DROP

is a Poisson variable, it is a discrete random variable but as we see in the data frame DROP

is a continuous random variable. Thus, we decided to round DROPs in our training set

to make them integers. This process makes DROP become a suitable Poisson random

variable. Before rounding, the DROPs AIC of our models were infinity so we could not

change our full model based on AIC. In the next step, we wrote the full Poisson model

with all the 13 variables. We named this model fullmodel Poisson. We observed the sum-

mary of the fullmodel Poisson and we saw that there are some insignificant variables in

the model. We checked the correlation matrix on training set logistic2 and we noticed

that there is a relatively high correlation (Correlation = 0.82042742) between STRUC-

TURE LEN and MAX SPAN. Thus we dropped MAX SPAN from fullmodel poisson, and

we made a new model named Rmodel poisson. Still we had some non-significant variables

in Rmodel poisson. Therefore we tried backward elimination on Rmodel poisson, but this

method did not drop any other variable from Rmodel poisson. Hence our final Poisson

model is Rmodel poisson and we renamed it to finalmodel poisson.

In Table 3.5, finalmodel Poisson and fullmodel Poisson are summarized with their

coefficients.
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Table 3.5: Poisson Regression Results
Variable Full Model Final Model
(Intercept) −1.189e+01 −1.177e+01
factor(ROUTE PREFIX)2 1.806e-02 3.060e-02
factor(ROUTE PREFIX)3 −1.440e-01 −1.331e-01
factor(ROUTE PREFIX)4 4.707e-02 7.495e-02
factor(ROUTE PREFIX)5 −1.546e-01 −1.471e-01
factor(ROUTE PREFIX)8 1.182e+00 1.151e+00
TRAFFIC LANES ON 3.401e-02 3.009e-02
TRAFFIC LANES UND 2.724e-02 2.376e-03
NAV VERT −8.647e-04 −1.566e-02
factor(STRUCTURE TYPE)2 −7.528e-01 −8.680e-01
factor(STRUCTURE TYPE)4 −3.067e-01 −3.436e-01
factor(STRUCTURE TYPE)5 −6.754e-01 −7.377e-01
factor(STRUCTURE TYPE)6 −6.647e-01 −1.031e+00
factor(STRUCTURE TYPE)11 −3.836e-01 −5.632e-01
factor(STRUCTURE TYPE)19 −1.600e+00 −1.521e+00
factor(STRUCTURE KIND)1 9.455e+00 9.366e+00
factor(STRUCTURE KIND)3 1.018e+01 1.009e+01
factor(STRUCTURE KIND)5 9.464e+00 9.362e+00
factor(STRUCTURE KIND)7 1.033e+01 1.036e+01
factor(STRUCTURE KIND)8 1.094e+01 1.088e+01
STRUCTURE LEN 1.205e-03 6.677e-04
MAX SPAN −1.630e-02 0
factor(SERVICE LEVEL)1 1.952e+00 1.861e+00
factor(SERVICE LEVEL)2 1.855e+00 1.743e+00
factor(SERVICE LEVEL)3 1.722e+00 1.645e+00
factor(SERVICE LEVEL)4 1.967e+00 1.894e+00
factor(SERVICE LEVEL)6 1.877e+00 1.761e+00
factor(SERVICE LEVEL)7 1.811e+00 1.687e+00
factor(SERVICE LEVEL)8 1.429e+00 1.405e+00
factor(MEDIAN CODE)1 −1.600e-01 −1.758e-01
factor(MEDIAN CODE)2 1.291e-01 8.539e-02
factor(MEDIAN CODE)3 −1.631e-01 −1.599e-01
AGE 2.736e-03 3.336e-03
INSPECTION GAP 3.591e-01 3.613e-01
SUFFICIENCY RATING BEG 2.553e-03 1.489e-03
Observations 220,494
Akaike Inf. Crit. 838,988.800
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CHAPTER 4

DETERIORATION PREDICTION

4.1 SEGMENT DATA FRAME

The purpose of the models is not to predict a single deterioration at a time. We want to

show a sequence of how a bridge will deteriorate over years. When we look at the SUF-

FICIENCY RATING numbers we see that sometimes they go up. This means that some

parts of the bridge that were not in good condition have been fixed or replaced. On the other

hand, we want to study the natural deterioration of the bridges. So we decided to make seg-

ments in which we only have non-increasing SUFFICIENCY RATINGs since, normally,

if the bridge exists without getting fixed, then the sufficiency rating would not get better.

To manipulate the data into these non-increasing segments, we dropped all the increases of

SUFFICIENCY RATINGs by dropping the rows in which the SUFFICIENCY RATING

was increasing. Hence, in the new data frame we did not have such rows (Years). There-

fore, when we wrote the function that makes the segments we did not need to check SUF-

FICIENCY RATINGs if they increase or not. We just looked for years that do not exist in

the data frame. Algorithm 4 explains how we created the segment data frame.

After this function that makes segments, we created our segment df data frame by

passing Reduced df described in the second chapter, into this function. After generating

the segmented data frame, it was time to find out how a bridge deteriorates over years

under each model. First we changed the name of our models from finalmodel logistic,

finalmodel gamma, finalmodel Poisson, respectively to model logistic, model gamma, and
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Algorithm 4 Pseudocode for the script that performs the segments
Require: df data frame.

Start make segment df function using df data frame.
Initialize empty vectors for STRUCTURE NUMBER, segmentBegins, and seg-
mentEnds.
Make index n to store all segment’s information. Initialized at 1.
Make bridgeIDs vector. . Vector of all bridges.
for i from 1 to number of bridges do

make a temporary data frame that contains only rows from bridge i.
Make index j for the rows of the temporary data frame. Initialized at 1.
The stopping condition of bridge is False.
while Did not go to the next bridge yet do

segmentBegin is the Old Date of row j.
Until reaching the end of the temporary data frame enter the while loop.
while Did not get to the next segment do

segmentEnd is the New Date of row j.
if j + 1 > numberofrowsof tempdf then . You passed the end of the data

frame.
End the segment and the bridge.

else . have not reached the End of the bridge yet.
if The Old Date of row j+ 1 does not match the New Date of row j then

End the segment.
end if

end if
Go to the next row.

end while
Store this segment’s information; STRUCTURE NUMBER, segmentBegin and

segmentEnd.
n = n+ 1 . Go to the next segment

end while
end for
Make newdf data frame of all segments of all bridges with STRUCTURE NUMBER,
segmentBegins and segmentEnds.
Return newdf.
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model Poisson. The goal is to compare the mixed Logistic Gamma model against Poisson

model to see which model works better at predicting bridge deterioration.

4.2 PREDICTED DETERIORATION FOR MIXED LOGISTIC GAMMA MODEL

We start with our mixed-type Logistic Gamma distribution. This model first determines

if there is any drop in SUFFICIENCY RATING, with a logistic random variable X ∼

Bernoulli(p). Such that if DROP> 0, X = 1 and if DROP≤ 0, X = 0. It then finds

the amount of deterioration with a Gamma random variable Y ∼ Gamma(α, β). Finally,

the random variable Z which is our mixed model’s random variable is generated by XY .

Parameter α in Gamma distribution is fixed by the assumption of the Generalized Linear

Model (GLM). Hence, in this model each bridge deteriorates with probability of p and the

amount of each deterioration (if non-zero) can be estimated by the expected value of the

Gamma distribution, which is µ = α
β

.

In order to be able to simulate, first we needed to write a function which gets the spe-

cial bridge’s information and the coefficients of our models and calculates the predicted

probability of deterioration (p̂, logistic distribution’s parameter), and the predicted deterio-

ration amount (µ̂, Gamma distribution’s expected value), for the given bridge. The name of

this function is get eta. In this section get eta function that finds the Predicted Deterioration

of this model is explained.

First we found the dispersion parameter and α̂, which are the fixed parameters of

Gamma distribution to use in simulation.

If X ∼ Gamma(α, β), then f(x) = (βα/Γ(α))xα−1exβ; x > 0, α > 0 and β > 0.
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We know E[X] = α/β and var(X) = α/β2. Hence, β = α/E[X] and

var(X) =
α

β2
=

α

( α
E[X]

)2
=
E2[X]

α
.

Also, we have var(X) = E[X2]− E2[X] = E2[X]
α

, so α = E2[X]
E[X2]−E2[X]

. We define disper-

sion parameter φ to be φ = 1
α

. Then

φ =
1

α
=
E[X2]− E2[X]

E2[X]
=

var(X)

E2[X]
.

By the method of moments we have Ê[X] = µ̂ and v̂ar(X) = Σ(Xi−µ̂)2

(n−p) ; where p is the

number of variables and n is the number of observations.

Therefore, the estimated dispersion parameter by method of moments is

φ̂ =
1

α̂
=

Σ(Xi − µ̂)2

(µ̂)2(n− p)
.

Before using the function we noticed that all the categorical variables have the word

“factor” in their names in the models. So first we changed the name of all categori-

cal variables to their own names without the word “factor”. Then we defined two vec-

tors of variable names for both logistic and gamma models. We defined a vector named

“is categorical”, which assigns “zero” to all quantitative variables including intercept, and

“one” to all categorical variables. For each categorical variable of our bridge we need

to clarify the level and corresponding coefficient. Therefore, we described bridges in

terms of their explanatory variables. After describing the bridge and finding β logistic

and β gamma which are the coefficients arising from the logistic and gamma models for

each bridge, we wrote the function of calculating the predicted probability of deterioration

for this bridge and predicted deterioration amount. To find those predictions, we know that
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for logistic distribution we have

η = XTβ

and

p̂ =
eη

1 + eη
,

in which β is the coefficients of model logistic and X is the vector of values of variables in

logistic model for each bridge and p̂ is the predicted probability of deterioration. Also we

know when using the log-link for gamma distribution we have

η = XTβ

and

µ̂ = eη,

in which β is the coefficients of model gamma and X is the vector of values of variables in

gamma model for each bridge and µ̂ is predicted amount of deterioration.

This function, which is named get eta is described in Algorithm 5.

4.3 PREDICTED SUFFICIENCY RATING FOR MIXED LOGISTIC GAMMA MODEL

After we wrote the function which predicts the probability and amount of deterioration of a

given bridge, we needed to write another function that calculates the predicted sufficiency

rating for our given bridge in our given segment. This function which is named gener-

ate history is explained in this section. This function’s job is to get a bridge’s information,

coefficients of logistic model, coefficients of gamma model, α̂, number of iterations, and
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Algorithm 5 Pseudo code For get eta Function
Require: model logistic and model gamma.

Start get eta function by passing a bridge, coefficients of logistic and gamma model into
it.
Change the names of categorical variables to match their names in data frame.
Define a vector of variables logistic names including the “intercept”.
Define a vector of variables gamma names including the “intercept”.
Define is categorical vector that assigns 1 to all categorical variables
and zero for other variables and intercept.
Describe a bridge in terms of the explanatory variables and coefficients of model logistic
. beta logistic.
Describe a bridge in terms of the explanatory variables and coefficients of model gamma
. beta gamma.
ηl = 0. . Initialize eta logistic at zero
for i in variables logistic do

if i is a categorical variable then . ηl=η logistic.
ηl = ηl + βi; . β is β logistic here.

else . The variable is not categorical.
ηl = ηl + xiβi . β is β logistic here.

end if
Print ηl.

end for
p̂ = eηl

1+eηl
. Calculate the predicted probability of deterioration

Initialize ηg = 0
for i in variables gamma do

if i is a categorical variable then . ηg=η gamma.
ηg = ηg + βi . β is β gamma here.

else . The variable i is not categorical.
ηg = ηg + xiβi . β is β gamma here.

end if
Print ηg.

end for
µ̂ = eηg . . Calculate the predicted amount of deterioration.
predictions = (p̂, µ̂).
Return Predictions.
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the segment-length, and return a matrix of sufficiency rating history which is named suf-

ficiency history. The sufficiency history matrix has as many rows as number of iterations

and as many columns as the years of the specified segment. All of the rows of the first

column of this matrix are the first year of the segment’s sufficiency rating for that speci-

fied bridge. Each row has all years of the segment’s predicted sufficiency ratings for each

simulation.

The beginning of each row of this matrix starts with the sufficiency rating of the first

year of the segment for that specified bridge. For the next year (which is the next column

of the same row) p̂ and µ̂ that we found from the model are used to calculate a random

deterioration amount which is the DROP. After that, by deducting this random simulated

DROP from the previous year’s sufficiency rating, it finds a number for this year’s suffi-

ciency rating. It then replaces the new sufficiency rating as the beginning sufficiency rating

and adds one year to the age of the bridge, for the next step. Continuing the same way,

the function calculates the sufficiency ratings for all years of the segment for that iteration.

After it finishes the first row, it goes to the next row and does the same for the second

simulation. It continues till it reaches the end of the last iteration. At the end, the function

returns the sufficiency history matrix. This function, which is named generate history is

described in Algorithm 6.

