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ABSTRACT

This thesis explores how arc length can be modeled and used to measure the risk involved

with a financial time series. Having arc length as a measure of volatility can help an in-

vestor in sorting which stocks are safer/riskier to invest in. A Gamma autoregressive model

of order one(GAR(1)) is proposed to model arc length series. Kernel regression based

bias correction is studied when model parameters are estimated using method of moment

procedure. As an application, a model-based clustering involving thirty different stocks is

presented using k-means++ and hierarchical clustering techniques.
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CHAPTER 1

INTRODUCTION

1.1 AN OVERVIEW OF FINANCIAL TIME SERIES ANALYSIS

In financial time series, a variety of models have been proposed to model time depen-

dent data. The autoregressive moving average model(ARMA), posed by Peter Wittle[18]

is one of the famous time series models. One main assumption in ARMA models is the

constant variance. In financial time series, this assumption becomes unrealistic. The first

big stride in measuring financial volatility would come from Fisher Black, Robert Mer-

ton, and Myron Scholes [1] in 1973 when they created the Black-Scholes Model. This

model is used for modeling price variation over time of different financial instruments. The

Black-Scholes model has a non-constant variance due to the geometric Brownian motion

used in the model. The second stride for nonlinear modeling for time series came from

Engle[6]. Engle won a Nobel prize in economics for his work developing the autoregres-

sive conditional heteroskedastic(ARCH) time series model. The biggest stride in capturing

non-constant variance came from Bollersley[3] who generalized the ARCH model and pro-

posed the generalized autoregressive conditional heteroskedastic (GARCH) model. While

the ARCH model assumes that the conditional variance depends only on past variance, the

GARCH model assumes that conditional variance depends on both past variance and past

observations.

As described by Wickramarachchi et al. [20]: Arc length is a natural measure of

the fluctuations in a data series and can be used to quantify volatility. They proved the

asymptotic distribution of sample arc length and used it to detect change points in terms of

volatility. Wickramarachchi and Tunno [19], discusses how sample arc length can be used

to classify financial time series into highly volatile and less volatile series. This method is

a feature-based clustering technique. In this thesis, we try to model the arc length series
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of a financial time series and use a model-based technique to cluster them according to

volatility(risk).

1.2 PRICES VS. LOG-RETURNS

It is a common practice that log returns of a financial time series is taken into consideration

rather than raw prices. Let Pt be the raw prices of a discrete financial time series and is

observed at equally spaced out times t. Mikosch and Stărică [16] have shown the usefulness

of a log-transformation in the financial time series process. This log-transformation, called

Log-Returns is mathematically defined as

xt = logPt − logPt−1 (1.1)

where t = 2,3, · · · . Figure 1.1 shows time series plot of the Coca-Cola Company(KO) from

December 2005 to March 2007, just before the recession hit. The plot on the left is the

raw prices for KO and the plot on the right is the log-returns for KO. The log-return plot

exposes that the Coca-Cola Company was most volatile around October 2006 and shows

the non-constant volatility over time.
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Figure 1.1: Time series plot for raw prices for KO(left) and time series plot of log-returns

for KO(right)

Mikosch and Stărică [16] state the following three properties of log-returns of financial

time series data that can not be observed in raw prices:

1. The distribution of log-returns is not normal, but rather with a high peak at zero and

heavy-tailed. This comes from most days having little change, i.e. a “flat” day.

2. There is dependence in the tails of the distribution. These tails represent major

changes in returns, which do not happen often, but tend to trend together.

3. The sample auto-covariance function(ACF) in the log return process is negligible at

all lags, expect possibly the first lag.

To help understand some of the properties visually, lets consider the first property. Figure

1.2 is the empirical density of the log-return daily closing prices for the Coca-Cola Com-

pany. As one can see, this density has a very high peak with heavy tails. This follows what

was stated in property one.
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Figure 1.2: Kernel density plot of log-return daily closing prices of KO

Figure 1.3: ACF graph for log returns prices for KO(left) and ACF graph for raw prices for

KO(right)

The sample ACF of log-return prices for KO in figure 1.3 shows that all lags are

negligible expect for the first lag. This supports the third claim of log-returns of financial

time series data stated by Mikosch and Stărică [16].
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1.3 ARC LENGTH

As described by Wickramarchchi et al. [20]: arc length is a natural measure of the fluctu-

ations in a data series and can be used to quantify volatility. Also, Wickramarchchi et al,

[20] proved that the difference between two sample arc lengths has an asymptotic normal

distribution, see Corollary 1 from [20] for the detailed proof. The sample arc length is

defined as follows: Let Pt be the raw prices observed at t = 2,3,· · · ,n. Then the sample arc

length at lag 1 is defined as:

xt =
n

∑
t=2

√

1+(logPt − logPt−1)2 (1.2)

In this study, we focus on the series of arc length pieces of the log transformed series,
√

1+(logPt − logPt−1)2. Figure 1.4 shows the calculated arc length returns for the Coca-

Cola Company and for Google. As one can see by looking at the y-scale, the arc length

values for KO(left) have a low variation through 2005 to 2007 compared to Google(right).

Figure 1.4: Time series plot of arc length for KO(left) and time series plot of arc length for

GOOGL(right)
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1.4 MOTIVATION

In investment decision making, clustering stocks based on risk they carry can be very useful

for reducing losses one may incur. The idea of clustering stocks based on arc length(as a

measure of risk) was first proposed by Wickramarachchi et al[19]. This paper grouped

financial time series into different clusters using sample arc length. Since this has been

done observing one attribute of a series, it is called feature-based clustering.

In this thesis, we propose to fit an appropriate model to series of arc length pieces

and apply a model based clustering technique to group time series based on the risk they

carry. The rationale behind the idea is that a model for arc length series represents how its

volatility changes over time. We expect it to represent a different aspect of time series in

terms of volatility than the sample arc length.

This is how the thesis will proceed. In chapter 2, the properties of autoregressive

processes are presented. In addition, method of moments estimation, kernel regression,

and clustering techniques will be presented. Chapter 3 will contain results based on the

methods and theory in chapter 2. Chapter 4 will contain the conclusion of this thesis as

well as potential future studies.
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CHAPTER 2

THEORY AND METHODS

2.1 INTRODUCTION

In this chapter, we will discuss the autoregression model for modeling arc length data.

Furthermore, we present the shifted gamma distribution and discuss method of moments

estimators of an AR(1) process that follows a shifted gamma distribution, proposed by

Fernandez and Salas [7]. This section also discusses concepts behind kernel regression that

is proposed as a bias correction technique for kurtosis estimator. Finally, a discussion on

different types of clustering techniques is presented.

2.2 AR MODELS

First, we define an AR process of order p, since the AR(1) model has been used to describe

the autocorrelation structure in arc length series. Note that white noise is defined as (WN).

