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EXPONENTIALLY WEIGHTED MOVING AVERAGE CHARTS FOR

MONITORING THE PROCESS GENERALIZED VARIANCE

by

ANNA KHAMITOVA

(Under the Direction of Charles W. Champ)

ABSTRACT

The exponentially weighted moving average chart based on the sample generalized

variance is studied under the independent multivariate normal model for the vector

of quality measurements. The performance of the chart is based on an analysis of

the chart’s initial and steady-state run length distributions. The three methods that

are commonly used to determinate run length distribution, simulation, the integral

equation method, and the Markov chain approximation are discussed. The integral

equation and Markov chain approaches are analytical methods that require a nu-

merical method for determining the probability density and cumulative distribution

functions describing the distribution of the sample generalized variance. Two meth-

ods for determining numerically these functions are discussed. The equivalence of

the integral equation and Markov chain methods is shown resulting in a new method

for obtaining a Markov chain approximation of the chart. Some examples of the

implementation of these methods are given using MATLAB.

Key Words : Chi Square distribution, covariance matrix, integral equation, Markov

chain, Meijer G function, simulation
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CHAPTER 1

INTRODUCTION

The quality control chart was introduced in the early 1920’s by Walter A. Shewhart

(see [29]). It is based on a quality measurement(s) X whose distribution depends

on one or more parameters that are to be monitored. Shewhart described two kinds

of variability in a quality measurement X found in a process which he labeled as

“natural” and “assignable.” A process that is operating with only natural causes of

variability present is said to be an “in-control” process. When at least one assignable

cause is present, then the process is in an “out-of-control” state. The control chart is

an aid to the practitioner in the attempt to discover assignable causes of variability

in the process, as an aid in defining what is meant by a process being in an in-control

state, and detecting when an assignable cause of variability has changed the process.

The actual distribution of the quality measurement(s) is not known. It is common

practice to model this unknown distribution. The model we have selected for our

study is the multivariate normal distribution for our vector of quality measurements.

The set of parameters for this model are the mean vector and covariance matrix. In

Chapter 2, we discuss this model along with our meaning of a process operating with

only natural causes of variability and one that has at least one assignable cause of

variability. Also, we discuss the method to be used in the collection of the outputted

items from the process and the stochastic assumptions about the measurements on

these items.

In chapter 3, we examine various statistics and their distributions that will be

useful in making an inference about the quality of the process. We discuss in particular

in this chapter two methods for determining the probability density and cumulative

distribution function of the sample generalized variance and the natural logarithm of

the sample generalized variance.
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In general, a control chart is a plot of a statistic that summarizes the sample

data at discrete points in time. Typically, a control chart has one and sometimes

two control limits, although there might be more than two control limits for multi-

dimensional charts. If the plotted statistic exceeds one of the control limits, this is

taken as relatively strong evidence that the process is in an out-of-control state. Two

lines in a control chart are chosen and called upper control limit (UCL) and lower

control limit (LCL). When the plotted statistic falls at or below the LCL or at or

above the UCL, the chart “signals” to the practitioner that the process is potentially

in an out-of-control state; otherwise the process is said to be in control.

Monitoring for a change in the mean vector of distribution of a multivariate

quality measurement is usually of primary interest to the practitioner. However, [7]

showed various multivariate control charts for monitoring for a change in the mean

vector are also effected by a change in the covariance matrix of the vector of quality

measurements. [23] recommends in these situations that a chart be maintained for

monitoring for a change in the covariance structure and that this chart should be

examined first before examining a chart for monitoring the mean vector. Various

control charts have been discussed in the literature for monitoring for a change in the

covariance structure of a multivariate quality measurement.

Various authors have proposed/studied charts for monitoring for a change in the

covariance matrix of the distribution of a multivariate quality measurement. These,

include among others, [1], [31], [30], [24], [3], [12], [36], [33], [34] and [18]. A review

of multivariate control charts for monitoring a covariance matrix is given by [35].

In this research, the Exponentially Weighted Moving Average (EWMA) charts

based on sample generalized variance |S| and the natural logarithm ln(|S|) of the

sample generalize variance are examined. This chart is used for monitoring process

variability measured by the process generalized variance |Σ|. Changes in the process
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variability can have a big impact on product quality. We discuss these charts in

Chapter 4.

The length of time takes for a control chart to signal a potential “out-of-control”

process is a random variable called the run length. The performance of a chart is

often done by comparing properties of their run length distribution, in particular,

the average run length (ARL). The commonly used methods, simulation, Markov

chain approximation, and integral equations that are used to evaluate the run length

distribution of control charts are discussed. A discuss of performance evaluation of

the chart is presented in Chapter 5. We show that the Markov chain approximation

and the integral equation methods are equivalent resulting in new ways to obtain a

Markov chain approximation of a chart.

And, finally, some recommendations for the further research are given in our final

chapter.



CHAPTER 2

MODEL AND SAMPLING METHODS

2.1 Introduction

In the design and evaluation of a control charting procedure, it is useful to have a

data model. The most commonly used model to describe the distribution of a vector

X of continuous quality measurements is the multivariate normal distribution. [29]

discussed the concepts of a process being in a state of statistical in-control as well

as being in a state of statistical out-of-control. In the designing a control charting

procedure, one needs a definition of what is meant by the process being in the states

of statistical in- and out-of-control. Our data model and these definitions are given

in the next section.

Another assumption that is commonly made it that the samples are collected

periodically from the output of the process and the X measurements on these items

are random samples. Further, it is assumed that the random samples are independent.

These assumptions about the data to be collected by the practitioner in an effort to

bring a process into state of statistical in-control and then monitor for change in

the process from one of being in-control to an out-of-control process are discussed in

Section 3. Also, in this section, we discuss the common ways in which an in-control

process is estimated based on our model.

2.2 Data Model

The most commonly used model for a p× 1 vector X of quality measurements is the

multivariate normal model. The joint probability density function of a multivariate

normal distribution with p variables has the form

fX (x) =
1

(2π)p/2 |Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ),



5

where x is a p× 1 vector of real numbers,

E (X) = µX = µ and cov (X) = ΣX = Σ.

Also, it is assumed that Σ is a positive definite matrix. It is convenient to write

X ∼ Np (µ,Σ) to state that the p × 1 random vector X has a multivariate normal

distribution with mean vector µ and covariance matrix Σ. We assume that the process

is in a state of statistical in-control if µ = µ0 and Σ = Σ0, where µ0 and Σ0 are a

fixed set of values that in general are unknown. The process is considered to be in an

out-of-control state if µ 6= µ0 or Σ 6= Σ0.

The assumption that Σ is a positive definite matrix implies that the eigen-

value ξ1, . . . , ξp of Σ are all positive real numbers. Associated with the p eigenvalues

ξ1, . . . , ξp is a set of corresponding orthonormal eigenvectors v1, . . . ,vp. We can then

express Σ as

Σ = VCVT = PPT,

where C = Diagonal (ξ1, . . . , ξp), V = [v1, . . . ,vp], and P = VC1/2 with C1/2 =

Diagonal
(
ξ
1/2
1 , . . . , ξ

1/2
p

)
. Note that VTV = I. This allows a “standardized” vector

Z of the vector X to be defined by

Z = P−1 (X− µ) with X = µ+ PZ.

The Jacobian of the transformation is |P|. Since
∣∣PT

∣∣ = |P|, then we have

|P| = |Σ|1/2 .

Hence, the joint distribution of the p× 1 vector Z is

fZ (z) =
1

(2π)p/2 |I|1/2
e−

1
2
zTz.

We will refer to this distribution as the multivariate standard normal distribution

with mean 0 and covariance matrix I. Note that under the multivariate normal
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model with positive definite covariance matrix, the components of the p× 1 vector Z

are stochastically independent each with mean 0.

The process generalized variance is the determinant |Σ| of the process covariance

matrix Σ. The process generalized variance can be used as an overall measure of

the variability found in the process. [20] discussed the disadvantages of using the

population/process generalized variance as a measure of variability. Observe that

|Σ| =
∣∣VCVT

∣∣ =
∣∣VVT

∣∣ |C| = |C| = ∏p

i=1
ξi.

We also observe that when the process is in a state of statistical in-control, then we

have

|Σ0| = |C0| =
∏p

i=1
ξi0,

where ξp0, . . . , ξp0 are the eigenvalues of Σ0. As we will see later, it is convenient to

define the parameter λ2 as

λ2 =
∣∣Σ−10 Σ

∣∣ and θ = ln
(∣∣Σ−10 Σ

∣∣) .

It is easy to see that

λ2 =
∏p

i=1
ξ−1i0 ξi and θ = ln

(
λ2
)

=
∑p

i=1
ln
(
ξ−1i0 ξi

)
.

Observe that if the process is in a state of statistical in-control, then

λ2 = 1 and θ = 0.

If λ2 6= 1 or θ 6= 0, then the process is out-of-control.

2.3 Data and Parameter Estimates

In order to make a determination of the state of the process, the practitioner will

periodically take a sample of items from the output of the process and obtain on each
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item the quality measurement X. There are two phases of the process in which the

practitioner collects data. In the first phase (Phase I), the practitioner works to bring

the process into a state of statistical in-control. Data from a Phase I study of the

process can be used to define what is meant by an in-control process. We assume

here that in Phase I the practitioner has identified m independent random samples of

the vector X of quality measurements that were taken on items produced when the

process was in-control. We represent these mn data values by

Xi,1, . . . ,Xi,n

for i = 1, . . . ,m. These data can be used to estimate µ0 and Σ0 when they are not

known. The most commonly used estimators for these parameters are

µ̂0 = X0 =
1

mn

∑m

i=1

∑n

j=1
Xi,j and

Σ̂0 = S0 =
1

m (n− 1)

∑m

i=1

∑n

j=1

(
Xi,j −X0

) (
Xi,j −X0

)T
.