At the end of the generate history function, the sufficiency history matrix which has

multiple rows of simulated sufficiency rating for each year in its columns is returned. To

find the predicted sufficiency rating of each year in the segment we take the median of all

sufficiency ratings in the related column of the sufficiency history matrix.
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Algorithm 6 Pseudo code For generate history Function
Require: model logistic and model gamma.

num iter = number of iterations
segment length = segmentEnd− segmentBegin+ 1. . years in segment
Pass a bridge, coefficient of logistic and gamma model, α̂, num iter and
segment length into generate history function.
Initialize an empty matrix named sufficiency history with
number of rows = num iter and number of columns = segment length.
for i in 1 to num iter do

Define a bridge named tempBridge. . For each iteration start from the bridge’s data.
Store the sufficiency rating for the first year in the segment.
for k in 2 to segment-length do . All years after the first year.

pass a row from the data frame into get eta function. . Find p̂ and µ̂.
if The uniform randomly generated number< p̂ then . The bridge deteriorates

β̂ = α̂/µ̂
Simulate the Gamma portion using α̂ and β̂.
Decrease the sufficiency rating by the deterioration amount.
Increase the age of the bridge by one year.

else . No deterioration.
Increase the age of the bridge by one year.

end if
Put the numbers in their place in the sufficiency history matrix.

end for
end for
Return sufficiency history matrix.
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4.4 DETERIORATION CURVES FOR MIXED LOGISTIC GAMMA MODEL

In the next step, we wrote a function that plots the sufficiency ratings versus years for any

bridge with any defined segment length. Thus it is very useful to predict the deteriora-

tion after a given number of years have passed. We pass a bridge’s information, coeffi-

cients of model logistic, coefficients of model gamma, α̂, number of iterations, and the

segment length which is the number of all years in a segment, into this function. The func-

tion generates three curves for each segment’s predicted sufficiency ratings versus years.

One of the curve’s predicted sufficiency ratings are the medians of each column of

the sufficiency history matrix for each year which is graphed by black color. The sec-

ond curves’s predicted sufficiency ratings are the first quartile of each column of the suf-

ficiency history matrix for each year which is plotted by blue. Finally, the last curve’s

predicted sufficiency ratings are the third quartile of each column of the sufficiency history

matrix for each year which is plotted by red.

At the beginning the sufficiency history matrix is generated by passing a bridge’s

information, coefficients of model logistic, coefficients of model gamma, α̂, number of

iterations, and segment length into the generate history function. Then it finds the median,

first quartile, and the third quartile of each column of this sufficiency history matrix. It

makes a vector of all medians, a vector of all first quartiles, and a vector of all third quartiles

for the years of the specified segment. It makes a sequence from one to the number of years

in the segment and names it Years. At the end it plots median, Q1s and Q3s versus Years

in the colors mentioned above.



47

I described this function, which is named generate curve function, in Algorithm 7.

Algorithm 7 Pseudo code For generate curve Function
Require: A bridge, logistic and gamma model, α̂, number of iterations, segment-length.

Pass a bridge, logistic and gamma coefficients, α̂, number of iterations and
segment-length into generate-history function.
Initialize empty vectors median, Q1s, Q3s.
for k in 1 to segment-length do ; k is index over time.

Calculate Q1s[k] . Vector of first quartiles
Calculate medians[k] . Vector of medians
Calculate Q3s[k] . Vector of third quartiles

end for
Generate Years. . Sequence of numbers from 1 to number of years of a segment.
Plot Q1s vs. Years in Blue. Set the Y-axis to be “Sufficiency Rating”.
Plot medians vs. Years in Black.
Plot Q3s vs. Years in Red.
Make the legend in the bottom left.

Then we can use this function to simulate and generate curves. We need to define a

bridge, set a number of iterations and a segment length and pass them in generate curve

function to generate a curve that predicts deteriorations throughout and at the end of the

segment.

4.5 PREDICTED DETERIORATION FOR POISSON MODEL

In Poisson model, the “DROP”, which is the deterioration amount of each bridge at each

inspection, is a Poisson random variable. We know that a Poisson random variable can

only take integer values 0, 1, 2, 3, etc. The parameter of Poisson random variable is λ. For

variable Y ∼ Poisson(λ), the probability density function is

f(k) = P (Y = k) =
e−λλk

k!
; k = 0, 1, 2, ...
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.

E[Y ] = var(Y ) = λ

Suppose that the mean of a Poisson random variable Y depends on a set of explanatory

variables x1, x2, x3, ..., and xp, and β0, β1, β2, ..., βp are the coefficients of the Poisson

model. Since the mean is always positive, a common way of modeling the conditional

expectation of Y is to set it to be the exponential function of the response. Hence we

define:

λ = E[Y | x1, x2, x3, ..., xp] = eβ0+β1x1+β2x2+...+βpxp

By taking the natural logarithm of each side we have,

ln(λ) = β0 + β1x1 + β2x2 + ...+ βpxp = η

This uses the natural log as the link function for a Poisson regression. Therefore:

E[Y ] = V ar(Y ) = eη = λ

Since in our model “DROP” is the Poisson random variable, the expected value of “DROP”

can be estimated by λ. Hence, in order to simulate and predict the deterioration in a seg-

ment, first we need a function that takes a bridge’s information and the coefficients of our

Poisson model and calculates the predicted amount of deterioration λ̂, which is an estima-

tion for the Poisson distribution’s expected value, for the given bridge. This function is

named get lambda function.

Before starting the function we noticed that all the categorical variables have the word

“factor” in their names in the model. Thus we started this function with changing the name
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of all categorical variables to their own names without the word “factor”. Then we defined

a vector of variable names which are in use in Poisson model. We defined a vector named

“is categorical”, which assigns “zero” to all quantitative variables including intercept, and

“one” to all categorical variables. Since we had categorical variables in each bridge’s data,

it is necessary to assign the regression coefficient corresponding to the bridge’s level of

each variable. Therefore, we described bridges in terms of their explanatory variables.

After describing the bridge, we found β Poisson, which is the coefficients arising from

the Poisson model for each bridge. At the end, we calculated λ̂ which is an exponential

function of β Poisson. As we explained, λ̂ is the expected value of deterioration of a

bridge in this model.

This function, which is named get lambda is described in Algorithm 8.

Algorithm 8 Pseudo code For get lambda Function
Require: model Poisson.

Start get lambda function by passing a bridge and coefficients of Poisson model into it.
Change the names of categorical variables to match their names in the data frame.
Define a vector of variables Poisson names including the “intercept”.
Define is categorical vector that assigns 1 to all categorical variables
and zero for other variables and intercept.
Describe a bridge in terms of the explanatory variables and coefficients of
model Poisson. . beta Poisson.
ηP = 0 . Initialize eta Poisson at zero.
for i in variables Poisson do

if i is a categorical variable then
ηP = ηP + βi . β is β Poisson here.

else . The variable is not categorical.
ηP = ηP + xiβi . β is β Poisson here.

end if
end for
λ̂ = eηP . Find predicted amount of deterioration.
Return λ̂.
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4.6 PREDICTED SUFFICIENCY RATING FOR POISSON MODEL

After we wrote the function which predicts the amount of deterioration of a given bridge,

we needed to write another function that calculates the predicted sufficiency rating for

our given bridge in our given segment. I explain this function which is named Pois-

son Pred Suff in this section.

This function takes a bridge’s information, coefficients of Poisson model, number of

iterations, and the segment-length. The purpose of this function is to simulate the suf-

ficiency rating for each year of the segment, as many times as the number of iterations

that we passed into it, and calculate the matrix of sufficiency rating history which is named

suff history matrix. Finally, it finds the medians, first quartile, and the third quartile of each

column of this matrix, plots these medians, first quartiles, and the third quartiles versus all

years of a segment for each bridge. At the end it returns the medians of all columns of

the suff history matrix, which are the predicted sufficiency ratings for those related years

(column) in the segment.

The suff history matrix has as many rows as the number of iterations and as many

columns as the years of the specified segment. All of the rows of the first column of this

matrix is the first year of the segment’s sufficiency rating for that specified bridge. Each

row includes all years of the segment’s predicted sufficiency ratings for each simulation.

The beginning of each row of this matrix starts with the sufficiency rating of the first

year of the segment for that specified bridge. For the next year (which is the next column of

the same row) λ̂ that we found from the model is used to generate a random deterioration
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amount which is the “Deterioration”. By deducting this random simulated deterioration

from the previous year’s sufficiency rating it finds a number for this year’s sufficiency

rating. Next it replaces the new sufficiency rating as the beginning sufficiency rating and it

adds one year to the age of the bridge, for the next step.

It continues the same way to calculate the sufficiency ratings for all years of the seg-

ment for that iteration. After it finishes the first row, it goes to the next row and starting from

the defined bridge’s information, does the same for the second simulation. It continues till

it reaches the end of the last iteration. This way it generates the suff history matrix.

In the next step, it finds the median, first quartile and the third quartile of each column

of this suff history matrix and gives us the vectors of sufficiency ratings for the years of the

segment for that bridge. Then it plots them versus the Years of the segment. From this we

can see how the bridge will deteriorate through the segment and at the end of it.

The vector of medians has the predicted sufficiency ratings for all the years of the

segment for that bridge. At the end the Poisson Pred Suff function returns the predicted

sufficiency ratings for the years of the segment which is the median vector that it made.

This function is described in Algorithm 9. We can use this function to simulate and gen-

erate curves. We need to define a bridge, a number of iterations and a segment length and

pass them in Poisson Pred Suff function to generate a curve that predicts deteriorations

throughout and at the end of the segment.

Example 4.1. We choose the first bridge out of the logistic df data frame and plot the

curves of both models as we see in Figures (4.1) and (4.2). We see the medians of both mod-
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els are almost the same, but the first and third quartiles of the SUFFICIENCY RATINGs

for the Poisson model are very close to the median.

Figure 4.1: Logistic Gamma Predictions for Example 4.1

Figure 4.2: Poisson Predictions for Example 4.1
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Algorithm 9 Pseudo code For Poisson Pred Suff Function
Require: model Poisson.

num iter = number of iterations.
segment length=segmentEnd− segmentBegin+ 1. . Years in segment.
Pass a bridge, coefficient of model Poisson, num iter and
segment length into Poisson Pred Suff function.
Initialize an empty num iter by segment length matrix named suff history.
for i in 1 to num iter do . i is index over number of rows.

Define a bridge named tempBridge. . For each iteration start from the bridge’s data.
Store the sufficiency rating for the first year in the segment.
for k in 2 to segment-length do . All years in segment after the first year.

Pass a row from the data frame to the get lambda function to get λ̂.
Randomly generate Poisson variable using λ̂. . simulated Deterioration amount.
Decrease the sufficiency rating by the deterioration amount.
Increase the age of the bridge by one year.
Put the numbers in their place in the suff history matrix.

end for
end for
Initialize empty vectors median, Q1s, Q3s.
for k in 1 to segment-length do

Calculate Q1s[k]. . Vector of first quartiles
Calculate medians[k]. . Vector of medians
Calculate Q3s[k]. . Vector of third quartiles

end for
Generate Years. . Sequence of numbers from 1 to number of years of a segment.
Plot Q1s vs. Years in Blue. Set the Y-axis to be “Sufficiency Rating”.
Plot medians vs. Years in Black.
Plot Q3s vs. Years in Red.
Make the legend in the bottom left.
Set medians to be predicted sufficiency ratings of the years in the segment.
Return Pois Pred Suff. . Predicted sufficiency ratings of the years in the segment.
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CHAPTER 5

COMPARISON

5.1 SUM OF SQUARED ERRORS

In this section we compare our two models’ sum of squared errors (SSE) of prediction to

see which one is smaller and we also we look at some curves and examples to compare

these two models. For all the bridges in our data frame we have all the sufficiency ratings

of all years. For each bridge we can predict a sufficiency rating for each year using the

functions that we created in Chapter 4. Hence, each bridge has a real sufficiency rating

from the data frame (Y ) and a predicted one (Ŷ ) from the simulations. For each bridge, the

error of predicting the sufficiency rating, is ei = Yi − Ŷi, where i is the index over years of

each segment. The squared errors of prediction for that bridge in a segment is:

segment length∑
i=1

(Yi − Ŷi)2.

Hence, we find the SSE’s of all segments of all bridges and then we add them all together

to find the SSE of the model.

The script that finds the SSE of the mixed Logistic Gamma model is explained in Al-

gorithm 10 and the script that finds the SSE of the Poisson model is explained in Algorithm

11.

