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by
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(Under the Direction of Jimmy Dillies)

ABSTRACT

The first idea of this research was to study a topic that is related to both Algebra and

Topology and explore a tool that connects them together. That was the entrance for

me to the adic world. What was needed were some important concepts from Algebra

and Topology, and so they are treated in the first two chapters. The reader is assumed

to be familiar with Abstract Algebra and Topology, especially with Ring theory and

basics of Point-set Topology. The thesis consists of a motivation and four chapters,

the third and the fourth being the main ones. In the third chapter, we introduce

the p-adic numbers and the f -adic rings, while adic spaces are considered in the last

chapter. Adic spaces are relatively new topic in pure mathematics that have seen

many developments in the last few years. Their significance enters from the bridging

ability that they have to connect Algebra and Geometry, as we can see in the last

chapter.

INDEX WORDS: Valuation, p-adic integer, f -adic ring, Huber pair, Presheaf, Adic
space.

2009 Mathematics Subject Classification: 13F30, 13J, 14G22



A JOURNEY TO THE ADIC WORLD

by

FAYADH KADHEM

B.Sc., University of Bahrain, Bahrain, 2016

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA



c©2018

FAYADH KADHEM

All Rights Reserved



1

A JOURNEY TO THE ADIC WORLD

by

FAYADH KADHEM

Major Professor: Jimmy Dillies
Committee: Paul Sobaje

Alina Iacob
Enka Lakuriqi

Electronic Version Approved:
December 2018



2

DEDICATION

This thesis is dedicated to my lovely wife Huda Albasri, my father and my mother.



3

ACKNOWLEDGMENTS

First of all, I would like to stand and thank my great and kind supervisor Dr Jimmy

Dillies for everything that he gave me; his effort, his time, his help and of course his

knowledge. I had an unforgettable time under his supervision, I wish to him all the

best in his life.

Also, I would like to express my appreciation to Dr Ahmed Matar, my undergraduate

professor. He still helps me and gives me his useful comments and advice.

My family and my lovely wife Huda Albasri deserve my special thanks as well, they

keep pushing me forward and give me everything that I need in order to succeed.

I also want to give special gratitude to my previous math professors and teachers that

taught me in previous levels in my career, especially Dr Mohammed Larbi Labbi, Dr

Kifah Alhami, T.Jafer Abdulhusain, T.Ahmed Hubail and T.Jafer Matar. I can-

not forget their effect and their guidance to make correct choices at very important

moments in my life.



4

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER

1 Valuations and Categories . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Ordered Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Valuation Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Categories and Functors . . . . . . . . . . . . . . . . . . . . . . 16

2 Spectral Spaces and Topological Algebra . . . . . . . . . . . . . . . . . 19

2.1 Spectral Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Topological Algebra . . . . . . . . . . . . . . . . . . . . . . . . 20

3 p-adic Integers and f -adic Rings . . . . . . . . . . . . . . . . . . . . . . 24

3.1 p-adic Integers and p-adic Numbers . . . . . . . . . . . . . . . . 24

3.2 f -adic Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Adic Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Huber Pairs and Adic Spectrum . . . . . . . . . . . . . . . . . . 32

4 Adic Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 The Presheaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Adic Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



5

4.3 Formal Schemes as Adic Spaces . . . . . . . . . . . . . . . . . . 40

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



6

LIST OF SYMBOLS

C Complex Numbers

R Real Numbers

R+ Positive Real Numbers {x ∈ R : x > 0}

R− Negative Real Numbers {x ∈ R : x < 0}

Q Rational Numbers

Z Integers

N Natural Numbers {0, 1, 2, 3, ...}



7

CHAPTER 1

VALUATIONS AND CATEGORIES

1.1 Motivation

Before we begin, let us try to motivate the ideas behind the concepts and notions

that are defined later. Definitions are only useful if they provide a reasonable way to

gain results.

We start our journey by defining a valuation to be a map |·| sending a ring

A to a totally ordered monoid Γ ∪ {0}, satisfying some axioms with the property

that two valuations are equivalent if any a, b ∈ A have the same total order as

images of either valuations. Then we define the continuity of a valuation to be

analogous to the continuity with respect to the ring topology on A. This guides

us to define Cont(A) to be the set of equivalence classes of continuous valuations

of A. We then consider the situation of an f -adic (or Huber) ring A, which is a

topological ring with an open subring A0 that is I-adic for a finitely generated ideal

I ⊆ A0, and a Huber (or affinoid) pair (A,A+) where A is f -adic and A+ is an

integrally closed open subring. We then define the adic spectrum to be subspace

Spa(A) := {v ∈ Cont(A) : ∀a ∈ A+, v(a) ≤ 1} of Cont(A).

