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CHAPTER 1

INTRODUCTION

mIIIIn this thesis, we study various homological constructions over a ring R of 

characteristic 2. The reason we specialize to characteristic 2 is merely for simplicity. We 

believe that all of our results can be generalized to any characteristic.

In the second chapter, we introduce some preliminary material. Section 2.1 deals with 

the theory of Gröbner bases. The main references we used for this section are [1] and [2]. 

Section 2.2 deals with graded rings and modules. We used [2], [4], and [5] as references 

for this section. Section 2.3 deals with homological algebra. Our main reference in this 

section is [5], but we also used [3], [4], and [6] as well. Section 2.4 deals with simplicial 

complexes and simplicial homology. We use [7] as our reference here.

In the third chapter, we study some homological constructions over a field K  of char-

acteristic 2. In section 3.1, we construct some chain complexes over K using the poly-

nomial ring K[x1, . . . , xn] and the differential d :=
∑n

λ=1 ∂xλ . We then use the theory of

Gröbner basis to show how K[x1, . . . , xn]/I can be equipped with a differential so that it

becomes a chain complex over K. In section 3.2, we study differential graded K-algebras.

In particular, we classify which of the chain complexes we constructed in section 3.1 can

be realized as differential graded K-algebras. In section 3.3, we do some basic homology

computations. In section 3.4, we give a topological interpretation of these homologies.

Namely, we show how these homologies are linked to simplicial homology.

In the fourth and final chapter, we study some homological constructions over a ringR

of characteristic 2. In contrast to the third chapter, which has more of a topological flavor,

this chapter has more of an algebraic flavor. In this chapter, we classify all finitely-genered

commutative differential graded R-algebras. We show how Koszul complexes and blowup

algebras can be interpreted as differential graded R-algebras under this classification. We

end this chapter with some basic homology computations.
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CHAPTER 2

PRELIMINARY MATERIAL 

We begin by introducing some preliminary material.

2.1 POLYNOMIAL RINGS OVER A FIELD AND GR ÖBNER BASES

 Throughout this section, let K be a field and let S denote the polynomial ring K[x1, . . . , xn]. 

We state all of our lemmas, propositions, and theorems without proof. All of the proofs can 

be found in [1] and [2].

MONOMIALS AND POLYNOMIALS IN S

A monomial m in S is a product in S of the form

m = xα1
1 · · · xαnn

where all of the exponents α1, . . . , αn are nonnegative integers. Sometimes we will use the

notation xα to denote a monomial, where α = (α1, . . . , αn) is an n-tuple of nonnegative

integers. Note that xα = 1 when α = (0, . . . , 0). If m = xα is a monomial in S then the

degree of m, denoted deg(m) or |xα| , is the sum α1 + · · ·+αn. We say that the monomial

is squarefree if either αλ = 1 or αλ = 0 for all λ = 1, . . . , n.

A polynomial f in S is a finite linear combination of monomials. We will write a

polynomial f in the form

f =
∑
α

aαx
α, aα ∈ K,

where the sum is over a finite number of n-tuples α = (α1, . . . , αn). We call aα the

coefficient of the monomial xα. If aα 6= 0, then we call aαxα a term of f , and we call xα

a monomial of f .

Remark 2.1. If we replace the field K with a ring R, then the same terminology applies to

the polynomial ring R[x1, . . . , xn].
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Monomial Orderings on S

A monomial ordering on S is a total ordering > on Zn≥0, or equivalently, a total ordering

on the set of monomials xα, α ∈ Zn≥0, satisfying

xα > xβ =⇒ xγxα > xγxβ,

for all α, β, γ ∈ Zn≥0. We say > is a global monomial ordering if xα > 1 for all α 6= 0.

Lemma 2.1.1. Let> be a monomial ordering, then the following conditions are equivalent.

1. > is a well-ordering, i.e. every nonempty set of monomials has a smallest element,

or equivalently, every decreasing sequence

xα(1) > xα(2) > xα(3) > · · ·

eventually terminates.

2. xi > 1 for i = 1, . . . , n.

3. > is global.

4. α ≥nat β and α 6= β implies xα > xβ , where ≥nat is a partial order on Zn≥0 defined

by

(α1, . . . , αn) ≥nat (β1, . . . , βn) if and only if αi ≥ βi for all i.

Remark 2.2. Throughout this thesis, we will only be dealing with global monomial order-

ings. Thus, whenever we introduce a monomial ordering, we will always assume that it is

a global monomial ordering.

Examples of Monomial Orderings

We now describe some important examples of monomial orderings: Let α, β ∈ Zn≥0.
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1. (Lexicographical ordering): We say xα >lp x
β if there exists 1 ≤ i ≤ n such that

α1 = β1, . . . , αi−1 = βi−1, αi > βi.

2. (Degree reverse lexicographical ordering) We say xα >dp x
β if |xα| > |xβ| or |xα| =

|xβ| and there exists 1 ≤ i ≤ n such that αn = βn, . . . , αi+1 = βi+1, αi < βi.

3. (Degree lexicographical ordering) We say xα >Dp x
β if |xα| > |xβ| or |xα| = |xβ|

and there exists 1 ≤ i ≤ n such that α1 = β1, . . . , αi−1 = βi−1, αi > βi.

Multidegree, Leading Coefficients, Leading Monomials, and Leading Terms

Let f =
∑

α cαx
α be a nonzero polynomial in K[x1, . . . , xn] and let > be a monomial

ordering.

1. The multidegree of f is

multdeg(f) = max(α ∈ Zn≥0 | cα 6= 0).

2. The leading coefficient of f is

LC(f) = cmultdeg(f)
∈ K.

3. The leading monomial of f is

LM(f) = xmultdeg(f).

4. The leading term of f is

LT(f) = LC(f) · LM(f).
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Example 2.3. Let f = 4xy2z+4z2−5x3+7x2z2. With respect to lexicographical ordering

we have

multdeg(f) = (3, 0, 0)

LC(f) = −5

LM(f) = x3

LT(f) = −5x3.

With respect to degree reverse lexicographical ordering we have

multdeg(f) = (1, 2, 1)

LC(f) = 4

LM(f) = xy2z

LT(f) = 4xy2z.

MONOMIAL IDEALS

An ideal I ⊆ S is a called a monomial ideal if it is generated by monomials. It is called a

squarefree monomial ideal if it is generated by squarefree monomials.

Example 2.4. An example of a monomial ideal is given by

I = 〈x4y2, x3y4, x2y5〉 ⊆ K[x, y].

A nontrivial example of a monomial ideal is given by

J = 〈f1, f2, f3, f4〉 = 〈x2 + x2y3,−x2y3 + y3, x4, y6〉.

It is easy to see that J ⊂ 〈x2, y3〉. For the reverse inclusion, note that

x2 = f1 − x2f2 − y3f3

y3 = y3f1 + f2 − x2f4.

So 〈x2, y3〉 ⊂ J . Therefore J = 〈x2, y3〉.
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LEAD TERM IDEAL

Throughout the rest of section 2.1, fix a monomial ordering on S.

Lead Term Ideal

Let I be a nonzero ideal in S.

1. We denote by LT(I) the set of lead terms of nonzero elements of I . Thus,

LT(I) = {cxα | there exists f ∈ I \ {0} with LT(f) = cxα}.

2. We denote by 〈LT(I)〉 the ideal generated by the elements of LT(I).

GRÖBNER BASIS

Let I be a nonzero ideal in S. The reduced Gröbner basis for I is a subsetG = {g1, . . . , gt}

of polynomials in S such that

1. 〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉,

2. LC(g) = 1 for all g ∈ G,

3. For all g ∈ G, no monomial of g lies in 〈LT(G \ {g}〉.

Remark 2.5. If a monomial ordering is fixed, then every ideal has a unique reduced

Gröbner basis.

Given a polynomial f in S, there are unique polynomials π(f) ∈ I and fG ∈ S such

that f = π(f) + fG and no term of fG is divisible by any of LT(g1), . . . ,LT(gt). We call

fG the normal form of f with respect to G. It follows from uniqueness of fG and π(f)

that taking the normal form of a polynomial is a K-linear map −G : S → S:

c1f
G
1 + c2f

G
2 = (c1f1 + c2f2)G (2.1)
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for all c1, c2 ∈ K and f1, f2 ∈ S. Another important property of −G is that it preserves

homogeneity.

2.2 GRADED RINGS AND MODULES

GRADED RINGS

A graded ring R is a ring together with a direct sum decomposition

R =
⊕
i∈Z≥0

Ri,

where the Ri are abelian groups such that RiRj ⊆ Ri+j for all i, j ∈ Z≥0. The Ri are

called homogeneous components of R and the elements of Ri are called homogeneous

elements of degree i. If r is a homogeneous element in R, then we denote the degree of r

by deg(r). When we say “Let R be a graded ring”, it is understood that the homogeneous

components of R are denoted Ri.