The results of calculating SSE for the models were:

SSE of the mixed Logistic Gamma model = 9,570,996

SSE of Poisson model = 36,092,381.
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Algorithm 10 Pseudocode for the script that finds SSE of mixed Logistic Gamma model.
Require: logistic df and segment df data frame and generate history function.

num iter =100 . Number of times to simulate.
Make bridgeIDs vector. . A vector of all bridges.
Initialize sse at zero.
for m from 1 to number of bridges do

Print m. . To make sure the sse is for all of the bridges at the end.
Make the temporary data frame that contains only rows from bridge m of
the logistic df. . temp bridge df
Make the temporary data frame that contains only rows from bridge m of
the segment df. . temp segment df.
for j from 1 to number of rows of temp segment df do

Find segment length. . How many years the segment lasts.
Make temp bridge in segment df . subset of temp bridge df for
the j-th segment.
Extract tempBridge. . The bridge at the beginning of the segment.
Pass tempBridge, coefficients of models, α̂, nume iter and segment length
into generate history function. . Make sufficiency history matrix.
Initialize empty vector medians.
for k from 1 to segment length do

Set the k-th element of the medians vector equal to the median of the k-th
column of the sufficiency history matrix.

end for
Pred Suff = medians
Y = SUFFICIENCY RATING BEG of the temp bridge in segment df.
sse = sse +

∑
(Y − Pred Suff)2

end for
end for
Print sse.
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Algorithm 11 Pseudocode for the script that finds SSE of Poisson model.
Require: logistic df and segment df data frame and generate history function.

num iter = 100 . Number of times to simulate.
Make vector. . Vector of all bridges.
Initialize sse at zero.
for m from 1 to number of bridges do

Print m. . To make sure the sse is for all of the bridges at the end.
Make a temporary data frame that contains only rows from bridge m of
the logistic df. . temp bridge df.
Make a temporary data frame that contains only rows from bridge m of
the segment df. . temp segment df.
for j from 1 to number of rows of temp segment df do

Find segment length. . How many years the segment lasts.
Make temp bridge in segment df. . Subset of temp bridge df for the j-th

segment.
Initialize suff history matrix. . An empty num iter by segment length matrix.
for i from 1 to num iter do

Extract tempBridge. . The bridge at the beginning of the segment.
Store the SUFFICIENCY RATING of the first year in the segment in the
first column of suff history matrix.
for k from 2 to segment length do

Find λ̂ by passing the tempBridge and coefficients of
Poisson model into get lambda function.
Randomly generate Poisson variable using λ̂. . Deterioration amount.
Decrease the SUFFICIENCY RATING by the deterioration amount.
Increase the AGE of the bridge by one year.
Put the numbers in their place in the suff history matrix.

end for
end for
Pass the tempBridge, model Poisson’s coefficients, num iter and segment length
into Poisson Pred Suff function. . Find Pois Pred Suff.
Y = SUFFICIENCY RATING BEG of the temp bridge in segment df.
SSE=SSE +

∑
(Y − Pois Pred Suff)2

end for
end for
Print SSE.
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We see that the SSE of the mixed Logistic Gamma model is much smaller than Poison

model which shows the mixed model predicts the deteriorations better than Poisson model.

5.2 EXAMPLES

In this section we want to look at some bridges’ deterioration curves under both mixed

logistic Gamma model and the Poisson model and observe the differences.

Example 5.1. We defined a bridge in Table 5.1, and we set the number of iterations to

be 400 and we want to observe how this bridge deteriorates 50 years from now. We set

the segment length equal to 50 and we passed the bridge, number of iterations and seg-

ment length into both generate curve function and Poisson Pred Suff function to see the

difference of curves for our two different models. Looking at Figures (5.1) and (5.2), we

observe that the medians for both models are almost the same but the first quartiles line

and the third quartiles line of the Poisson model are too close to the median line. We think

it is not realistic and they should not be that close.

Table 5.1: Bridge Data

Variables Value Variables Value

Intercept 1 STRUCTURE LEN 85.6

ROUTE PREFIX 4 SERVICE LEVEL 1

TRAFFIC LANES ON 2 MEDIAN CODE 0

TRAFFIC LANES UND 8 AGE 30
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Table 5.1: Bridge Data

Variables Value Variables Value

STRUCTURE KIND 3 INSPECTION GAP 1

STRUCTURE TYPE 2 SUFFICIENCY RATING BEG 78.9

NAV VERT 24
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Figure 5.1: Logistic Gamma Predictions for Example 5.1

Figure 5.2: Poisson Predictions for Example 5.1
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Example 5.2. In this example we chose the bridge with STRUCTURE NUMBER

“000000003500130” out of the data frame and we set the number of iterations to be 100

and we want to observe how this bridge deteriorates in 60 years from now. We compared

the curves of the two different models for that bridge as we see in Figures (5.3) and (5.4),

and we see that the Poisson deterioration is too slow and also the quartiles are too close

to the median again. The reason is that when we have a Poisson parameter with small λ

close to zero, the change is almost always zero or one. Therefore there can not be much

variation. So Poisson model does not really allow for variation as much as the mixed

Logistic Gamma model does.

Figure 5.3: Mixed Model Predictions for Example 5.2
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Figure 5.4: Poisson Model Predictions for Example 5.2
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CHAPTER 6

CONCLUSION

Data about all bridges in the State of Georgia that is used in this thesis was collected for a

25 year period from 1992 to 2016. We picked 13 variables among 134 variables from the

original data frame that seem to be potentially more significant. In this thesis, two models

(Mixed Logistics Gamma model and Poisson model) are introduced. They both predict

the change of sufficiency rating of each bridge and tell us how much a specific bridge

deteriorates in a specific period of time. The mixed Logistics Gamma model is made of

two different models; finalmodel logistic and finalmodel gamma. The finalmodel logistic

tells us if there is any drop in SUFFICIENCY RATING. If DROP is greater than zero,

then the finalmodel gamma gives the amount of that deterioration. In Poisson model, since

DROP is a Poisson variable, it must be a discrete random variable but as we see in the data

frame, DROP is a continuous random variable. Therefore, we decided to round DROPs in

our training set to the closest integers. We then compare these two models by checking

their SSE. As it is explained in Chapter 5, the SSE of the mixed Logistics Gamma model

is 9,570,996 and the SSE of the Poisson model is 36,092,381 which is much larger than

the SSE of mixed Logistics Gamma model. Also we compared the deterioration curves of

these two models in Chapter 5, and it is clear that the medians for both models are almost

the same but the first quartile curves and the third quartile curves of the Poisson model are

too close to the median curve which is not realistic and they should not be that close. The

reason is that the λ of the Poisson parameter is too small and close to zero and it forces the
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change to be almost always zero or one. Thus the mixed Logistics Gamma model is a better

model to predict sufficiency rating of a bridge in future. This is not only because of the SSE

and the curves, but also because the sufficiency rating and deterioration are continuous and

the Gamma portion works in continuous case.
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Appendix A

DATA CLEANING

A.1 IMPORT SCRIPT

setwd("G:/Thesis/Thesis data Toki")

library(dplyr)

Year1 = "ga92del.txt"
Year2 = "ga93del.txt"
Year3 = "ga94del.txt"
Year4 = "ga95del.txt"
Year5 = "ga96del.txt"
Year6 = "ga97del.txt"
Year7 = "ga98del.txt"
Year8 = "ga99del.txt"
Year9 = "ga2000del.txt"
Year10 = "ga2001del.txt"
Year11 = "ga2002del.txt"
Year12 = "ga2003del.txt"
Year13 = "ga2004del.txt"
Year14 = "ga2005del.txt"
Year15 = "ga2006del.txt"
Year16 = "ga2007del.txt"
Year17 = "ga2008del.txt"
Year18 = "ga2009del.txt"
Year19 = "ga2010del.txt"
Year20 = "ga2011del.txt"
Year21 = "ga2012del.txt"
Year22 = "ga2013del.txt"
Year23 = "ga2014del.txt"
Year24 = "ga2015del.txt"
Year25 = "ga2016del.txt"

df1 = read.csv(Year1)
df2 = read.csv(Year2)
df3 = read.csv(Year3)
df4 = read.csv(Year4)
df5 = read.csv(Year5)
df6 = read.csv(Year6)
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df7 = read.csv(Year7)
df8 = read.csv(Year8)
df9 = read.csv(Year9)
df10 = read.csv(Year10)
df11 = read.csv(Year11)
df12 = read.csv(Year12)
df13 = read.csv(Year13)
df14 = read.csv(Year14)
df15 = read.csv(Year15)
df16 = read.csv(Year16)
df17 = read.csv(Year17)
df18 = read.csv(Year18)
df19 = read.csv(Year19)
df20 = read.csv(Year20)
df21 = read.csv(Year21)
df22 = read.csv(Year22)
df23 = read.csv(Year23)
df24 = read.csv(Year24)
df25 = read.csv(Year25)

df1 = df1[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’, ’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df1$YEAR = rep(1992,nrow(df1))

df2 = df2[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df2$YEAR = rep(1993,nrow(df2))

df3 = df3[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df3$YEAR = rep(1994,nrow(df3))

df4 = df4[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]
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df4$YEAR = rep(1995,nrow(df4))

df5 = df5[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df5$YEAR = rep(1996,nrow(df5))

df6 = df6[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df6$YEAR = rep(1997,nrow(df6))

df7 = df7[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df7$YEAR = rep(1998,nrow(df7))

df8 = df8[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df8$YEAR = rep(1999,nrow(df8))

df9 = df9[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df9$YEAR = rep(2000,nrow(df9))

df10 = df10[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df10$YEAR = rep(2001,nrow(df10))

df11 = df11[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
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LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df11$YEAR = rep(2002,nrow(df11))

df12 = df12[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df12$YEAR = rep(2003,nrow(df12))

df13 = df13[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df13$YEAR = rep(2004,nrow(df13))

df14 = df14[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df14$YEAR = rep(2005,nrow(df14))

df15 = df15[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df15$YEAR = rep(2006,nrow(df15))

df16 = df16[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df16$YEAR = rep(2007,nrow(df16))

df17 = df17[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df17$YEAR = rep(2008,nrow(df17))
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df18 = df18[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df18$YEAR = rep(2009,nrow(df18))

df19 = df19[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df19$YEAR = rep(2010,nrow(df19))

df20 = df20[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df20$YEAR = rep(2011,nrow(df20))

df21 = df21[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df21$YEAR = rep(2012,nrow(df21))

df22 = df22[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df22$YEAR = rep(2013,nrow(df22))

df23 = df23[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df23$YEAR = rep(2014,nrow(df23))

df24 = df24[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
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_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df24$YEAR = rep(2015,nrow(df24))

df25 = df25[c(’STRUCTURE_NUMBER_008’,’SUFFICIENCY_RATING’,’ROUTE_
PREFIX_005B’,’SERVICE_LEVEL_005C’, ’YEAR_BUILT_027’, ’TRAFFIC_
LANES_ON_028A’,’TRAFFIC_LANES_UND_028B’,’MEDIAN_CODE_033’,’NAV
_VERT_CLR_MT_039’,’STRUCTURE_KIND_043A’,’STRUCTURE_TYPE_043B’,
’MAX_SPAN_LEN_MT_048’,’STRUCTURE_LEN_MT_049’)]

df25$YEAR = rep(2016,nrow(df25))

df = bind_rows(df1,df2,df3,df4,df5,df6,df7,df8,df9,df10,df11,df12,
df13,df14,df15,df16,df17,df18,df19,df20,df21,df22,df23,df24,
df25)

df = na.omit(df)
}

read_bridge_data=function(df){
STRUCTURE_NUMBER_008=vector(,1)
ROUTE_PREFIX_005B=vector(,1)
SERVICE_LEVEL_005C =vector(,1)
YEAR_BUILT_027 =vector(,1)
TRAFFIC_LANES_ON_028A =vector(,1)
TRAFFIC_LANES_UND_028B =vector(,1)
MEDIAN_CODE_033 =vector(,1)
#DEGREES_SKEW_034 =vector(,1)
NAV_VERT_CLR_MT_039 =vector(,1)
STRUCTURE_KIND_043A =vector(,1)
STRUCTURE_TYPE_043B =vector(,1)
MAX_SPAN_LEN_MT_048 =vector(,1)
STRUCTURE_LEN_MT_049 =vector(,1)
Old_Date =vector(,1)
New_Date =vector(,1)
Age = vector(,1)
Inspection_Gap =vector(,1)
SUFFICIENCY_RATING_Beg =vector(,1)
Drop=vector(,1)
SegmentList = list()
n = 1
bridgeIDs = unique(df$STRUCTURE_NUMBER_008)
print(bridgeIDs)
for (i in 1:length(bridgeIDs)) {
print(i)
tempdf <- subset(df, STRUCTURE_NUMBER_008 == bridgeIDs[i])
tempBridgeList = list()



72

j = 1
while (is.na(tempdf$SUFFICIENCY_RATING[j]) &

j < nrow(tempdf) + 1) {
j = j + 1

}
while (j < nrow(tempdf) + 1) {
old_condition = tempdf$SUFFICIENCY_RATING[j]
old_date = tempdf$YEAR[j]
j = j + 1
flag = FALSE
while (!flag) {
while (is.na(tempdf$SUFFICIENCY_RATING[j]) & j < nrow(tempdf

