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ABSTRACT

The coadjoint orbits of compact Lie groups each carry a canonical (positive definite) Kähler

structure, famously used to realize the group’s irreducible representations in holomorphic

sections of certain line bundles (Borel-Weil theorem). Less well-known are the (indefinite)

invariant pseudo-Kähler structures they also admit, which can be used to realize the same

representations in higher cohomology of the sections (Bott), and whose analogues in a

non-compact setting lead to new representations (Kostant-Langlands). The purpose of this

thesis is to give an explicit description of these metrics in the case of the unitary group

G = Un.
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CHAPTER 1

INTRODUCTION

The coadjoint orbits of compact Lie groups each carry a canonical positive definite

Kähler structure. When a coadjoint orbit carries more than two complex structures, that is,

complex structures distinct from the canonical one and its negative, this orbit further admits

indefinite pseudo-Kähler structures. In the case of the unitary group Un, the existence

of such pseudo-Kähler structures is well known, but their computation is often tedious

and inflexible. The trouble is with computing the attendant complex structures on the

orbit’s tangent space. One finds that this computation yields non-explicit formulas for the

complex structures. The objective of this thesis is to obtain explicit general formulas for

these pseudo-Kähler structures. To this end, we begin by examining the Grassmannian.

We write Grm for the Grassmannian of complex m-planes in Cn, each identified with

the self-adjoint projector x upon it, i.e.

Grm =
{
x ∈ gln(C) : x is self-adjoint, x2 = x,Trace(x) = m

}
. (1)

The canonical Kähler structure of Grm is (see (34)):
Iδx = [ix, δx] (2a)

g(δx, δ′x) = Trace(δxδ′x) (2b)

ω(δx, δ′x) = Trace(δxIδ′x) = Trace(ix[δ′x, δx]). (2c)

That the Kähler structure of the Grassmannian is both simple and explicit is easy to see.

We go on to utilize carefully chosen Grassmannians and their associated Kähler structures

as the building blocks for the pseudo-Kähler structures we seek.

A coadjoint orbit of G = Un is a conjugacy class of self-adjoint matrices. For λ self-

adjoint, G acts on λ by conjugation and the resulting orbit is called G(λ). The multiplicities

and ordering of the eigenvalues of λ prove crucial to constructing the structures we seek.

We show that a coadjoint orbit X = G(λ) is isomorphic to a submanifold Y of a product of
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Grassmannians; the exact composition of this product of Grassmannians is determined by

a particular choice of the ordering of the eigenvalues of λ. This submanifold Y inherits the

(pseudo-)Kähler structure of this product of Grassmanians.

As an example, let G = U4 and take X = G(λ) where λ =


1

0
0
−1

. We will

find that X is isomorphic to

Y =

{
y =

(
y2

y3

y4

)
∈ Gr2 × Gr3 × Gr4 :

y3y2 = y2

y4y3 = y3

}
. (3)

Then, Y has metric

g(δy, δ′y) = Trace(δy2δ
′y2)− 2 Trace(δy3δ

′y3) (4)

and gives the symplectic form ω(·, ·) = g(·, J·) with the product complex structure

Jδy =

[iy2, δy2]
[iy3, δy3]
[iy4, δy4]

 . (5)

This is obtained by taking y2 to be the projector onto the eigenspace for eigenvalue 0, y3

the projector onto the the sum of the eigenspaces for eigenvalues 0 and −1, and y4 the

projector onto the the sum of the eigenspaces for eigenvalues 0, −1, and 1. Taking these

eigenvalues in different orders gives all other structures. For example, the order 1, 0,−1

gives the canonical structure for the embedding into Gr1 × Gr3 × Gr4 having Riemannian

metric

g(δy, δ′y) = Trace(δy1δ
′y1) + Trace(δy3δ

′y3). (6)
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CHAPTER 2

COADJOINT ORBITS

2.1 THE UNITARY GROUP AND ITS COMPLEXIFICATION

Throughout this thesis G will denote the unitary group

G = Un =
{
g ∈ GLn(C) : gg = 1

}
. (7)

Here GLn(C) is the multiplicative group of n × n complex matrices, and M will always

mean the adjoint (a.k.a. complex conjugate transpose) of any row, column or matrix M.

The Lie algebra of G consists of all skew-adjoint matrices,

g = un =
{

Z ∈ gln(C) : Z + Z = 0
}
, (8)

inside the Lie algebra gln(C) of all complex n×n matrices under the commutator bracket.