Definition 2.1. (Brockwell and Davis[4])

The time series {Xt} is an AR(p) process if it is stationary and satisfies (for every t)

Xt = φ1Xt−1 + · · ·+φpXt−p +Zt (2.1)

where Zt ∼WN(0,σ2).

In this thesis, we will be focusing on the AR(1) process:

Definition 2.2. (Brockwell and Davis[4])

The time series {Xt} is an AR(1) process if it is stationary and satisfies (for every t)

Xt = φXt−1 +Zt (2.2)
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where Zt ∼WN(0,σ2) and |φ |< 1.

Note that |φ |< 1 guarantees that AR(1) process has an unique stationary solution.

2.3 THE SHIFTED GAMMA DISTRIBUTION

It is apparent that arc length sequences of a financial time series follows a heavily right

skewed distribution. It is also shifted to the right since one step ahead arc length is bounded

by 1 from the left. The empirical density plot for General Electric’s(GE) arc length, shown

below, confirms these attributes discussed above.

Figure 2.1: Arc length density plot for general electric company

As one can see, it is justifiable to suggest that the marginal distribution of arc length

sequences follow a shifted gamma distribution. A randomly generated shifted gamma dis-

tribution with parameters (α = 1, β = 1, λ = 1) was created in R using the rgamma3 function

[15] and the empirical density is shown below being compared to the Arc length Density

plot for GE.
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Figure 2.2: Arc length empirical density plot for general electric company(left) and a ran-

domly generated density plot for a shifted gamma distribution(right)

The narrow peak in empirical density of GE above on the left in Figure 2.2 suggests

an extremely large scale parameter.

Definition 2.3. (Fernandez and Salas [7])

Let X be a RV that follows a shifted gamma distribution, then the probability density func-

tion of X is given by:

f (x) =
αβ (x−λ )β−1e−α(x−λ )

Γ(β )
(2.3)

where α > 0 is the scale parameter, β > 0 is the shape parameter, and λ > 0 is the shift

parameter.

2.4 METHOD OF MOMENTS ESTIMATION

Method of moments and maximum likelihood estimation are two highly popular procedures

discussed in inferential statistics. Method of moments estimation has been used in many

studies [5] in the past due to its simplicity. In fact, Yule Walker estimation in time series

setting is a method of moment estimation. The following is the definition used in Casella
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and Berger Statistical Inference textbook on page 312 for method of moments estimation

[5]:

Let X1, · · · ,Xn be a sample from a population with pdf or pmf f (x|θ1, · · · ,θk). Method

of moments estimators are found by equating the first k sample moments to the correspond-

ing k population moments, and solving the resulting system of simultaneous equations.

More precisely, define

m1 =
1

n

n

∑
i=1

X1
i , µ́1 = EX1

m2 =
1

n

n

∑
i=1

X2
i , µ́2 = EX2

...

mk =
1

n

n

∑
i=1

Xk
i , µ́k = EXk

The population moment µ́ j will typically be a function of (θ1, · · · ,θk), say µ́ j(θ1, · · · ,θk).

The method of moments estimator (θ̄1, · · · , θ̄k) of (θ1, · · · ,θk) is obtained by solving the

following system of equations for (θ1, · · · ,θk) in terms of (m1, · · · ,mk):

m1 = µ́1(θ1, · · · ,θk)

m2 = µ́2(θ1, · · · ,θk)

...

mk = µ́k(θ1, · · · ,θk)

As one can see, method of moments estimation can be a very quick method for estimating

parameter of a given distribution. These estimators are often improved in order to reduce
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the bias in them. In this thesis, method of moments estimation will be implemented using

techniques given by Fernandez and Salas [7].

Fernandez and Salas [7] published a paper in 1990 that analyzed streamflow data over

time using an AR(1) process with gamma marginals. In this paper, a first-order gamma-

autoregressive(GAR(1)) model, as given below, was used:

Xt = φXt−1 + εt . (2.4)

where Xt has a shifted gamma distribution, φ is the auto-regression coefficient, and εt is an

independent variable.

The stationary linear GAR(1) process from Equation 2.4, has four parameters that

need to be estimated: α , β , λ , and φ . The following equations of mean(µ), variance(σ2),

skewness coefficient(γ), and lag one autocorrelation(φ ) are used to derive method of mo-

ment estimators [7] of desired parameters.

µ = λ +
β

α
, (2.5)

σ2 =
β

α2
, (2.6)

γ =
2

√

β
, (2.7)

φ = ρ1. (2.8)

Equations 2.5 through 2.8 can be estimated based on a sample X1,X2, · · · ,XN , using the

following well known relationships:

m =
1

N

N

∑
i=1

Xi, (2.9)
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s2 =
1

N −1

N

∑
i=1

(Xi −m)2, (2.10)

g1 =
N

(N −1)(N −2)s3

N

∑
i=1

(Xi −m)3, (2.11)

r1 =
1

(N −1)s2

N

∑
i=1

(Xi −m)(Xi+1 −m). (2.12)

where m is the estimator of µ , s2 is the estimator for σ2, g1 is the estimator for γ ,

r1 is the estimator of ρ1, and N is the sample size. Unfortunately, the estimator of σ2,γ ,

and φ are biased. But Fernandez and Salas [7] have suggested a bias correction for φ and

σ2. These bias corrections are presented in Equations 2.13 through 2.15. A bias correction

must be done before using m,s2,g1, and r1 into the Equations 2.5 through 2.8 to estimate

the GAR(1) model parameters. The following equations shows the bias corrected estimator

ρ̂1 and σ̂2:

ρ̂1 =
r1N +1

N −4
, (2.13)

where r1 was calculated from equation (2.12)

σ̂2 =
N −1

N −K
s2, (2.14)

where

K =
[N(1− ρ̂1)−2ρ̂1(1− ρ̂N

1 )]

[N(1− ρ̂1)2]
. (2.15)

Fernandez and Salas [7] has suggested a bias correction for γ̂ given in Equation 2.11. The

method Fernandez and Salas proposed does not work in our particular problem, and will

be discussed in the next section.
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2.5 FERNANDEZ AND SALAS SUGGESTED BIAS CORRECTION FOR γ̂

It has been noticed that the estimation of γ , given in Equation 2.11, yields a negative bias

[7]. In 1974, Wallis et al [17] used a simulation study and suggested a bias correction for

iid random variables of gamma, lognormal, and weibull distributions. Then, Bobee and

Robiataille [2] proposed a correction factor to adjust the estimator of γ . The corresponding

bias corrected sample skewness coefficient(g) is defined as:

g =

1

N

N

∑
i=1

(Xi −m)3

(
1

N

N

∑
i=1

(Xi −m)2)3/2

. (2.16)

As described in Fernandez and Salas [7], Kirby [10], showed that Equation 2.16 is bounded

by ±L given as:

L =
(N −2)√

N −1
. (2.17)

Similarly, ±
√

N equals the bounds of g1 given in Equation 2.11. Bobee and Robitatille(1975)

[2] gave a bias corrected estimator of γ for iid gamma variables with 0.25 ≤ γ ≤ 5 and

20 ≤ N ≤ 90, as follows:

γ̂0 =
Lg1[A+B(

L2

N
)g2

1]
√

N
, (2.18)

where A and B are defined as:

A = 1+6.51N−1 +20.2N−2, (2.19)

B = 1.48N−1 +6.77N−2. (2.20)

None of the stated Equations in 2.17 through 2.20 can be used in time series setting because

of the independence assumption. Fernandez and Salas conducted a Monte Carlo simulation
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study, discussed later in the chapter, for GAR(1) model in equation (2.4) with the goal of in-

troducing a bias correction for the skewness coefficient. The following are the summarized

results from the study:

1. The bias of the estimator for γ decreases as N increases.

2. As L increases, ρ1 increases as well.

3. If ρ1 = 0, then the estimated skewness values are very similar to Equation 2.18.

4. When the values are not linearly correlated, then equation 2.18 does not hold.

5. Results from the Monto Carlo Simulation indicate that the only factors that are af-

fecting the skewness are the auto-correlation coefficient and the sample size

From these notes above. Fernandez and Salas [7] proposed the following unbiased estima-

tor of γ:

γ̂ =
γ0

f
(2.21)

where f is an additional factor to be used when the values are auto-correlated when 0.25 ≤

γ ≤ 2 and 0 ≤ ρ1 ≤ 0.8. Using a non-linear least-squares equation scheme the coefficients

of the following regression equation were obtained:

f = (1−3.12p3.7
1 N−0.49) (2.22)

A few big takeways from this Monto Carlo simulation study and bias correction for γ are

the followings:

1. Bobee and Robiataille [2] proposed bias correction can not be applied for correlated

data.

2. Fernandez and Salas [7] bias correction is not appropriate in our application due to

higher kurtosis and large sample size.
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As a result, a different method needs to be proposed in order to estimate the skewness with

a large sample size. Before we discuss a different estimation technique, we will present

how the innovation sequence of GAR(1) can be generated. This idea has been used in

subsequent simulation studies.

Fernandez and Salas [7] gave two alternative approaches to calculate ε . The first

approach was found by Gaver and Lewis [8] and will be used for integer values of β of

equation 2.4 is given by:

ε =
λ (1−φ)

β
+

β

∑
j=1

η j. (2.23)

where η j = 0, with probability φ . η j = exp(α), with probability (1−φ) and exp(α) is an

exponentially distributed random variable with the mean equal to
1

α
. The second approach,

proposed by Lawrance [11], found a solution for non-integer β values. In this case, ε can

be obtained by the following:

ε = λ (1−φ)+η . (2.24)

where η = 0 if M = 0, or η =
M

∑
j=1

Yj(φ)
U j if M > 0,

where M is an integer random variable that follows a Poisson distribution with mean value

equal to −β ln(φ). The set U j is an iid random variable with an uniform distribution in

(0,1). Also, Yj is an iid random variable with an exponential distribution with mean (
1

α
).

The next section will introduce the non-parametric regression technique of kernel re-

gression.

2.6 KERNEL REGRESSION

Kernel regression is a non-parametric regression technique. This method is different from

linear and polynomial regression since it does not assume a particular form for the condi-

tional expectation.

Let E(Y |X = xi) = g(xi) and
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yi = g(xi)+ εi

where ε is the random error that has mean zero. Then the predicted y is given by ŷ = ĝ(x).

In simple linear regression the function g takes the form of g(X) = β0+β1X . But in kernel

regression, as stated above, we do not assume any particular form.

A reasonable approximation to the regression curve g(x0) will be the weighted mean

of response variable near a point x0. This local averaging procedure can be defined as

ĝ(x0) =
N

∑
i=1

wN,h,i(x0)yi (2.25)

The average will smooth the data. The weights depend on the value of x0 and on h, where

h is called the bandwidth or the smoothing parameter. As h gets smaller, (that is, the size of

the neighborhood gets smaller) ĝ(x0) becomes less biased but also has a greater variance.

In kernel regression, weights are constructed from a kernel function. A kernel func-

tion, K(z) satisfies following conditions.

1. K(z)> 0

2.
∫

K(z)dz = 1

3. K(z) = K(−z)

4.
∫

z2K(z)dz < ∞

Then weights are defines as

wN,h,i(x0) =
K
(

xi−x0

h

)

∑
N
i=i K

(

xi−x0

h

) .

The bandwidth h determines the degree of smoothing. As mentioned above, a large h in-

creases the width of the bins, increasing the smoothness of ĝ(x0). The famous Nadaraya−
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Watson kernel weighted average estimator is given by,

ĝ(x0) =
∑

N
i=i K

(

xi−x0

h

)

yi

∑
N
i=i K

(

xi−x0

h

) .

There are number of commonly used kernel functions.

1. Box kernel: K(z) = I|z|<1/2

2. Triangle kernel: K(z) =
(

1− |z|
c

)

I|z|< 1
c

3. Gaussian kernel: K(z) =
exp

(

−z2

2

)

√
2π

4. Epanechnikov kernel K(z) =
(

3
4

)(

1− z2
)

I|z|<1

It is essential to choose an optimal value for the bandwidth. We typically use cross

validation to pick the optimal h∗. That is, we find the value of h such that

minimize
h

CV (h) =
1

n

n

∑
i=1

(yi − ĝ−i,h(xi))
2

where ĝ−i,h(xi) is the estimated yi leaving out the point (xi,yi).

We use the Nadaraya−Watson estimator with the Gaussian kernel in our study.

2.7 CLUSTERING ALGORITHMS

There are many different techniques to cluster data in general. A few of these clustering

algorithms are explained in this section. To find more details about clustering algorithms,

refer to Liao [12].

2.7.1 K-MEANS AND K-MEANS++

K-means clustering algorithm is suitable when you have unlabeled data and you find groups

for your data. The number of groups will be represented by the variable K. Each centroid
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of a cluster is based on different features which will define the resulting group. Examining

the feature weight of each centriod can show someone what kind of group each cluster

represents. The pseudo-code for the K-Means algorithm was first created by MacQueen

[13] and goes as follow:

1. Choose the number of clusters k for your set S.

2. Randomly partition S into k clusters and determine their centers (averages) or directly

generate k random points as cluster centers.