Example 2.6. An important example of a graded ring is a ring R endowed with the trivial

grading: The homogoneneous components of R being R0 := R and Ri := 0 for all i > 0.

When we say ”Let R be a ring”, then we will assume that R is trivially graded.

Weighted Polynomial Rings

Let R be a ring and let w := (w1, . . . , wn) be an n-tuple of positive integers. We define the

weighted polynomial ring R[x1, . . . , xn]w with respect to the weight w to be the polyno-

mial ring R[x1, . . . , xn] endowed with the unique grading such that deg(xλ) = wλ for all

λ = 1, . . . , n. We define the weighted degree of a monomial m = xα1
1 · · ·xαnn , denoted

degw(m), to be

degw(m) :=
n∑
λ=1

wλαλ.
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This grading gives Sw the structure of a graded ring, where the homogeneous components

are given by

(Sw)i := SpanR〈m ∈ Sw | m is monomial of weighted degree i〉.

Example 2.7. LetK be a field and let Sw denote the weighted polynomial ringK[x, y, z](1,2,3).

The first few homogeneous components of Sw start out as

(Sw)0 = K

(Sw)1 = Kx

(Sw)2 = Kx2 +Ky

(Sw)3 = Kx3 +Kxy +Kz

...

GRADED R-MODULES

Let R be a graded ring. An R-module M , together with a direct sum decomposition

M =
⊕
i∈Z

Mi

into abelian groups Mi is called a graded R-module if RiMj ⊂ Mi+j for all i, j ∈ Z.

The Mi are called homogeneous components of M and the elements of Mi are called

homogeneous of degree i. If m is a homogeneous element in M , then we denote the

degree ofm as deg(m). When we say “LetM be a gradedR-module”, then it is understood

that the the homogeneous components of M are denoted by Mi.

Example 2.8. If M is a graded R-module, then for j ∈ Z, we define the j-th twist or the

j-th shift of M to be the graded R-module

M(j) :=
⊕
i∈Z

M(j)i

where M(j)i := Mi+j .
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Graded R-Submodules

Let R be graded ring and let M be a graded R-module. A submodule N ⊆ M is called a

graded (or homogeneous)R-submodule ofM if it is generated by homogeneous elements.

Example 2.9. LetK be a field, let Sw denote the weighted polynoimal ringK[x, y, z](5,6,15),

and let I = 〈y5 − z2, x3 − z, x6 − y5〉 be an ideal Sw. Then I is a homogeneous ideal in

Sw.

Remark 2.10. Let R be a graded ring, and let I be a homogeneous ideal in R. Then the

quotient R/I has an induced structure as a graded ring, where the homogeneous compo-

nent of R/I is

(R/I)i := (Ri + I)/I ∼= Ri/(I ∩Ri)

Homomorphisms of Graded R-Modules

Let M and N be graded R-modules. An R-module homomorphism ϕ : M → N is called

homogeneous (or graded) of degree j if ϕ(Mi) ⊂ Ni+j for all i ∈ Z. If ϕ is homogeneous

of degree zero then we will simply say ϕ is homogeneous.

Example 2.11. Let R denote the polynomial ring K[x, y, z, t] with its natural grading.

Then the matrix

U :=

x+ y + z w2 − x2 x3

1 x xy + z2


defines an R-module homomorphism U : R(−1)⊕R(−2)⊕R(−3)→ R⊕R(−1) which

is graded of degree zero.

GRADED R-ALGEBRAS

Let R be a graded ring and let A be an R-algebra. We say A is a graded R-algebra if A is

graded as a ring and A0 = R.
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Remark 2.12. More general definitions of graded R-algebras can be found throughout the

literature, but this definition we shall use in this thesis.

Example 2.13. Let Q be an ideal in R. The blowup algebra of Q in R is the R-algebra

BQ(R) := R + tQ+ t2Q2 + t3Q3 + · · · ∼= R⊕Q⊕Q2 ⊕Q3 ⊕ · · ·

where multiplication in BQ(A) is induced by the multiplication map Qi ×Qj → Qi+j .

Homomorphisms of Graded R-Algebras

Let A and A′ be graded R-algebras. We say ϕ : A→ A′ is an R-algebra homomorphism if

1. ϕ is a homomorphism when viewed as a map of R-modules. In other words,

ϕ(r1a1 + r2a2) = r1ϕ(a1) + r2ϕ(a2)

for all r1, r2 ∈ R and a1, a2 ∈ A.

2. ϕ preserves the algebra structure. In other words

ϕ(ab) = ϕ(a)ϕ(b)

for all a, b ∈ A.

Moreover, we say ϕ is graded if ϕ is a graded homomorphism when viewed as a map of

graded R-modules.

Finitely-Generated Graded R-Algebras

A graded R-algebra A is said to be finitely-generated if it is finitely-generated as an R-

algebra. The next proposition gives a classification of all finitely-generated commutative

R-algebras.
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Proposition 2.14. Every finitely-generated commutative graded R-algebra is isomorphic

to a quotient of a weighted polynomial ring.

Proof. Let A be a finitely-generated commutative R-algebra with generators a1, . . . , an.

Then for each λ = 1, . . . , n we have aλ ∈ Awλ , where wλ ∈ Z≥0. Let Sw denote the

weighted polynomial ring R[x1, . . . , xn](w1,...,wn) and let ϕ : Sw → A be the unique mor-

phism of gradedR-algebras such that ϕ(xλ) = aλ for all λ = 1, . . . , n. Then Ker(ϕ) is eas-

ily checked to be a homogeneous ideal of Sw, and moreover A is isomorphic to Sw/Ker(ϕ)

as graded R-algebras.

Algorithmic Computations in the K-algebra S/I using Gröbner Basis

Let I be a homogeneous ideal in the polynomial ring S = K[x1, . . . , xn]. Then S/I is

a graded K-algebra, where the homogeneous component Si is the K-vector space of all

homogeneous polynomials f ∈ S of degree i. Now fix a monomial ordering and let G be

the reduced Gröbner basis of I with respect to this ordering. Define

SI := SpanK(xα | xα /∈ 〈LT(I)〉)

There is an obvious decompostion of SI into K-vector spaces (SI)i, where

(SI)i = SpanK(xα | xα /∈ 〈LT(I)〉 and deg(xα) = i).

In fact, S/I and SI are isomorphic as graded K-modules. The isomorphism is given by

mapping f ∈ S/I to fG ∈ SI . Indeed,−G is aK-linear map which preserves homogeneity.

This makes S/I isomorphic to SI as graded K-modules. Using this isomorphism, we

can carry multiplication from S/I over to SI to turn SI into a graded K-algebra: For

f1, f2 ∈ SI , we define multiplication as

f1 · f2 = (f1f2)G. (2.2)
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Defining multilpication in this way makes SI isomorphic to S/I as graded K-algebras. For

computational purposes, it is easier to work with SI rather than S/I .

Example 2.15. Consider S = K[x, y] and I = 〈xy2 + y3, x3 + x2y〉. Then

G = {xy2 + y3 , x3 + x2y}

is the reduced Grobner basis with respect to graded reverse lexicographical ordering. In

particular LT(I) = 〈xy2, x3〉. We write the first few homogeneous terms of SI:

(SI)0 = K

(SI)1 = Kx+Ky

(SI)2 = Kx2 +Kxy +Ky2

(SI)3 = Kx2y +Ky3

(SI)4 = Ky4

(SI)5 = Ky5

...

Next, we multiply some elements together in SI in the multiplication table below

· x y y3

x2y y4 y4 y6

x2 x2y x2y y5

x x2 xy y4

Example 2.16. Consider S = K[x, y] and I = 〈xy + y2, x3〉. We first use Singular to

compute the reduced Grobner basis G of I with respect to graded reverse lexicographical

ordering. We obtain G = {xy+ y2, x3, y4}. Now we write down the first few homogeneous
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components of I , S/I and SI

I0 = 0 (S/I)0 = K (SI)0 = K

I1 = 0 (S/I)1 = Kx+Ky (SI)1 = Kx+Ky

I2 = Kg1 (S/I)2 = Kx2 +Ky2 (SI)2 = Kx2 +Ky2

I3 = Kxg1 +Kyg1 +Kg2 (S/I)3 = Ky3 (SI)3 = Ky3

I4 = S4 (S/I)4 = 0 (SI)4 = 0

...
...

...

2.3 HOMOLOGICAL ALGEBRA

Throughout this section, let R be a ring.

CHAIN COMPLEXES OVER R

A chain complex (A, d) over R, or simply R-complex , is a sequence of R-modules Ai

and morphisms di : Ai → Ai−1

(A, d) := · · · Ai+1 Ai Ai−1 · · ·di+1 di

such that di ◦ di+1 = 0 for all i ∈ Z. The condition di ◦ di+1 = 0 is equivalent to the

condition Ker(di) ⊃ Im(di+1). Thus we are able to define the ith homology of the chain

complex (A, d) to be

Hi(A, d) := Ker(di)/Im(di+1).