We will also write G(C) and g(C) for GLn(C) and gln(C). They are the complexifications

of G and g, and g(C) splits as the direct sum g⊕ ig of (8) and the self-adjoint matrices

ig = iun =
{

Z ∈ gln(C) : Z = Z
}

(9)

where i =
√
−1.

2.2 THE TRACE FORM AND DUALITY

We write 〈〈·, ·〉〉 for the symmetric, complex bilinear form g(C)× g(C) → C defined

by

〈〈A,B〉〉 = −Trace(AB). (10)

This form is G(C)-invariant, i.e. it satisfies 〈〈Adg A,Adg B〉〉 = 〈〈A,B〉〉 and infinitesimally

〈〈adZ A,B〉〉+ 〈〈A, adZ B〉〉 = 0 (11)

where, we recall, Adg B := gBg−1 and infinitesimally adZ B := d
dt

AdetZ B|t=0 = [Z,B].

These formulas hold for all g ∈ G(C) and A,B,Z ∈ g(C), and we have
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Proposition 2.2.1. The restriction 〈〈·, ·〉〉g×g is real-valued, real bilinear, G-invariant and

positive definite. This allows us to identify g∗ with ig (and hence g with ig∗) so that duality

and the coadjoint action read, for (g, x,Z) ∈ G× g∗ × g,

〈x,Z〉 := 〈〈ix,Z〉〉, g(x) = gxg−1, Z(x) = [Z, x]. (12)

(The restriction 〈〈·, ·〉〉ig×ig has the same properties, except it is negative definite.)

Remark 2.2.2. This identification is an arbitrary choice we make for convenience of the

exposition.

2.3 THE ORBITS

A coadjoint orbit is an orbit X of the action (12) of G on g∗ = ig, or in other words,

a conjugacy class of self-adjoint matrices. As such matrices have real eigenvalues and an

orthonormal basis of eigenvectors, we have

Proposition 2.3.1. Each orbit meets, exactly once, the dominant Weyl chamber

D =

λ =


λs1

λs2
. . .

λsk

 ∈ g∗ : λs1 > λs2 > · · · > λsk

 (13)

consisting of nonincreasing real diagonal matrices.

Here λsi denotes the scalar matrix λsi1 of a certain size |si|, i.e. we are lumping equal

eigenvalues together: while the map i 7→ λi is nominally {1, . . . , n} → R, it is constant on

the members of a partition

S = {s1, . . . , sk} (14)

of {1, . . . , n} into consecutive segments whose cardinalities are the |si|; hence it induces a

map S → R which we write again s 7→ λs.
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2.4 THE STABILIZER AND ITS CENTER

One checks without trouble:

Proposition 2.4.1. Under the coadjoint action (12), the stabilizer Gλ of λ in (13) equals

H =


U|s1|

U|s2|
. . .

U|sk|

 ∼= U|s1| × · · · × U|sk|. (15)

This subgroup is also the centralizer, C(S) = {g ∈ G : gsg−1 = s,∀s ∈ S}, of its center

S = center(H) =


U1

U1

. . .
U1

 ∼= U1 × · · · × U1︸ ︷︷ ︸
k factors

. (16)

When we move to another point x = g(λ) in the coadjoint orbit X = G(λ), the stabilizer

and its center become Gx = gHg−1 and gSg−1.

We note that S ⊂ T ⊂ H, where T is the maximal torus of all diagonal matrices in G, and

equality holds when all |si| = 1 (nondegenerate eigenvalues). Again the trace form (10)

allows us to identify (s∗, t∗, h∗) with (is, it, ih); under this identification, the projections

h∗ −→ t∗ −→ s∗ (17)

consist in taking the diagonal part, resp. sending the ith segment µ =

( µ1
. . .

µ|si|

)
of the

diagonal to its average avg(µ) = Trace(µ)/|si|.

2.5 THE TANGENT SPACE TxX AND ITS COMPLEXIFICATION

Under the identifications of Proposition 2.2.1, the last formula in (12) says that the

tangent space TxX = g(x) to X at x is the image of the map

adix = [ix, ·] : ig→ ig. (18)
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Since TxX = [x, g] sits in the real part of g(C) = g∗⊕ ig∗, we can conveniently complexify

it as

TxX⊕ iTxX = [x, g⊕ ig] ⊂ g∗ ⊕ ig∗. (19)

As map (18) is skew-adjoint (see (11)), its image is also the orthogonal of its kernel igx

relative to 〈〈·, ·〉〉ig×ig, i.e. we have

Proposition 2.5.1.