) + 1) {
j = j + 1

}
if (j > nrow(tempdf)) {
flag = TRUE

} else{
cur_condition = tempdf$SUFFICIENCY_RATING[j]
cur_date = tempdf$YEAR[j]
Dropping = old_condition - cur_condition
if (Dropping >= 0) {
STRUCTURE_NUMBER_008[n] = bridgeIDs[i]
ROUTE_PREFIX_005B[n] = tempdf$ROUTE_PREFIX_005B[j]
SERVICE_LEVEL_005C[n] = tempdf$SERVICE_LEVEL_005C[j]
YEAR_BUILT_027 [n] = tempdf$YEAR_BUILT_027[j]
TRAFFIC_LANES_ON_028A[n] = tempdf$TRAFFIC_LANES_ON_028A[j

]
TRAFFIC_LANES_UND_028B[n] = tempdf$TRAFFIC_LANES_UND_028B

[j]
MEDIAN_CODE_033[n] = tempdf$MEDIAN_CODE_033[j]
NAV_VERT_CLR_MT_039[n] = tempdf$NAV_VERT_CLR_MT_039[j]
STRUCTURE_KIND_043A[n] = tempdf$STRUCTURE_KIND_043A[j]
STRUCTURE_TYPE_043B[n] = tempdf$STRUCTURE_TYPE_043B[j]
MAX_SPAN_LEN_MT_048[n] = tempdf$MAX_SPAN_LEN_MT_048[j]
STRUCTURE_LEN_MT_049[n] = tempdf$STRUCTURE_LEN_MT_049[j]
Old_Date[n] = old_date
New_Date[n] = cur_date
Age[n] = New_Date - tempdf$YEAR_BUILT_027[j] + 1
Inspection_Gap[n] = New_Date[n] - Old_Date[n]
SUFFICIENCY_RATING_Beg[n] = old_condition
Drop[n] = Dropping
n = n + 1

}
flag = TRUE

}
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}
}

}
newdf = data.frame(STRUCTURE_NUMBER_008, ROUTE_PREFIX_005B,

SERVICE_LEVEL_005C, YEAR_BUILT_027 ,TRAFFIC_LANES_ON_028A,
TRAFFIC_LANES_UND_028B, MEDIAN_CODE_033,

NAV_VERT_CLR_MT_039, STRUCTURE_KIND_043A, STRUCTURE_TYPE_043B,
MAX_SPAN_LEN_MT_048 , STRUCTURE_LEN_MT_049, Old_Date, New_
Date, Age, Inspection_Gap, SUFFICIENCY_RATING_Beg,

Drop)
newdf$MEDIAN_CODE_033=as.factor(newdf$MEDIAN_CODE_033)
newdf$ROUTE_PREFIX_005B=as.factor(newdf$ROUTE_PREFIX_005B)
newdf$SERVICE_LEVEL_005C=as.factor(newdf$SERVICE_LEVEL_005C)
newdf$STRUCTURE_KIND_043A=as.factor(newdf$STRUCTURE_KIND_043A)
newdf$STRUCTURE_TYPE_043B=as.factor(newdf$STRUCTURE_TYPE_043B)
return(newdf)

}

A.2 SEGMENTS

make_segment_df=function(df){
STRUCTURE_NUMBER=vector(,1)
segmentBegins = vector(,1)
segmentEnds = vector(,1)
n=1
bridgeIDs = unique(as.character(df$STRUCTURE_NUMBER_008))
for (i in 1:length(bridgeIDs)) {
print(i)
tempdf <- subset(df,STRUCTURE_NUMBER_008 == bridgeIDs[i])
j=1
bridgeFlag = FALSE
while (!bridgeFlag){
segmentBegin = tempdf$Old_Date[j]
segmentFlag = FALSE
while(!segmentFlag){
segmentEnd = tempdf$New_Date[j]
if ((j+1)>length(tempdf$Old_Date)){
segmentFlag = TRUE
bridgeFlag = TRUE

}else{
if (tempdf$Old_Date[j+1] != segmentEnd){
segmentFlag = TRUE

}
}
j = j + 1
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}
STRUCTURE_NUMBER[n] = bridgeIDs[i]
segmentBegins[n] = segmentBegin
segmentEnds[n] = segmentEnd
n = n + 1
print(n)

}
}
newdf = data.frame(STRUCTURE_NUMBER, segmentBegins, segmentEnds)
return(newdf)

}

A.3 CONSTRUCT A DATA FRAME WITH DROP ≥ 0

full_df = read_bridge_data(df)
full_df = full_df[-which(full_df$Inspection_Gap==0),]
reduced_df = subset(full_df, STRUCTURE_TYPE_043B %in% c

(1,2,4,5,6,11,19))
reduced_df$ROUTE_PREFIX_005B[reduced_df$ROUTE_PREFIX_005B %in% c("

6","7","8")] <- "8"
reduced_df$STRUCTURE_KIND_043A <- as.character(reduced_df$

STRUCTURE_KIND_043A)
reduced_df$STRUCTURE_KIND_043A[reduced_df$STRUCTURE_KIND_043A %in%

c("1","2")] <- "1"
reduced_df$STRUCTURE_KIND_043A[reduced_df$STRUCTURE_KIND_043A %in%

c("3","4")] <- "3"
reduced_df$STRUCTURE_KIND_043A[reduced_df$STRUCTURE_KIND_043A %in%

c("5","6")] <- "5"
reduced_df$STRUCTURE_KIND_043A[reduced_df$STRUCTURE_KIND_043A %in%

c("8","9")] <- "8"
reduced_df$STRUCTURE_KIND_043A <- factor(reduced_df$STRUCTURE_KIND

_043A)
segment_df = make_segment_df(reduced_df)

A.4 CLASSIFY ”DROP” AS EITHER 1 OR 0

n = length(reduced_df$Drop)
DetPres = rep(0,length=n)
for (i in 1:n){
if (reduced_df$Drop[i]>0){
DetPres[i]=1

} else{
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DetPres[i]=0
}

}
reduced_df$DetPres = DetPres

A.5 LOGISTIC AND GAMMA DATA FRAME SETUP

logistic_df = reduced_df
posdrops_df = subset(reduced_df, Drop>0)
gamma_df = posdrops_df

A.6 CLEANING HELPER DATA FRAMES

rm(df, df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11,
df12, df13, df14, df15, df16, df17, df18, df19, df20,
df21, df22, df23, df24, df25, full_df, posdrops_df, reduced_df,

Year1, Year2, Year3, Year4, Year5, Year6, Year7, Year8,
Year9, Year10, Year11, Year12, Year13, Year14, Year15, Year16,

Year17, Year18, Year19, Year20, Year21, Year22, Year23,
Year24, Year25, i, n, make_segment_df, read_bridge_data,

DetPres)

A.7 FREQUENCY TABLE FOR CATEGORICAL VARIABLES

new_df = subset(logistic_df, STRUCTURE_NUMBER_008 == bridgeIDs[1])
new_df = new_df[1,]
for (i in 1:length(bridgeIDs)){
print(i)
temp_df = subset(logistic_df, STRUCTURE_NUMBER_008 == bridgeIDs[

i])
new_df[i,] = temp_df[1,]

}
w= table(new_df$ROUTE_PREFIX_005B)
v=table(new_df$STRUCTURE_KIND_043A)
h=table(new_df$STRUCTURE_TYPE_043B)
l=table(new_df$SERVICE_LEVEL_005C)
c=table(new_df$MEDIAN_CODE_033)
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Appendix B

REGRESSION MODELS

B.1 TRAINING AND TEST SETS

sample_size = floor(.75*nrow(logistic_df))
set.seed(30461)
training_set_indices = sample(seq_len(nrow(logistic_df)),size =

sample_size)
training_set_logistic = logistic_df[training_set_indices,]
test_set_logistic = logistic_df[-training_set_indices,]
training_set_logistic2 = training_set_logistic
training_set_logistic2$STRUCTURE_NUMBER_008 = NULL
training_set_logistic2$Old_Date = NULL
training_set_logistic2$New_Date = NULL
training_set_logistic2$YEAR_BUILT_027 = NULL

B.2 LOGISTIC MODEL

B.2.1 FULL MODEL AND BACKWARD ELIMINATION

training_set_logistic2$Drop = NULL
fullmodel_logistic = glm (DetPres ˜ factor(ROUTE_PREFIX_005B)

+ factor(SERVICE_LEVEL_005C)
+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ factor(MEDIAN_CODE_033)
+ NAV_VERT_CLR_MT_039
+ factor(STRUCTURE_KIND_043A)
+ factor(STRUCTURE_TYPE_043B)
+ MAX_SPAN_LEN_MT_048
+ STRUCTURE_LEN_MT_049
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg,
data=training_set_logistic2,
family = binomial,
y = FALSE, model = FALSE)

null=glm(DetPres ˜ 1, data = training_set_logistic2,
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family = binomial)
backwards1 = step(fullmodel_logistic)
stepmodel_logistic = glm (DetPres ˜ factor(ROUTE_PREFIX_005B)

+ TRAFFIC_LANES_UND_028B
+ factor(STRUCTURE_TYPE_043B)
+ factor(STRUCTURE_KIND_043A)
+ STRUCTURE_LEN_MT_049
+ MAX_SPAN_LEN_MT_048
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg,
data=training_set_logistic2,
family = binomial,
y = FALSE, model = FALSE)

anova(stepmodel_logistic,fullmodel_logistic, test="Chisq")

B.2.2 PROPORTION OF DETPRES AMONG LEVELS OF STRUCTURE KIND

A=training_set_logistic2
levels(A$STRUCTURE_KIND_043A)
for (i in levels(A$STRUCTURE_KIND_043A)){
print(as.numeric(i))
print(mean(A$DetPres[A$STRUCTURE_KIND_043A == as.numeric(i)]))

}
table(A$STRUCTURE_KIND_043A)

B.2.3 PROPORTION OF DETPRES AMONG LEVELS OF STRUCTURE TYPE

levels(A$STRUCTURE_TYPE_043B)
for (i in levels(A$STRUCTURE_TYPE_043B)){
print(as.numeric(i))
print(mean(A$DetPres[A$STRUCTURE_TYPE_043B == as.numeric(i)]))

}
table(A$STRUCTURE_TYPE_043B)

B.2.4 DROP STRUCTURE KIND, KEEP STRUCTURE TYPE

Redmodel_logistic = glm (DetPres ˜ factor(ROUTE_PREFIX_005B)
+ TRAFFIC_LANES_UND_028B
+ factor(STRUCTURE_TYPE_043B)
+ STRUCTURE_LEN_MT_049
+ MAX_SPAN_LEN_MT_048
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+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg,
data=training_set_logistic2,
family = binomial,
y = FALSE, model = FALSE)

anova(Redmodel_logistic, stepmodel_logistic , test="Chisq")

B.2.5 CORRELATION MATRIX

A=training_set_logistic2
y=A[,14]
x1=A[,1]
x2=A[,2]
x3=A[,3]
x4=A[,4]
x5=A[,5]
x6=A[,6]
x7=A[,7]
x8=A[,8]
x9=A[,9]
x10=A[,10]
x11=A[,11]
x12=A[,12]
x13=A[,13]
one = rep(1, length(y))
X= cbind(one, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

x11, x12 , x13 )
cor(X, use="all.obs", method="spearman" )

B.2.6 DROP MAX SPAN

model_logistic = glm (DetPres ˜ factor(ROUTE_PREFIX_005B)
+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ NAV_VERT_CLR_MT_039
+ factor(STRUCTURE_TYPE_043B)
+ factor(STRUCTURE_KIND_043A)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg,
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data=training_set_logistic2,
family = binomial, y = FALSE,
model = FALSE)

anova(model_logistic , fullmodel_logistic , test="Chisq")

B.2.7 BACKWARD ELIMINATION FOR model logistic

null=glm(DetPres ˜ 1, data = training_set_logistic2,
family = binomial)

backwards2 = step(model_logistic)
smodel_logistic = glm(DetPres ˜ factor(ROUTE_PREFIX_005B)

+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ factor(STRUCTURE_TYPE_043B)
+ factor(STRUCTURE_KIND_043A)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg ,
data=training_set_logistic2,
family = binomial,
y = FALSE, model = FALSE)

anova(smodel_logistic, model_logistic, test="Chisq")

B.2.8 DROP STRUCTURE KIND FROM smodel logistic

Rmodel_logistic = glm(DetPres ˜ factor(ROUTE_PREFIX_005B)
+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ factor(STRUCTURE_TYPE_043B)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg ,
data=training_set_logistic2,
family = binomial,
y = FALSE, model = FALSE)

anova(Rmodel_logistic, smodel_logistic , test="Chisq")

B.2.9 FINAL LOGISTIC MODEL
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fullmodel_predictions = predict(fullmodel_logistic,
newdata = test_set_logistic,
type = "response")

Redmodel_predictions = predict(Redmodel_logistic,
newdata = test_set_logistic,
type = "response")

stepmodel_predictions = predict(stepmodel_logistic,
newdata = test_set_logistic,
type = "response")

smodel_predictions = predict(smodel_logistic,
newdata = test_set_logistic,
type = "response")

sum((fullmodel_predictions - test_set_logistic$DetPres)ˆ2)
sum((Redmodel_predictions - test_set_logistic$DetPres)ˆ2)
sum((stepmodel_predictions - test_set_logistic$DetPres)ˆ2)
sum((smodel_predictions - test_set_logistic$DetPres)ˆ2)
finalmodel_logistic = smodel_logistic