3. Assign each member from S to the nearest cluster, using some pre-chosen norm.

4. Recompute the new cluster centers.

5. Repeat steps 3 and 4 until clusters stabilize.

The K-means++ clustering algorithm was proposed by Ostrovsky et al [14]. The K-means++

algorithm is an improvement from the k-means algorithm since the K-means++ clustering

algorithm is more carefully selecting the initial centers. This will create a more optimal

method of clustering. The following is the algorithm of K-means++ clustering:

1. Choose one center uniformly at random from the data points.

2. For each data point x, compute the distance D(x) between x and the nearest center

that has already been chosen.

3. Add one new data point at random as a new center, using a weighted probability

distribution where point x is chosen with probability proportional to (D(x))2.

4. Repeat Steps 2 and 3 until k distinct centers have been chosen.
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2.7.2 HIERARCHICAL CLUSTERING ALGORITHMS

Hierarchical Clustering Algorithms work by grouping data on a one-by-one basis of the

nearest distance measure between each data points. For this thesis, the Euclidean distance

is used as the measure of distance, the definition follows:

Definition 2.4. For two points #»x ∈ R
n and #»y ∈ R

n the euclidean distance (d) is:

d =

√

n

∑
i=1

(xi − yi)2 (2.26)

Given a set of N items to be clustered, and an N ∗N distance matrix, the basic process

of hierarchical clustering defined by Johnson [9] is as follows:

1. Start by assigning each item to a cluster, so that if you have N items, you now have

N clusters, each containing just one item. Let the distances between the clusters be

the same as the distances between the items they contain.

2. Find the closest pair of clusters and merge them into a single cluster, so that now you

one cluster less.

3. Compute distances between the new cluster and each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

Step 3 of this algorithm can be completed in different ways, which would be the single-

linkage, complete-linkage, and average-linkage.

2.7.3 CLUSTERING LINKAGE FUNCTIONS

We will briefly introduce each clustering linkage functions. First, the single-linkage al-

gorithm will be presented. For single-linkage clustering, which can also be referred as
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the minimum method, considers the shortest distances between any members of two clus-

ters while calculating the distance. Complete-linkage clustering, which is also called the

maximum method, considers the maximum distances between any members of two clusters

while calculating the distance. Average-linkage clustering considers the average distances

between any members of two clusters while calculating the distance. The following is the

single-linkage clustering algorithm that was introduced by Johnson [9]:

Let D = [d(i, j)] be an N ∗N proximity matrix. The clusterings are assigned sequence

numbers 0,1, · · · ,(n− 1) and L(k) is the level of the kth clustering. A cluster with se-

quence number m is denoted (m) and the proximity between clusters (r) and (s) is denoted

d[(r),(s)]. The single-linkage clustering algorithm follows these steps:

1. Begin with the disjoint clustering having level L(0) = 0 and sequence number m = 0.

2. Find the least dissimilar pair of clusters in the current clustering, say pair (r), (s),

according to d[(r),(s)] = min(d[(i),( j)]) where the minimum is over all pairs of

clusters in the current clustering.

3. Increment the sequence number : m = m + 1. Merge clusters (r) and (s) into a

single cluster to form the next clustering m. Set the level of this clustering to L(m) =

d[(r),(s)].

4. Update the proximity matrix, D, by deleting the rows and columns corresponding to

clusters (r) and (s) and adding a row and column corresponding to the newly formed

cluster. The proximity between the new cluster, denoted (r,s) and old cluster (k) is

defined: d[(k),(r,s)] = min(d[(k),(r)],d[(k),(s)]).

5. If all objects are in one cluster, stop. Else, go to step 2.

Average-linkage and complete-linkage have similar algorithms to the single-linkage, expect
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one would consider the maximum or average instead of the minimum for all the pairs in

each cluster.
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CHAPTER 3

RESULTS

Chapter 3 of the thesis presents the results of the research question. We first present the

kernel regression based bias correction technique for the skewness parameter and its mer-

its compared to techniques proposed in literature. Proceeding sub-sections discuss model

based clustering proposed on arc length series of stocks found in the Dow Jones Index

(DWJ).

3.1 BIAS CORRECTION OF KURTOSIS ESTIMATOR

For a fixed sample size, simulation can be used to bias correct using kernel regression. For

each value of λ ,α,β , and φ in the range of values given below, we simulate 100 samples of

size 753 each from different shifted gamma distribution that has a lag-one autocorrelation

structure. The fixed sample size has been chosen as 753 since it represents three years

worth of stock returns. We choose values of each parameter from a limited range so that it

works for our application. We were unable to cover the complete range, since the running

time of the simulation part was too long. These bounds are chosen based on a preliminary

study carried out on those thirty stocks without considering any bias correction. Following

this argument, we fix the value of λ at 1.000164, which is the average of sample means

of thirty arc length series from DWJ index. The value of λ can be easily picked from a

range of values in the future when the method is expanded. Other parameters are chosen as

follows:

10 ≤ α ≤ 108 with increments of 10n(where n has the values of 1 ≤ n ≤ 8 with in-

crements of 1), 0.004 ≤ β ≤ 1 with increments of 0.002, (this guarantees that the kurtosis

parameter falls between 2 and 31.63), and 0 ≤ φ ≤ 0.21 with increments of 0.01.

Based on these chosen values we generate 100 samples of size 753 from each of 21×

499× 8 = 83,832 shifted gamma distributions with AR(1) autocorrelation structure. For



30

each generated sample its sample kurtosis using Equation 2.11 and bias corrected sample

autocorrelation at lag-one are computed. Then, for each combination of parameter values,

100 values of ḡ1 and φ̂ are averaged. At the same time, the true kurtosis has been computed

using Equation 2.7. This simulation creates a database of γ, ĝ1, and ¯̂φ . These data are used

to fit a kernel regression model for true γ against ˆ̄g1 and ¯̂φ using Gaussian kernel. In

this process we use the Nadaraya-Watson estimator discussed in section 2.6. The optimal

bandwidth of the corresponding model is 0.000218 for ¯̂φ and 0.0788 for ˆ̄g1. Note that

we considered a burn period of the first five observations in the random generation. The

pseudocode corresponding to the data generation is provided in Algorithm 1 and Algorithm

2.
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input : n, φ , λ , α , β

output: ¯̂φ , ¯̂g1,γ

M = randomly generated poisson distribution with parameters of N and

λ =−β log(φ);

for k=1 to 100 do

x[0] = randomly generated shifted gamma distribution with parameters of

n = 1,α,β , and λ ;

ε = 0;

for i=1 to N do

Simulate Data

if M[i] != 0 then

Yj = randomly generated exponential distribution with parameters M[i]

and rate = α;

U j = randomly generated uniform distribution with parameters M[i], 0,

and 1;

η =
N

∑
i=1

Y
U j

j ;

end

else(η = 0);

ε[i] = λ (1−φ)+η ;

end

for i=2 to N do

x[i] = φx[i−1]+ ε[i];

end

x = x[6 : N];

φ̂ [k] = ac f (x) with lag 1;

φ̂ [k] =
(φ̂ [k])(n+1)

(n−4)
;

ĝ1 =
n

(n−1)(n−2)(var(x)3/2)
753

∑
k=1

(x− x̄)3

;

end

Algorithm 1: Psuedocode for Simulation Study
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Parameter Estimation

¯̂φ = mean(φ̂);

¯̂g1 = mean(ĝ1);

γ =
2

√

β
;

Algorithm 2: Psuedocode for Parameter Estimation

The fitted kernel regression model is presented in figure 3.1. Raw data are not shown

on the same plot since it becomes too messy. The fitted value of γ is taken as the new bias

corrected kurtosis estimate denoted by γ̂bc of each combination of ¯̂g1 and ¯̂φ .