Let (A, d) and (A′, d′) be two chain complexes. A chain map ϕ : (A, d) → (A′, d′)

is a sequence of R-module homomoprhisms ϕi : Ai → A′i such that d′iϕi = ϕi−1d
′
i for all

i ∈ Z. We can view a chain map visually as illustrated in the diagram below:
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(A, d) := · · · Ai+1 Ai Ai−1 · · ·

(A′, d′) := · · · A′i+1 A′i A′i−1 · · ·

di+1

ϕi+1

di

ϕi ϕi−1

d′i+1 d′i

Simplifying Notation

To simplify notation in what follows, we think of R as a trivially graded ring. If (A, d)

is an R-complex, then we think of (A, d) as a graded R-module A together with a graded

endomorphism d : A → A of degree −1 such that d2 = 0. We think of di as being the

restriction of d to Ai and we often refer to d as the differential.

An element in Ker(d) is called a cycle of (A, d) and an element in Im(d) is called a

boundary of (A, d). We define the homology of (A, d) to be

H(A, d) := Ker(d)/Im(d)

Note that H(A, d) =
⊕

i∈ZHi(A, d). We sometimes write H(A) instead of H(A, d) if the

differential is understood from context.

Let (A, d) and (A′, d′) be chain complexes. A chain map ϕ : (A, d)→ (A′, d′) can be

thought of as a homogeneous homomorphism of graded R-modules such that ϕd = d′ϕ.

Homotopy Equivalence

Let ϕ and ψ be chain maps of chain complexes (A, d) and (A′, d′). We say ϕ is homotopic

to ψ if there is a graded homomorphism h : A→ A′ of degree 1 such that ϕ−ψ = d′h+hd.

Proposition 2.17. Let ϕ and ψ be chain maps of chain complexes (A, d) and (A′, d′). Then

ϕ and ψ induce the same map on homology.

Proof. The proof is straightforward and can be found in [5].
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EXACT SEQUENCES OF CHAIN COMPLEXES

Let (A, d), (A′, d′), and (A′′, d′′) be chain complexes and let ϕ : (A′, d′) → (A, d) and

ψ : (A, d)→ (A′′, d′′) be chain maps. Then we say that

0 A′ A A′′ 0
ϕ

is a short exact sequence of chain complexes if the following diagram is commutative with

exact rows:

...
...

...

0 A′i+1 Ai+1 A′′i+1 0

0 A′i Ai A′′i 0

0 A′i−1 Ai−1 A′′i−1 0

...
...

...

d′i+2 di+2 d′′i+2

ϕi+1

d′i+1

ψi+1

di+1 d′′i+1

ϕi

d′i

ψi

di d′′i

ϕi−1

d′i−1

ψi−1

di−1 d′′i−1

Given such a short exact sequence, we get induced maps ϕi : Hi(A
′) → Hi(A) and

ψi : Hi(A) → Hi(A
′′), and connecting homomorphisms γi : Hi(A

′′) → Hi−1(A′) which

give rise to a long exact sequence in homology:

· · · Hi+1(A′′)

Hi(A
′) Hi(A) Hi(A

′′)

Hi−1(A′) Hi−1(A) · · ·

γi+1

ϕi ψi

γi

ϕi−1 ψi−1
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DIFFERENTIAL GRADED ALGEBRAS

A differential graded R-algebra is a chain complex (A, d) such that A is a graded R-

algebra and such that the differential d satisfies the Leibniz law with respect to this algebra

structure:

d(ab) = d(a)b+ (−1)deg(a)ad(b). (2.3)

for all a, b ∈ A. We say that the differential graded R-algebra is commutative if

ab = (−1)deg(a) deg(b)ba

Homomorphisms of Differential Graded R-Algebras

Let (A, d) and (A′, d′) be differential graded R-algebras. We say ϕ : (A, d) → (A′, d′)

is homomorphism of differential graded R-algebras if ϕ is both a chain map and an

R-algebra homomorphism.

Differential Graded A-Modules

Let (A, d) be a differential graded R-algebra. A differential graded A-module (M,d) is a

chain complex (M,d) such that M is an A-module and such that the differential d satisfies

the Leibniz law with respect to the algebra structure in A:

d(am) = d(a)m+ (−1)deg(a)ad(m). (2.4)

for all a ∈ A and m ∈M .

Obtaining a Differential Graded A-Module from a Chain Complex

Let (A, dA) be a differential graded R-algebra and let (B, dB) be a chain complex. Then

A⊗RB is an A-module and a gradedR-module whose homogeneous component in degree
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k is

(A⊗R B)k :=
⊕
i+j=k

Ai ⊗R Bj.

We define a differential d on A⊗R B by first definining it on the elementary tensors as

d(a⊗ b) := dA(a)⊗ b+ (−1)deg(a)a⊗ dB(b),

for all a ∈ A and b ∈ B, and then extending it R-linearly everywhere else.

A straightforward calculation shows that d2 = 0 and that the differential satisfies Leib-

niz law (2.4). Moreover, if B is a differential graded R-algebra, then A⊗R B can realized

as a differential graded A-algebra and a differential graded B-algebra. Multiplication in

A⊗R B is defined by

(a⊗ b)(a′ ⊗ b′) = (−1)deg(a′)deg(b)aa′ ⊗ bb′.

for all a, a′ ∈ A and b, b′ ∈ B.

Remark 2.18. In particular, if M is an R-module endowed with the trivial grading, then

(A ⊗R M,d) is a differential graded A-module where the homogeneous componenet of

degree k in A ⊗R M is (A ⊗R M)k := Ak ⊗R M , and d acts on elementary tensors as

d(a⊗m) = d(a)⊗m.

EXTERIOR ALGEBRAS AND KOSZUL COMPLEXES

Exterior Algebras

Let M an R-module and let k ≥ 2. The kth exterior power of M , denoted Λk(M), is the

R-module M⊗k/Jk where Jk is the submodule of M⊗k spanned by all m1⊗ · · ·⊗mk with

mi = mj for i 6= j. For any m1, . . . ,mk ∈ M , the coset of m1 ⊗ · · · ⊗mk in Λk(M) is

denotedm1∧· · ·∧mk. For completeness, we set Λ0(M) = R and Λ1(M) = M . A general

element in Λk(M) will be denoted as ω or η.
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Since M⊗k is spanned by tensors m1 ⊗ · · · ⊗ mk, the quotient module M⊗k/Jk =

Λk(M) is spanned by their images m1 ∧ · · · ∧ mk. That is, any ω ∈ Λk(M) is a finite

R-linear combination

ω =
∑

ri1,...,ikmi1 ∧ · · · ∧mik ,

where there coefficients ri1,...,ik are in R and the mi’s are in M . We call m1 ∧ · · · ∧mk an

elementary wedge product. We define the exterior algebra of M to be

Λ(M) :=
⊕
k≥0

Λk(M),

where the multiplication rule given by the wedge product. The exterior algebra of M is a

graded R-algebra, where the degree k homogeneous component is Λk(M). If R does not

have characteristic 2, then the exterior algebra of M is skew commutative. This means

that if ω1 and ω2 are homogeneous elements, then

ω1 ∧ ω2 = (−1)deg(ω1) deg(ω2)ω2 ∧ ω1.

The construction of Λ(M) is functioral in M . This means that if N is another R-

module and ϕ : M → N is an R-module homomorphism. Then ϕ induces a graded

R-algebra homomorphism ∧ϕ : Λ(M) → Λ(N), where ∧ϕ takes the elementary wedge

product m1 ∧ · · · ∧mk in Λ(M) and maps it to the wedge product ϕ(m1) ∧ · · · ∧ ϕ(mk)

in Λ(N). We will write ∧kϕ to be the induced R-module homomorphism from Λk(M) to

Λk(N). In particular, if N is free of rank n, then Λn(N) ∼= R, and if ϕ : N → N is an

R-module homomorphism, then ∧nϕ is multiplication by the determinant of any matrix

representing ϕ.
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Koszul Complexes

Let R be a ring, M an R-module, and ϕ : M → R an R-module homomorphism. The

assignment

(m1, . . . ,mk) 7→
k∑
i=1

(−1)i+1ϕ(mi)m1 ∧ · · · ∧ m̂i ∧ · · · ∧mk

defines an alternating n-linear map Mk → Λk−1(M). By the universal property of the kth

exterior power, there exists an R-linear map d(k)
ϕ : Λk(M)→ Λk−1(M) with

d(k)
ϕ (m1 ∧ · · · ∧mk) =

n∑
i=1

(−1)i+1ϕ(mi)m1 ∧ · · · ∧ m̂i ∧ · · · ∧mk

for allm1, . . . ,mk ∈ L. The collection of the maps d(k)
ϕ defines a gradedR-homomorphism

dϕ : Λ(M)→ Λ(M)

of degree −1. A straightforward calculation shows that dϕ gives Λ(M) the structure of

a differential graded R-algebra. This differential graded R-algebra is called the Koszul

complex of ϕ and is denoted K•(ϕ). The dual Koszul complex of ϕ, denoted K•(ϕ), is

the chain complex over R whose underlying graded R-module is HomR(K•(ϕ), R) and

whose differential is d?, where d? is obtained by applying the functor HomR(−, R) to d.