TxX = ig⊥x and in particular TλX = ih⊥. (20)

Remark 2.5.2. When G is U2 (or SU2, or SO3), coadjoint orbits are just 2-spheres. Then

(20) is the statement that the tangent space at a point is the orthogonal to the axis of rotations

around that point — see Figure below.

x

igx

TxX

X
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CHAPTER 3

CANONICAL KÄHLER STRUCTURE

3.1 THE CANONICAL COMPLEX STRUCTURE

Let X = G(λ) be the coadjoint orbit with dominant element λ as in (13). The re-

striction of adix (18) to its tangent space (20) has kernel igx ∩ ig⊥x = {0}, so it is a (still

skew-adjoint) linear bijection we shall denote

Ax : TxX→ TxX. (21)

Theorem 3.1.1. The Kirillov-Kostant-Souriau 2-form of X is given by

ω(δx, δ′x) = 〈〈δx,A−1
x δ′x〉〉 (22)

where Ax is the map (21). Moreover the formulas

Ix = |Ax|−1Ax, g(δx, δ′x) = −〈〈δx, |Ax|−1δ′x〉〉, (23)

where |Ax| =
√
−A2

x , make ω part of a G-invariant Kähler structure (I, g, ω), i.e.:

(a) I is an (integrable) complex structure,

(b) g is a positive-definite metric,

(c) we have ω( · , · ) = g( · , Ix · ) and g( · , · ) = ω(Ix · , · ).

Proof. Fix δx, δ′x ∈ TxX and put iZ = A−1
x δ′x ∈ ig. Then (21), (18) and (12) give

δ′x = AxA
−1
x δ′x = [ix, iZ] = Z(x), (24)

whence we get (22) by definition of the KKS 2-form [S70; K76; Z17, 3.15] and (12):

ω(δx, δ′x) = 〈δx,Z〉 = 〈〈δx, iZ〉〉 = 〈〈δx,A−1
x δ′x〉〉. (25)
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Next we note that |Ax| and Ix are by construction the (commuting) positive-definite and

unitary part of the polar decomposition of Ax. So they depend smoothly on Ax [S70, 6.70]

and Ix, being again skew-adjoint, is an almost complex structure: I2
x = −I∗xIx = −1. Now

(c) is clear by plugging Ax = |Ax|Ix in (22) and (23); (b) is clear if we remember that

〈〈·, ·〉〉ig×ig is negative-definite; so there remains to see (a). For a G-invariant I (such as ours

is by construction), this is equivalent to either of

(26) sections of the bundle of +i-eigenspaces of I in TX ⊕ iTX are closed under Lie

bracket (Frobenius-Newlander-Nirenberg [N57]);

(27) at x = λ, the preimage of the +i-eigenspace of Iλ under the infinitesimal action

g(C)→ TλX⊕ iTλX (see (19)) is a Lie subalgebra (Frölicher [F55, §20]).

We prove (27). First observe that if u and v are eigenvectors of x ∈ X for eigenvalues λr

and λs, then the matrix uv is an eigenvector of adx for eigenvalue λr − λs:

[x, uv ] = xuv − uxv = (λr − λs)uv. (28)

It follows that adix is diagonalizable with spectrum ∆ = {i(λr − λs) : r, s ∈ S}, and so is

Ax with spectrum ∆ r {0}. And indeed Aλ explicitly is “diagonal” with eigenvectors the

elementary matrices Eij = eiej: in more detail, writing tangent vectors V ∈ TλX = ih⊥

(20) as self-adjoint matrices with blocks Vr|s in the shape (15), formula (28) gives

Aλ


Vp|q Vp|r

Vq|p Vq|r

Vr|p Vr|q

 = i


(λp − λq)Vp|q (λp − λr)Vp|r

(λq − λp)Vq|p (λq − λr)Vq|r

(λr − λp)Vr|p (λr − λq)Vr|q

 (29)

(we only write out the case where the partition (14) is into 3 segments p, q, r, but the general

pattern should be clear). Hence we obtain by definition of |Aλ| and Iλ
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|Aλ|