Figure 3.1: Simulation study estimated values(left) of ¯̂φ , ¯̂g1, and γ , kernel regression of the

estimated values(right) of ¯̂φ , ¯̂g1, and γ̂bc)

We carry out a second kernel regression analysis to see how well this idea works. In

this study, we partition our 83,832 data values into a training data set, consisting of 99% of

the data, and a validation data set, consisting of 1% of the data.

The following is the algorithm that was implemented in R to validate the data:

1. Create a data frame that contains ¯̂φ , ¯̂g1, and γ as vectors.

2. Create the training data set where 99% of the data frame created in step 1 was chosen.

3. Create two vectors containing the training set and the validation set(1% of data).
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4. Run the kernel regression function and then observe the results.

Figure 3.2 provides the lattice plot and the kernel regression of the validation data set. Note

that the optimal bandwidth from the training data set is used for predictions.

Figure 3.2: Lattice plot of validation data(left) and bias corrected for the validation data

set(right)

By looking at two plots, we can see that having a pool of data and using a kernel

regression model for prediction can be used in practice.

We use the residual plots of the validation data set under the proposed method and

the method Fernandez and Salas [7] proposed to graphically study how well each method

performs. Note that, we assume that one blindly use the latter method, without considering

its limitations. Figure 3.3 presents residual plots under both methods. It is evident that the

bias correction proposed in literature tends to over predict the kurtosis parameter compared

to the method we propose in the study. But it is important to point out that none of the

methods are perfect.
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Figure 3.3: Residual plot for bias correction from literature(left) and residual plot for bias

correction using kernel regression(right)

Both plots have a fanning pattern from the smallest residuals to the maximum residu-

als. The following are a few key observations from Figure 3.3:

1. The range of the residuals clearly favors our proposes bias correction.

2. The bias correction generated by kernel regression has a more constant funnel com-

pared to the Fernenadez and Salas [7] proposed bias correction.

3. We tried different transformations since the plot shows an increasing variance. But

none of them worked well. There is some room for improvements.

From the notes above, it is clear that the kernel regression method works better compared

to the bias correction offered by the Fernandez and Salas [7].

Furthermore, we computed the mean sum of squares of errors (MSSE) under method

proposed by Fernandez and Salas [7] and kernel regression method and found out those to

be 512.54 and 5.09, respectively. As a results, we can clearly see that the MSSE under our

method is significantly smaller compared to the method we found in literature.
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3.2 AN APPLICATION

As mentioned before, we fit GAR(1) models for arc length series of thirty stocks in DWJ

index. We used method of moments estimation with kernel regression based bias correction

for kurtosis parameter when parameters are estimated. Simulated pool of data and the opti-

mal bandwidth obtained using kernel regression are used to bias correct kurtosis estimates.

Bias corrected parameter estimates of the thirty stocks are given in Figure 3.4:
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Stock α̂ β̂ φ̂ λ̂ γ̂bc

KO 2.32E7 0.0826 0.1050 1.00003 6.961

JNJ 2.65E7 0.1268 0.0537 1.00003 5.617

PG 6.74E6 0.0557 0.1669 1.00004 8.472

GE 1.86E7 0.1339 0.1141 1.00005 5.466

WMT 4.43E6 0.0747 0.0551 1.00006 7.318

UTX 8.75E1 0.0053 −0.0003 1.00029 27.43

IBM 2.39E7 0.7828 0.0908 1.00006 2.261

T 5.04E6 0.0811 0.1152 1.00007 7.021

DD 2.24E6 0.0543 0.0253 1.00007 8.584

DIS 4.58E6 0.1051 0.0739 1.00007 6.168

MSFT 5.69E4 0.0060 0.0111 1.00008 25.820

BP 5.96E6 0.0944 0.0170 1.00008 6.511

JPM 4.44E6 0.1553 0.1099 1.00008 5.075

C 2.32E6 0.1392 0.1 1.00008 5.361

MCD 6.75E6 0.1719 0.1656 1.00008 4.824

HON 9.83E6 0.1983 0.0364 1.00008 4.492

BA 2.13E7 0.6769 0.0968 1.00009 2.431

AXP 1.00E5 0.0120 0.0301 1.00010 18.257

HD 6.25E6 0.1945 0.1140 1.00010 4.535

IP 1.18E7 0.2664 0.0458 1.00010 3.875

CVX 1.88E7 0.3512 0.0411 1.00010 3.375

XOM 1.09E7 0.1339 0.1141 1.00010 3.776

MRK 8.07E4 0.0140 0.0438 1.00010 16.901

INTC 1.64E5 0.0186 −0.0038 1.00012 14.683

HPQ 1.21E5 0.0180 0.0015 1.00012 14.907

CAT 9.65E1 0.0054 −0.0009 1.00035 27.255

AA 1.98E6 0.1725 0.0414 1.00135 4.816

EKDAQ 5.60E4 0.0160 0.0345 1.00017 15.811

GOOGL 3.52E5 0.0656 0.1070 1.00018 7.806

AAPL 9.01E1 0.0054 −0.0020 1.00051 27.223

Figure 3.4: Unbiased parameter estimates for thirty stocks

Note that there are four stocks (UTX, INTC, CAT, AAPL) that indicate a negative first

order auto-correlation. No literature is available about bias correction of kurtosis parameter

when negative autocorrelation is present. Furthermore, no research has been carried out

about generating gamma marginal AR(1) processes with negative autocorrelation. It sill

remains as an open question. As a result, we were unable to carry out a bias correction for

kurtosis in that case. Thus the γ̂bc listed in Figure 3.4 for those corresponding stocks UTX,

INTC, CAT, and AAPL are the kurtosis parameter estimates without a bias correction. The

matter will be discussed more in the conclusion.
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3.3 CLUSTER ANALYSIS

In this thesis, Model based clustering is applied to identify stocks with similar volatility.

The Euclidean distance between models, i.e, the distance between parameter estimates, is

computed to measure the similarity between two stocks. The Figure 3.5 shows the den-

dogram created based on the complete linkage function(left) and a cluster plot based on

k-means clustering(right) when k = 5. The dendogram appears to be the same under all

other linkage methods.