Example 2.19. Suppose R has characteristic 2. Let ϕ : S1 :=
⊕n

λ=1Rxλ → R be the

unique R-linear map such that ϕ(xλ) = rλ ∈ R for all λ = 1, . . . , n. Then Λ(S1) is

isomorphic to S/〈x2
1, . . . , x

2
n〉 as graded R-algebras. Using this isomorphism, we give

S/〈x2
1, . . . , x

2
n〉 the structure of a differential graded R-algebra by carrying over the dif-

ferential dϕ for Λ(S1) to the differential d for S/〈x2
1, . . . , x

2
n〉, where d =

∑n
λ=1 rλ∂xλ . We

denote this Koszul complex as K(r1, . . . , rn).

2.4 SIMPLICIAL COMPLEXES

A simplicial complex ∆ on the set {x1, . . . , xn} is a collection of subsets of {x1, . . . , xn}

such that
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1. The simplicial complex ∆ contains all singletons: {xλ} ∈ ∆ for all λ = 1, . . . , n.

2. The simplicial complex ∆ is closed under containment: if σ ∈ ∆ and τ ⊂ σ, then

τ ∈ ∆.

An element of a simplicial complex is called a face or simplex, and a simplex of ∆ not

properly contained in another simplex of ∆ is called a facet. A simplex σ ∈ ∆ of cardinal-

ity i + 1 is called an i-dimensional face or an i-face of ∆. The empty set ∅, is the unique

face of dimension −1, as long as ∆ is not the void complex {} consisting of no subsets of

{1, . . . , n}. The dimension of ∆, denoted dim(∆), is defined to be the maximum of the

dimensions of its faces (or −∞ if ∆ = {}).

Example 2.20. The simplicial complex ∆ on {x1, x2, x3, x4, x5} consisting of all subsets

of {x1, x2, x3}, {x2, x4}, {x3, x4}, and {x4} is pictured below

x1

x3

x2

x4

x5

SIMPLICIAL HOMOLOGY

Let ∆ be a simplicial complex on {x1, . . . , xn} and let K be a field of characteristic 2. For

i ∈ Z, let

Si(∆) := SpanK (σ ∈ ∆ | dim(σ) = i) and S(∆) :=
⊕
i∈Z

Si(∆).

Then S(∆) is a graded K-module. Let ∂ : S(∆) → S(∆) be the unique graded endomor-

phism of degree −1 such that

∂(σ) =
∑
λ∈σ

σ\{λ}.
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for all σ ∈ ∆. By a direct calculation, we have ∂2 = 0, and so (S(∆), ∂) forms a K-

complex; it is called the reduced chain complex of ∆ over K. The ith homology of

(S(∆), ∂) is called the ith reduced homology of ∆ over K, and is denoted H̃i(∆, K).

Example 2.21. For ∆ as in Example (2.20), we have

S2(∆) = {{x1, x2, x3}}

S1(∆) = {{x1, x2}, {x1, x3}, {x2, x3}, {x2, x4}, {x3, x4}}

S0(∆) = {{x1}, {x2}, {x3}, {x4}, {x5}}

S−1(∆) = {∅}

Choosing bases for the Si(∆) as suggested by the ordering of the faces listed above, the

chain complex for ∆ becomes

0 K K5 K5 K 0



1

1

1

0

0





1 1 0 0 0

1 0 1 1 0

0 1 1 0 1

0 0 0 1 1

0 0 0 0 0

 (
1 1 1 1 1

)

For example, ∂2(e{1,2,3}) = e{2,3} + e{1,3} + e{1,2}, which we identify with the vector

(1, 1, 1, 0, 0). The mapping ∂1 has rank 3, so H̃0(∆;K) ∼= H̃1(∆;K) ∼= K and the other

homology groups are 0. Intuitively, H̃0(∆;K) ∼= K corresponds to the fact that ∆ consists

of two connected components and H̃1(∆;K) ∼= K corresponds to the fact that ∆ contains

a triangle which is not the boundary of an element of ∆, i.e. it contains a ”hole”.
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CHAPTER 3

HOMOLOGICAL CONSTRUCTIONS OVER A FIELD OF CHARACTERISTIC 2

Throughout this chapter, let K be a field of characteristic 2, S denote the polynomial ring

K[x1, . . . , xn], I be a homogeneous ideal in S, and let G = {g1, . . . , gr} be the reduced

Gröbner basis for I with respect to a fixed monomial ordering.

3.1 CONSTRUCTING K-COMPLEXES

Let d : S → S be the graded K-linear map of degree −1 given by d :=
∑n

k=1 ∂xk . Since

K has characteristic 2, we have d2 = 0. Indeed, it suffices to show that d2(m) = 0 for all

monomials m in S. So let m = xα1
1 · · ·xαnn be a monomial in S. Then

d2(m) =

(
n∑
k=1

∂xk

)2

(xα1
1 · · ·xαnn )

=

(
n∑
k=1

∂2
xk

)
(xα1

1 · · ·xαnn )

=
∞∑
k=1

αk(αk − 1)xαk−2
k

= 0.

Thus the differential d gives the graded K-module S the structure of a K-complex.

CONSTRUCTION OF (SI , d)

Let m = xα1
1 · · ·xαnn be a monomial in S. We denote

[m]o = {1 ≤ λ ≤ n | αλ is odd} and [m]e = {1 ≤ µ ≤ n | αµ is even}

Using this notation, we can express the differential in another way:

d(m) =
∑
λ∈[m]o

x−1
λ m.
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This makes it clear that the differential maps SI into SI . Indeed, if m is not in LT(I), then

every term x−1
λ m of d(m) is not in LT(I) either. Thus the differential d gives the graded

K-module SI the structure of a chain complex over K.

CONSTRUCTION OF (S/I, d)

Definition 3.1. We say I is d-stable if d maps I into I .

Suppose I is d-stable. Then the differential d : S → S induces a graded linear map of

degree −1, denoted d : S/I → S/I , where

d(f) = d(f) for all f ∈ S.

Indeed, the map d is well-defined since d is I-stable. Moreover, the differential d gives

S/I the structure of a differential graded K-algebra since it inherits all of the necessary

properties from d. For instance, to see that d satisfies Leibniz law, let f 1 and f 2 be in S/I .

Then

d(f1f2) = d(f1f2)

= d(f1)f2 + f1d(f2)

= d(f1)f2 + f1d(f2)

= d(f1)f2 + f1d(f2).

Thus if I is d-stable, then the differential d gives the graded K-algebra S/I the structure of

a differential graded K-algebra.

CONSTRUCTION OF (I, d)

Our final construction involves the graded K-module I . Let d : I → I be the graded K-

linear map of degree −1 given by

d(f) := π(d(f)) = d(f) + d(f)G



28

for all f ∈ I . Then d2 = 0. Indeed, for all f ∈ I , we have

d(d(f)) = d(d(f) + d(f)G)

= d(d(f) + d(f)G) + d(d(f) + d(f)G)G

= d(d(f)G) + d(d(f)G)G

= d(d(f)G) + d(d(f)G)

= 0,

where d(d(f)G)G = d(d(f)G) since every term in d(d(f)G) is not in I . Thus the differential

d gives the graded K-module I the structure of a chain complex over K.

3.2 DIFFERENTIAL GRADED K-ALGEBRAS

Since d is defined in terms of partial derivatives, it is clear that d satisfies Leibniz law.

Thus (S, d) is more than just a chain complex over K; it is a differential graded K-algebra.

Since SI is a graded K-algebra, it is natural wonder if (SI , d) is also a differential graded

K-algebra. A quick counterexample shows that this is not necessarily the case:

Example 3.2. Consider S = K[x] and I = 〈x5〉. Then

d(x · x4) = d((x5)G)

= d(0)

= 0,

but

d(x) · x4 + x · d(x4) = 1 · x4 + x · 0

= (x4)G + 0G

= x4,

so d(x · x5) 6= d(x) · x4 + x · d(x4).
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Thus, in order for (SI , d) to be a differential graded K-algebra, we need a condition

on I to be satisfied. This is given in the following theorem.

Theorem 3.3. (SI , d) is a differential graded K-algebra if and only if d(g) = 0 for all

g ∈ G.

Proof. Assume that d(g) = 0 for all g ∈ G. We first prove that d(fG) = d(f)G for all

f ∈ S. Let f ∈ S. From the division algorithm, we have f = g1q1 + · · · + grqr + fG for

some q1, . . . , qr ∈ S. Thus

d(f) = d(g1q1 + · · ·+ grqr + fG)

= d(g1q1) + · · ·+ d(grqr) + d(fG)

= g1d(q1) + · · ·+ grd(qr) + d(fG).