It is easy to show that µ̂0 and Σ̂0 are unbiased estimators of µ0 and Σ0, respectively.

In the second phase (known as Phase II or the monitoring phase), the practi-

tioner periodically samples from the output of the process. We assume that the X

measurements on these items are independent and identically distributed Np (µ,Σ).

These sets of measurements are represented by

Xt,1, . . . ,Xt,n

for t = 1, 2, 3, . . .. Our estimates of µ and Σ at time t are, respectively,

µ̂t = Xt =
1

n

∑n

j=1
Xt,j and Σ̂t = St =

1

n− 1

∑n

j=1

(
Xt,j −Xt

) (
Xt,j −Xt

)T
.

One can show that µ̂t and Σ̂t are unbiased estimators of µ and Σ, respectively.
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2.4 Conclusion

We have discussed our model and data assumptions as well as a model for what is

meant by a process being in a state of statistical in-control and a state of statistical

out-of-control. These assumptions will be used in what follows in the design and

evaluation of control charting procedures for monitoring for a change in the process

generalized variance. There are other models for industrial processes in which the

quality of an outputted item is measured by a vector of quality measurements. For

processes in which it is more reasonable to assume that the vectors of quality measure-

ments are autocorrelated, a multivariate time series model would be a better choice

than our independent model.



CHAPTER 3

SOME DISTRIBUTIONAL RESULTS

3.1 Introduction

The distribution of a statistic is sometimes referred to as a sampling distribution. In

the design and the performance analysis of a statistical method, the distribution of one

or more statistics in a usable form is needed. For example, being able to analytically

determine the distribution of a test statistic both under the null hypothesis and the

alternative hypothesis is useful in determining the size of the test and the power

function that can be used to answer the sample size question. In the performance

analysis of a control charting procedure, it is of interest to examine the distribution

of the run length both when the process is in a state of statistical in-control and when

it is out-of-control The randomness found in the distribution of the run length comes

from the randomness other statistics. In our study, we find that these other statistics

are the sample covariance matrix and functions of the the sample covariance matrix

such as the sample generalized variance and the natural logarithm of the sample

generalized variance.

The distribution of the sample covariance is discussed in the next section. In

Section 3, we discuss the distribution of the sample generalized variance, in partic-

ular, how the probability density function describing the distribution of the sample

generalized variance can be expressed using the Meijer G function. This section is

followed by a section about the distribution of the natural logarithm of the sample

generalized variance. A closed form expression for the probability density function of

the natural logarithm of the sample generalized variance is given.



10

3.2 Distribution of the Sample Covariance

Suppose that Xp×1 ∼ Np (µ,Σ). Let {X1, . . . ,Xn} be a random samples of size n

from the distribution of X. The sample covariance matrix S is defined as

S =
1

n− 1

∑n

i=1

(
Xi −X

) (
Xi −X

)T
,

where

X =
1

n

∑n

i=1
Xi.

It is convenient to define A = (n− 1) S. Under the independent multivariate normal

model with a positive definite covariance matrix, [14] shows that the sample covariance

matrix S is positive definite with probability one. It follows that A = (n− 1) S is

also positive definite with probability one. It is shown in [2] that A for n > p can be

expressed as

A =
∑n−1

i=1
ZiZ

T
i ,

where Z1. . . . ,Zn−1 are independent and identically distributed Np (0,Σ). Further,

he shows that the joint probability density function describing the distribution of the

components of the positive definite matrix At is

fA (A) =
|A|(n−p−2)/2 e−

1
2
tr(Σ−1A)

2p(n−1)/2πp(p−1)/4 |Σ|(n−1)/2
∏p

i=1 Γ
(
n−i
2

) .

Suppose that Σ = I, then

fA (A) =
|A|(n−p−2)/2 e−

1
2
tr(I−1A)

2p(n−1)/2πp(p−1)/4 |I|(n−1)/2
∏p

i=1 Γ
(
n−i
2

)
=

|A|(n−p−2)/2 e− 1
2
tr(A)

2p(n−1)/2πp(p−1)/4
∏p

i=1 Γ
(
n−i
2

) .

It is not difficult to show that each component of the sample covariance matrix

is an unbiased estimator of corresponding component of the population covariance
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matrix. In this sense, we say that the sample covariance matrix is an unbiased

estimator of the populations covariance matrix. We note here that

St = S2
t and (n− 1) Σ−10 St =

(n− 1)S2
t

σ2
0

.

3.3 Sample Generalized Variance

The population generalized variance is defined as the determinant |Σ| of the pop-

ulation (process) covariance Σ. Its sample counterpart is the determinant |S| of

the sample covariance matrix S. [2] proves that under the independent multivariate

normal model with n > p that

|S| ∼ |Σ|
(n− 1)p

∏p

i=1
χ2
n−i,

where χ2
n−1, . . . , χ

2
n−p are stochastically independent Chi Square random variables

with, respective, degrees of freedom n− 1, . . . , n− p. It follows that

W =
∣∣(n− 1) Σ−1S

∣∣ ∼∏p

i=1
χ2
n−i.

For the case in which p = 2, one can show from the results given in [2] that

W ∼
(
χ2
2n−4

)2
/4.

[17] derived a closed form expression for the probability density function f|S| (w)

describing the distribution of |S| under the independent multivariate normal model.

Their expression for f|S| (w) is

f|S| (w) = (n− 1)p
∣∣Σ−1∣∣ f|(n−1)Σ−1S|

(
(n− 1)p

∣∣Σ−1∣∣w)
=

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

(n− 1)p |Σ−1| ((n− 1)p |Σ−1|w)
1/2∏p−1

i=1 w
−1/2
i∏p

i=1 Γ
(
n−i
2

)
2p(2n−p−1)/4

× e−w1/2e−(
∑p−1
i=2 (wi/wi−1)+((n−1)p|Σ−1|w/wp−1))/2dw1 . . . dwp−1.
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[26] show that the distribution of |(n− 1) Σ−1S| can be expressed in terms of

the Meijer G function. The Meijer G function is defined by

Gm r
p,q

x
∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 =
1

2πi

∫
L

∏m
j=1 Γ (bj − s)

∏r
j=1 Γ (1− aj + s)∏q

j=m+1 Γ (1− bj + s)
∏p

j=r+1 Γ (aj − s)
xsds,

where the integral is along the complex contour L of a ratio of products of gamma

functions. They ([26, p. 936]) express the pdf describing the distribution of |(n− 1) Σ−1S|

with some modification as follows

f|(n−1)Σ−1S| (w) =
1

2p

(∏p

j=1

1

Γ
(
n−j
2

))Gp 0
0,p

(
w

2p

∣∣∣∣n− 2

2
, . . . ,

n− 1− p
2

)
I(0,∞) (w) .

The Meijer G function has been implemented in both MATLAB and Mathemat-

ica. The MATLAB code is

Gm r
p,q

x
∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq


= meijerG([[a1, . . . , ar], [ar + 1, . . . , ap]], [[b1, . . . , bm], [bm + 1, . . . , bq]], x).

It follows that

Gp 0
0,p

x
∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq


=

1

2πi

∫
L

∏p
j=1 Γ (bj − s)

∏0
j=1 Γ (1− aj + s)∏p

j=p+1 Γ (1− bj + s)
∏0

j=0+1 Γ (aj − s)
xsds

=
1

2πi

∫
L

∏p

j=1
Γ (bj − s)xsds

= meijerG([[a1, . . . , a0], [a0 + 1, . . . , a0]], [[b1, . . . , bp], [bp + 1, . . . , bp]], x)

= meijerG([[], []], [[b1, . . . , bp], []], x).
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It follows that

f|(n−1)Σ−1S| (w)

=
1

2p

(∏p

j=1

1

Γ
(
n−j
2

))meijerG([[], []], [[
n− 1

2
, . . . ,

n− p
2

], []], w/2p).

In Mathematica, the Meijer G function is implemented as

Gm r
p,q

x
∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq


= MeijerG[a1, ..., ar, a(r + 1), ..., ap, b1, ..., bm, b(m+ 1), ..., bq, x].

We then have

f|(n−1)Σ−1S| (w)

=
1

2p

(∏p

j=1

1

Γ
(
n−j
2

))MeijerG([[], []], [[
n− 1

2
, . . . ,

n− p
2

], []], w/2p).

As we will see, the distributions of
∣∣S0

∣∣ and
∣∣m (n− 1) Σ−10 S0

∣∣ will be of inter-

est. Using the results found in [2], the following theorem gives descriptions of their

distributions.

Theorem 3.1. If Xi,1, . . . ,Xi,n for i = 1, . . . ,m are m independent random samples

each of size n from a common Np (µ0,Σ0), then for

S0 =
1

m (n− 1)

∑m

i=1

∑n

j=1

(
Xi,j −X0

) (
Xi,j −X0

)T
with

X0 =
1

mn

∑m

i=1

∑n

j=1
Xi,j,

we have

∣∣S0

∣∣ ∼ |Σ0|
mp (n− 1)p

∏p

i=1
χ2
m(n−1)−(i−1) or∣∣m (n− 1) Σ−10 S0

∣∣ ∼∏p

i=1
χ2
m(n−1)−(i−1),
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where χ2
m(n−1)−(1−1), . . . , χ

2
m(n−1)−(p−1) are independent Chi Square random variables.

In terms of the Meijer G function, we have

f|m(n−1)Σ−1
0 S0| (w) =

1

2p

∏p

j=1

1

Γ
(
m(n−1)−(j−1)

2

)


×Gp 0
0,p

(
w

2p

∣∣∣∣m (n− 1)− 1

2
, . . . ,

m (n− 1)− p
2

)
I(0,∞) (w) .