Vp|q Vp|r

Vq|p Vq|r

Vr|p Vr|q

 =


|λp − λq|Vp|q |λp − λr|Vp|r

|λq − λp|Vq|p |λq − λr|Vq|r

|λr − λp|Vr|p |λr − λq|Vr|q

 (30)

and

Iλ


Vp|q Vp|r

Vq|p Vq|r

Vr|p Vr|q

 =


iVp|q iVp|r

−iVq|p iVq|r

−iVr|p −iVt|q

 . (31)

Thus we see that the +i-eigenvectors of Iλ, and likewise their preimages under (18) or adx,

are the block upper triangular matrices — hence a Lie subalgebra in g(C).

Remark 3.1.2. We could have shortened the proof by using the fact that in presence of (b)

and (c), (a) is equivalent to dω = 0. But this is a “delicate” fact [B87, 2.29], whereas (31)

is both easy and useful for the sequel. Alternatively, the integrability of I will follow from

Corollary 5.1.2 and knowing it on Grassmanians (34a).

Remark 3.1.3. Using the diagonalizability (28) and Lagrange interpolation [H71, §6.7]

one can give an explicit formula for Ix at any point, viz.

Ix =
∑

δ∈∆r{0}

i sign(δ)Eδ with Eδ =
∏

ε∈∆r{0,δ}

(adix− ε)
(δ − ε)

, (32)

which confirms e.g. the G-invariance and smoothness (indeed algebraicity) of I. Unfortu-

nately this formula seems rather less enlightening than (23).

Remark 3.1.4. The idea of using the polar decomposition to produce almost complex

structures occurs in a general context in [W77, p. 8]. Other, less direct descriptions of the

canonical complex structure are found in Borel [S54, §2; B54, §4; B58, 14.6], Guillemin-

Sternberg [G82, p. 522], Besse [B87, §8.34], Vogan [V87, 5.8].
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3.2 EXAMPLE: THE GRASSMANNIANS

Let Grm be the Grassmannian of complex m-planes in Cn, each identified with the

self-adjoint projector y upon it, i.e.

Grm =
{
y ∈ g∗ : y2 = y,Trace(y) = m

}
= G

(
1m 0
0 0n−m

)
. (33)

Its dominant element $m is the highest weight of the “fundamental” module ∧mCn.

Proposition 3.2.1. In this case |Ay| = 1 so that the canonical structure of Grm is simply
Iδy = [iy, δy] (34a)

g(δy, δ′y) = Trace(δyδ′y) (34b)

ω(δy, δ′y) = Trace(δyIδ′y) = Trace(iy[δ′y, δy]). (34c)

Proof. Deriving and reusing the relations y = y2 = y3 gives δy = δy.y + y.δy = δy.y +

y.δy.y+y.δy. This implies y.δy.y = 0 and−A2
yδy = [y, [y, δy]] = y.δy−2y.δy.y+δy.y =

δy. So −A2
y and hence its square root are the identity.

Remark 3.2.2. The Hermitian metric g + iω in (34) can be seen as Kähler reduction of the

flat metric (s, s′) := 2 Trace(ss′) on Cn×m ∼= Hom(Cm,Cn).1 Indeed Um acts there by

u(s) = su−1, preserving Ω = Im(·, ·) with moment map ψ(s) = −ss, and (34) obtains on

passing to the quotient Grm = ψ−1(−1)/Um [G73, §V.5; T06, p. 240]. E.g. for m = 1 one

recovers the Fubini-Study metric on projective space, i.e.

2

[
(δs, δ′s)

‖s‖2
− (δs, s)(s, δ′s)

‖s‖4

]
on Gr1 =

{
y =

s(s, ·)
‖s‖2

: s ∈ Cn r {0}
}
. (35)

See [S05, §5], and form > 1, [C29; E34]. Formulas (34) are emblematic of the explicitness

we’d like to have in general.

1Or alternatively on the dual Cm×n, if we insist on obtaining (34a) and not its opposite 1
i [y, δy].
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CHAPTER 4

PSEUDO-KÄHLER STRUCTURES CLASSIFIED: THE COSET MODEL

In this section we review the standard classification of complex structures which re-

sults from the principle: a G-invariant J on X = G(λ) = G/H amounts to an H-invariant

Jλ ∈ End(TλX).