Since g1d(h1) + · · · + grd(hr) ∈ I and no term of d(fG) is divisible by any element of

LT(I), it follows from uniqueness of normal forms that d(fG) = d(f)G.

Now we show that this implies that (SI , d) is a differential graded K-algebra. Let

f1, f2 ∈ SI . Then

d(f1 · f2) = d((f1f2)G)

= (d(f1f2))G

= (d(f1)f2 + f1d(f2))G

= (d(f1)f2)G + (f1d(f2))G

= d(f1) · f2 + f1 · d(f2).

Therefore (SI , d) is a differential graded K-algebra.

Now we prove the converse. Assume (SI , d) is a differential graded K-algebra. Let

g ∈ G and let m be the lead term of g. We may assume g is not a constant (otherwise we’d

clearly have d(g) = 0). Thus, there exists some xλ such that xλ divides m. Then on the
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one hand, we have

d(xλ · x−1
λ m) = d(mG)

= d(g +m)

= d(g) + d(m),

since mG = g +m. On the other hand, we have

d(xλ) · x−1
λ m+ xλ · d(x−1

λ m) = (x−1
λ m)G + (xλd(x−1

λ m))G

= x−1
λ m+ (xλd(x−1

λ m))G

= x−1
λ m+ (xλ(x

−2
λ m+ x−1

λ d(m)))G

= x−1
λ m+ (x−1

λ m+ d(m))G

= x−1
λ m+ (x−1

λ m)G + d(m)G

= x−1
λ m+ x−1

λ m+ d(m)G

= d(m),

since (x−1
λ m)G = x−1

λ m and d(m)G = d(m) (every term of d(m) does not lie in 〈LT(G)〉).

Since (SI , d) is a differential graded K-algebra, we must have d(g) = 0. This establishes

this theorem.

Remark 3.4. We should note that the identity

xλd(x−1
λ m) = xλ(x

−2
λ m+ x−1

λ d(m)) = x−1
λ m+ d(m)

follows since d satisfies Leibniz law not just in S, but also in S[x−1
1 , . . . , x−1

n ]. Again, this

is because d is defined in terms of partial derivatives.

Example 3.5. Going back to Example (2.15), where S = K[x, y], I = 〈xy2+y3, x3+x2y〉,

and G = {xy2 + y3, x3 + x2y}. We have d(xy2 + y3) = d(x3 + x2y) = 0. Therefore

Theorem (3.3) implies (SI , d) is a differential graded K-algebra.
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Now we want to show that (SI , d) is a differential graded K-algebra if and only if

(S/I, d) is a differential graded K-algebra, and moreover, they are isomorphic to each

other. We start with the following lemma.

Lemma 3.2.1. For all g ∈ G = {g1, . . . , gr}, we have d(g) = d(g)G.

Proof. We prove this in the case g = g1. The other cases can be proved using a similar

argument. If d(g1) = 0, then clearly we have d(g1) = d(g1)G, so assume d(g1) 6= 0. Since

G is a Gröbner basis, d(g1) = d(g1)G if and only if no term of d(g1) belongs to 〈LT(G)〉.

Every term in d(g1) has the form x−1
λ m where m is some term of g. This term cannot

belong to 〈LT(G)〉, since if x−1
λ m ∈ 〈LT(G)〉, then m ∈ 〈LT(g2), . . . ,LT(gr)〉, and this

contradicts the fact that G is a reduced Gröbner basis.

Lemma 3.2.2. I is d-stable if and only if d(g) ∈ I for all g ∈ G.

Proof. One direction is trivial, so we prove the other direction. Suppose d(g) ∈ I for

all g ∈ G and let f ∈ I . Since G generates I , we can write f =
∑r

λ=1 qλgλ for some

q1, . . . , qr ∈ S. Thus, by Leibniz law, we have

d(f) = d

(
r∑

λ=1

qλgλ

)

=
r∑

λ=1

d(qλgλ)

=
r∑

λ=1

(d(qλ)gλ + qλd(gλ)) ∈ I.

Thus, I is d-stable.

Remark 3.6. The same proof shows that if F is a generating set of I such that d(f) ∈ I

for all f ∈ F , then I is d-stable.

Combining Lemma (3.2.1) and Proposition (3.2.2), we find that that d(g) = 0 for all

g ∈ G if and only if d(g) ∈ I for all g ∈ G if and only if I is d-stable. Combining this with



32

Theorem (3.3), we find that (SI , d) is a differential gradedK-algebra if and only if (S/I, d)

is a differential graded K-algebra. Now we will show that they are in fact isomorphic to

each other.

Theorem 3.7. Suppose I is d-stable. Then (SI , d) is isomorphic to (S/I, d) as differential

graded K-algebras.

Proof. Recall that S/I is isomorphic to SI as gradedK-algebras, where the isomorphism is

given by mapping f ∈ S/I to fG ∈ SI . It remains to show that this isomorphism respects

the differential graded algebra structure. In particular, we need to show that d(fG) = d(f)G

for all f ∈ S. This was already proven in Theorem (3.3).

MORE DIFFERENTIAL GRADED K-ALGEBRAS

Proposition 3.8. Suppose I is d-stable and let g be a homogeneous polynomial such that

d(g) = 0. Then (S〈I,g〉, d) and (SI:g, d) are differential graded K-algebras.

Proof. We just need to show that 〈I, g〉 and I : g are both d-stable. Since d(g) = 0, it

follows that 〈I, g〉 is d-stable. To prove that I : g is d-stable, let f ∈ I : g. Then since

fg ∈ I , d(g) = 0, and I is d-stable, it follows that

d(f)g = d(f)g + fd(g) = d(fg) ∈ I

Therefore d(f) ∈ I : g, which implies that I : g is d-stable.

Example 3.9. Consider S = K[x, y, z], g = x2y + x2z, and I = 〈f1, f2, f3〉 where

f1 = xy + xz + yz

f2 = x4y + x5

f3 = y3 + y2z
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Then d(f1) = d(f2) = d(f3) = 0 ∈ I implies (SI , d) is a differential graded K-algebra.

The reduced Gröbner basis for I with respect to graded lexicographical ordering is G =

{g1, g2, g3, g4, g5, g6}, where

g1 = xy + xz + yz

g2 = y3 + y2z

g3 = y2z2

g4 = xz4 + yz4

g5 = x5 + x4z + x3z2 + x2z3

g6 = x4z2.

Since d(g) = 0, we know that (S〈I,g〉, d) and (SI:g, d) are also differential graded K-

algebras. The reduced Gröbner basis for I : g with respect to graded lexicographical

ordering is G′′ = {g′′1 , g′′2 , g′′3}, where

g′′1 = y + z

g′′2 = z2

g′′3 = x3 + x2z

and the reduced Gröbner basis for 〈I, g〉 with respect to graded lexicographical ordering

is G′ = {g′1, g′2, g′3, g′4, g′5}, where

g′1 = xy + xz + yz

g′2 = y3 + y2z

g′3 = xz2 + yz2

g′4 = y2z2

g′5 = x5 + x4z + x3z2 + x2z3
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3.3 HOMOLOGY COMPUTATIONS

In this section we record some basic homology computations.

Proposition 3.10. Suppose I is d-stable. Then H(SI) = 0.

Proof. Let f be a homogeneous polynomial in SI such that d(f) = 0. Then for any

xλ ∈ (SI)1, we have

d(xλf) = d(xλ)f + xλd(f) = f.

Therefore Ker(d) = Im(d), hence H(SI) = 0.

Proposition 3.11. The differential d induces isomorphismsHi(I) ∼= Hi−1(SI) for all i > 0.

Proof. For all f ∈ S, we have

d(π(f)) = d(f + fG)

= d(f + fG) + d(f + fG)G

= d(f) + d(fG) + d(f)G + d(fG)G

= d(f) + d(fG) + d(f)G + d(fG)

= d(f) + d(f)G

= π(d(f)),

where d(fG)G = d(fG) because no term in d(fG) lies in LT(I). Therefore we have a short

exact sequence of chain complexes over K:

0 (SI , d) (S, d) (I, d) 0,π

which induces, for each i > 0, the following short exact sequences:

0 = Hi(S) Hi(I) Hi−1(SI) Hi−1(S) = 0.d

where d is obtained from the connecting map. In more detail, d maps the element [f ] ∈

Hi(I) to the element [d(f)] ∈ Hi−1(SI).
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Decomposing Hi(SI)

Let g be a homogeneous polynomial of degree j and let G′ be the reduced Gröbner basis

for 〈I, g〉 with respect to our fixed monomial ordering. In Commutative Algebra, we learn

about the following short exact sequence of graded S-modules

0 (S/(I : g))(−j) S/I S/〈I ,g〉 0.

f fg

g

We want to use this short exact sequence to our advantage. First, using the isomorphisms

SI:g ∼= S/(I : g), SI ∼= S/I , and S〈I,g〉 ∼= S/〈I, g〉, we get, for each i, a short exact

sequence of K-vector spaces

0 (SI:g)j−i (SI)i (S〈I ,g〉)i 0,

f (fg)G

f fG
′

·g −G′

or in other words, a short exact sequence of graded K-vector spaces

0 (SI:g)(−j) SI S〈I ,g〉 0.
·g −G′

We want to know under what conditions this becomes a short exact sequence of chain

complexes over K, that is, when does the following diagram commute?