Proof. The proof of this theorem follows the proof given in [2] for the case in which

m = 1 and using the results in [26].

It is interesting to examine the means and variances of the distributions of the

statistics |S|,
∣∣S0

∣∣, ln (|S|), and ln
(∣∣S0

∣∣). These parameters are determined under our

independent multivariate normal model. The mean µ|S| is

µ|S| =
|Σ|

(n− 1)p
∏p

i=1
µχ2

n−i
=

|Σ|
(n− 1)p

∏p

i=1
(n− i) .

This suggest that an unbiased estimator of |Σ| is

(n− 1)p |S|∏p
i=1 (n− i)

.

To determine the variance of the distribution of |S| under the independent multivari-

ate normal model, we first determine µ|S|2 . We see that

µ|S|2 =
|Σ|2

(n− 1)2p

∏p

i=1
µ

(χ2
n−i)

2 =
|Σ|2

(n− 1)2p

∏p

i=1

(
σ2
χ2
n−i

+ µ2
χ2
n−i

)
=

|Σ|2

(n− 1)2p

∏p

i=1

(
2 (n− i) + (n− i)2

)
=

|Σ|2

(n− 1)2p

(∏p

i=1
(n− i)

)(∏p

i=1
(2 + n− i)

)
.
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It follows that

σ2
|S| =

|Σ|2

(n− 1)2p

(∏p

i=1
(n− i)

)(∏p

i=1
(2 + n− i)

)
− |Σ|2

(n− 1)2p

(∏p

i=1
(n− i)

)2
=

|Σ|2

(n− 1)2p

(∏p

i=1
(n− i)

)
×
(∏p

i=1
(2 + n− i)−

∏p

i=1
(n− i)

)
.

It follows that

µ|(n−1)Σ−1S| =
∏p

i=1
(n− i) and

σ2
|(n−1)Σ−1S| =

(∏p

i=1
(n− i)

)(∏p

i=1
(2 + n− i)−

∏p

i=1
(n− i)

)
.

Also, we have

V

(
(n− 1)p |S|∏p
i=1 (n− i)

)
=

(n− 1)2p

(
∏p

i=1 (n− i))2
σ2
|S|

=

∏p
i=1 (2 + n− i)−

∏p
i=1 (n− i)

(
∏p

i=1 (n− i))
|Σ|2 .

Using the previous arguments, we have

µ|S0| =
|Σ0|

mp (n− 1)p
∏p

i=1
µχ2

m(n−1)−(i−1)
=

|Σ0|
mp (n− 1)p

∏p

i=1
(m (n− 1)− (i− 1))

suggest that the statistic

mp (n− 1)p
∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

provides unbiased estimates of |Σ0|. The variance σ2

|S0| is

σ2

|S0| =
|Σ|2

(n− 1)2p

(∏p

i=1
(m (n− 1)− (i− 1))

)
×
(∏p

i=1
(2 +m (n− 1)− (i− 1))−

∏p

i=1
(m (n− 1)− (i− 1))

)
.
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Further, we have

µ|m(n−1)Σ−1
0 S0| =

(∏p

i=1
(m (n− 1)− (i− 1))

)
and

σ2

|m(n−1)Σ−1
0 S0| =

(∏p

i=1
(m (n− 1)− (i− 1))

)
×
(∏p

i=1
(2 +m (n− 1)− (i− 1))−

∏p

i=1
(m (n− 1)− (i− 1))

)
.

3.4 Natural Logarithm of the Sample Generalized Variance

We see from the results found in [2] that we can write

ln (|S|) ∼ ln

(
|Σ|

(n− 1)p

)
+
∑p

i=1
ln
(
χ2
n−i
)

and

U = ln (W ) = ln
(∣∣(n− 1) Σ−1S

∣∣) ∼∑p

i=1
ln
(
χ2
n−i
)

.

For the case in which p = 2, we have W ∼
(
χ2
2n−4

)2
/4. Hence, it follows that

U = 2
(
ln
(
χ2
2n−4

)
− ln (2)

)
.

The derivation of the distribution of

U =
∑p

i=1
ln
(
χ2
n−i
)

is given in [9]. We are interested as well in the distribution of

U0 = ln
(∣∣m (n− 1) Σ−10 S0

∣∣) =
∑p

i=1
ln
(
χ2
m(n−1)−(i−1)

)
.

Note that if m = 1 and Σ = Σ0, then U and U0 have the same distribution. Expres-

sions describing the distribution of U0 are given in the following theorem.

The mean µU and variance σ2
U of the distribution of the random variable U can

be expressed as

µU =
∑p

i=1
µln(χ2

n−i)
and σ2

U =
∑p

i=1
σ2
ln(χ2

n−i)
.
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The values µln(χ2
n−i)

and σ2
ln(χ2

n−i)
must be obtained numerically for i = 1, . . . , p. In

general, we need to be able to determine the mean and variance of the distribution

of the ln (χ2
ν), where χ2

ν is a random variable with a Chi Square distribution with ν

degrees of freedom. It can be shown the probability density function describing the

distribution of ln (χ2
ν) has the form

fln(χ2
ν)

(x) =
1

Γ
(
ν
2

)
2ν/2

e−(e
x−νx)/2

with support the reals. Closed form expressions are not available for the mean µln(χ2
ν)

and variance σ2
ln(χ2

ν)
of the distribution of ln (χ2

ν). Consequently, they must be deter-

mined numerically. For example, for ν = 5, we find numerically that

µln(χ2
5)

=

∫ ∞
−∞

x
1

Γ
(
5
2

)
25/2

e−(e
x−5x)/2dx = 1.396303821 and

σ2
ln(χ2

5)
=

∫ ∞
−∞

x2
1

Γ
(
5
2

)
25/2

e−(e
x−5x)/2dx

−

(∫ ∞
−∞

x
1

Γ
(
5
2

)
25/2

e−(e
x−5x)/2dx

)2

= 0.4903577561.

The following theorem gives the distribution of

U0 = ln
(∣∣m (n− 1) Σ−10 S0

∣∣) .

Theorem 3.2. If χ2
m(n−1), . . . , χ

2
m(n−1)−(p−1) are independent Chi Square random vari-

ables with degrees of freedom m (n− 1) , . . . ,m (n− 1) − (p− 1), respectively, with

n > p, then the probability density function fU0 (u) describing the distribution of

U0 = ln
(∣∣m (n− 1) Σ−10 S0

∣∣) =
∑p

i=1
ln
(
χ2
m(n−1)−(i−1)

)
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can be expressed as

fU0 (u) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f
ln
(
χ2
m(n−1)−(1−1)

) (u− x2 − . . .− xp)

× f
ln
(
χ2
m(n−1)−(2−1)

) (x2) · · · fln
(
χ2
m(n−1)−(p−1)

) (xp) dx2 · · · dxp; and

FU0 (u) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

F
ln
(
χ2
m(n−1)−(1−1)

) (u− x2 − . . .− xp)

× f
ln
(
χ2
m(n−1)−(2−1)

) (x2) · · · fln
(
χ2
m(n−1)−(p−1)

) (xp) dx2 · · · dxp.

Proof. The proof of this theorem follow the one in [9] for the distribution of U .

A numerical method is given in [15] for evaluating multiple integrals of the form

I (f) = (2π)−(p−1)/2
∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−xTx/2f (x) dx2 · · · dxp.

For n > p, define

hu (x) = (2π)(p−1)/2 exTx/2f
ln
(
χ2
m(n−1)−(1−1)

) (u− x2 − . . .− xp)

× · · · × f
ln
(
χ2
m(n−1)−(2−1)

) (x2) · · · fln
(
χ2
m(n−1)−(p−1)

) (xp) ,

where

x = [x2, . . . , xp]
T .

The probability density function fU0 (u) describing the distribution of U0 can be

expressed as

fU0 (u) = (2π)−(p−1)/2
∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

e−xTx/2hu (x) dx2 · · · dxp.

It is easy to see that fU0 (u) is in the form of I (f). The FORTRAN code to evaluate

I (f), available from Dr. Alan Genz, Department of Mathematics, Washington State

University, Pullman, WA. can be used to evaluate fU0 (u).



19

Under the independent multivariate normal model, it is easy to see that

µln(|S0|) = ln

(
|Σ0|

mp (n− 1)p

)
+
∑p

i=1
µ
ln
(
χ2
m(n)−(i−1)

)
= ln

(
|Σ0|

mp (n− 1)p

)
+
∑p

i=1

∫ ∞
−∞

r
1

Γ
(
m(n)−(i−1)

2

)
2(m(n)−(i−1))/2

e−(e
r−(m(n)−(i−1))r)/2dr and

σ2
ln(|S0|) =

∑p

i=1
σ2

ln
(
χ2
m(n)−(i−1)

)

=
∑p

i=1

∫ ∞
−∞

r2e−(e
r−(m(n)−(i−1))r)/2

Γ
(
m(n)−(i−1)

2

)
2(m(n)−(i−1))/2

dr − µ2
ln(|S0|)

 .

It follows from these results that

µU0 =
∑p

i=1
µ
ln
(
χ2
m(n)−(i−1)

) and

σ2
U0

=
∑p

i=1

∑p

i=1
σ2

ln
(
χ2
m(n)−(i−1)

).
The distribution of U0 can be expressed in terms of the distribution of W0.

Observe that the cumulative distribution function FU0 (u), where U0 = ln (W0) is

given by

FU0 (u) = P (ln (W0) ≤ u) = P (W0 ≤ eu) = FW0 (eu) .