4.1 THE DECOMPOSITION OF THE ISOTROPY REPRESENTATION

Let gr|s(C) denote, for segments r 6= s in the partition S (14), the matrices (29) where

all blocks vanish except perhaps Vr|s, i.e.

gr|s(C) = {Z ∈ g(C) : Zij = 0 for (i, j) /∈ r × s} , (36)

and let Xr|s (resp. iXr|s) denote the intersection of gr|s(C)⊕ gs|r(C) with g (resp. ig).

Theorem 4.1.1. The isotypic decomposition of the isotropy representation of H = Gλ in

the complexified tangent space (19) at λ into inequivalent irreducibles is

TλX⊕ iTλX =
⊕

r 6=s in S

gr|s(C) (37)

Consequently,

(a) Every G-invariant almost complex structure J on X = G(λ) is obtained by flipping

the sign of I (and hence g) on some summands in TλX =
⊕

r<s in S iXr|s.

(b) As g coincides with −1
|λr−λs|〈〈· , ·〉〉 on iXr|s, each such flip affects its signature by turn-

ing a block of |r| × |s| pluses into minuses.

(c) If S has k parts, then X admits 2k(k−1)/2 different G-invariant almost complex struc-

tures.
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Proof. Using the notation of (15) and (29), one checks without trouble that the isotropy

action of h = diag(us1 , . . . , usk) ∈ H takes block Vr|s of V ∈ TλX to

h(Vr|s) = urVr|su
−1
s . (38)

So the gr|s(C) are H-invariant and the representation on each factors through the natural

representation of U|r| × U|s| on Hom(C|s|,C|r|) ∼= C|r| ⊗ C|s|. As these are irreducible

and different for different pairs (r, s), we obtain (37). Now Jλ is determined by its ±i-

eigenspaces

TλX
± = Im(Jλ ± i ) = Ker(Jλ ∓ i ) (39)

which are (complex conjugate) H-invariant subspaces of (37), hence are each the sum of

some gr|s(C) [B12, §4, Prop. 4d] — one per pair (gr|s(C), gs|r(C)). So they can only differ

from those of Iλ (31) by the indicated sign flips, and we obtain (a, b, c).

4.2 THE INVARIANT COMPLEX STRUCTURES

There remains to determine which of the almost complex structures of Theorem 4.1.1

are integrable.

Theorem 4.2.1. We have

[
gp|q(C), gr|s(C)

]
=



0 if s 6= p; q 6= r (40a)

gp|s(C) if s 6= p; q = r (40b)

gr|q(C) if s = p; q 6= r (40c)(
gp|p(C) + gq|q(C)

)
∩ sln(C) if s = p; q = r. (40d)

Consequently,

(a) An almost complex structure J obtained as in Theorem 4.1.1 is integrable iff it respects

the “Chasles” rule: if the sign is flipped on iXr|s and iXs|t (r < s < t), then it is also

flipped on iXr|t.
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(b) Such is the case iff the preimage of TλX
+ under the infinitesimal action (27) is a

parabolic subalgebra of g(C), containing h(C).

Proof. Relations (40) follow from noting that gr|s(C) is the span of elementary matrices

Eij = eiej for (i, j) ∈ r × s, and computing [eiej, ekel]. Next (a) translates condition (27)

that the preimage in (b) be a subalgebra; and (b) translates, via [B75, Déf. VIII.3.2], the

observation made in the proof of Theorem 4.1.1 that each Eij not in h(C) is in either TλX
+

or TλX
−.

Remark 4.2.2. Versions of Theorems 4.1.1 and/or 4.2.1 valid beyond Un can be found in

[B58; S69; B82; N84; A86; A97; K10; Y14]. There, the roots αij = Eii − Ejj ∈ t∗ whose

root space CEij lies in TλX
+ are called roots of J.

4.3 THE RESIDUAL ACTION OF THE NORMALIZER

A systematic way to produce new complex structures (or “Chasles” block flips) from

old ones is to let diffeomorphisms act on them. This is the place to recall that any homoge-

neous space X = G/H carries a residual “right” action,

n˜(gH) = gHn−1 = gn−1H, (41)

of the normalizer N = {n ∈ G : nHn−1 = H}. As H itself (clearly) acts trivially, this is

really an action of the Weyl-like quotient W = N/H — which is also a subset of X.