B.3 GAMMA MODEL

B.3.1 FULL GAMMA MODEL

training_set_gamma = subset(training_set_logistic2, Drop>0)
test_set_gamma = subset(test_set_logistic, Drop>0)
training_set_gamma$DetPres = NULL
fullmodel_gamma = glm(Drop ˜ factor(ROUTE_PREFIX_005B)

+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ NAV_VERT_CLR_MT_039
+ factor(STRUCTURE_KIND_043A)
+ factor(STRUCTURE_TYPE_043B)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ MAX_SPAN_LEN_MT_048
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg,
data=training_set_gamma,
family = Gamma(link="log"),
y = FALSE, model = FALSE)

B.3.2 CORRELATION MATRIX
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B=training_set_gamma
U=B[,14]
v1=B[,1]
v2=B[,2]
v3=B[,3]
v4=B[,4]
v5=B[,5]
v6=B[,6]
v7=B[,7]
v8=B[,8]
v9=B[,9]
v10=B[,10]
v11=B[,11]
v12=B[,12]
v13=B[,13]
one = rep(1, length(U))
V = cbind(one, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,

v11, v12 , v13 )
cor(V, use="all.obs", method="spearman" )

B.3.3 DROP MAX SPAN

model_gamma = glm(Drop ˜ factor(ROUTE_PREFIX_005B)
+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ NAV_VERT_CLR_MT_039
+ factor(STRUCTURE_KIND_043A)
+ factor(STRUCTURE_TYPE_043B)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg,
data=training_set_gamma,
family = Gamma(link="log"),
y = FALSE, model = FALSE)

B.3.4 BACKWARD ELIMINATION

null = glm(Drop˜1, data = training_set_gamma,
family = Gamma(link="log"))

backwards3 = step(model_gamma )
Stepmodel_gamma = glm(Drop ˜ factor(ROUTE_PREFIX_005B)

+ TRAFFIC_LANES_ON_028A
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+ TRAFFIC_LANES_UND_028B
+ NAV_VERT_CLR_MT_039
+ factor(STRUCTURE_KIND_043A)
+ factor(STRUCTURE_TYPE_043B)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg,
data=training_set_gamma,
family = Gamma(link="log"),
y = FALSE, model = FALSE)

anova(Stepmodel_gamma,model_gamma, test = "F")

B.3.5 DROP NAV VERT

Redmodel_gamma = glm(Drop ˜ factor(ROUTE_PREFIX_005B)
+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ factor(STRUCTURE_KIND_043A)
+ factor(STRUCTURE_TYPE_043B)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg,
data=training_set_gamma,
family = Gamma(link="log"),
y = FALSE, model = FALSE)

anova(Redmodel_gamma,Stepmodel_gamma, test = "F")

B.3.6 BOX PLOTS OF LEVELS OF STRUCTURE KIND AND STRUCTURE TYPE

boxplot(Drop˜STRUCTURE_KIND_043A, data=training_set_gamma)
boxplot(Drop˜STRUCTURE_TYPE_043B, data=training_set_gamma)

B.3.7 FINAL GAMMA MODEL

fullmodel_predictions2 = predict(fullmodel_gamma,
newdata = test_set_gamma,
type = "response")

Redmodel_predictions2 = predict(Redmodel_gamma,
newdata = test_set_gamma,
type = "response")

stepmodel_predictions2 = predict(Stepmodel_gamma,
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newdata = test_set_gamma,
type = "response")

model_predictions2 = predict(model_gamma,
newdata = test_set_gamma,
type = "response")

sum((fullmodel_predictions2 - test_set_gamma$Drop)ˆ2)
sum((Redmodel_predictions2 - test_set_gamma$Drop)ˆ2)
sum((stepmodel_predictions2 - test_set_gamma$Drop)ˆ2)
sum((model_predictions2 - test_set_gamma$Drop)ˆ2)
finalmodel_gamma = Redmodel_gamma

B.4 POISSON MODEL

B.4.1 FULL POISSON MODEL AND BACKWARD ELIMINATION

training_set_logistic2$DetPres = NULL
training_set_logistic2$Drop = round(training_set_logistic2$Drop)
fullmodel_Poisson = glm(Drop ˜ factor(ROUTE_PREFIX_005B)

+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ NAV_VERT_CLR_MT_039
+ factor(STRUCTURE_TYPE_043B)
+ factor(STRUCTURE_KIND_043A)
+ STRUCTURE_LEN_MT_049
+ MAX_SPAN_LEN_MT_048
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age
+ Inspection_Gap
+ SUFFICIENCY_RATING_Beg ,
data=training_set_logistic2,
family = poisson )

B.4.2 CORRELATION MATRIX

C = training_set_logistic2
T =C[,14]
l1=C[,1]
l2=C[,2]
l3=C[,3]
l4=C[,4]
l5=C[,5]
l6=C[,6]
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l7=C[,7]
l8=C[,8]
l9=C[,9]
l10=C[,10]
l11=C[,11]
l12=C[,12]
l13=C[,13]
one = rep(1, length(T))
L = cbind(one, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10,

l11, l12 , l13)
cor(L, use="all.obs", method="spearman")

B.4.3 DROP MAX SPAN

Rmodel_Poisson = glm(Drop ˜ factor(ROUTE_PREFIX_005B)
+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ NAV_VERT_CLR_MT_039
+ factor(STRUCTURE_TYPE_043B)
+ factor(STRUCTURE_KIND_043A)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age
+ Inspection_Gap
+ SUFFICIENCY_RATING_Beg ,
data=training_set_logistic2,
family = poisson )

B.4.4 BACKWARD METHOD ON RMODEL POISSON

null = glm(Drop˜1, data = training_set_logistic2, family = poisson
)

backwards5 = step(Rmodel_Poisson)
finalmodel_Poisson = Rmodel_Poisson

B.5 FINAL MODELS

model_logistic = glm(DetPres ˜ factor(ROUTE_PREFIX_005B)
+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ factor(STRUCTURE_TYPE_043B)
+ factor(STRUCTURE_KIND_043A)
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+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg ,
data=logistic_df,
family = binomial,
y = FALSE, model = FALSE)

model_gamma = glm(Drop ˜ factor(ROUTE_PREFIX_005B)
+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ factor(STRUCTURE_KIND_043A)
+ factor(STRUCTURE_TYPE_043B)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg,
data=gamma_df,
family = Gamma(link="log"),
y = FALSE, model = FALSE)

dispersion = sum((gamma_df$Drop - model_gamma$fitted.values)ˆ2/
model_gamma$fitted.valuesˆ2)/(nrow(gamma_df)-length(model_
gamma$coeff))

alpha_hat = 1/dispersion

model_Poisson = glm(Drop ˜ factor(ROUTE_PREFIX_005B)
+ TRAFFIC_LANES_ON_028A
+ TRAFFIC_LANES_UND_028B
+ NAV_VERT_CLR_MT_039
+ factor(STRUCTURE_TYPE_043B)
+ factor(STRUCTURE_KIND_043A)
+ STRUCTURE_LEN_MT_049
+ factor(SERVICE_LEVEL_005C)
+ factor(MEDIAN_CODE_033)
+ Age + Inspection_Gap
+ SUFFICIENCY_RATING_Beg ,
data=logistic_df,
family = poisson )
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Appendix C

DETERIORATION CURVES

C.1 MIXED LOGISTIC GAMMA MODEL’S CURVES

C.1.1 GET ETA FUNCTION

get_eta = function(bridge, coeff_logistic, coeff_gamma){
names(coeff_logistic)[names(coeff_logistic)=="factor(ROUTE_

PREFIX_005B)2"] = "ROUTE_PREFIX_005B2"
names(coeff_logistic)[names(coeff_logistic)=="factor(ROUTE_

PREFIX_005B)3"] = "ROUTE_PREFIX_005B3"
names(coeff_logistic)[names(coeff_logistic)=="factor(ROUTE_

PREFIX_005B)4"] = "ROUTE_PREFIX_005B4"
names(coeff_logistic)[names(coeff_logistic)=="factor(ROUTE_

PREFIX_005B)5"] = "ROUTE_PREFIX_005B5"
names(coeff_logistic)[names(coeff_logistic)=="factor(ROUTE_

PREFIX_005B)8"] = "ROUTE_PREFIX_005B8"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
TYPE_043B)2"] = "STRUCTURE_TYPE_043B2"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
TYPE_043B)4"] = "STRUCTURE_TYPE_043B4"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
TYPE_043B)5"] = "STRUCTURE_TYPE_043B5"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
TYPE_043B)6"] = "STRUCTURE_TYPE_043B6"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
TYPE_043B)11"] = "STRUCTURE_TYPE_043B11"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
TYPE_043B)19"] = "STRUCTURE_TYPE_043B19"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
KIND_043A)1"] = "STRUCTURE_KIND_043A1"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
KIND_043A)3"] = "STRUCTURE_KIND_043A3"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
KIND_043A)5"] = "STRUCTURE_KIND_043A5"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
KIND_043A)7"] = "STRUCTURE_KIND_043A7"

names(coeff_logistic)[names(coeff_logistic)=="factor(STRUCTURE_
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KIND_043A)8"] = "STRUCTURE_KIND_043A8"

names(coeff_logistic)[names(coeff_logistic)=="factor(SERVICE_
LEVEL_005C)1"] = "SERVICE_LEVEL_005C1"

names(coeff_logistic)[names(coeff_logistic)=="factor(SERVICE_
LEVEL_005C)2"] = "SERVICE_LEVEL_005C2"

names(coeff_logistic)[names(coeff_logistic)=="factor(SERVICE_
LEVEL_005C)3"] = "SERVICE_LEVEL_005C3"

names(coeff_logistic)[names(coeff_logistic)=="factor(SERVICE_
LEVEL_005C)4"] = "SERVICE_LEVEL_005C4"

names(coeff_logistic)[names(coeff_logistic)=="factor(SERVICE_
LEVEL_005C)6"] = "SERVICE_LEVEL_005C6"

names(coeff_logistic)[names(coeff_logistic)=="factor(SERVICE_
LEVEL_005C)7"] = "SERVICE_LEVEL_005C7"

names(coeff_logistic)[names(coeff_logistic)=="factor(SERVICE_
LEVEL_005C)8"] = "SERVICE_LEVEL_005C8"

names(coeff_logistic)[names(coeff_logistic)=="factor(MEDIAN_CODE
_033)1"] = "MEDIAN_CODE_0331"

names(coeff_logistic)[names(coeff_logistic)=="factor(MEDIAN_CODE
_033)2"] = "MEDIAN_CODE_0332"

names(coeff_logistic)[names(coeff_logistic)=="factor(MEDIAN_CODE
_033)3"] = "MEDIAN_CODE_0333"

names(coeff_gamma)[names(coeff_gamma)=="factor(ROUTE_PREFIX_005B
)2"] = "ROUTE_PREFIX_005B2"

names(coeff_gamma)[names(coeff_gamma)=="factor(ROUTE_PREFIX_005B
)3"] = "ROUTE_PREFIX_005B3"

names(coeff_gamma)[names(coeff_gamma)=="factor(ROUTE_PREFIX_005B
)4"] = "ROUTE_PREFIX_005B4"

names(coeff_gamma)[names(coeff_gamma)=="factor(ROUTE_PREFIX_005B
)5"] = "ROUTE_PREFIX_005B5"

names(coeff_gamma)[names(coeff_gamma)=="factor(ROUTE_PREFIX_005B
)8"] = "ROUTE_PREFIX_005B8"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_TYPE_
043B)2"] = "STRUCTURE_TYPE_043B2"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_TYPE_
043B)4"] = "STRUCTURE_TYPE_043B4"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_TYPE_
043B)5"] = "STRUCTURE_TYPE_043B5"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_TYPE_
043B)6"] = "STRUCTURE_TYPE_043B6"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_TYPE_
043B)11"] = "STRUCTURE_TYPE_043B11"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_TYPE_
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043B)19"] = "STRUCTURE_TYPE_043B19"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_KIND_
043A)1"] = "STRUCTURE_KIND_043A1"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_KIND_
043A)3"] = "STRUCTURE_KIND_043A3"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_KIND_
043A)5"] = "STRUCTURE_KIND_043A5"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_KIND_
043A)7"] = "STRUCTURE_KIND_043A7"

names(coeff_gamma)[names(coeff_gamma)=="factor(STRUCTURE_KIND_
043A)8"] = "STRUCTURE_KIND_043A8"

names(coeff_gamma)[names(coeff_gamma)=="factor(SERVICE_LEVEL_005
C)1"] = "SERVICE_LEVEL_005C1"

names(coeff_gamma)[names(coeff_gamma)=="factor(SERVICE_LEVEL_005
C)2"] = "SERVICE_LEVEL_005C2"