Hence, the probability density function fU0 (u) describing the distribution of U0 can

be expressed as

fU0 (u) = eufW0 (eu) .

Also, note that setting m = 1 yields the distribution of U . Using the results of [17],

we have derived a closed form expression for the probability density function f|S| (w)

describing the distribution of |S| under the independent multivariate normal model.
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Their expression for f|S| (w) is

fU0 (u) = eu
∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

mp (n− 1)p |Σ−1| (mp (n− 1)p |Σ−1| eu)1/2
∏p−1

i=1 w
−1/2
i∏p

i=1 Γ
(
m(n−1)−(i−1)

2

)
2p(2m(n−1)−p−3)/4

× e−w1/2e−(
∑p−1
i=2 (wi/wi−1)+(mp(n−1)p|Σ−1|eu/wp−1))/2dw1 . . . dwp−1.

Using the Meijer G function, we have

fU0 (u) =
eu

2p

∏p

j=1

1

Γ
(
m(n−1)−(j−1)

2

)


×Gp 0
0,p

(
eu

2p

∣∣∣∣m (n− 1)− 1

2
, . . . ,

m (n− 1)− p
2

)
I(0,∞) (w) .

We can write cumulative distribution function FW0 (w) in terms of the cumulative

distribution function of U0 as

FW0 (w) = P
(
eU0 ≤ w

)
= FU0 (ln (w)) .

Hence, their probability density functions are related by

fW0 (w) = w−1fU0 (ln (w)) .

Using the results of [9], we have

fW0 (w) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

w−1f
ln
(
χ2
m(n−1)−(1−1)

) (ln (w)− x2 − . . .− xp)

× f
ln
(
χ2
m(n−1)−(2−1)

) (x2) · · · fln
(
χ2
m(n−1)−(p−1)

) (xp) dx2 · · · dxp.

3.5 Conclusion

Some useful distributional results were given in this chapter for evaluating the run

length distribution of the EWMA charts based on a various functions of the sample

generalized variance. In particular, we discussed two methods for determining the

distribution of |S|, ln (|S|),
∣∣S0

∣∣, and ln
(∣∣S0

∣∣) as well as functions of these statistics.

The means and variances of these statistics were also given.



CHAPTER 4

EWMA |S| AND ln (|S|) CHARTS

4.1 Introduction

[27]introduced the exponentially weighted moving average chart (EWMA) which he

referred to as the geometric moving average chart. [11] introduced a family of control

charting procedures of which the EWMA chart is a member. The EWMA chart was

originally developed to monitor for a change in a process mean of a univariate quality

measurement. The general form of an EWMA chart based on the statistic Yt is a plot

of the statistic Et versus the sample size t, where

E0 = µY |PIC and Et = (1− rt)Et−1 + rtYt

with 0 < rt ≤ 1 for t = 1, 2, 3, . . .. Here, PIC stands for the “process is in-control.”

The value of Yt is determined from the sample data Xt,1, . . . ,Xt,n. The chart signals

a possible out-of-control process at time t if

Et ≤ h−t or Et ≥ h+t .

The chart parameter rt is called the smoothing parameter, h−t the lower control limit,

and h+t the upper control limit. Note that the smoothing parameter and control

limits may depend on the sample number t as well as other parameters. If the value

of µY |PIC is not known, then an estimate Y0 obtained from a Phase I analysis can be

used.

If the chart parameters, the sample size, and/or the sampling interval are changed

based on the information found in the sample data, the chart is referred to as an

adaptive control chart. Several authors have discussed adaptive charts that change

the sample size and sampling intervals. See [19] for a discuss of design issues for

adaptive control charts. However, an adaptive chart that changes the value of the
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smoothing parameter of an EWMA chart has not been studied. In what follows, we

will only consider non-adaptive EWMA charts. Further, we only consider charts in

which the smoothing parameter is fixed, that is, rt = r.

One can show that expectation and variance of Et are, respectively,

(1− r)t µY |PIC +
∑t

i=1
(1− r)t−i rµYi and

∑t

i=1
(1− r)2(t−i) r2σ2

Yi
.

If µYi = µY and σ2
Yi

= σ2
Y for all i, then the expectation and variance of Et are,

respectively,

(1− r)t µY |PIC +
(
1− (1− r)t

)
µY and

1− (1− r)2t

2− r
σ2
Y .

Further, it the process is in-control, then expectation of Et is µY |PIC . Often the

control limits for an EWMA chart are expressed in terms of the expectation and

variance of Et as

h−t = µY |PIC − k−
√

1− (1− r)2t

2− r
σ2
Y and

h+t = µY |PIC + k+

√
1− (1− r)2t

2− r
σ2
Y .

It is common in the literature to use LCLt and UCLt for h−t and h+t , respectively.

Note that the chart parameters k− and k+ do not depend on the value of t.

In the next section, we discuss EWMA charts in which Yt = |St|, the sample

generalized variance. In Section 3, the EWMA charts for which Yt = ln (|St|).

4.2 EWMA |S| Chart

The EWMA |S| chart is an EWMA chart in which Yt is selected to be the sample

generalized variance |St| of the tth sample taken in Phase II. Under the independent

multivariate normal model with Σ0 or |Σ0| known, the chart is a plot of the statistic
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Et versus the sample number t, where

E0 = µ|S||Σ=Σ0 and Et = (1− r)Et−1 + r |St| .

The control limits can be expressed as

h−t = µ|S||Σ=Σ0 − k−
√

1− (1− r)2t

2− r
σ|S||Σ=Σ0 and

h+t = µ|S||Σ=Σ0 + k+

√
1− (1− r)2t

2− r
σ|S||Σ=Σ0 ,

where

µ|S||Σ=Σ0 =
|Σ0|

(n− 1)p
∏p

i=1
(n− i) and

σ2
|S||Σ=Σ0

=
|Σ0|2

(n− 1)2p

(∏p

i=1
(n− i)

)
×
(∏p

i=1
(2 + n− i)−

∏p

i=1
(n− i)

)
.

For the case in which Σ0 is estimated by S0 obtained from the data collected in a

Phase I study that is believed to be from an in-control process, we have obtain an

estimate parameter version of the chart by substituting the unbiased estimator

mp (n− 1)p
∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

in place of the parameter |Σ0|. If follows that E0 is

E0 =
mp
∏p

i=1 (n− i)∏p
i=1 (m (n− 1)− (i− 1))

∣∣S0

∣∣
and the control limits are

h−t = A− k−Bt and h+t = A+ k+Bt,

where

A =
mp
∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

∏p

i=1
(n− i) and

Bt =

√
1− (1− r)2t

2− r
mp
∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

√∏p

i=1
(n− i)

×
√∏p

i=1
(2 + n− i)−

∏p

i=1
(n− i).
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An equivalent form of the chart in the parameters known case can be obtained

by defining the sequence of statistics E∗t by

E∗t =
∣∣(n− 1) Σ−10

∣∣Et.
We see that

E∗t =
∣∣(n− 1) Σ−10

∣∣ ((1− r)Et−1 + r |St|)

= (1− r)
∣∣(n− 1) Σ−10

∣∣Et−1 + r
∣∣(n− 1) Σ−10 St

∣∣
= (1− r)E∗t−1 + r

∣∣(n− 1) Σ−10 St
∣∣

with

E∗0 =
∏p

i=1
(n− i) .

The control limits for this form of the chart are

h−∗t =
∣∣(n− 1) Σ−10

∣∣h−
=
∏p

i=1
(n− i)− k−

√
1− (1− r)2t

2− r

√∏p

i=1
(n− i)

×
√∏p

i=1
(2 + n− i)−

∏p

i=1
(n− i) and

h+∗t =
∣∣(n− 1) Σ−10

∣∣h+
=
∏p

i=1
(n− i) + k+

√
1− (1− r)2t

2− r

√∏p

i=1
(n− i)

×
√∏p

i=1
(2 + n− i)−

∏p

i=1
(n− i).

Note that the chart parameters k− and k+ are the same for both forms of the chart.

Substituting the unbiased estimator ∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

in place of the parameter |Σ0|, we obtain the estimated parameters version of the

chart. The sequence of EWMA statistics E∗t and the control limits for this chart
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become

E∗t = (1− r)E∗t−1 + r

∏p
i=1 (m (n− 1)− (i− 1))

mp (n− 1)p

∣∣∣(n− 1) S
−1
0 St

∣∣∣
with the same initial value E∗0 and control limits h−∗t and h+∗t as the known parameters

version of the chart.

The control limits h−t and h+t (h−∗t and h+∗t ) are known as variable control limits.

We observe that

h− = lim
t→∞

h−t = µ|S||Σ=Σ0 − k−
√

1

2− r
σ|S||Σ=Σ0 and

h+ = lim
t→∞

h+t = µ|S||Σ=Σ0 + k+
√

1

2− r
σ|S||Σ=Σ0 .

Similarly, we have

h−∗ = lim
t→∞

h−∗t = µ|(n−1)Σ−1
0 S||Σ=Σ0

− k−
√

1

2− r
σ|(n−1)Σ−1

0 S||Σ=Σ0
and

h+∗ = lim
t→∞

h+∗t = µ|(n−1)Σ−1
0 S||Σ=Σ0

+ k+
√

1

2− r
σ|(n−1)Σ−1

0 S||Σ=Σ0
.

The control limits h− and h+ (h−∗ and h+∗) are known as asymptotic or fixed control

limits. The fixed control limits formulas for the estimated parameters version of the

chart can be easily determined by modifying the arguments for determining variable

control limits.