When k = n (nondegenerate case, the stabilizer (15) is the maximal torus T), W is the

actual Weyl group Sn of G and the n! complex structures thus obtained turn out to exhaust

all of them, as was observed in [B58, 13.8; B82, Exerc. IX.4.8e] and will be recovered here

in §5.2.
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CHAPTER 5

PSEUDO-KÄHLER STRUCTURES REALIZED: THE FLAG MODELS

Theorem 4.2.1 only spells out complex structures by giving the effect of J at the base

point λ. At any other point x = g(λ), computation of Jx = gJλg
−1 requires use of some

g ∈ G, on whose nonuniqueness the outcome is known not to depend. Our goal below is a

more intrinsic picture where Jx can be explicit in terms of x alone, as in (22–23, 32, 34).

We freely use the notation introduced in (13–14, 33).

5.1 THE CANONICAL COMPLEX STRUCTURE, REDUX

A first idea is to note that spectral decomposition expresses each x ∈ X as linear

combination of eigenprojectors, Er ∈ Gr|r|, belonging to the (fixed) eigenvalues λr:

x =
∑
r∈S

λrEr, where Er =
∏

s∈Sr{r}

(x− λs)
(λr − λs)

(42)

(Lagrange interpolation [H71, §6.7]). So sending x to y = (Er)r∈S embeds X G-equiv-

ariantly as a submanifold Y of a product
∏

r∈S
Gr|r| of Grassmannians (33), hopefully

pulling product structures back to useful ones on X. Alas, Proposition 5.1.1 below dashes

this hope: Y isn’t a complex submanifold of the product, so there is no complex structure

to transport back. Fortunately, the same Proposition will also indicate the way out.

To state it, note that the Er are just a small part of x’s spectral measure A 7→ EA

which maps subsets of S (or alternatively, of the spectrum {λs : s ∈ S}) to projectors

EA =
∑
r∈A

Er ∈ Gr|A|, |A| =
∑
r∈A

|r|, (43)

with the property that EA∩B = EAEB (so the EA all commute). Thus, not only the single-

tons but any subfamily A ⊂ 2S gives rise to a G-equivariant map, x 7→ (EA)A∈A, from X

to a product of Grassmannians.
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Proposition 5.1.1. The image Y of this map is a complex submanifold of
∏

A∈A
Gr|A| (for

the product complex structure) if and only if A is totally ordered by inclusion.

Proof. First note that as G is transitive on X, the map’s equivariance (visible on (42)) en-

sures that Y is an orbit of a smooth group action, hence as always an (“initial”) submanifold

[O04, Prop. 2.3.12].

Assume that A ⊂ 2S is not totally ordered by inclusion. So there are A,B ∈ A such

that A 6⊂ B and B 6⊂ A. Pick r ∈ ArB and s ∈ BrA and nonzero eigenvectors u, v ∈ Cn

for eigenvalues λr, λs of x. Thus we have (with (P,Q) short for (EA,EB)):

Pu = u, Pv = 0, Qu = 0, Qv = v. (44)

Now put Z = uv − vu ∈ g and consider the image δy ∈ TyY of δx = [Z, x] ∈ TxX. By

equivariance and (44), its components in TPX|A| and TQX|B| are respectively

δP = [Z,P] = [uv − vu,P] = −uv − vu,

δQ = [Z,Q] = [uv − vu,Q] = uv + vu.

(45)

They (of course) satisfy the relation [δP,Q] + [P, δQ] = 0 which any tangent vector to Y

must, as one sees by deriving [P,Q] = 0. On the other hand, we claim that IδP and IδQ

fail that relation. Indeed (34a) gives

IδP = [iP, δP] = i(vu− uv) = iZ,

IδQ = [iQ, δQ] = i(vu− uv) = iZ,

(46)

whence (using (45))

[IδP,Q] + [P, IδQ] = [iZ,Q− P]

= i(δQ− δP)

= 2i(uv + vu) 6= 0.

(47)

This shows that TyY is not preserved by the product complex structure, as claimed.
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Conversely, assume that A is totally ordered by inclusion. Then a tuple (EA)A∈A of

projectors is in Y if and only if it satisfies

EAEB = EBEA = EA (48)

for all A ⊂ B in A; and δy = (δEA)A∈A is in TyY if and only if we also have, for all

A ⊂ B in A, the derived relations (where again we write (P,Q) = (EA,EB) for short):

δP.Q + P.δQ = δP, (49a)

δQ.P + Q.δP = δP. (49b)

Assume (49a). Multiplying it on the right by Q gives P.δQ.Q = 0 and hence

IδP.Q + P.IδQ = [iP, δP]Q + P[iQ, δQ]

= i(P.δP.Q + P.Q.δQ− δP.P.Q)

= iP.(δP.Q + P.δQ)− iδP.P

= iP.δP− iδP.P

= IδP.