Figure 3.5: The hierarchical dendogram for the complete linkage(left) and a cluster plot

based on k-means clustering(right)

The horizontal line drew above creates five cluster of stocks for the dendogram. On the

right plot, we can see where each stock is clustered when we chose our k = 5 for k-means

clustering. Figure 3.6 shows where each stock were grouped according to hierarchical

clustering and k-means clustering. Depending on the position one places the partition line,

the number of clusters you get might change. But having a higher number of clusters may

not be practically important. As one can see from Figure 3.6, hierarchical clustering and

k-means clustering grouped each stock in the same cluster, with the exception of stock

17(BA).

Here are a few notes to take away from Figure 3.6:
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1. Notice that the stocks(UTX, CAT, AAPL, and INTC) who had negative correlation

coefficient are grouped in cluster 5.

2. The majority of big tech companies such as Apple, Google, Untied Technologies,

Microsoft,..etc are grouped in cluster 5.

Cluster Number Stocks

Cluster 1 GE CVX

Cluster 2 KO JNJ BA

Cluster 3 IP XOM HON

Cluster 4 PG WMT T DIS BP JPM MCD HD

Cluster 5 UTX DD MSFT C AXP MRK INTC HPQ CAT AA EKDAQ GOOGL AAPL

Cluster Number Stocks

Cluster 1 GE CVX BA

Cluster 2 KO JNJ

Cluster 3 IP XOM HON

Cluster 4 PG WMT T DIS BP JPM MCD HD

Cluster 5 UTX DD MSFT C AXP MRK INTC HPQ CAT AA EKDAQ GOOGL AAPL

Figure 3.6: Cluster placement for each stock for hierarchical clustering(top) and k-means

clustering(bottom).

3.4 FEATURE-BASED CLUSTERING VS MODEL-BASED CLUSTERING

The paper published by Wickramarachchi et al [19] in 2015 used the exact same thirty

stocks as an application. The paper [19] used the sample arc lengths as a feature of volatil-

ity and carried out a feature-based clustering of stocks in terms of volatility. K-mean++

algorithm with three cluster has been used in the application. Feature-based clustering re-

duces large amount of data into one feature that carries an attribute of a series and takes it

into account when clustering is performed. One draw back of this method is that it fails to

take any correlation structure or the behavior of data when they are grouped. This method

fails to take any correlation structure or the behavior of data over time, when they are

grouped.
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Figure 3.8 compares results of the current study to the results of Wickramarchchi et al

[19]. The figure shows how each stock has been grouped under each respective method.

Stock Company Name K−means++ Model−Based K−means++ Feature−Based

KO Coca−Cola 1 1

JNJ Johnson & Johnson 1 1

PG The Procter and Gamble 2 1

GE General Electric 1 1

WMT Wal−mart 2 1

UTX United Technologies 3 1

IBM IBM 1 2

T AT& T 2 1

DD E.I du Pont de Nemours 3 1

DIS WaltDisney 1 1

MSFT Microsoft 3 1

BP BP 2 2

JPM JPMorgan and Chase 2 1

C Citigroup 3 1

MCD McDonald′s 2 1

HON Honeywell 2 2

BA Boeing 1 2

AXP American Express 3 1

HD Home Depot 2 2

IP International Paper Company 2 2

CVX Chervon 1 2

XOM Exxon Mobil 2 2

MRK Merck 3 1

INTC Intel 3 2

HPQ HP 3 2

CAT Caterpillar 3 2

AA Alcoa 3 2

EKDAQ EKDAQ 3 3

GOOGL Google 3 3

AAPL Apple 3 3

Figure 3.7: Cluster placement for K-means++ based on feature/model-based clustering

Following are the key points we observed.

1. As one can see feature-based clustering method, has sixteen stocks in cluster 1,

eleven in cluster 2, and three in cluster 3.

2. Under Model-based clustering, there are six stocks in cluster 1, eleven stocks in

cluster 2, and thirteen stocks in cluster 3.

3. As stated above, our model-based clustering method is more focused on the dis-

tribution and the correlation structure of arc length series, while the feature-based

technique is more focused on the overall behavior.
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Figure 3.9 presents log-returns of a few selected stocks found in clusters 1, 2, and 3

under model based technique. We choose CVX, KO, JNJ from cluster 1, T, WMT, MCD

from cluster 2, and AXP, C, and MRK from cluster 3.

Figure 3.8: Log-returns for cluster 1(row 1), cluster 2(row 2), and cluster 3(row 3)
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Below are some key take away from Figure 3.9:

1. Those three stocks in high volatile cluster 3 under model-based clustering appears in

low volatile cluster 1 under feature-based clustering.

2. Stock CVX is grouped in less volatile cluster 1 under model-based clustering while

it has been placed in mid-volatile cluster 2 by feature-based clustering.

3. Those three mid-volatile stocks under model based clustering has been categorized

as less volatile stocks by feature-based clustering.

Figure 3.10 presents log-returns of CVX, BP, and CAT. An interesting feature we

observed in figure 3.10 is that all three stocks, CVX, BP, and CAT, have been grouped in

the mid-volatile cluster 2 by feature-based clustering. But the visual inspection of three

plots of log returns does not support this result. The model-based technique we propose,

place them in less, mid, and high volatile groups respectively.

Figure 3.9: Log-returns for CVX(left), BP(middle), and CAT(right)

In addition, the Figure 3.11 shows log-returns of UTX and CAT. Visually both stocks

have to be in same cluster. As expected the method we propose places them in high volatile

cluster 3. But the feature-based clustering technique failed to place them in the same cluster.
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Figure 3.10: Log-returns for UTX(left) and CAT(right)

We can suggest that model-based clustering provides sensible results compared to

feature-based clustering presented in Wickramarachchi et al [19].

It is important to note that the estimated scale parameter(α̂) has a significant role in

determining where each stock is placed. When looking at all estimated scale parameters,

most of the values are over one million expect for a few. Those stocks that have a very

low α̂ value are all grouped in the same cluster, which would be the third. It makes perfect

sense since α represents the scale parameter. Therefore those stocks with a low α̂ value are

considered as highly volatile. The converse can be confirmed as well since the stocks with

the highest α̂ value, are all grouped in the first cluster.
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CHAPTER 4

CONCLUSION

In this study, we explored the possibility of fitting a time series model for the arc length

series of a financial time series. We proposed a GAR(1) type model. One of the main

outcomes of the study is that the kernel regression based bias correction is significantly

better compared to the bias correction proposed by Fernandez and Salas [7] for the kurtosis

estimator. We successfully carried out a model-based clustering on thirty stocks in DWJ

as an application. We were able to identify low volatile and less volatile stocks better

compared to feature-based clustering proposed by Wickramarchchi et al [19].