4.3 EWMA ln (|S|) Charts

[3] studied the EWMA ln(|S|) under the independent multivariate normal model with

known covariance matrix Σ0. The EWMA ln(|S|) is a plot of the EWMA statistic

Et, where

E0 = µln(|S|)|Σ=Σ0 and Et = (1− r)Et−1 + r ln (|St|) .
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The control limits can be expressed as

h−t = µln(|S|)|Σ=Σ0 − k−
√

1− (1− r)2t

2− r
σln(|S|)|Σ=Σ0 and

h+t = µln(|S|)|Σ=Σ0 + k+

√
1− (1− r)2t

2− r
σln(|S|)|Σ=Σ0 .

Recall that

µln(|S|)|Σ=Σ0 = ln

(
|Σ0|

(n− 1)p

)
+
∑p

i=1
µln(χ2

n−i)
and

σ2
ln(|S|)|Σ=Σ0

= σ2
ln(|S|) =

∑p

i=1
σ2
ln(χ2

n−i)
.

The estimated parameters version of this chart is obtained from the parameter known

version by replacing |Σ0| with its unbiased estimator

mp (n− 1)p
∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

.

It follows that initial value and control limits for the estimated parameters version

are

E0 = ln

(
mp
∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

)
+
∑p

i=1
µln(χ2

n−i)
;

h−t = ln

(
mp
∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

)
+
∑p

i=1
µln(χ2

n−i)

−k−
√

1− (1− r)2t

2− r

√∑p

i=1
σ2
ln(χ2

n−i)
; and

h−t = ln

(
mp
∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

)
+
∑p

i=1
µln(χ2

n−i)

+k+

√
1− (1− r)2t

2− r

√∑p

i=1
σ2
ln(χ2

n−i)
.

For the case in which p = 1, the EWMA statistic becomes ln (S2
t ).

An equivalent form of the parameters known chart is an EWMA chart that plots

the sequence of EWMA statistic E∗t versus the sample number t, where

E∗t = ln
(∣∣(n− 1) Σ−10

∣∣)+ Et.
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We see that

E∗t = ln
(∣∣(n− 1) Σ−10

∣∣)+ (1− r)Et−1 + r ln (|St|)

= (1− r) ln
(∣∣(n− 1) Σ−10

∣∣)+ (1− r)Et−1

+ r ln
(∣∣(n− 1) Σ−10

∣∣)+ r ln (|St|)

= (1− r)
(
ln
(∣∣(n− 1) Σ−10

∣∣)+ Et−1
)

+ r
(
ln
(∣∣(n− 1) Σ−10

∣∣)+ ln (|St|)
)

= (1− r)E∗t−1 + r ln
(∣∣(n− 1) Σ−10 St

∣∣) .

The control limits are

h−∗t = µln(|(n−1)Σ−1
0 S|)|Σ=Σ0

− k−
√

1− (1− r)2t

2− r
σln(|(n−1)Σ−1

0 S|)|Σ=Σ0
and

h+∗t = µln(|(n−1)Σ−1
0 S|)|Σ=Σ0

+ k+

√
1− (1− r)2t

2− r
σln(|(n−1)Σ−1

0 S|)|Σ=Σ0
.

Recall that

µU =
∑p

i=1
µln(χ2

n−i)
and σ2

U =
∑p

i=1
σ2
ln(χ2

n−i)
.

It follows that

µU = µln(|(n−1)Σ−1
0 S|)|Σ=Σ0

and σ2
ln(|(n−1)Σ−1

0 S|)|Σ=Σ0
= σ2

U .

Hence our initial value E∗0 and control limits can be expressed as

E∗0 = ln
(∣∣(n− 1) Σ−10

∣∣)+ ln

(
|Σ0|

(n− 1)p

)
+
∑p

i=1
µln(χ2

n−i)

=
∑p

i=1
µln(χ2

n−i)
;

h−∗t =
∑p

i=1
µln(χ2

n−i)
− k−

√
1− (1− r)2t

2− r

√∑p

i=1
σ2
ln(χ2

n−i)
; and

h+∗t =
∑p

i=1
µln(χ2

n−i)
+ k+

√
1− (1− r)2t

2− r

√∑p

i=1
σ2
ln(χ2

n−i)
.

Note that the chart parameters k− and k+ are not effected by the transformation.

We refer to this chart as the EWMA ln
(∣∣(n− 1) Σ−10 S

∣∣) chart. As with the EWMA
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ln(|S|), the estimated parameters version of the EWMA ln
(∣∣(n− 1) Σ−10 S

∣∣) chart is

obtained from the parameter known version by replacing the parameter |Σ0| with its

unbiased estimator

mp (n− 1)p
∣∣S0

∣∣∏p
i=1 (m (n− 1)− (i− 1))

.

The initial value and the control limits for the estimated parameters version of the

chart are of the same form as the parameters known case. That is, the initial values

and control limits of this chart are E∗0 , h−∗t , and h+∗t . However, the plotted statistic

E∗t has the form

E∗t = (1− r)E∗t−1 + r ln

(∏p
i=1 (m (n− 1)− (i− 1))

mp (n− 1)p

∣∣∣(n− 1) S
−1
0 St

∣∣∣) .

For the case in which p = 1, the EWMA statistic becomes ln ((n− 1)S2
t /σ

2
0).

4.4 Conclusion

The parameters know and the estimated parameters versions of EWMA charts based

on the sample generalized variance have been described.



CHAPTER 5

EVALUATING THE RUN LENGTH PERFORMANCE

5.1 Introduction

The run length of a chart is define to be the number T of the sample at which the chart

first signals. The run length distribution is a discrete distribution whose support is

the positive integers. In this section, we consider the case in which the control limits

do not depend on t. It is convenient in the parameters known case to let

pr (t |z ) = P (T = t |E0 = z ) ,

where h− < z < h−. In the parameters estimated case, we will also condition on the

value of Y0 = y0. In this case, we let

pr (t |z, y0 ) = P (T = t |E0 = z, Y0 = y0 ) .

When deriving expression describing various parameters of the run length distribu-

tion, we will use this expression since in general corresponding expressions for the

parameters known case are special cases.

Using the results found in [32], one can show that the “tail” probabilities of the

run length distribution can be approximated by a geometric distribution. There exist

a value λ such that

pr (t∗ + t |z, y0 ) ≈ λtpr (t∗ |z, y0 )

with 0 < λ < 1. An approximation to this approximation can be done by approxi-

mating λ by

λ̂1 =
pr (t∗ |z, y0 )

pr (t∗ − 1 |z, y0 )
and λ̂2 =

1−
∑t∗

t=1 pr (t |z, y0 )

1−
∑t∗−1

t=1 pr (t |z, y0 )
.

He suggested that λ̂2 may in general provide a better estimate of λ than λ̂1.
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The parameters of the run length distribution that are commonly of interest to

practitioners are the mean, standard deviation, and various percentiles. The mean is

commonly referred to as the average run length (ARL). It can be expressed as

µT = ARL =
∑∞

t=1
t · pr (t |z, y0 ) .

Using the approximation given in [32], we have

µT =
∑t∗

t=1
t · pr (t |z, y0 ) +

∑∞

t=t∗+1
t · pr (t |z, y0 )

=
∑t∗

t=1
t · pr (t |z, y0 ) +

∑∞

t=1
(t∗ + t) · pr (t∗ + t |z, y0 )

≈
∑t∗

t=1
t · pr (t |z, y0 ) +

∑∞

t=1
(t∗ + t) · λtpr (t∗ |z, y0 )

=
∑t∗

t=1
t · pr (t |z, y0 ) + pr (t∗ |z, y0 )

(
t∗
∑∞

t=1
λt +

∑∞

t=1
t · λt

)
.

It is easy to show that

∑∞

t=1
λt =

λ

1− λ
and

∑∞

t=1
t · λt =

λ

(1− λ)2
.

Thus, we have

µT ≈
∑t∗

t=1
t · pr (t |z, y0 ) + λpr (t∗ |z, y0 )

(
t∗

1− λ
+

1

(1− λ)2

)
=
∑t∗

t=1
t · pr (t |z, y0 ) + pr (t∗ + 1 |z, y0 )

(
t∗

1− λ
+

1

(1− λ)2

)
.

Similarly, one can show that

µT 2 ≈
∑t∗

t=1
t · pr (t |z, y0 ) + pr (t∗ + 1 |z, y0 )

(
(t∗)2

1− λ
+

2t∗ − 1

(1− λ)2
+

2

(1− λ)3

)
.

These are the results given in [32]. The variance σ2
T of the run length distribution

can be approximated by replacing the approximations of µT and µT 2 in the following

expression.

σ2
T = µT 2 − µ2

T .

The standard deviation σT will be referred to as SDRL.
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The 100 (1− α)th percentile Tα is the solution to the system of inequalities

P (T ≤ Tα) ≥ 1− α and P (T < Tα) < 1− α.

If Tα ≤ t∗, it is easy to obtain its value by a simple search. If Tα > t∗, then using the

approximation in [32] an approximation for Tα is

Tα ≈ t∗ − 1 +
ln
(

(1− λ)
(∑t∗

t=1 pr (t |z, y0 )− (1− α)
)
/pr (t∗ |z, y0 ) + λ

)
ln (λ)

.

This expression is similar to the one given in [32].

The most commonly used methods for evaluating the run length distribution are

simulation, integral equations, and Markov chains. In the next section, we discuss the

simulation methods. This is followed by a section on in which exact expressions are

given for the run length distribution using integral equations. In the third section,

we discuss how the chart can be approximated by a Markov chain. In Section 5, we

show that the integral equation and Markov chain methods are equivalent.