The idea behind that is motivated by the fact that the category of adic spaces

(amazingly) provides a natural home for many important theories; in particular,

this category contains the category of schemes, formal schemes, and their generic

fibers (which are realizable as rigid analytic spaces and Berkovich spaces) as full

subcategories. In fact, if one allows A to be any topological ring, one would lose the

intuition for how adic spaces relate to formal geometry.

In this chapter we describe the notion of valuation ring. We begin by describing

ordered groups and valuations and then move on to valuation ring. Valuations are a

tool to measure the “size” of objects in a ring,.... Lastly, we give a brief overview to
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the language of Categories in order to describe more concisely the upcoming results.

Our main reference for this chapter is the book by Samuel and Zariski [7].

1.2 Ordered Groups

Definition 1.2.1. A totally ordered group (G, ·,≤) is an abelian group with a binary

operation · and a total order ≤ such that a ≤ b implies that ac ≤ bc for all a, b, c ∈ G.

If there is no fear of ambiguity we may simply write G instead of (G, ·,≤).

Example 1.2.2. The set (R+, ·,≤) of positive real numbers with the usual multipli-

cation and total order is a totally ordered group.

Example 1.2.3. Let G be a totally ordered group. Then every subgroup H of G is

a totally ordered group. It is called a totally ordered subgroup.

Notation. Let G be a totally ordered group. If g ∈ G and H ⊆ G such that g ≤ h for

all h ∈ H then we denote this by writing g ≤ H.

Definition 1.2.4. Let G1, G2, ..., Gn be totally ordered groups, where n ∈ Z+. Let

(a1, a2, ..., an), (b1, b2, ..., bn) ∈
∏n

i=1Gi and k = min{i ∈ {1, ..., n} : ai 6= bi}. Define

(a1, a2, ..., an) < (b1, b2, ..., bn) if ak < bk. This ordering is called the lexicographic

order (or the dictionary order).

Example 1.2.5. Let G1, G2, ..., Gn be totally ordered groups, where n ∈ Z+. Then∏n
i=1Gi is a totally ordered group under the lexicographic order.

Example 1.2.6. If (a1, a2, ..., an), (b1, b2, ..., bn) ∈
∏n

i=1Gi, then it is not a totally

ordered group for the order defined as (a1, a2, ..., an) < (b1, b2, ..., bn) if and only if

ai < bi for all i ∈ {1, ..., n}.

Definition 1.2.7. Let G1 and G2 be two totally ordered groups. A totally ordered

group homomorphism φ between G1 and G2 is a group homomorphism such that



9

a ≤ b in G1 implies that φ(a) ≤ φ(b) in G2. If φ is a group isomorphism with the

same property then φ is said to be a totally ordered group isomorphism.

Remark. The inverse of a totally ordered group isomorphism is also totally ordered.

In fact, for any φ(a) ≤ φ(b) ∈ G2 we have φ−1[φ(a)] = a ≤ b = φ−1[φ(b)].

Example 1.2.8. The map ex : (R,+,≤) → (R+, ·,≤) is an isomorphism of totally

ordered groups.

Definition 1.2.9. Let G be a totally ordered group. We extend G to a totally ordered

monoid G∪{0} by adding a zero element 0 and endowing it the following properties:

for any g ∈ G, 0 < g and 0 · g = g · 0 := 0.

Remark. If φ is a totally ordered group isomorphism between G1 and G2, then we

may extend it to a totally ordered monoid isomorphism by defining φ(0) := 0.

Example 1.2.10. The totally ordered groups (R,+,≤) and (R+, ·,≤) can be ex-

tended to totally ordered monoids by adding −∞ and 0 to be their zero elements

respectively. Letting e−∞ = 0 induces a totally ordered monoid isomorphism between

(R ∪ {−∞},+,≤) and (R+ ∪ {0}, ·,≤).

Proposition 1.2.11. Let G be a totally ordered group with identity 1 and let a, b ∈ G.

Then,

1. a < 1 if and only if a−1 > 1.