(50)

Thus we see that Iδy also satisfies (49a); and arguing similarly for (49b) completes the

proof that I preserves TyY.

Choosing A = {{s1, . . . , si} : i = 1, . . . , k} and mi = |s1|+ · · · + |si| now gives an

independent reconstruction of the Kähler structure (22–23):

Corollary 5.1.2. The coadjoint orbit (X, I, g+iω) is isomorphic to the orbit Y of ($mi
)ki=1

in
∏k

i=1
Grmi

with the product complex structure and hermitian metric

k∑
i=1

`si(gmi
+ iωmi

) (51)

where (Grm, I, gm + iωm) is the Grassmannian (34) and `si = λsi − λsi+1
(λsk+1

:= 0).

The map from X to Y and the (moment) map from Y to X are respectively

x 7→
(
E{s1,...,si}

)
k
i=1 and (ymi

)ki=1 7→
k∑
i=1

`siymi
. (52)
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Proof. We have just seen that Y is a complex submanifold of the product. Thus it is (ho-

mogeneous) symplectic, hence isomorphic via its moment map, which is clearly (52), to

a coadjoint orbit which is X since
∑k

i=1 `si$mi =
∑k

i=1(λsi − λsi+1
)$mi = λs1$m1 +

λs2($m2 −$m1) + · · ·+ λsk($mk −$mk−1
) = λ.

5.2 THE k! FLAG MODELS AND COMPLEX STRUCTURES

The point now is that the previous construction (51, 52) works just as well when the λsi

are not in decreasing order. In other words, we may preface it by rearranging the k diagonal

blocks of (13) according to any permutation π of {1, . . . , k}: as some λsπ(i) − λsπ(i+1)

become negative, this should get us the indefinite metrics (see (51)) and attendant complex

structures (see (29)) we have been seeking.

Conjecture 5.2.1. The explicit pseudo-Kähler structures so obtained are exactly those of

Theorem 4.2.1. In particular X carries precisely k! G-invariant complex structures, real-

ized in k! different flag models.

Sketch of proof. As we haven’t checked all details, we shall be content to prove this when

k = 3 (writing out matrices of size n = 4 for simplicity) and indicate why we believe it

stays true in general. The left column below shows all 3! = 6 possible rearrangements of 3

blocks with eigenvalues a > b > c:

 a + + +

b
+
+

c

 =

 1

1

1


 a + + +

b
+
+

c


 1

1

1

 (53a)

 a + + +

c + +

b

 =

 1

1

1


 a + + +

b

+ + c


 1

1

1

 (53b)

 b
+
+

+
+

a +

c

 =

 1

1

1


 a +

+
+

b
+
+

c


 1

1

1

 (53c)
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 b
+
+

+
+

c +

a

 =

 1

1

1


 a

+
+

b
+
+

+ c


 1

1

1

 (53d)

 c + + +

a + +

b

 =

 1

1

1


 a + +

b

+ + + c


 1

1

1

 (53e)

 c + + +

b
+
+

a

 =

 1

1

1


 a

+
+

b

+ + + c


 1

1

1

 (53f)

Each is brought back to decreasing order by a unique block permutation matrix [T61;

A08] as shown on the right. Our construction (52) produces 6 complex structures having

as +i-eigenspaces the upper triangular blocks marked + on the left. These make subalge-

bras as prescribed by (27), and the permutations take them to precisely the 6 “block flips”

allowed by Theorem 4.2.1. Indeed the remaining two (of 23(3−1)/2 = 8) possible flips

are those that fail the test to give subalgebras, and thus give only non-integrable almost

complex structures:
+ +

+
+

+

 and


+

+
+

+ +

 (54)

This argument works unchanged with k = 3 diagonal blocks in any size n. We believe

it keeps working in general because the blocks flipped to + on the right always define

parabolic subalgebras (4.2.1b) and these are necessarily conjugate to one of the upper tri-

angular (“standard”) parabolics on the left. The conjugating matrix should provide the

desired block permutation.