...
...

...

0 (SI:g)j−i (SI)i (S〈I ,g〉)i 0

0 (SI:g)j−i−1 (SI)i−1 (S〈I ,g〉)i−1 0

...
...

...

d

·g

d

−G′

d

·g −G′
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The conditions which need to be satisfied are the following:

(gd(m))G = d((gm)G) for all monomials m which are not in LT(I : g) (3.1)

d(m)G
′
= d(mG′) for all monomials m which are not in LT(I) (3.2)

For the moment, let’s assume that these conditions are satisfied so that we have a short

exact sequence of chain complexes. Then by the usual argument, the short exact sequence

of chain complexes gives rise to a long exact sequence in homology:

· · · Hi+1(S〈I ,g〉)

Hi−j(SI:g) Hi(SI) Hi(S〈I ,g〉)

Hi−j−1(SI:g) Hi−1(SI) · · ·

λ

·g −G′

λ

·g −G′

It is easy to see that the connecting maps λ all induce the zero map. Thus, we get for each

i, the short exact sequence of K-vector spaces:

0 Hi−j(SI:g) Hi(SI) Hi(S〈I ,g〉) 0,
·g −G′

and since the inclusion map S〈I,g〉 ↪→ SI splits the map −G′ , we obtain the following

isomorphism

Hi−j(SI:g)⊕Hi(S〈I,g〉) ∼= Hi(SI) (3.3)

where we map the representative (f1, f2) in Hi−j(SI:g) ⊕ Hi(S〈I,g〉) to the representative

gf1 + f2 in Hi(SI). We summarize our findings in the form of a theorem.

Theorem 3.12. Let I be a homogeneous ideal and let g be a homogeneous polynomial

of degree j. Let G be the reduced Gröbner basis for I and G′ be the reduced Gröbner

basis for 〈I, g〉 with respect to our fixed monomial ordering. Suppose that the following

conditions are satisfied:
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1. (gd(m))G = d((gm)G) for all monomials m which are not in LT(I : g).

2. d(m)G
′
= d(mG′) for all monomials m which are not in LT(I).

Then we have an isomorphism

Hi−j(SI:g)⊕Hi(S〈I,g〉) ∼= Hi(SI)

given by mapping the representative (f1, f2) inHi−j(SI:g)⊕Hi(S〈I,g〉) to the representative

gf1 + f2 in Hi(SI).

Decomposing Hi(SI) in a Special Case

We will now discuss a special case of when the conditions in Theorem (3.12) are satisfied.

Consider the case where I is a monomial ideal and g is a monomial of degree j which is

not in I . Then condition (3.1) is satisfied since if m is not in I : g, then gm is not in I , and

so (gm)G = gm which implies (gd(m))G = gd(m).

For condition (3.2) first assume that m is not in 〈I, g〉. Then then mG′ = m, which

implies d(m)G
′

= d(m) = d(mG′). Thus condition (3.2) is satisfied in this case. Now

assume thatm = g. ThenmG′ = 0, which implies d(mG′) = 0. Thus, we must have d(g) =

0 in order for condition (3.2) to be satisfied in this case. So assume d(g) = 0 and consider

the final case where m = m1g. Since d(g) = 0, we obtain d(m)G
′

= (d(m1)g)G
′

= 0, and

thus (3.2) is satisfied in this case as well.

In the next example, we show how we can apply Theorem (3.12) recursively. In what

follows, we frequently use the notation I, g to mean I + 〈g〉 and I : g to mean I : 〈g〉. For

example, I, g1 : g2 = 〈I, g1〉 : 〈g2〉, and I : g1, g2 = 〈(I : g1), 〈g2〉〉, and so on.

Example 3.13. Consider S = K[x, y, z] and I = 〈x3y, yz3〉. Then d(x2) = d(z2) = 0,
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and so

Hi(SI) = x2Hi−2(SI:x2)⊕Hi(SI,x2)

= x2(z2Hi−4(SI:x2z2)⊕Hi−2(SI:x2,z2))⊕ z2Hi−2(SI,x2:z2)⊕Hi(SI,x2,z2)

= x2z2Hi−4(SI:x2z2)⊕ x2Hi−2(SI:x2,z2)⊕ z2Hi−2(SI,x2:z2)⊕Hi(SI,x2,z2)

We calculate

I : x2 : z2 = 〈xy, yz〉

I, x2 : z2 = 〈x2, yz〉

I : x2, z2 = 〈xy, z2〉

I, x2, z2 = 〈x2, z2〉

The only part which has nontrivial homology is SI:x2:z2 . Thus, H5(SI) = [d(x3yz2)]K and

Hi(SI) = 0 for all i 6= 5.

3.4 TOPOLOGICAL INTERPRETATION OF H(SI)

In this section, we will give a topological interpretation of H(SI) in the case where I is a

squarefree monomial ideal. More specifically, we will show that H(SI) is isomorphic to

the simplicial homology of a corresponding simplicial complex.

REINTERPRETING SIMPLICIAL COMPLEXES

We want to reinterpret the theory simplicial complexes using the language of monomials.

There is a bijection between the set of subsets of {x1, . . . , xn} and the set of squarefree

monomials in the variables x1, . . . , xn. Indeed, if m is a squarefree monomial, then the

corresponding subset of {x1, . . . , xn} is supp(m) := {xλ | xλ divides m}. Moreover, if m

and m′ are squarefree monomials, then m divides m′ if and only if supp(m) ⊆ supp(m′).
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Example 3.14. Here’s how we think of squarefree monomials in x, y, z and how they sit on

their corresponding faces.

x

y

z

xy yz

xz

xyz

STANLEY-REISNER RINGS

Let ∆ be a simplicial complex on {x1, . . . , xn}. We denote by I∆ to be the ideal of nonfaces

of ∆, that is, I∆ is generated by the squarefree monomials m in S which are not in ∆. We

define the Stanley-Reisner ring K[∆] of the simplicial complex ∆ to be the K-algebra

K[∆] := S/I∆. We will also denote by I sq
∆ to mean I sq

∆ := I∆ + 〈x2
1, . . . , x

2
n〉.

Conversely, if I is a squarefree monomial ideal, then we denote by ∆I the simplicial

complex on {x1, . . . , xn} whose ideal of nonfaces is I . Thus, ∆I consists of all squarefree

monomials which do not belong to I .

Lemma 3.4.1. Suppose I is a monomial ideal and letM = {m1, . . . ,mr} be the unique

minimal basis of I . For each λ = 1, . . . , n, let kλ be a nonnegative even integer such that

xkλλ does not divide any monomial inM. Then

H(SI) ∼= H(S
I+〈xk1

1 ,...,xknn 〉
).

Proof. We prove by induction on λ = 1, . . . , n. The base case λ = 1 will follow if

H(S
I:x

k1
1

) ∼= 0, since

H(SI) ∼= H(S
I:x

k1
1

)⊕H(S〈I,xk1
1 〉

).

by Theorem (3.12). Since xk1
1 does not divide any monomial inM, a basis for I : xk1

1 is

given byM′ = {m′1, . . . ,m′r}, where if mµ = x
αµ1

1 x
αµ2

2 · · ·xαµnn , then m′µ = x
αµ2

2 · · ·xαµnn
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for all µ = 1, . . . , r. In particular, if f ∈ S
I:x

k1
1

represents a cycle in H(S
I:x

k1
1

), then

x1f ∈ SI:xk1
1

represents a boundary of f in H(S
I:x

k1
1

). Thus H(S
I:x

k1
1

) = 0, and our claim

is proved.

For the induction step, assume that

H(SI) ∼= H(S〈I,xk1
1 ,...,x

kλ
λ 〉

)

for some 1 ≤ λ < n. By the same argument as in the base case (with I + 〈xk1
1 , . . . , x

kλ
λ 〉

replaced with I), we have H(S
(I+〈xk1

1 ,...,x
kλ
λ 〉):x

kλ+1
λ+1

) ∼= 0. Thus

H(SI) ∼= H(S
I+〈xk1

1 ,...,x
kλ
λ 〉

)

∼= H(S
(I+〈xk1

1 ,...,x
kλ
λ 〉):x

kλ+1
λ+1

)⊕H(S
I+〈xk1

1 ,...,x
kλ
λ ,x

kλ+1
λ+1 〉

)

∼= H(S
I+〈xk1

1 ,...,x
kλ
λ ,x

kλ+1
λ+1 〉

).