names(coeff_gamma)[names(coeff_gamma)=="factor(SERVICE_LEVEL_005
C)3"] = "SERVICE_LEVEL_005C3"

names(coeff_gamma)[names(coeff_gamma)=="factor(SERVICE_LEVEL_005
C)4"] = "SERVICE_LEVEL_005C4"

names(coeff_gamma)[names(coeff_gamma)=="factor(SERVICE_LEVEL_005
C)6"] = "SERVICE_LEVEL_005C6"

names(coeff_gamma)[names(coeff_gamma)=="factor(SERVICE_LEVEL_005
C)7"] = "SERVICE_LEVEL_005C7"

names(coeff_gamma)[names(coeff_gamma)=="factor(SERVICE_LEVEL_005
C)8"] = "SERVICE_LEVEL_005C8"

variables_logistic = c("(Intercept)", "ROUTE_PREFIX_005B",
"TRAFFIC_LANES_ON_028A",
"TRAFFIC_LANES_UND_028B",
"STRUCTURE_KIND_043A",
"STRUCTURE_TYPE_043B",
"STRUCTURE_LEN_MT_049",
"SERVICE_LEVEL_005C",
"MEDIAN_CODE_033",
"Age", "Inspection_Gap",
"SUFFICIENCY_RATING_Beg")

variables_gamma = c("(Intercept)", "ROUTE_PREFIX_005B",
"TRAFFIC_LANES_ON_028A",
"TRAFFIC_LANES_UND_028B",
"STRUCTURE_KIND_043A",
"STRUCTURE_TYPE_043B",
"STRUCTURE_LEN_MT_049",
"SERVICE_LEVEL_005C",
"Age", "Inspection_Gap",
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"SUFFICIENCY_RATING_Beg")
is_categorical = vector()
is_categorical["(Intercept)"] = 0
is_categorical["ROUTE_PREFIX_005B"] = 1
is_categorical["TRAFFIC_LANES_ON_028A"] = 0
is_categorical["TRAFFIC_LANES_UND_028B"] = 0
is_categorical["STRUCTURE_KIND_043A"] = 1
is_categorical["STRUCTURE_TYPE_043B"] = 1
is_categorical["STRUCTURE_LEN_MT_049"] = 0
is_categorical["SERVICE_LEVEL_005C"] = 1
is_categorical["MEDIAN_CODE_033"] = 1
is_categorical["Age"] = 0
is_categorical["Inspection_Gap"] = 0
is_categorical["SUFFICIENCY_RATING_Beg"] = 0

bridge["(Intercept)"] = 1
beta_logistic = vector(, length = 0)
beta_logistic["(Intercept)"] = coeff_logistic["(Intercept)"]
if (bridge["ROUTE_PREFIX_005B"]==1){
beta_logistic["ROUTE_PREFIX_005B"] = 0

} else if(bridge["ROUTE_PREFIX_005B"]==2){
beta_logistic["ROUTE_PREFIX_005B"] = coeff_logistic["ROUTE_

PREFIX_005B2"]
} else if(bridge["ROUTE_PREFIX_005B"]==3){
beta_logistic["ROUTE_PREFIX_005B"] = coeff_logistic["ROUTE_

PREFIX_005B3"]
} else if(bridge["ROUTE_PREFIX_005B"]==4){
beta_logistic["ROUTE_PREFIX_005B"] = coeff_logistic["ROUTE_

PREFIX_005B4"]
} else if(bridge["ROUTE_PREFIX_005B"]==5){
beta_logistic["ROUTE_PREFIX_005B"] = coeff_logistic["ROUTE_

PREFIX_005B5"]
} else if(bridge["ROUTE_PREFIX_005B"]==8){
beta_logistic["ROUTE_PREFIX_005B"] = coeff_logistic["ROUTE_

PREFIX_005B8"]
}
beta_logistic["TRAFFIC_LANES_ON_028A"] = coeff_logistic["TRAFFIC_

LANES_ON_028A"]
beta_logistic["TRAFFIC_LANES_UND_028B"] = coeff_logistic["TRAFFIC_

LANES_UND_028B"]

if (bridge["STRUCTURE_KIND_043A"]==0){
beta_logistic["STRUCTURE_KIND_043A"] = 0

} else if(bridge["STRUCTURE_KIND_043A"]==1){
beta_logistic["STRUCTURE_KIND_043A"] = coeff_logistic["STRUCTURE

_KIND_043A1"]
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} else if(bridge["STRUCTURE_KIND_043A"]==3){
beta_logistic["STRUCTURE_KIND_043A"] = coeff_logistic["STRUCTURE

_KIND_043A3"]
} else if(bridge["STRUCTURE_KIND_043A"]==5){
beta_logistic["STRUCTURE_KIND_043A"] = coeff_logistic["STRUCTURE

_KIND_043A5"]
} else if(bridge["STRUCTURE_KIND_043A"]==7){
beta_logistic["STRUCTURE_KIND_043A"] = coeff_logistic["STRUCTURE

_KIND_043A7"]
} else if(bridge["STRUCTURE_KIND_043A"]==8){
beta_logistic["STRUCTURE_KIND_043A"] = coeff_logistic["STRUCTURE

_KIND_043A8"]
}

if (bridge["STRUCTURE_TYPE_043B"]==1){
beta_logistic["STRUCTURE_TYPE_043B"] = 0

} else if(bridge["STRUCTURE_TYPE_043B"]==2){
beta_logistic["STRUCTURE_TYPE_043B"] = coeff_logistic["STRUCTURE

_TYPE_043B2"]
} else if(bridge["STRUCTURE_TYPE_043B"]==4){
beta_logistic["STRUCTURE_TYPE_043B"] = coeff_logistic["STRUCTURE

_TYPE_043B4"]
} else if(bridge["STRUCTURE_TYPE_043B"]==5){
beta_logistic["STRUCTURE_TYPE_043B"] = coeff_logistic["STRUCTURE

_TYPE_043B5"]
} else if(bridge["STRUCTURE_TYPE_043B"]==6){
beta_logistic["STRUCTURE_TYPE_043B"] = coeff_logistic["STRUCTURE

_TYPE_043B6"]
} else if(bridge["STRUCTURE_TYPE_043B"]==11){
beta_logistic["STRUCTURE_TYPE_043B"] = coeff_logistic["STRUCTURE

_TYPE_043B11"]
}else if(bridge["STRUCTURE_TYPE_043B"]==19){
beta_logistic["STRUCTURE_TYPE_043B"] = coeff_logistic["STRUCTURE

_TYPE_043B19"]
}

if (bridge["SERVICE_LEVEL_005C"]==0){
beta_logistic["SERVICE_LEVEL_005C"] = 0

} else if(bridge["SERVICE_LEVEL_005C"]==1){
beta_logistic["SERVICE_LEVEL_005C"] = coeff_logistic["SERVICE_

LEVEL_005C1"]
} else if(bridge["SERVICE_LEVEL_005C"]==2){
beta_logistic["SERVICE_LEVEL_005C"] = coeff_logistic["SERVICE_

LEVEL_005C2"]
} else if(bridge["SERVICE_LEVEL_005C"]==3){
beta_logistic["SERVICE_LEVEL_005C"] = coeff_logistic["SERVICE_
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LEVEL_005C3"]
} else if(bridge["SERVICE_LEVEL_005C"]==4){
beta_logistic["SERVICE_LEVEL_005C"] = coeff_logistic["SERVICE_

LEVEL_005C4"]
} else if(bridge["SERVICE_LEVEL_005C"]==6){
beta_logistic["SERVICE_LEVEL_005C"] = coeff_logistic["SERVICE_

LEVEL_005C6"]
} else if(bridge["SERVICE_LEVEL_005C"]==7){
beta_logistic["SERVICE_LEVEL_005C"] = coeff_logistic["SERVICE_

LEVEL_005C7"]
} else if(bridge["SERVICE_LEVEL_005C"]==8){
beta_logistic["SERVICE_LEVEL_005C"] = coeff_logistic["SERVICE_

LEVEL_005C8"]
}

if (bridge["MEDIAN_CODE_033"]==0){
beta_logistic["MEDIAN_CODE_033"] = 0

} else if(bridge["MEDIAN_CODE_033"]==1){
beta_logistic["MEDIAN_CODE_033"] = coeff_logistic["MEDIAN_CODE_

0331"]
} else if(bridge["MEDIAN_CODE_033"]==2){
beta_logistic["MEDIAN_CODE_033"] = coeff_logistic["MEDIAN_CODE_

0332"]
} else if(bridge["MEDIAN_CODE_033"]==3){
beta_logistic["MEDIAN_CODE_033"] = coeff_logistic["MEDIAN_CODE_

0333"]
}

beta_logistic["STRUCTURE_LEN_MT_049"] = coeff_logistic["STRUCTURE_
LEN_MT_049"]

beta_logistic["Age"] = coeff_logistic["Age"]
beta_logistic["Inspection_Gap"] = coeff_logistic["Inspection_Gap"]
beta_logistic["SUFFICIENCY_RATING_Beg"] = coeff_logistic["

SUFFICIENCY_RATING_Beg"]

beta_gamma = vector(, length = 0)
beta_gamma["(Intercept)"] = coeff_gamma["(Intercept)"]
if (bridge["ROUTE_PREFIX_005B"]==1){
beta_gamma["ROUTE_PREFIX_005B"] = 0

} else if(bridge["ROUTE_PREFIX_005B"]==2){
beta_gamma["ROUTE_PREFIX_005B"] = coeff_gamma["ROUTE_PREFIX_005

B2"]
} else if(bridge["ROUTE_PREFIX_005B"]==3){
beta_gamma["ROUTE_PREFIX_005B"] = coeff_gamma["ROUTE_PREFIX_005

B3"]
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} else if(bridge["ROUTE_PREFIX_005B"]==4){
beta_gamma["ROUTE_PREFIX_005B"] = coeff_gamma["ROUTE_PREFIX_005

B4"]
} else if(bridge["ROUTE_PREFIX_005B"]==5){
beta_gamma["ROUTE_PREFIX_005B"] = coeff_gamma["ROUTE_PREFIX_005

B5"]
} else if(bridge["ROUTE_PREFIX_005B"]==8){
beta_gamma["ROUTE_PREFIX_005B"] = coeff_gamma["ROUTE_PREFIX_005

B8"]
}

beta_gamma["TRAFFIC_LANES_ON_028A"] = coeff_gamma["TRAFFIC_LANES_
ON_028A"]

beta_gamma["TRAFFIC_LANES_UND_028B"] = coeff_gamma["TRAFFIC_LANES_
UND_028B"]

#beta_gamma["NAV_VERT_CLR_MT_039"] = coeff_gamma["NAV_VERT_CLR_MT_
039"]

if (bridge["STRUCTURE_KIND_043A"]==0){
beta_gamma["STRUCTURE_KIND_043A"] = 0

} else if(bridge["STRUCTURE_KIND_043A"]==1){
beta_gamma["STRUCTURE_KIND_043A"] = coeff_gamma["STRUCTURE_KIND_

043A1"]
} else if(bridge["STRUCTURE_KIND_043A"]==3){
beta_gamma["STRUCTURE_KIND_043A"] = coeff_gamma["STRUCTURE_KIND_

043A3"]
} else if(bridge["STRUCTURE_KIND_043A"]==5){
beta_gamma["STRUCTURE_KIND_043A"] = coeff_gamma["STRUCTURE_KIND_

043A5"]
} else if(bridge["STRUCTURE_KIND_043A"]==7){
beta_gamma["STRUCTURE_KIND_043A"] = coeff_gamma["STRUCTURE_KIND_

043A7"]
} else if(bridge["STRUCTURE_KIND_043A"]==8){
beta_gamma["STRUCTURE_KIND_043A"] = coeff_gamma["STRUCTURE_KIND_

043A8"]
}

if (bridge["STRUCTURE_TYPE_043B"]==1){
beta_gamma["STRUCTURE_TYPE_043B"] = 0

} else if(bridge["STRUCTURE_TYPE_043B"]==2){
beta_gamma["STRUCTURE_TYPE_043B"] = coeff_gamma["STRUCTURE_TYPE_

043B2"]
} else if(bridge["STRUCTURE_TYPE_043B"]==4){
beta_gamma["STRUCTURE_TYPE_043B"] = coeff_gamma["STRUCTURE_TYPE_

043B4"]
} else if(bridge["STRUCTURE_TYPE_043B"]==5){
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beta_gamma["STRUCTURE_TYPE_043B"] = coeff_gamma["STRUCTURE_TYPE_
043B5"]

} else if(bridge["STRUCTURE_TYPE_043B"]==6){
beta_gamma["STRUCTURE_TYPE_043B"] = coeff_gamma["STRUCTURE_TYPE_

043B6"]
} else if(bridge["STRUCTURE_TYPE_043B"]==11){
beta_gamma["STRUCTURE_TYPE_043B"] = coeff_gamma["STRUCTURE_TYPE_

043B11"]
}else if(bridge["STRUCTURE_TYPE_043B"]==19){
beta_gamma["STRUCTURE_TYPE_043B"] = coeff_gamma["STRUCTURE_TYPE_