Remark 5.2.2. For completeness we spell out the explicit flag model Y, moment map (52),

and metric signature (from flipped blocks) under all six permutations:
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case: manifold Y: moment map, y 7→: sig.:

(53a)

(53f)

{
y =

( y1

y3

y4

)
∈ Gr1 × Gr3 × Gr4 :

y3y1 = y1

y4y3 = y3

}
(a− b)y1 + (b− c)y3 + cy4

(c− b)y1 + (b− a)y3 + ay4

(5,0)

(0,5)

(53b)

(53e)

{
y =

( y1

y2

y4

)
∈ Gr1 × Gr2 × Gr4 :

y2y1 = y1

y4y2 = y2

}
(a− c)y1 + (c− b)y2 + by4

(c− a)y1 + (a− b)y2 + by4

(3,2)

(2,3)

(53c)

(53d)

{
y =

( y2

y3

y4

)
∈ Gr2 × Gr3 × Gr4 :

y3y2 = y2

y4y3 = y3

}
(b− a)y2 + (a− c)y3 + cy4

(b− c)y2 + (c− a)y3 + ay4

(3,2)

(2,3)

The point Gr4 = {1} could of course be mostly omitted from the notation. It would be

nice if we could interpret the equations above as appropriate moment map levels, and thus

exhibit each Y as a symplectic reduction (cf. Remark 3.2.2)2.

Remark 5.2.3. Our count of k! complex structures seems to have escaped the attention

of both [B58]3 and later authors who studied the problem by means of closed subsystems

[S69, Thm 7.1] or S-root systems [A86, Cor. 3.1, Prop. 5.1; A97, §IV.5] (see (16) and also

[K10]). It is worth noting that while in case k = n they all arise geometrically from the

residual action (41), this is not true in general. In fact, when G = U4 and X is the so-called

adjoint variety studied in [B61; K98; L02],

X = G


1

0

−1

 (55)

one finds that N/H boils down to a Z2 group whose representatives
1

1

1

 and


1

1

1

 (56)

exchange pairs in the above table, and Borel-Hirzebruch [B58, 13.9; H05] observed that

the complex structures in (53a) and (53b) are related by no diffeomorphism, because they

2And also the first sentence of [W78, §2].
3Despite the title of their §13.7!
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have different characteristic numbers. So the “action” of block permutations we have found

remains a little mysterious.
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CHAPTER 6

CONCLUSION

Conjecture 5.2.1 has now been proved in [M20]. Recall that a coadjoint orbit X of

G = Un is simply the conjugacy class of all self-adjoint matrices x sharing the spectrum

and multiplicities of a decreasing diagonal

λ =

λ11n1

. . .
λk1nk

 , λ1 > · · · > λk. (57)

When the spectrum is {1, 0} with multiplicities (m,n −m) this is the Grassmannian Grm

with its well-known Kähler structure (Im, gm, ωm):
Imδx = [ix, δx]

gm(δx, δ′x) = Trace(δxδ′x)

ωm(δx, δ′x) = Trace(δxImδ
′x).

(58)

In general, for every permutation π of {1, . . . , k} consider the eigenflag map EFπ sending

x to (yi)
k
i=1 where yi ∈ Grmi(π) is the sum of the eigenprojectors of x for eigenvalues

{λπ(1), . . . , λπ(i)} and we set mi(π) := nπ(1) + · · · + nπ(i). Then the main result of [M20]

can be stated:

Theorem 6.0.1. EFπ embeds X as a complex submanifold of
∏k

i=1 Grmi(π), thereby en-

dowing it with a G-invariant complex structure Jπ. The map π 7→ Jπ is one-to-one onto

the set of such structures (of which there are therefore exactly k!). The Kirillov-Kostant-

Souriau 2-form ω of X and resulting pseudo-Kähler metric gπ = ω(Jπ·, ·) are explicitly the

pull-backs of
k∑
i=1

(λπ(i) − λπ(i+1))ωmi(π) and
k∑
i=1

(λπ(i) − λπ(i+1))gmi(π) (59)

on
∏k

i=1 Grmi(π), where (ωm, gm) are as in (58) and we set λπ(k+1) := 0.

A remarkable feature of this result is that unlike the cases k = 2 or n detailed in [B58,

13.8], the various complex structures are not in general related by a geometrical action of

Sk (and complex conjugation) on X.
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