5.2 Simulation

We recall that the parameters known version of the EWMA
∣∣(n− 1) Σ−10 S

∣∣ is define

by the sequence

E∗0 =
∏p

i=1
(n− i) and E∗t = (1− r)E∗t−1 + r

∣∣(n− 1) Σ−10 St
∣∣
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and the control limits

h−∗t =
∏p

i=1
(n− i)− k−

√
1− (1− r)2t

2− r

√∏p

i=1
(n− i)

×
√∏p

i=1
(2 + n− i)−

∏p

i=1
(n− i) and

h+∗t =
∏p

i=1
(n− i) + k+

√
1− (1− r)2t

2− r

√∏p

i=1
(n− i)

×
√∏p

i=1
(2 + n− i)−

∏p

i=1
(n− i).

Note that E∗0 , h−∗t , and h+∗t do not depend on the values of |Σ0|. Further, recall that∣∣(n− 1) Σ−10 St
∣∣ =

∣∣Σ−10 Σ
∣∣ ∣∣(n− 1) Σ−1St

∣∣
= λ2Wt = λ2

∏p

i=1

(
χ2
n−i
)
t
,

where the Chi Square random variables
(
χ2
n−1
)
t
, . . . ,

(
χ2
n−p
)
t

are stochastically inde-

pendent. We now see that

E∗t = (1− r)E∗t−1 + r
(
λ2
∏p

i=1

(
χ2
n−i
)
t

)
.

To simulate the sequence of EWMA statistics E∗t one only needs to simulate the p

independent Chi Square random variates
(
χ2
n−1
)
t
, . . . ,

(
χ2
n−p
)
t

at each time t. The

first time T the chart signals is a simulated run length.

The value of Yt for the estimated parameters version of this chart is

Yt =

(∏p
i=1 (m (n− 1)− (i− 1))

mp (n− 1)p

) ∣∣∣(n− 1) S
−1
0 St

∣∣∣ .
This can be expressed as

Yt =

(∏p
i=1 (m (n− 1)− (i− 1))

mp (n− 1)p

) ∣∣Σ−10 Σ
∣∣ ∣∣m (n− 1) Σ−10 S0

∣∣−1 ∣∣(n− 1) Σ−1St
∣∣

=

(∏p
i=1 (m (n− 1)− (i− 1))

mp (n− 1)p

)
λ2W−1

0 Wt.

Recall that

W0 =
∏p

i=1

(
χ2
m(n−1)−(i−1)

)
0

.
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To simulate this charting procedure under the independent multivariate normal model,

first the value of W0 is obtained as the product of the simulated values of the inde-

pendent Chi Square random variables
(
χ2
m(n−1)−(1−1)

)
0
, . . . ,

(
χ2
m(n−1)−(p−1)

)
0
. Then

at each time t the value of Wt is the product of the simulated values of p indepen-

dent Chi Square random variables
(
χ2
n−1
)
t
, . . . ,

(
χ2
n−p
)
t
. The EWMA statistic is then

up-dated as

E∗t = (1− r)E∗t−1 + r

(∏p
i=1 (m (n− 1)− (i− 1))

mp (n− 1)p

)
λ2W−1

0 Wt.

The first time T the chart signals is a simulated run length.

In the known parameters versions of the EWMA ln
(∣∣(n− 1) Σ−10 S

∣∣) chart, we

can express the sequence of EWMA statistics E∗t as

E∗0 =
∑p

i=1
µln(χ2

n−i)
and E∗t = (1− r)E∗t−1 + r

(
θ +

∑p

i=1
ln
(
χ2
n−i
)
t

)
,

where θ = ln (λ2) and
(
χ2
n−1
)
t
, . . . ,

(
χ2
n−9
)
t

are stochastically independent.

5.3 Integral Equation Method

[10] show how integral equations can be derived that are useful in evaluating the run

length distribution of the chart. First, we consider the EWMA chart in which the

support of the distribution of Yt is the reals. It is useful to consider the EWMA chart

in which the initial value is some arbitrary value z between the fixed control limits

h− and h+. Thus, the sequence of EWMA statistics are defined by

E0 = z and Et = (1− r)Et−1 + rYt

with the chart signalling a potential out-of-control process if

Et ≤ h− or Et ≥ h+.
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For convenience, we let

pr (t |z ) = P (T = t |E0 = z ) .

For the case in which t = 1, we have

pr (1 |z ) = P (T = 1 |E0 = z )

= P
(
(1− r) z + rY1 ≤ h−

)
+ P

(
(1− r) z + rY1 ≥ h+

)
= FY

(
h− − (1− r) z

r

)
+ 1− FY

(
h+ − (1− r) z

r

)
.

For the case in which t > 1,

pr (t |z ) = P (T = t |E0 = z ) = P
(
T = t, h− < E1 < h+ |E0 = z

)
.

This holds since t > 1 which implies that the chart did not signal at time t = 1.

Thus, the event

{−∞ < E1 <∞} =
{
h− < E1 < h+

}
.

Hence,

P (T = t |E0 = z ) = P (T = t,−∞ < E1 <∞|E0 = z )

= P
(
T = t, h− < E1 < h+ |E0 = z

)
.

We can now write

pr (t |z ) = P
(
T = t

∣∣E0 = z, h− < E1 < h+
)

×P
(
h− < E1 < h+ |E0 = z

)
=

∫ h+

h−
P (T = t |E0 = z, E1 = e1 ) fE1|E0 (e1 |z ) de1.

Observe that

P (T = t |E0 = z, E1 = e1 ) = P (T − 1 = t− 1 |E0 = z, E1 = e1 ) .
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Note that the remaining run length T − 1 given E1 = e1 has the same distribution as

T given E0 = e1. Hence, we have

P (T = t |E0 = z, E1 = e1 ) = P (T = t− 1 |E0 = e1 ) = pr (t− 1 |e1 ) .

We now have

pr (t |z ) =

∫ h+

h−
pr (t− 1 |e1 ) fE1|E0 (e1 |z ) de1.

The cumulative distribution function FE1|E0 (e1 |z ) of E1 given E0 = z is

FE1|E0 (e1 |z ) = P (E1 ≤ e1 |E0 = z )

= P ((1− r) z + rY1 ≤ e1 |E0 = z )

= FY

(
e1 − (1− r) z

r

)
.

Thus, the probability density function fE1|E0 (e1 |z ) can be expressed in terms of the

probability density function of Y as

fE1|E0 (e1 |z ) = r−1fY

(
e1 − (1− r) z

r

)
.

It then follows that

pr (t |z ) =

∫ h+

h−
pr (t− 1 |e1 ) r−1fY

(
e1 − (1− r) z

r

)
de1.

While the aforementioned sequence of integral equations have the run length

distribution as their exact solution, an exact numerical solution cannot be obtained

exactly. However, an approximate numerical solution can be obtained. This done by

using what is commonly referred to as numerical integration.

Making the transformation

e1 = h− +
h+ − h−

2
(v + 1) with de1 =

h+ − h−

2
dv,

we have

pr (t |z ) =

∫ 1

−1
pr (t− 1 |e1 ) r−1fY

(
e1 − (1− r) z

r

)
h+ − h−

2
dv.
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Note that we did not substitute the expression for e1 in terms of v. The nodes

v1, . . . , vη and associated weights ω1, . . . , ωη of a Gaussian quadrature using Legurre

polynomials can be used to approximate the integral in the previous equation. We

now have

pr (t |z ) ≈
∑η

j=1
pr (t− 1 |e1j ) r−1fY

(
e1j − (1− r) z

r

)
h+ − h−

2
ωj,

where

e1j = h− +
h+ − h−

2
(vj + 1) .

For the t > 1, we have

pt =



pr (t |e11 )

pr (t |e12 )

...

pr (t |e1η )


≈



q11 q12 . . . q1η

q21 q22 . . . q2η
...

...
. . .

...

qη1 qη2 . . . qηη





pr (t− 1 |e11 )

pr (t− 1 |e12 )

...

pr (t− 1 |e1η )


= Qpt−1,

where

qij = r−1fY

(
e1j − (1− r) e1i

r

)
h+ − h−

2
ωj and

Q =



q11 q12 . . . q1η

q21 q22 . . . q2η
...

...
. . .

...

qη1 qη2 . . . qηη


.



37

for i, j = 1, . . . , η. For the case t = 1,

p1 =



pr (1 |e11 )

pr (1 |e12 )

...

pr (1 |e1η )


=



FY

(
h−−(1−r)e11

r

)
+ 1− FY

(
h+−(1−r)e11

r

)
FY

(
h−−(1−r)e12

r

)
+ 1− FY

(
h+−(1−r)e12

r

)
...

FY

(
h−−(1−r)e1η

r

)
+ 1− FY

(
h+−(1−r)e1η

r

)



=



1

1

...

1


+



FY

(
h−−(1−r)e11

r

)
− FY

(
h+−(1−r)e11

r

)
FY

(
h−−(1−r)e12

r

)
− FY

(
h+−(1−r)e12

r

)
...

FY

(
h−−(1−r)e1η

r

)
− FY

(
h+−(1−r)e1η

r

)


.

Observe that

FY

(
h−−(1−r)e11

r

)
+ 1− FY

(
h+−(1−r)e11

r

)
FY

(
h−−(1−r)e12

r

)
+ 1− FY

(
h+−(1−r)e12

r

)
...

FY

(
h−−(1−r)e1η

r

)
+ 1− FY

(
h+−(1−r)e1η

r

)


=



1−
∫ h+
h−

r−1fY

(
e1−(1−r)e11

r

)
de1

1−
∫ h+
h−

r−1fY

(
e1−(1−r)e12

r

)
de1

...