There is a lot of room to improve our study. First, we have to generalize our simulation

study as it covers a full range of parameter values. We can also consider ways of improving

the fit of the model. We can explore the suitability of other types of kernel functions and

some additional predictors for the model.

One other unexplored area in the bias correction of kurtosis estimator is the case where

negative lag-one autocorrelation is present. Generating gamma marginals with negative

lag-one autocorrelation structure also remains as an open problem.
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Appendix A

R CODE

Appendix A contains R code for the simulation study, as well as code for the graphics

generated in Chapters 1, 2, and 3.

## Calculating Arc Length ##

install.packages("readxl")

library(readxl) ## To read Excel Files ##

data<-read_excel("data.xlsx")

x<-data[,30]

x

n=length(x)

yt1 = 0

yt =0

## Used to plot the Arc length of a specific stock out of the group of thirty chosen

for(k in 10)

{

for(i in 1:753)

{

yt[i] = sqrt(1+((log(data[,k][i+1]))-log(data[,k][i]))ˆ2) #arclength

}

arclength = ts(yt,start=c(2005, 1), frequency=252)

plot(arclength,ylim = c(1,1.0025),xlab="Year", main = "Arclength for CAT")
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}

## Calculating and plot Log-Returns ##

for(j in 1:753)

{

yt1[j] = log(x[j+1]/x[j])

}

plot(ts((yt1)),main = "Log Return Prices for Coca-Cola Company",xlab = "Data", ylab

## Plotting the Empirical Density for a certain stock ##

plot(density(yt1),main = "Kernel Density Plot of Log-Returns for Coca-Cola Comapany

#####Simulation Study######

###Create Function to Simulate Data###

##N - Number of Repetitions Desired##

##n - Size of Simulated Data Sets##

##lambda,alpha,beta - Gamma Parameters##

##phi - GAR(1) Parameters##

install.packages("FAdist")

library(FAdist)## used to create a shifted gamma distribution
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#Initialization#

phi = seq(-0.05,0.21,0.01)

phi = 0.05

power = c(1:8)

alpha = 10ˆpower

beta = seq(0.004,1,0.002)

beta = 0.1

n = 754

N=n+5

#Create Function for Simulation study as suggested by Fernandez and Salas#

simu = function(n, phi, lamada, alpha, beta){

M = rpois(N,lambda= -beta*log(phi))

g1=0

phihat=0

for(k in 1:100){

x0 = rgamma3(n=1, shape=alpha, scale=beta, thres=lamada) ##X0 term for the first

epsil = 0

for(i in 1:N){

if(M[i]!=0){

Yj = rexp(M[i],rate=alpha)
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Uj = runif(M[i], 0, 1)

eta = sum(YjˆUj)

} else{eta=0}

epsil[i] = lamada*(1-phi)+eta

}

x=0

x[1] = phi*x0+epsil[1] #first observation

for(i in 2:N){

x[i] = phi*x[i-1]+epsil[i]

}

x= x[6:N]

phihat[k] = acf(x)$acf[2]

phihat[k] = (phihat[k]*n+1)/(n-4)

g1[k] = (n/((n-1)*(n-2)*var(x)ˆ(3/2)))*sum((x-mean(x))ˆ3)

}

phihatbar = mean(phihat)

g1bar = mean(g1)

gamma = 2/sqrt(beta)

true_phi=phi

newlist = list("phihatbar"= phihatbar, "g1bar"=g1bar, "gamma"=gamma, "true_phi"=true_phi)

return(newlist)

}
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#Creating the Training data set for the simulation study#

v1 = sapply(beta, function(beta) sapply(phi, function(phi) sapply(alpha, simu, beta=beta,

## Used to get estimated values for our simulation ##

k=seq(1,672,4)

s=seq(2,672,4)

t=seq(3,672,4)

j=1:499

phihatbarout = v1[k,j]

g1barout = v1[s,j]

gammaout = v1[t,j]

phihatvec=as.numeric(phihatbarout)

g1barvec=as.numeric(g1barout)

gammavec=as.numeric(gammaout)

d3 = data.frame(phihatvec,g1barvec,gammavec)

train1 = sample(nrow(d3),0.99*nrow(d3))

d4 <- d3[train1,] ## Training data set

d4.validate<-d3[-train1,] ## Validation data set

## Graphing the Training data set vs Full data set ##
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install.packages("sm")

library(sm)

k1=sm.regression(cbind(d4[,1], d4[,2]), d4[,3],xlab="Phihatbar",ylab="G1bar",zlab="Gamma")

k=sm.regression(cbind(phihatvec, g1barvec), gammavec) ## Full Data Set

## Creating the bandwidth for the Predicted $\gamma$ values ##

install.packages("np")

library(np)

bw <- npregbw(xdat=data.frame(d4[,1:2]), ydat=d4[,3], regtype="lc", bwmethod="cv.aic",

predict.out<-fitted(npreg(exdat=data.frame(d4[,1:2]), bws=bw1)) ## Predicted Gamma

## Calculating MSE, Bias, and Plot Residual Plots for Predicted $\gamma$ ##

gamma_obs = d4.validate[,3]

gamma_estimate = predict.out

variance = var(gamma_estimate)

bias = gamma_estimate - d4.validate[,3]

MSE = variance + biasˆ2

res = d4.validate[,3] - gamma_estimate

plot(gamma_obs,res, xlab = "gamma observed", ylab ="Residual", main = "Residual

## Calculating the MSE, Bias, and Plot Residual Plots for $\gamma$ from suggestion



52

## Method Suggested by Fernandez and Salas ##

n = 754

L = (n-2)/sqrt(n-1)

A = 1+6.51*nˆ(-1)+20.2*nˆ(-2)

B = 1.48*nˆ(-1)+6.77*nˆ(-2)

gamma0 = (L*g1.validate*(A+B*((Lˆ2)/n)*g1.validateˆ2))/sqrt(n)

f = (1 - 3.12*(phi.validateˆ(3.7))*nˆ(-.49))

gamma = gamma0/f

gamma

## Calculating the MSE and ploting the Residual Plot ##

gamma_obs = d4.validate[,3]

gamma_estiamate = gamma

variance = var(gamma)

bias = gamma - d4.validate[,3]

MSE = variance + biasˆ2

res3 = d4.validate[,3]-gamma

plot(gamma_obs,res3,xlab = "gamma observed",ylab="Residual",main = "Residual Plot

## Method of Moments Calculation using the unbias $\gamma$ estimation ##
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### Same method but with the yt

n = length(yt)

m=mean(yt)

s2 = var(yt)

g1 = (n/((n-1)*(n-2)*s2ˆ(3/2)))*sum((yt-m)ˆ3)

r1 = (1/((n-1)*s2))*sum((yt[1:n-1]-m)*(yt[2:n]-m));