This proves the induction step, and hence the lemma.

Theorem 3.15. Let ∆ be a simplicial complex on {x1, . . . , xn}. Then

Hi(SI∆) ∼= Hi(SIsq
∆

) ∼= H̃i−1(∆;K)

for all i ∈ Z.

Proof. The first isomorphism Hi(SI∆) ∼= Hi(SIsq
∆

) follows from Lemma (3.4.1). Indeed,

I∆ is a squarefree monomial ideal, and hence x2
λ does not divide any monomial in the

minimal monomial basis of I∆ for all λ = 1, . . . , n.

Now we will show that Hi(SIsq
∆

) ∼= H̃i−1(∆;K). The map ϕ : SIsq
∆
→ S(∆), given

by ϕ(m) = supp(m) for all monomials m ∈ SIsq
∆

, is a graded isomorphism of degree −1.

Moreover, it is easy to check that ϕd = ∂ϕ. Thus ϕ induces an isomorphism Hi(SIsq
∆

) ∼=

H̃i−1(∆;K).
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Corollary 3.16. Suppose I is a squarefree monomial ideal. Then

Hi(SI) ∼= H̃i−1(∆I ;K)
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CHAPTER 4

HOMOLOGICAL CONSTRUCTIONS OVER A RING OF CHARACTERISTIC 2

Throughout this chapter, letR be a ring of characteristic 2. The purpose of this chapter is to

generalize some of our results from chapter 3. In particular, we will determine the structure

of differential graded R-algebras which are finitely-generated and commutative. To avoid

repetition, all differential graded R-algebras mentioned in this section are assumed to be

finitely generated and commutative.

4.1 CONSTRUCTING DIFFERENTIAL GRADED R-ALGEBRAS

Theorem 4.1. Let Sw denote the weighted polynomial ring R[x1, . . . , xn](w1,...,wn). Define

the map

d :=
n∑
λ=1

fλ∂xλ ,

where fλ is a nonzero homogeneous polynomial in Sw of weighted degree wλ − 1 for all

λ = 1, . . . , n. Then

1. d is a graded endomorphism d : Sw → Sw of degree −1 which satisfies Leibniz law.

2. Moreover, let I ⊂ Sw be any d-stable homogeneous ideal such that d(fλ) ∈ I for

all λ = 1, . . . , n and such that I ⊂ 〈x1, . . . , xn〉. Then d induces a map d : Sw/I →

Sw/I , given by d(f) = d(f) for all f ∈ Sw/I , and (Sw/I, d) is a differential graded

R-algebra.

Proof. We first show that d is a graded endomorphism d : Sw → Sw of degree −1 which

satisfies Leibniz law:
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• R-linearity: We have

d(r1g1 + r2g2) =
n∑
λ=1

fλ∂xλ(r1g1 + r2g2)

=
n∑
λ=1

fλ(r1∂xλ(g1) + r2∂xλ(g2))

= r1

n∑
λ=1

fλ∂xλ(g1) + r2

n∑
λ=1

fλ∂xλ(g2))

= r1d(g1) + r2d(g2),

for all r1, r2 ∈ R and g1, g2 ∈ Sw.

• Leibniz law: We have

d(g1g2) =
n∑
λ=1

fλ∂xλ(g1g2)

=
n∑
λ=1

fλ(∂xλ(g1)g2 + g1∂xλ(g2))

=

(
n∑
λ=1

fλ∂xλ(g1)

)
g2 + g1

(
n∑
λ=1

fλ∂xλ(g2))

)

= d(g1)g2 + g1d(g2),

for all g1, g2 ∈ Sw.

• Graded of degree −1: By R-linearity, we only need to check this on monomials. Let

xα1
1 · · ·xαnn be a monomial of weighted degree i. A term in d(xα1

1 · · ·xαnn ) has the

form αλfλx
α1
1 · · ·x

αλ−1
λ · · ·xαnn where αλ ≡ 1 mod 2, and

degw
(
αλfλx

α1
1 · · ·x

αλ−1
λ · · · xαnn

)
= degw

(
fλx

α1
1 · · ·x

αλ−1
λ · · · xαnn

)
= degw (fλ) + degw

(
xα1

1 · · ·x
αλ−1
λ · · ·xαnn

)
= wλ − 1 + w1α1 + · · ·+ wλ(αλ − 1) + · · ·+ wnαn

= −1 + w1α1 + · · ·+ wλαλ + · · ·+ wnαn

= −1 + i.
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So every term in d(xα1
1 · · ·xαnn ) has weighted degree −1 + i. This implies that d is

graded of degree −1.

Now we will show that (Sw/I, d) is a differential graded R-algebra. Since I is d-

stable, the map d is well-defined. The map d inherits the properties of being a graded

endomorphism of degree −1 which satisfies Leibniz law from d, thus we just need to show

that d
2

= 0, or in other words, that d2(g) ∈ I for all g ∈ Sw. So let g ∈ Sw. Then

d2(g) = d

(
n∑
λ=1

fλ∂xλ(g)

)

=
n∑
λ=1

d(fλ∂xλ(g))

=
n∑
λ=1

d(fλ)∂xλ(g) + fλd(∂xλ(g))

=
n∑
λ=1

d(fλ)∂xλ(g) ∈ I,

where we used the fact that ∂2
xλ

= 0 and ∂xµ∂xλ = ∂xλ∂xµ to conclude that

n∑
λ=1

fλd(∂xλ(g)) =
n∑
λ=1

fλ

n∑
µ=1

fµ∂xµ(∂xλ(g))

= 0.

Remark 4.2.

1. We often denote this differential graded R-algebra as (Sw/I, f1, . . . fn) instead of

(Sw/I, d).

2. When we write “let (Sw/I, f1, . . . fn) be a differential graded R-algebra”, it is un-

derstood that the conditions in Theorem (4.1) are satisfied.
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Proposition 4.3. Let (Sw, d) be a differential graded R-algebra and let I be a homoge-

neous ideal in S. Then I is d-stable if and only if for some generating set {g1, . . . , gr} of I ,

we have d(gλ) ∈ I for all λ = 1, . . . , r.

Proof. One direction is trivial, so let’s prove the other direction. Let {g1, . . . , gr} be a gen-

erating set for I such that d(gλ) ∈ I for all λ = 1, . . . , r and let g ∈ I . Since {g1, . . . , gr}

generates I , we can write g =
∑r

λ=1 qλgλ for some q1, . . . , qr ∈ S. Thus, by Leibniz law,

we have

d(g) = d

(
r∑

λ=1

qλgλ

)

=
r∑

λ=1

d(qλgλ)

=
r∑

λ=1

(d(qλ)gλ + qλd(gλ)) ∈ I.

Thus, I is d-stable.

Proposition 4.4. Let (Sw/I, f1, . . . , fn) be a differential graded R-algebra and let g be a

homogeneous polynomial in S of degree j such that d(g) is in I . Then (Sw/〈I, g〉, f1, . . . , fn)

and (S/(I : g), f1, . . . , fn) are differential graded R-algebras.

Proof. First note that d(fλ) ∈ I implies d(fλ) ∈ 〈I, g〉 and d(fλ) ∈ I : g for all λ =

1, . . . , n. So we just need to show that 〈I, g〉 and I : g are d-stable. Since d(g) is in I ,

Proposition (4.3) implies that 〈I, g〉 is d-stable. To prove that I : g is d-stable, let f ∈ I : g.

Then since fg ∈ I and I is d-stable, it follows that d(fg) = d(f)g + fd(g) ∈ I , which

implies d(f)g ∈ I , since d(g) ∈ I . Therefore d(f) ∈ I : g, which implies that I : g is

d-stable.

4.2 CLASSIFYING DIFFERENTIAL GRADED R-ALGEBRAS

Theorem 4.5. Every differential graded R-algebra is isomorphic to one described in The-

orem (4.1).
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Proof. Let (A, dA) be a differential graded R-algebra with generators a1, . . . , an. Then for

each λ = 1, . . . n, we have aλ ∈ Awλ , where wλ ∈ Z≥0. Let Sw denote the weighted

polynomial ring R[x1, . . . , xn](w1,...,wn), and let ϕ : Sw → A be the unique morphism of

graded R-algebras such that ϕ(xλ) = aλ for all λ = 1, . . . , n. Then A is isomorphic to

Sw/Ker(ϕ) as graded R-algebras. Choose fλ ∈ Sw such that ϕ(fλ) = dA(aλ) and define

the map d : Sw → Sw by

d :=
n∑
λ=1

fλ∂xλ .

Then d is a graded endomorphism of degree −1 which satisfies Leibniz law, by Theo-

rem (4.1). We claim that Ker(ϕ) is d-stable and that d(fλ) ∈ Ker(ϕ) for all λ = 1, . . . , n.