1−
∫ h+
h−

r−1fY

(
e1−(1−r)e1η

r

)
de1


Substituting∑η

j=1
r−1fY

(
e1j − (1− r) e1i

r

)
ωj for

∫ h+

h−
r−1fY

(
e1 − (1− r) e1j

r

)
de1,

we have

p1 ≈



1−
∑η

j=1 r
−1fY

(
e1j−(1−r)e11

r

)
ωj

1−
∑η

j=1 r
−1fY

(
e1j−(1−r)e12

r

)
ωj

...

1−
∑η

j=1 r
−1fY

(
e1j−(1−r)e1η

r

)
ωj


= (I−Q) 1.

Hence, the run length distribution can be expressed (approximately) as

p1 ≈ (I−Q) 1 and pt ≈ Qt−1 (I−Q) 1.
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p1 ≈ (I−Q) 1 and pt ≈ Qt−1 (I−Q) 1.

For the EWMA chart based on the statistic

Yt = ln
(∣∣(n− 1) Σ−10 St

∣∣) ,

then

fY

(
e1 − (1− r) z

r

)
= fU

(
e1 − (1− r) z − rθ

r

)
.

If EWMA statistic Yt is

Yt = ln
(∣∣∣(n− 1) S

−1
0 St

∣∣∣) ,

then we must consider the conditional distribution of Yt given U0 = u0. In this case,

we are interested in replacing

fY

(
e1 − (1− r) z

r

)
with

fY |U0

(
e1 − (1− r) z

r
|u0
)

= fU

(
e1 − (1− r) z − r (θ + ln (mp (n− 1)p)− u0)

r

)
.

It follows that pr (t |z ) is a function pr (t |z, u0 ) of u0. We then have

pr (t |z, u0 ) =

∫ h+

h−
pr (t− 1 |e1, u0 ) r−1

×fU
(
e1 − (1− r) z − r (θ + ln (mp (n− 1)p)− u0)

r

)
de1.

Further, we see that in our numerical approximation the matrix Q is a function of

u0. Hence, pt is a function pt (u0) of u0. The unconditional run length distribution

is then obtained as

pt =

∫ ∞
−∞

pt (u0) fU0 (u0) du0.
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5.4 Markov Chain Approximation

[4] developed a Markov chain approximation for the one-sided cumulative sum (CUSUM)

chart introduced by [25]. [21] introduced a fast-initial response feature to the CUSUM

chart. This method was used by [22] to evaluate the run length performance of the

EWMA chart with and without a fast-initial response used to monitor the mean of

a univariate quality measurement. We discuss the Markov chain approximation for a

more general version of the EWMA chart in this section.

Recall that the sequence of EWMA statistics based on the statistic Yt are defined

by

E0 = µ̂Y |PIC and Et = (1− r)Et−1 + rYt

and the chart signals at time t if

Et ≤ h− or Et ≥ h+.

To obtain a general Markov chain approximation for this EWMA chart, we first divide

the interval (h−, h+) into the η subintervals

(b0, b1] , (b1, b2] , . . . , (bη−2, bη−1] , (bη−1, bη)

with b0 = h− < b1 < b2 < . . . < bη−1 < bη = h+. We see that

(
h−, h+

)
= (b0, b1] ∪ (b1, b2] ∪ . . . ∪ (bη−2, bη−1] ∪ (bη−1, bη)

Next we select the points a1, a2, . . . , aη such that

b0 < a1 < b1 < a2 < b2 < . . . < bη−1 < aη < bη.

The non-absorbing states of our Markov chain are the values a1, a2, . . . , aη. The

transition probabilities from the non-absorbing state Et = ai to the non-absorbing
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state Et+1 = aj is

pij = P (bj−1 < Et+1 < bj |Et = ai ) .

If we let A be the absorbing state, then pAj = 0 for j = 1, . . . , η and pAA = 1. Also,

we have

piA = 1−
∑η

j=1
pij.

We then define the matrix P by

P =



p11 p12 . . . p1η p1A

p21 p2 . . . p2η p2A
...

...
. . .

...
...

pη1 pη2 . . . pηη pηA

0 0 . . . 0 1



(η+1)×(η+1)

.

Note that the (i, j)th coordinate of Pt is

p
(t)
ij =

 P (bj−1 < Et < bj |E0 = ai ) , for i, j = 1, 2, . . . , η and j = A;

pAj, for j = 1, 2, . . . , η, A.

It is useful to define the matrix Q by

Q =



p11 p12 . . . p1η

p21 p2 . . . p2η
...

...
. . .

...

pη1 pη2 . . . pηη



η×η

.

The matrix Q is the submatrix of P obtained by removing the last row and column of

P. For the Markov chain to transition from the non-absorbing state i to the absorbing

state A for the first time at time t, then the EWMA chart must signal for the first time

at time t. This happens at time t = 1 with probability piA. The values p1A, . . . , pηA
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can be expressed in matrix form as

p1A

p2A
...

pηA


=





1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


−



p11 p12 . . . p1η

p21 p2 . . . p2η
...

...
. . .

...

pη1 pη2 . . . pηη







1

1

...

1


= (I−Q) 1,

where 1 is an η× 1 vector of ones. For the Markov chain to enter the absorbing state

for the first time at time t, then it must transition from a non-absorbing state to a

non-absorbing state for the first t−1 transitions and then transition to the absorbing

state. Thus, we have in matrix form

pt =



p
(t)
1A

p
(t)
2A

...

p
(t)
ηA


=



p11 p12 . . . p1η

p21 p2 . . . p2η
...

...
. . .

...

pη1 pη2 . . . pηη



t−1 

p1A

p2A
...

pηA


= Qt−1 (I−Q) 1.

It follows that 

P (T = t |E0 = a1 )

P (T = t |E0 = a2 )

...

P (T = t |E0 = aη )


= Qt−1 (I−Q) 1.

If µ̂Y |PIC = ak, then

P
(
T = t

∣∣E0 = µ̂Y |PIC
)

= P (T = t |E0 = ak ) .

If ak−1 < µ̂Y |PIC < ak, then we can interpolate to obtain an approximations for
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P
(
T = t

∣∣E0 = µ̂Y |PIC
)
. Using linearly interpolation, we have

P
(
T = t

∣∣E0 = µ̂Y |PIC
)

= P (T = t |E0 = ak−1 ) +
µ̂Y |PIC − ak−1
ak − ak−1

× (P (T = t |E0 = ak )− P (T = t |E0 = ak−1 )) .

The vector of average run lengths can now be determined by

µT |a =



µT |E0=a1

µT |E0=a2

...

µT |E0=aη


=
∑∞

t=1
tQt−1 (I−Q) 1 = (I−Q)−1 1.

Further, we have

µT 2|a =



µT 2|E0=a1

µT 2|E0=a2

...

µT 2|E0=aη


=
∑∞

t=1
t2Qt−1 (I−Q) 1

=
(
I + 2Q (I−Q)−1

)
(I−Q)−2 (I−Q) 1

=
(
I + 2Q (I−Q)−1

)
(I−Q)−1 1.

It follows that

σ2
T |a =



σ2
T |E0=a1

σ2
T |E0=a2

...

σ2
T |E0=aη


=



µT 2|E0=a1

µT 2|E0=a2

...

µT 2|E0=aη


−



µ2
T |E0=a1

µ2
T |E0=a2

...

µ2
T |E0=aη


.

We can use the method given in [32] to obtain geometric tail approximations to

the run length distribution. This allows us to use the Markov chain approximation

to approximate the average run length (ARL), standard deviation of the run length

(SDRL), and percentage points of the run length distribution.
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This method of obtaining the Markov chain approximation to the EWMA chart

is a generalization of the one used by [22]. They state that the properties of an EWMA

control scheme can be approximated using a procedure similar to that described by

[4]. Although they suggested discretizing the control statistic and then evaluating

the exact properties of the discretized statistic, we evaluate the properties of the

continuous state Markov chain by discretizing the infinite-state transition probability

matrix. Their method divides the interval between the lower and upper control into

2m+ 1 equal width intervals of length 2δ. It follows that

δ =
(h+ − h−) /2

2m+ 1
.

Setting η = 2m+ 1,

bj = h− + 2jδ and aj = h− + (2j − 1) δ

for j = 1, . . . , 2m+ 1. Note that for j = 0, b0 = h−.

5.5 Some Numerical Results and Comparisons

In the known parameters case, suppose a practitioner is interested in using the EWMA

chart that plots the statistic Et versus t with smoothing parameter r and control limits

h−t and h+t , where

E0 =
∑p

i=1
µln(χ2

n−i)
and Et = (1− r)Et−1 + r ln

(∣∣(n− 1) Σ−10 St
∣∣)

and

h−t =
∑p

i=1
µln(χ2

n−i)
− k−

√
1− (1− r)2t

2− r

√∑p

i=1
σ2
ln(χ2

n−i)

and

h+t =
∑p

i=1
µln(χ2

n−i)
+ k+

√
1− (1− r)2t

2− r

√∑p

i=1
σ2
ln(χ2

n−i)
.
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Recall that

ln
(∣∣(n− 1) Σ−10 St

∣∣) ∼ θ +
∑p

i=1
ln
(
χ2
n−i
)

,

where

λ2 =
∣∣Σ−10 Σ

∣∣ and θ = ln
(
λ2
)

.

In order to use the EWMA chart, the practitioner first selects the values of the chart

parameters r, k−, and k+. Using simulation, values of k = k− = k+ were determined

for various values of r so that the chart has an in-control average run length of 100.

These results are presented in table 5.1.

p = 2, n = 10, θ = 0

r k

0.1 2.20

0.2 2.35

0.3 2.50

0.4 2.55

0.5 2.55

0.6 2.60

0.7 2.60

0.8 2.65

0.9 2.65

p = 3, n = 10, θ = 0

r k

0.1 2.20

0.2 2.40

0.3 2.45

0.4 2.50

0.5 2.55

0.6 2.60

0.7 2.60

0.8 2.60

0.9 2.60

Table 5.1: A chosen (r,k) combination that yields ARL=100.