## Correction for r1

p1 = (r1*n+1)/(n-4)

## correction for s2

K = ((n*(1-p1ˆ2))-2*p1*(1-p1ˆn))/(n*(1-p1)ˆ2)

sigma2 = s2*(n-1)/(n-K)

## Fitting with Unbias Gamma ##
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d3 = data.frame(abs(phi),g1)

Unbias_Gamma<-fitted(npreg(exdat=data.frame(d3), bws=bw))

## Estimating Shifted Gamma parameters with unbias Gamma ##

Unbias_beta = (2/Unbias_Gamma)ˆ2

Unbias_beta

phi = p1

p1

Unbias_alpha = Unbias_beta/sigma2

Unbias_alpha

Unbias_lamada = m - Unbias_beta/Unbias_alpha

Unbias_lamada

Unbias_alpha

Unbias_beta

p1

Unbias_lamada

Unbias_Gamma
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## Model-based clustering for unbias esitimates ##

alpha = c(23159914,26522442,6739005,18617797,4433520,87.45,23927783,5043800,2242692,4579838,56932.73,5958331,4440553,2318633,6749583,9833621,21311974,100285.6,6254844,11788494,18841939,10902528,80718.61,163887.5,120624.7,96.46775,1980827,56041.58,351527,90.107)

beta = c(0.08255588,0.1267607,0.05573179,0.1338863,0.07468809,0.005316261,0.7827966,0.08114764,0.05429077,0.1051352,0.006,0.09435821,0.1552851,0.1391698,0.1719227,0.1982691,0.6768846,0.012,0.1944895,0.26635321,0.3512395,0.2805609,0.01400348,0.01855432,0.018,0.005384881,0.1724826,0.01600091,0.06563742,0.005397311)

phi = c(0.10497,0.053684,0.166852,0.114144,0.055074,-0.000301,0.090807,0.115215,0.0253051,0.07393236,0.0111105,0.0169825,0.1099256,0.1000062,0.1655639,0.03639002,0.09683009,0.03009054,0.1139784,0.04578822,0.04107013,0.07463203,0.04379598,-0.003812698,0.001506284,-0.00093941,0.04141586,0.03454594,0.1070449,-0.001963859)

lamada = c(1.00003,1.00003,1.00004,1.000045,1.000061,1.000285,1.000062,1.000065,1.000072,1.000073,1.000077,1.000078,1.000078,1.000081,1.00008,1.00008,1.000092,1.000102,1.000095,1.000096,1.000098,1.000098,1.000104,1.000121,1.000124,1.000349,1.00153,1.000174,1.000184,1.000513)

gamma = c(6.960749,5.617431,8.471855,5.465903,7.318201,27.43007,2.260544,7.020888,8.583551,6.168165,25.81989,6.510887,5.07534,5.361144,4.823513,4.491615,2.430931,18.25742,4.535049,3.87527,3.374647,3.775865,16.90098,14.68275,14.90712,27.25473,4.815677,15.81094,7.806462,27.22333)

m = matrix(c(alpha,beta,phi,lamada,gamma),ncol =5, nrow =30)

## Creating a function for the euclidian distance calculation ##

distfunc <- function(x) {

d <- dist(m, method = "euclidian")

#d <- as.dist((1-cor(t(x))))

return (d)

}

d <- distfunc(m)

#1. Hierarchical

#run hierarchical clustering using single, average, and complete methods#

groups <- hclust(d,method="single")

plot(groups, hang=-1)

#2. K-means, k = 3 for three clusters#
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### k-means (this uses euclidean distance)

clusters <- kmeans(as.matrix(d), 3, nstart = 30)

plot(as.matrix(d), col = clusters$cluster)

points(clusters$centers, col = 1:10, pch = 8)

install.packages(’cluster’)

#better way to visualize clusters

library(cluster)

clusplot(as.matrix(d), clusters$cluster, color=T, shade=T, labels=2, lines=0)

## K-means++ clustering ##

alpha = c(23159914,26522442,6739005,18617797,4433520,87.45,23927783,5043800,2242692,4579838,56932.73,5958331,4440553,2318633,6749583,9833621,21311974,100285.6,6254844,11788494,18841939,10902528,80718.61,163887.5,120624.7,96.46775,1980827,56041.58,351527,90.107)

beta = c(0.08255588,0.1267607,0.05573179,0.1338863,0.07468809,0.005316261,0.7827966,0.08114764,0.05429077,0.1051352,0.006,0.09435821,0.1552851,0.1391698,0.1719227,0.1982691,0.6768846,0.012,0.1944895,0.26635321,0.3512395,0.2805609,0.01400348,0.01855432,0.018,0.005384881,0.1724826,0.01600091,0.06563742,0.005397311)

phi = c(0.10497,0.053684,0.166852,0.114144,0.055074,-0.000301,0.090807,0.115215,0.0253051,0.07393236,0.0111105,0.0169825,0.1099256,0.1000062,0.1655639,0.03639002,0.09683009,0.03009054,0.1139784,0.04578822,0.04107013,0.07463203,0.04379598,-0.003812698,0.001506284,-0.00093941,0.04141586,0.03454594,0.1070449,-0.001963859)

lamada = c(1.00003,1.00003,1.00004,1.000045,1.000061,1.000285,1.000062,1.000065,1.000072,1.000073,1.000077,1.000078,1.000078,1.000081,1.00008,1.00008,1.000092,1.000102,1.000095,1.000096,1.000098,1.000098,1.000104,1.000121,1.000124,1.000349,1.00153,1.000174,1.000184,1.000513)

gamma = c(6.960749,5.617431,8.471855,5.465903,7.318201,27.43007,2.260544,7.020888,8.583551,6.168165,25.81989,6.510887,5.07534,5.361144,4.823513,4.491615,2.430931,18.25742,4.535049,3.87527,3.374647,3.775865,16.90098,14.68275,14.90712,27.25473,4.815677,15.81094,7.806462,27.22333)

m = matrix(c(alpha,beta,phi,lamada),ncol =4, nrow =30)

k=3

s=vector()

s[1]=sample(1:30,1)
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c=matrix(,ncol=4)

c[1,] = m[s[1],]

d1=1:30

for(i in 1:30){

d1[i]=sum((c[1,]-m[i,])ˆ2) ##computeD(x)ˆ2

}

prob=d1/sum(d1)

s[2]=sample(1:30,1,prob=prob)

c = rbind(c,m[s[2],])

for(i in 1:30){

d1[i] = min(sum((c[1,]-m[i,])ˆ2), sum((c[2,]-m[i,])ˆ2)) ## Compute min(D1ˆ2, D2ˆ2)

}

prob=d1/sum(d1)

s[3]=sample(1:30, 1, prob=prob)

c = rbind(c,m[s[3],])

kmeans(m, c)
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