043B19"]
}

beta_gamma["STRUCTURE_LEN_MT_049"] = coeff_gamma["STRUCTURE_LEN_MT
_049"]

if (bridge["SERVICE_LEVEL_005C"]==0){
beta_gamma["SERVICE_LEVEL_005C"] = 0

} else if(bridge["SERVICE_LEVEL_005C"]==1){
beta_gamma["SERVICE_LEVEL_005C"] = coeff_gamma["SERVICE_LEVEL_

005C1"]
} else if(bridge["SERVICE_LEVEL_005C"]==2){
beta_gamma["SERVICE_LEVEL_005C"] = coeff_gamma["SERVICE_LEVEL_

005C2"]
} else if(bridge["SERVICE_LEVEL_005C"]==3){
beta_gamma["SERVICE_LEVEL_005C"] = coeff_gamma["SERVICE_LEVEL_

005C3"]
} else if(bridge["SERVICE_LEVEL_005C"]==4){
beta_gamma["SERVICE_LEVEL_005C"] = coeff_gamma["SERVICE_LEVEL_

005C4"]
} else if(bridge["SERVICE_LEVEL_005C"]==6){
beta_gamma["SERVICE_LEVEL_005C"] = coeff_gamma["SERVICE_LEVEL_

005C6"]
} else if(bridge["SERVICE_LEVEL_005C"]==7){
beta_gamma["SERVICE_LEVEL_005C"] = coeff_gamma["SERVICE_LEVEL_

005C7"]
} else if(bridge["SERVICE_LEVEL_005C"]==8){
beta_gamma["SERVICE_LEVEL_005C"] = coeff_gamma["SERVICE_LEVEL_

005C8"]
}

beta_gamma["Age"] = coeff_gamma["Age"]
beta_gamma["Inspection_Gap"] = coeff_gamma["Inspection_Gap"]
beta_gamma["SUFFICIENCY_RATING_Beg"] = coeff_gamma["SUFFICIENCY_

RATING_Beg"]
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eta_logistic = 0
for (i in variables_logistic){
if (is_categorical[i] == 1){
eta_logistic = eta_logistic + as.numeric(beta_logistic[i])

} else{
eta_logistic = eta_logistic + as.numeric(bridge[i])*as.numeric(

beta_logistic[i])
}

}
p_hat = exp(eta_logistic)/(1 + exp(eta_logistic)) # Here is the

predicted probability

eta_gamma = 0
for (i in variables_gamma){
if (is_categorical[i] == 1){
eta_gamma = eta_gamma + as.numeric(beta_gamma[i])

} else{
eta_gamma = eta_gamma + as.numeric(bridge[i])*as.numeric(beta_

gamma[i])
}

}
mu_hat = exp(eta_gamma)
predictions = c(p_hat, mu_hat)
return(predictions)
}

C.1.2 GENERATE HISTORY FUNCTION

generate_history = function(bridge, coeff_logistic, coeff_gamma,
alpha_hat, num_iter, segment_length){

sufficiency_history = matrix(0, nrow = num_iter, ncol = segment_
length)

for (i in 1:num_iter){
tempBridge = bridge
sufficiency_history[i, 1] = as.numeric(tempBridge["SUFFICIENCY_

RATING_Beg"])
for (k in 2:segment_length) {
predictions = get_eta(tempBridge, coeff_logistic, coeff_gamma

)
p_hat = predictions[1]
mu_hat = predictions[2]
if (runif(1) < p_hat) {
beta_hat = alpha_hat / mu_hat
deterioration = rgamma(1, shape = alpha_hat, rate = beta_hat

)
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tempBridge["SUFFICIENCY_RATING_Beg"] = tempBridge["
SUFFICIENCY_RATING_Beg"] - deterioration

tempBridge["Age"] = tempBridge["Age"] + 1
} else{
tempBridge["Age"] = tempBridge["Age"] + 1

}
sufficiency_history[i, k] = as.numeric(tempBridge["

SUFFICIENCY_RATING_Beg"])
}

}
return(sufficiency_history)
}

C.1.3 CURVES

generate_curve = function(bridge, coeff_logistic, coeff_gamma,
alpha_hat, num_iter, segment_length){

sufficiency_history = generate_history(bridge, coeff_logistic,
coeff_gamma, alpha_hat, num_iter, segment_length)
medians = vector(,length=segment_length)
Q1s = vector(,length=segment_length)
Q3s = vector(,length=segment_length)
for (k in 1:segment_length){
Q1s[k] = quantile(sufficiency_history[,k], probs = .25, na.rm

=T)
medians[k] = median(sufficiency_history[,k], na.rm=T)
Q3s[k] = quantile(sufficiency_history[,k], probs = .75, na.rm

=T)
}
Years = seq(1,segment_length,1)
plot(Years, Q1s, col = "blue", type = "l", ylab = "Sufficiency

Rating")
points(Years,medians, col="black", type = "l")
points(Years,Q3s, col="red", type = "l")
legend("bottomleft", legend = c("Q1", "Median", "Q3"), col=c("

blue", "black", "red"), lty = c(1,1))
Pred_Suff = medians

}

C.1.4 DEFINE A BRIDGE TO SIMULATE

var_names = c("(Intercept)", "ROUTE_PREFIX_005B",
"TRAFFIC_LANES_ON_028A",
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"TRAFFIC_LANES_UND_028B",
"STRUCTURE_KIND_043A",
"STRUCTURE_TYPE_043B",
"STRUCTURE_LEN_MT_049",
"SERVICE_LEVEL_005C",
"MEDIAN_CODE_033",
"Age", "Inspection_Gap",
"SUFFICIENCY_RATING_Beg")

bridge = vector(, length = length(var_names))
names(bridge) = var_names
bridge["(Intercept)"] = 1
bridge["ROUTE_PREFIX_005B"] = 4
bridge["TRAFFIC_LANES_ON_028A"]= 2
bridge["TRAFFIC_LANES_UND_028B"] = 8
bridge["STRUCTURE_KIND_043A"] = 3
bridge["STRUCTURE_TYPE_043B"] = 2
bridge["STRUCTURE_LEN_MT_049"] = 85.6
bridge["SERVICE_LEVEL_005C"] = 1
bridge["MEDIAN_CODE_033"] = 0
bridge["Age"] = 30
bridge["Inspection_Gap"] = 1
bridge["SUFFICIENCY_RATING_Beg"] = 78.9
num_iter = 400
segment_length = 50
A = generate_curve(bridge, model_logistic$coeff, model_gamma$coeff

, alpha_hat, num_iter, segment_length)

C.1.5 SSE CALCULATION FOR MIXED LOGISTIC GAMMA MODEL

num_iter = 100
bridgeIDs = unique(as.character(segment_df$STRUCTURE_NUMBER))
sse = 0
for (m in 1:length(bridgeIDs)){
print(m)
temp_bridge_df = subset(logistic_df, STRUCTURE_NUMBER_008 ==

bridgeIDs[m])
temp_segment_df = subset(segment_df, STRUCTURE_NUMBER ==

bridgeIDs[m])
for (j in 1:nrow(temp_segment_df)){
segment_length = temp_segment_df$segmentEnds[j] - temp_segment_

df$segmentBegins[j] + 1
temp_bridge_in_segment_df = subset(temp_bridge_df, (Old_Date >=

temp_segment_df$segmentBegins[j]) &
(New_Date <= temp_segment_df$
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segmentEnds[j]))

tempBridge = temp_bridge_in_segment_df[1, ]
sufficiency_history= generate_history(tempBridge, model_

logistic$coeff, model_gamma$coeff, alpha_hat, num_iter,
segment_length)

medians = vector(,length=segment_length)
for (k in 1:segment_length){
medians[k] = median(sufficiency_history[,k], na.rm=T)

}
Pred_Suff = medians
Y= temp_bridge_in_segment_df$SUFFICIENCY_RATING_Beg
sse = sse + sum((Y - Pred_Suff)ˆ2)

}
}
print(sse)

C.1.6 MIXED LOGISTIC GAMMA MODEL EXAMPLES

m = logistic_df[logistic_df$STRUCTURE_NUMBER_008 == "
000000003500130", ]

tempbri = m[1,]
coeff_logistic = model_logistic$coefficients
coeff_gamma = model_gamma$coefficients
predictions = get_eta(tempbri, model_logistic$coeff, model_gamma$

coeff)
print(predictions)
num_iter = 100
segment_length = 60
generate_curve(tempbri, coeff_logistic, coeff_gamma, alpha_hat,

num_iter, segment_length)

bridge = logistic_df[1,]
coeff_logistic = model_logistic$coefficients
coeff_gamma = model_gamma$coefficients
num_iter = 100
segment_length = 100
generate_curve(bridge, coeff_logistic, coeff_gamma, alpha_hat, num

_iter, segment_length)

C.2 POISSON MODEL’S CURVES

C.2.1 GET LAMBDA FUNCTION



98

get_lambda = function(bridge, coeff_Poisson){
names(coeff_Poisson)[names(coeff_Poisson)=="factor(ROUTE_PREFIX_

005B)2"] = "ROUTE_PREFIX_005B2"
names(coeff_Poisson)[names(coeff_Poisson)=="factor(ROUTE_PREFIX_

005B)3"] = "ROUTE_PREFIX_005B3"
names(coeff_Poisson)[names(coeff_Poisson)=="factor(ROUTE_PREFIX_

005B)4"] = "ROUTE_PREFIX_005B4"
names(coeff_Poisson)[names(coeff_Poisson)=="factor(ROUTE_PREFIX_

005B)5"] = "ROUTE_PREFIX_005B5"
names(coeff_Poisson)[names(coeff_Poisson)=="factor(ROUTE_PREFIX_

005B)8"] = "ROUTE_PREFIX_005B8"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
TYPE_043B)2"] = "STRUCTURE_TYPE_043B2"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
TYPE_043B)4"] = "STRUCTURE_TYPE_043B4"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
TYPE_043B)5"] = "STRUCTURE_TYPE_043B5"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
TYPE_043B)6"] = "STRUCTURE_TYPE_043B6"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
TYPE_043B)11"] = "STRUCTURE_TYPE_043B11"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
TYPE_043B)19"] = "STRUCTURE_TYPE_043B19"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
KIND_043A)1"] = "STRUCTURE_KIND_043A1"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
KIND_043A)3"] = "STRUCTURE_KIND_043A3"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
KIND_043A)5"] = "STRUCTURE_KIND_043A5"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
KIND_043A)7"] = "STRUCTURE_KIND_043A7"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(STRUCTURE_
KIND_043A)8"] = "STRUCTURE_KIND_043A8"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(SERVICE_LEVEL
_005C)1"] = "SERVICE_LEVEL_005C1"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(SERVICE_LEVEL
_005C)2"] = "SERVICE_LEVEL_005C2"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(SERVICE_LEVEL
_005C)3"] = "SERVICE_LEVEL_005C3"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(SERVICE_LEVEL
_005C)4"] = "SERVICE_LEVEL_005C4"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(SERVICE_LEVEL
_005C)6"] = "SERVICE_LEVEL_005C6"
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names(coeff_Poisson)[names(coeff_Poisson)=="factor(SERVICE_LEVEL
_005C)7"] = "SERVICE_LEVEL_005C7"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(SERVICE_LEVEL
_005C)8"] = "SERVICE_LEVEL_005C8"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(MEDIAN_CODE_
033)1"] = "MEDIAN_CODE_0331"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(MEDIAN_CODE_
033)2"] = "MEDIAN_CODE_0332"

names(coeff_Poisson)[names(coeff_Poisson)=="factor(MEDIAN_CODE_
033)3"] = "MEDIAN_CODE_0333"

variables_Poisson = c("(Intercept)", "ROUTE_PREFIX_005B", "
TRAFFIC_LANES_ON_028A",

"TRAFFIC_LANES_UND_028B", "NAV_VERT_CLR_MT_039"
"STRUCTURE_KIND_043A", "STRUCTURE_TYPE_043B",
"STRUCTURE_LEN_MT_049", "SERVICE_LEVEL_005C", "

MEDIAN_CODE_033",
"Age", "Inspection_Gap", "SUFFICIENCY_RATING_Beg

")

is_categorical = vector()
is_categorical["(Intercept)"] = 0
is_categorical["ROUTE_PREFIX_005B"] = 1
is_categorical["TRAFFIC_LANES_ON_028A"] = 0
is_categorical["TRAFFIC_LANES_UND_028B"] = 0
is_categorical["NAV_VERT_CLR_MT_039"] = 0
is_categorical["STRUCTURE_KIND_043A"] = 1
is_categorical["STRUCTURE_TYPE_043B"] = 1
is_categorical["STRUCTURE_LEN_MT_049"] = 0
is_categorical["SERVICE_LEVEL_005C"] = 1
is_categorical["MEDIAN_CODE_033"] = 1
is_categorical["Age"] = 0
is_categorical["Inspection_Gap"] = 0
is_categorical["SUFFICIENCY_RATING_Beg"] = 0

bridge["(Intercept)"] = 1
beta_Poisson = vector(, length = 0)
beta_Poisson["(Intercept)"] = coeff_Poisson["(Intercept)"]
if (bridge["ROUTE_PREFIX_005B"]==1){
beta_Poisson["ROUTE_PREFIX_005B"] = 0