Similar results could be obtained using the integral equation and Markov chain

methods.

It is our interest to compare the three methods, simulation, integral equation,

and Markov chain methods in determining the run length distribution. In table 5.2,

some average run lengths (ARLs) were determined using the three methods. The
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ARLs using simulation, integral equation, and Markov chain methods are denoted,

respectively, by ARLSIM , ARLIntEq, and ARLMC .

p = 2, n = 10, r = 0.5, k = 2.6

λ2 θ ARLSIM ARLINT.EQ ARLMC

0.6 -0.5 16.72 17.04 17.05

0.8 -0.22 48.18 48.06 48.01

1 0 109.29 107.24 106.9

1.2 0.18 92.24 94.47 94.12

1.4 0.34 45.25 46.11 46.03

p = 3, n = 10, r = 0.5, k = 2.55

λ2 θ ARLSIM ARLINT.EQ ARLMC

0.6 -0.5 23.31 23.38 23.29

0.8 -0.22 54.78 55.63 55.10

1 0 99.14 98.8 96.25

1.2 0.18 90.19 91.7 88.09

1.4 0.34 57.15 56.36 54.43

Table 5.2: Comparison of the methods in determining the run length distribution.

We see that the three methods given very similar results.

5.6 Equivalence of the Integral Equation and Markov Chain Methods

[8] showed that the integral equation and Markov chain methods for evaluating the run

length distribution for a cumulative sum (CUSUM) and EWMA charts are equivalent

provided the support of the statistic whose CUSUM/EWMA values being plotted

is the reals. This equivalence is based on the Markov chain approximation of the

CUSUM chart by [4] and the Markov chain approximation of the EWMA chart by
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[22].

As we have seen, the run length distribution of the EWMA chart can be expressed

at the exact solution to a sequence of iteratively obtained integral equations. Under

a given model, it is not possible to obtain a numerical solution. However, using

numerical methods one can obtain an approximate solution. On the other hand,

the Markov chain method begins with a Markov chain approximation of the chart.

The run length distribution of this approximate charting procedure can be obtained

numerically and this becomes the approximate run length distribution of the EWMA

chart. For each method of obtaining a numerical solution to the integral equation

representation of the run length there is a Markov chain approximation that yields

the same approximate run length distribution. In what follows, we will show that

the integral equation method when a particular numerical approximation is used will

result in the same approximate run length distribution of the EWMA chart when the

[22] method based on [4] method is used to approximate the run length distribution.

Further, we show how one can select a Markov chain approximation to the chart

that will provide a more accurate approximation to the run length distribution. We

consider only the case in which the support of the statistic whose EWMA values are

being plotted is the reals.

As we have seen

pr (t |z ) =

∫ h+

h−
pr (t− 1 |e1 ) r−1fY

(
e1 − (1− r) z

r

)
de1

=
∑η

j=1

∫ bj

bj−1

pr (t− 1 |e1 ) r−1fY

(
e1 − (1− r) z

r

)
de1.

By the Weighted Mean Value Theorem for Integrals ([5]), there exists a real number
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αj such that ∫ bj

bj−1

pr (t− 1 |e1 ) r−1fY

(
e1 − (1− r) z

r

)
de1

= pr (t− 1 |αj )

∫ bj

bj−1

r−1fY

(
e1 − (1− r) z

r

)
de1.

We have then that

pr (t |z ) =
∑η

j=1
pr (t− 1 |αj )

∫ bj

bj−1

r−1fY

(
e1 − (1− r) z

r

)
de1

=
∑η

j=1
pr (t− 1 |αj )

(
FY

(
bj − (1− r) z

r

)
− FY

(
bj−1 − (1− r) z

r

))
.

Approximating αj with aj, we have

pr (t |z ) ≈
∑η

j=1
pr (t− 1 |aj )

(
FY

(
bj − (1− r) z

r

)
− FY

(
bj−1 − (1− r) z

r

))
.

In particular, we have

pr (t |ai ) ≈
∑η

j=1
pr (t− 1 |aj )

(
FY

(
bj − (1− r) ai

r

)
− FY

(
bj−1 − (1− r) ai

r

))
.

This yields the same results as the Markov chain method for approximating the run

length distribution.

In a previous section on the integral equation method, the integral∫ h+

h−
pr (t− 1 |e1 ) r−1fY

(
e1 − (1− r) z

r

)
de1

was approximated using a Gaussian quadrature method. This resulted a set of quadra-

ture points and a matrix Q. The Markov chain in which this set of quadrature points

are the states and the matrix Q the transition matrix can be used as a Markov chain

approximation of the chart. Clearly, this Markov chain approximation and the as-

sociated integral equation method lead to the same approximation of the run length

distribution. Hence, the two methods are equivalent.
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5.7 Steady-State Run Length Distribution

The run length distribution that as been presented is known as the initial state run

length distribution since it depends on the initial value of the EWMA chart. If the

initial is random, then the run length distribution is known as the steady-state run

length distribution. [13] suggested a technique for approximating the steady-state

distribution with a cyclic steady-state distribution.[6] applied his method to obtain

the steady-state run length distribution of a Shewhart chart supplemented with runs

rules.

The method suggested by [13] for determining an approximate cyclic steady-state

probability vector, pss, is to replace the transition matrix P with the matrix P∗ given

as

P∗ =

 Q (I−Q) 1

1, 0, . . . , 0 0


with the transition probabilities determined under the assumption the process is in-

control. The vector pss is the probability distribution of the initial-state of the Markov

chain. The matrix P∗ is referred to as the ergodic transition matrix. [22] method of

determining the value of pss is a two stage procedure. First a vector p is determined

by solving the equation p = P∗Tp subject to 1Tp = 1. Then the steady-state

probability vector is found by

pss =
(
1Tq

)−1
q,

where q is determined from p by eliminating the component associated with the

absorbing state. [6] showed that q could be simply determined by

q =
(
G−QT

)−1
u,
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where

G =



2 1 1 . . . 1

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


and u =



1

0

0

...

0


.

The steady-state probability distribution pss,t of the run length is

pss,t = pT
sspt

for t = 1, 2, 3, . . .. The steady-state average run length of the chart is then given by

µT |a = pT
ssµT |a .

Other parameters of the steady-state run length distribution can be determined in a

similar way.

5.8 Conclusion

Methods for evaluating the run length distribution of the various EWMA charts based

on the sample generalized variance chart were examined. This included both fixed

and steady-state run length distributions. Although simulation, integral equation,

and a Markov approximation are the most commonly used methods for studying

properties of the run length distribution, these are not the only methods. [28] look at

the sequence of EWMA statistics Et as an autoregressive process of order 1. From this

view, an Edgewood expansion was used to approximate the probability density and

cumulative density function of the process. By summing an approximated survival

function and truncating the sum at a finite state to obtain the average run length

of the chart. Their method does not have the easy of use as the integral equation

method nor does it provide more accurate results.



CHAPTER 6

CONCLUSION

6.1 General Conclusions

The exponentially weighted moving average (EWMA) chart based on the sample

generalized variance was studied under the independent multivariate normal model

for the vectors of quality measurements X. In Chapter 2, the model and sampling

methods for this study were discussed. In Chapter 3 some distributional results were

presented. In particular, two methods for determining numerically probability density

and cumulative density functions of the sample generalized variance were examined.

Two EWMA charts used to monitor for a change in the process generalized variances

were outlined. One is based on the sample generalized variance and the other on

the natural logrithm of the sample generalized variance. The estimated parameters

verison of these two charting procedures were introduced.

Evaluating the performance of a chart is typically done by examining the run

length distribution. Three methods, simulation, integral equations, and Markov chain

approximation, used to determine the run length distribution of the chart were stud-

ied. The equivalence of the integral equation and Markov chain methods was shown.

Finally, some examples of the implementation of these methods using MATLAB were

given.

6.2 Areas for Further Research

Various control charting procedures for monitoring for a change in the process gener-

alized variance have been proposed in the literature. We are interested in comparing

the EWMA chart based on the sample generalized variance with these charts both in

the parameters known and estimated cases.
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As previously mentioned, it maybe more reasonable to assume that the vectors

of quality measurements are autocorrelated. One question that arises is how well does

an EWMA based on the sample generalized variance designed under the assumption

the vectors of quality measurements are stochastically independent perform when in

fact the vectors of quality measurements are autocorrelated. Autocorrelated models

for multivariate measurement of the Box-Jenkin type could be used for this study.

The EWMA charts discussed in this thesis are based on the sample generalized

variance. We are interested in studying a multivariate version of the EWMA chart

that plots the statistic |Et| versus t, where the matrix Et is defined by

E0 = Σ0 and Et = (1− r) Et−1 + rSt

when Σ0 is known and Et is defined by

E0 = S0 and Et = (1− r) Et−1 + rSt

in the parameters estimated version of the chart. The chart signals a potential out-

of-control process with respect to the process covariance matrix Σ if |Et| ≤ h− or

|Et| ≥ h+.

We are also interested in the robustness of the charts. We plan a study that

includes examining actual process data to determine how robust are model is to these

data.

It was suggested that the charts be based on the Frobenius norm of the sample

covariance matrix instead of its determinant. The Frobenius norm of the sample

covariance matrix S is

||S||F =

√∑p

i=1

∑p

i=1
S2
ij,

where Sij is the (i, j)th component of S. See [16, p. 55]. We are interested in

comparing the EWMA charts based on this sample measure with those base on the

sample generalized variance.
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