We do this in two steps:

Step 1: We will show that ϕd = dAϕ. It suffices to show that for all monomials m,

we have ϕ(d(m)) = dA(ϕ(m)). We prove this by induction on deg(m). For the base case

deg(m) = 1, we have m = xλ for some λ ∈ {1, . . . , n}. Then

ϕ(d(xλ)) = ϕ(fλ)

= dA(aλ)

= dA(ϕ(xλ)).

Now suppose that ϕ(d(m)) = dA(ϕ(m)) for all monomials m in S of degree less than i,

where i > 1. Let xα1
1 · · ·xαnn be a monomial in S whose degree is i + 1. We may assume

that α1, αλ ≥ 1 for some λ ∈ {1, . . . , n}. Then using Leibniz law together with induction,
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we obtain

ϕ(d(xα1
1 x

α2
2 · · · xαnn )) = ϕ(d(xα1

1 )xα2
2 · · ·xαnn + xα1

1 d(xα2
2 · · ·xαnn ))

= ϕ(d(xα1
1 ))ϕ(xα2

2 · · ·xαnn ) + ϕ(xα1
1 )ϕ(d(xα2

2 · · ·xαnn ))

= ϕ(d(xα1
1 ))aα2

2 · · · aαnn + aα1
1 ϕ(d(xα2

2 · · ·xαnn ))

= dA(aα1
1 )aα2

2 · · · aαnn + aα1
1 dA(aα2

2 · · · aαnn )

= dA(aα1
1 a

α2
2 · · · aαnn )

= dA(ϕ(xα1
1 x

α2
2 · · ·xαnn )).

This establishes Step 1.

Step 2: We show that Ker(ϕ) is d-stable and that d(fλ) ∈ Ker(ϕ) for all λ = 1, . . . , n.

Let g ∈ Ker(ϕ). Then by Step 1, we have

ϕ(d(g)) = dA(ϕ(g))

= dA(0)

= 0.

Thus d(g) ∈ Ker(ϕ), which implies Ker(ϕ) is d-stable. Step 1 also implies

ϕ(d(fλ)) = dA(ϕ(fλ))

= dA(dA(aλ))

= 0,

for all λ = 1, . . . , n.

Now Theorem (4.1) implies that (Sw/Ker(ϕ), d) is a differential graded R-algebra.

Moreover, Step 1 implies ϕ : (Sw/Ker(ϕ), d)→ (A, dA) is an isomorphism of differential

graded R-algebras.
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DIFFERENTIAL GRADED R-ALGEBRAS OF THE FORM (S/I, r1, . . . , rn)

We now want to consider some special cases of Theorem (4.1). In particular, we want to

consider the case where the weighted vector is w = (1, . . . , 1). As usual, we will write S

to denote the polynomial ring R[x1, . . . , xn]. Let r1, . . . , rn be nonzero elements in R, and

define d : S → S by

d :=
n∑
λ=1

rλ∂xλ .

Since d(rλ) = 0 for all λ = 1, . . . , n, it follows from Theorem (4.1) that (S, r1, . . . , rn) is

a differential graded R-algebra. Moreover, if I is a d-stable ideal, then (S/I, r1, . . . , rn) is

a differential graded R-algebra.

Koszul Complex

Recall from Example (2.19) that the Koszul complex K(r1, . . . , rn) is a differential graded

R-algebra. Indeed,K(r1, . . . , rn) is isomorphic to the differential gradedR-algebra (S/I, r1, . . . , rn),

where I is generated by {x2
1, . . . , x

2
n}. Clearly I is d-stable since d(x2

λ) = 0 for all

λ = 1, . . . , n.

Example 4.6. Let R = F2[x, y]/〈xy〉 and let r1 = x and r2 = y. Then S = R[u, v] has a

differential graded R-algebra structure with the differential d given by

d := x∂u + y∂v.

Using graded lexicographical ordering on the monomials, we can explicitly write S as a

chain complex over R using matrices as the linear maps:

· · · R4 R3 R2 R 0



x y 0 0

0 0 0 0

0 0 x y




0 y 0

0 x 0

 (
x y

)
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Now let I be the homogeneous ideal in S generated by {x2, y2}. Then (S/I, r1, r2) is

isomorphic to the Koszul complex K(r1, r2). Using graded lexicographical ordering on the

monomials, we can explicitly write S/I as a chain complex over R using matrices as the

linear maps:

0 R R2 R 0


y

x

 (
x y

)

Blowup algebras

Proposition 4.7. Let Q be a finitely generated ideal in R with generating set {a1, . . . , an}.

Then the blowup algebra BQ(R) can be given the structure of differential graded R-

algebra.

Proof. Let ϕ : S → BQ(R) be the unique graded R-algebra homomorphism such that

ϕ(xλ) = taλ for all λ = 1, . . . , n and let d :=
∑n

λ=1 aλ∂λ. We claim that Ker(ϕ) is d-

stable. Indeed, let f ∈ Ker(ϕ). Since Ker(ϕ) is homogeneous, we may assume that f is

homogeneous. Write f and d(f) in terms of the monomial basis:

f =
r∑

λ=1

bλx
α1λ
1 · · ·xαnλn and d(f) =

∑
1≤µ≤n
1≤λ≤r

αµλaµbλx
α1λ
1 · · ·xαµλ−1

µ · · ·xαnλn .

where bλ ∈ R and αµλ ∈ Z≥0 for all λ = 1, . . . , r and µ = 1, . . . n. Observe that

0 = ϕ(f)

= ϕ

(
r∑

λ=1

bλx
α1λ
1 · · ·xαnλn

)

=
r∑

λ=1

bλϕ(x1)α1λ · · ·ϕ(xn)αnλ

= ti

(
r∑

λ=1

bλa
α1λ
1 · · · anαnλ

)
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implies that
∑r

λ=1 bλa
α1λ
1 · · · anαnλ = 0. Therefore

ϕ(d(f)) = ϕ

 ∑
1≤µ≤n
1≤λ≤r

αµλaµbλx
α1λ
1 · · ·xαµλ−1

µ · · ·xαnλn


=
∑

1≤µ≤n
1≤λ≤r

αµλaµbλϕ(x1)α1λ · · ·ϕ(xµ)αµλ−1 · · ·ϕ(xn)αnλ

= ti−1

 ∑
1≤µ≤n
1≤λ≤r

αµλaµbλa
α1λ
1 · · · aαµλ−1

µ · · · aαnλn


= ti−1

((
n∑
µ=1

αµλ

)(
r∑

λ=1

bλa
α1λ
1 · · · anαnλ

))

= 0.

Therefore (S/Ker(ϕ), a1, . . . , an) is a differential graded R-algebra where S/Ker(ϕ) ∼=

BQ(R).

Remark 4.8. It isn’t too difficult to show that this differential gradedR-algebra is (BQ(R), ∂t),

where ∂t is defined in the obvious way.

Example 4.9. Let R = F2[x, y]/〈y2 + x3 + x2〉, m be the maximal ideal in R generated

by {x, y}, S denote the polynomial ring R[u, v], and d = x∂u + y∂v. There is a surjective

R-algebra homomorphism from S to the blowup algebra at m given by

ϕ : S := F2[x, y, u, v]/〈y2 + x3 + x2〉 → Bm(R),

where ϕ is induced by ϕ(u) = tx and v 7→ ty. Using Singular, we find that the kernel

of ϕ is an ideal which is homogeneous in the variables u, v, and is generated by the set

{f1, f2, f3}, where

f1 = xv + yu

f2 = xu2 + u2 + v2

f3 = x2u+ xu+ yv



51

Note that d(f1) = d(f2) = d(f3) ∈ Ker(ϕ). It follows from Proposition (4.3) that Ker(ϕ)

is d-stable, which we already knew from Proposition (4.7).

4.3 HOMOLOGY COMPUTATIONS

Proposition 4.10. Let (S/I, r1, . . . , rn) be a differential graded R-algebra. Suppose that

there are t1, . . . , tn ∈ R such
n∑
λ=1

tλrλ = 1. (4.1)

Then H(S/I, r1, . . . , rn) = 0.

Proof. First note that
∑n

λ=1 tλxλ /∈ I , otherwise d (
∑n

λ=1 tλxλ) = 1 /∈ I would imply that

I is not d-stable. Let f be a homogeneous polynomial of degree i such d(f) ∈ I; so f

represents a cycle of (S/I, d). Then

d

((
n∑
λ=1

tλxλ

)
f

)
= d

(
n∑
λ=1

tλxλ

)
f +

(
n∑
λ=1

tλxλ

)
d(f)

=

(
n∑
λ=1

tλrλ

)
f +

(
n∑
λ=1

tλxλ

)
d(f)

= f +

(
n∑
λ=1

tλxλ

)
d(f)

≡ f mod I.

thus Ker(d) = Im(d), which proves the claim.

Remark 4.11. The condition (4.1) is equivalent to saying that {r1, . . . , rn} generates the

unit ideal.
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