} else if(bridge["ROUTE_PREFIX_005B"]==2){
beta_Poisson["ROUTE_PREFIX_005B"] = coeff_Poisson["ROUTE_PREFIX

_005B2"]
} else if(bridge["ROUTE_PREFIX_005B"]==3){
beta_Poisson["ROUTE_PREFIX_005B"] = coeff_Poisson["ROUTE_PREFIX
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_005B3"]
} else if(bridge["ROUTE_PREFIX_005B"]==4){
beta_Poisson["ROUTE_PREFIX_005B"] = coeff_Poisson["ROUTE_PREFIX

_005B4"]
} else if(bridge["ROUTE_PREFIX_005B"]==5){
beta_Poisson["ROUTE_PREFIX_005B"] = coeff_Poisson["ROUTE_PREFIX

_005B5"]
} else if(bridge["ROUTE_PREFIX_005B"]==8){
beta_Poisson["ROUTE_PREFIX_005B"] = coeff_Poisson["ROUTE_PREFIX

_005B8"]
}
beta_Poisson["TRAFFIC_LANES_ON_028A"] = coeff_Poisson["TRAFFIC_

LANES_ON_028A"]
beta_Poisson["TRAFFIC_LANES_UND_028B"] = coeff_Poisson["TRAFFIC_

LANES_UND_028B"]
beta_Poisson["NAV_VERT_CLR_MT_039"] = coeff_Poisson["NAV_VERT_

CLR_MT_039"]

if (bridge["STRUCTURE_KIND_043A"]==0){
beta_Poisson["STRUCTURE_KIND_043A"] = 0

} else if(bridge["STRUCTURE_KIND_043A"]==1){
beta_Poisson["STRUCTURE_KIND_043A"] = coeff_Poisson["STRUCTURE_

KIND_043A1"]
} else if(bridge["STRUCTURE_KIND_043A"]==3){
beta_Poisson["STRUCTURE_KIND_043A"] = coeff_Poisson["STRUCTURE_

KIND_043A3"]
} else if(bridge["STRUCTURE_KIND_043A"]==5){
beta_Poisson["STRUCTURE_KIND_043A"] = coeff_Poisson["STRUCTURE_

KIND_043A5"]
} else if(bridge["STRUCTURE_KIND_043A"]==7){
beta_Poisson["STRUCTURE_KIND_043A"] = coeff_Poisson["STRUCTURE_

KIND_043A7"]
} else if(bridge["STRUCTURE_KIND_043A"]==8){
beta_Poisson["STRUCTURE_KIND_043A"] = coeff_Poisson["STRUCTURE_

KIND_043A8"]
}

if (bridge["STRUCTURE_TYPE_043B"]==1){
beta_Poisson["STRUCTURE_TYPE_043B"] = 0

} else if(bridge["STRUCTURE_TYPE_043B"]==2){
beta_Poisson["STRUCTURE_TYPE_043B"] = coeff_Poisson["STRUCTURE_

TYPE_043B2"]
} else if(bridge["STRUCTURE_TYPE_043B"]==4){
beta_Poisson["STRUCTURE_TYPE_043B"] = coeff_Poisson["STRUCTURE_

TYPE_043B4"]
} else if(bridge["STRUCTURE_TYPE_043B"]==5){
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beta_Poisson["STRUCTURE_TYPE_043B"] = coeff_Poisson["STRUCTURE_
TYPE_043B5"]

} else if(bridge["STRUCTURE_TYPE_043B"]==6){
beta_Poisson["STRUCTURE_TYPE_043B"] = coeff_Poisson["STRUCTURE_

TYPE_043B6"]
} else if(bridge["STRUCTURE_TYPE_043B"]==11){
beta_Poisson["STRUCTURE_TYPE_043B"] = coeff_Poisson["STRUCTURE_

TYPE_043B11"]
}else if(bridge["STRUCTURE_TYPE_043B"]==19){
beta_Poisson["STRUCTURE_TYPE_043B"] = coeff_Poisson["STRUCTURE_

TYPE_043B19"]
}

if (bridge["SERVICE_LEVEL_005C"]==0){
beta_Poisson["SERVICE_LEVEL_005C"] = 0

} else if(bridge["SERVICE_LEVEL_005C"]==1){
beta_Poisson["SERVICE_LEVEL_005C"] = coeff_Poisson["SERVICE_

LEVEL_005C1"]
} else if(bridge["SERVICE_LEVEL_005C"]==2){
beta_Poisson["SERVICE_LEVEL_005C"] = coeff_Poisson["SERVICE_

LEVEL_005C2"]
} else if(bridge["SERVICE_LEVEL_005C"]==3){
beta_Poisson["SERVICE_LEVEL_005C"] = coeff_Poisson["SERVICE_

LEVEL_005C3"]
} else if(bridge["SERVICE_LEVEL_005C"]==4){
beta_Poisson["SERVICE_LEVEL_005C"] = coeff_Poisson["SERVICE_

LEVEL_005C4"]
} else if(bridge["SERVICE_LEVEL_005C"]==6){
beta_Poisson["SERVICE_LEVEL_005C"] = coeff_Poisson["SERVICE_

LEVEL_005C6"]
} else if(bridge["SERVICE_LEVEL_005C"]==7){
beta_Poisson["SERVICE_LEVEL_005C"] = coeff_Poisson["SERVICE_

LEVEL_005C7"]
} else if(bridge["SERVICE_LEVEL_005C"]==8){
beta_Poisson["SERVICE_LEVEL_005C"] = coeff_Poisson["SERVICE_

LEVEL_005C8"]
}

if (bridge["MEDIAN_CODE_033"]==0){
beta_Poisson["MEDIAN_CODE_033"] = 0

} else if(bridge["MEDIAN_CODE_033"]==1){
beta_Poisson["MEDIAN_CODE_033"] = coeff_Poisson["MEDIAN_CODE_

0331"]
} else if(bridge["MEDIAN_CODE_033"]==2){
beta_Poisson["MEDIAN_CODE_033"] = coeff_Poisson["MEDIAN_CODE_

0332"]
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} else if(bridge["MEDIAN_CODE_033"]==3){
beta_Poisson["MEDIAN_CODE_033"] = coeff_Poisson["MEDIAN_CODE_

0333"]
}

beta_Poisson["STRUCTURE_LEN_MT_049"] = coeff_Poisson["STRUCTURE_
LEN_MT_049"]

beta_Poisson["Age"] = coeff_Poisson["Age"]
beta_Poisson["Inspection_Gap"] = coeff_Poisson["Inspection_Gap"]
beta_Poisson["SUFFICIENCY_RATING_Beg"] = coeff_Poisson["

SUFFICIENCY_RATING_Beg"]

eta_Poisson = 0
for (i in variables_Poisson){
if (is_categorical[i] == 1){
eta_Poisson = eta_Poisson + as.numeric(beta_Poisson[i])

} else{
eta_Poisson = eta_Poisson + as.numeric(bridge[i])*as.numeric(

beta_Poisson[i])
}

}
Lambda_hat = exp(eta_Poisson)
return(Lambda_hat)

}

C.2.2 POISSON CURVES

Poisson_Pred_Suff = function(bridge, coeff_Poisson, num_iter,
segment_length) {

suff_history = matrix(0, nrow = num_iter, ncol = segment_length)
for (i in 1:num_iter){
tempBridge = bridge
suff_history[i, 1] = as.numeric(tempBridge["SUFFICIENCY_RATING_

Beg"])
for (k in 2:segment_length) {
Lambda_hat = get_lambda(tempBridge, coeff_Poisson)
deterioration = rpois(1 , Lambda_hat)
tempBridge["SUFFICIENCY_RATING_Beg"] = tempBridge["

SUFFICIENCY_RATING_Beg"] - deterioration
tempBridge["Age"] = tempBridge["Age"] + 1
suff_history[i,k] = as.numeric(tempBridge["SUFFICIENCY_

RATING_Beg"])
}

}
medians = vector(,length=segment_length)
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Q1s = vector(,length=segment_length)
Q3s = vector(,length=segment_length)
for (k in 1:segment_length){
Q1s[k] = quantile(suff_history[,k], probs = .25, na.rm=T)
medians[k] = median(suff_history[,k], na.rm=T)
Q3s[k] = quantile(suff_history[,k], probs = .75, na.rm=T)

}
Years = seq(1,segment_length,1)
plot(Years, Q1s, col = "blue", type = "l", ylab = "Sufficiency

Rating")
points(Years,medians, col="black", type = "l")
points(Years,Q3s, col="red", type = "l")
legend("bottomleft", legend = c("Q1", "Median", "Q3"), col=c("

blue", "black", "red"), lty = c(1,1))
Pois_Pred_Suff = medians
return(Pois_Pred_Suff)

}

C.2.3 SSE FOR POISSON MODEL

num_iter = 100
bridgeIDs = unique(as.character(segment_df$STRUCTURE_NUMBER))
SSE = 0
for (m in 1:length(bridgeIDs)){
print(m)
temp_bridge_df = subset(logistic_df, STRUCTURE_NUMBER_008 ==

bridgeIDs[m])
temp_segment_df = subset(segment_df, STRUCTURE_NUMBER ==

bridgeIDs[m])
for (j in 1:nrow(temp_segment_df)){
segment_length = temp_segment_df$segmentEnds[j] - temp_segment_

df$segmentBegins[j] + 1
temp_bridge_in_segment_df = subset(temp_bridge_df, (Old_Date >=

temp_segment_df$segmentBegins[j]) &
(New_Date <= temp_segment_df$

segmentEnds[j]))
suff_history = matrix(0, nrow = num_iter, ncol = segment_length

)
for (i in 1:num_iter){
tempBridge = temp_bridge_in_segment_df[1, ]
suff_history[i, 1] = as.numeric(tempBridge["SUFFICIENCY_

RATING_Beg"])
for (k in 2:(segment_length)) {
Lambda_hat = get_lambda(tempBridge, model_Poisson$coeff)
deterioration = rpois(1 , Lambda_hat)
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tempBridge["SUFFICIENCY_RATING_Beg"] = tempBridge["
SUFFICIENCY_RATING_Beg"] - deterioration

tempBridge["Age"] = tempBridge["Age"] + 1
suff_history[i, k] = as.numeric(tempBridge["SUFFICIENCY_

RATING_Beg"])
}

}
Pois_Pred_Suff = Poisson_Pred_Suff(tempBridge, model_Poisson$

coeff, num_iter, segment_length)
Y= temp_bridge_in_segment_df$SUFFICIENCY_RATING_Beg
SSE = SSE + sum((Y - Pois_Pred_Suff)ˆ2)

}
}
print(SSE)

C.2.4 POISSON MODEL EXAMPLES

var_names = c("(Intercept)", "ROUTE_PREFIX_005B",
"TRAFFIC_LANES_ON_028A",
"TRAFFIC_LANES_UND_028B",
"NAV_VERT_CLR_MT_039",
"STRUCTURE_KIND_043A",
"STRUCTURE_TYPE_043B",
"STRUCTURE_LEN_MT_049",
"SERVICE_LEVEL_005C",
"MEDIAN_CODE_033",
"Age", "Inspection_Gap",
"SUFFICIENCY_RATING_Beg")

bridge = vector(, length = length(var_names))
names(bridge) = var_names
bridge["(Intercept)"] = 1
bridge["ROUTE_PREFIX_005B"] = 4
bridge["TRAFFIC_LANES_ON_028A"]= 2
bridge["TRAFFIC_LANES_UND_028B"] = 8
bridge["NAV_VERT_CLR_MT_039"]= 24
bridge["STRUCTURE_KIND_043A"] = 3
bridge["STRUCTURE_TYPE_043B"] = 2
bridge["STRUCTURE_LEN_MT_049"] = 85.6
bridge["SERVICE_LEVEL_005C"] = 1
bridge["MEDIAN_CODE_033"] = 0
bridge["Age"] = 30
bridge["Inspection_Gap"] = 1
bridge["SUFFICIENCY_RATING_Beg"] = 78.9
num_iter = 400
segment_length = 50
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C = Poisson_Pred_Suff(bridge, model_Poisson$coeff, num_iter,
segment_length)

m = logistic_df[logistic_df$STRUCTURE_NUMBER_008 == "
000000003500130", ]

tempbri = m[1,]
coeff_Poisson = model_Poisson$coefficients
num_iter = 100
segment_length = 60
B = Poisson_Pred_Suff(tempbri, coeff_Poisson, num_iter, segment_

length)

bridge = logistic_df[1,]
coeff_Poisson = model_Poisson$coefficients
num_iter = 100
segment_length = 100
A = Poisson_Pred_Suff(bridge, coeff_Poisson, num_iter, segment_

length)
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