2. a, b ≤ 1 implies that ab ≤ 1.

3. a < 1, b ≤ 1 implies that ab < 1.

4. a, b ≥ 1 implies that ab ≥ 1.

5. a > 1, b ≥ 1 implies that ab > 1.
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6. The only element of finite order is 1.

Proof. We prove parts 1,2 and 6. The rest are similar to part 2. For part 1, note

that a < 1 implies that a · a−1 < 1 · a−1 by definition, which is equivalent to 1 < a−1.

The converse is similar. For part 2, note that a ≤ 1 implies that ab ≤ b, but b ≤ 1,

therefore ab ≤ 1. Now to prove part 6, without loss of generality assume that a < 1

then parts 3 and 5 imply that an < 1 or an > 1 for any nonzero integer n.

Definition 1.2.12. A subgroup H of a totally ordered group G is said to be convex

if for all h1, h2 ∈ H and g ∈ G with h1 ≤ g ≤ h2, we have g ∈ H.

Proposition 1.2.13. Let G be a totally ordered group and H a totally ordered sub-

group of G. The following are equivalent:

1. H is convex.

2. For all h ∈ H and g ∈ G with h ≤ g ≤ 1, we have g ∈ H.

3. If g, h ≤ 1 and gh ∈ H, then g, h ∈ H.

Proof. (1)⇒ (2) : Any subgroup contains the identity 1. Hence, g ∈ H by definition.

(2)⇒ (3) : Note that gh ≤ g, h ≤ 1. Thus, g, h ∈ H by (2).

(3) ⇒ (1) : Let h1, h2 ∈ H and g ∈ G with h1 ≤ g ≤ h2. Multiplying by g−1 gives

h1g
−1 ≤ 1. Also, multiplying by h2

−1 implies that gh2
−1 ≤ 1. Now, h1g

−1, gh2
−1 ≤ 1,

with h1g
−1 ·gh2−1 = h1h2

−1 ∈ H. Thus, gh2
−1 ∈ H, and hence gh2

−1 ·h2 = g ∈ H.

Example 1.2.14. 1. Let G be a totally ordered group. Then, {1} and G are

convex.

2. Let G1, ..., Gn be totally ordered groups. Then
∏n

i=kGi is a convex subgroup of∏n
i=1Gi under the lexicographic order for any k ∈ {1, ..., n}.
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Proposition 1.2.15. Let G be a totally ordered group, H1 and H2 be convex sub-

groups. Then either H1 ⊆ H2 or H2 ⊆ H1.

Proof. Assume there exist h1 ∈ H1 −H2 and h2 ∈ H2 −H1. After possibly replacing

these elements by their inverses we may assume that h1, h2 < 1. Also, after possibly

swapping H1 with H2 we may assume that h1 < h2. But then h2 ∈ H1, because H1

is convex. A contradiction to h2 ∈ H2 −H1.

Proposition 1.2.16. Let φ : G → G′ be a totally ordered group homomorphism.

Then kerφ is a convex subgroup of G.

Proof. Let x, y ∈ kerφ and g ∈ G such that x ≤ g ≤ y. Since φ is a homomorphism,

φ(x) ≤ φ(g) ≤ φ(y). But x, y ∈ kerφ. Thus, 1 ≤ φ(g) ≤ 1. Hence, φ(g) = 1 and

g ∈ kerφ.

Definition 1.2.17. Let G be a totally ordered group. The number of convex sub-

groups different from {1} and G is called the height of G and denoted by ht(G).

Example 1.2.18. The only convex subgroups of (R+, ·,≤) are {1} and R+. There-

fore, the height of (R+, ·,≤) is 0.

1.3 Valuation

Definition 1.3.1. Let A be a ring. A valuation of A is a map |·| : A → Γ ∪ {0}

where Γ is a totally ordered group, such that

1. |a+ b| ≤ max{|a|, |b|} for all a, b ∈ A.

2. |ab| = |a||b| for all a, b ∈ A.

3. |0| = 0 and |1| = 1.
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The subgroup of Γ generated by Im(|·|) − {0} is called the value group of |·|. It is

denoted by Γ|·|. The set supp(|·|) := |·|−1(0) is called the support of |·|.

The second and third conditions show that |u| 6= 0 for every u ∈ A× and |u−1| = |u|−1.

Moreover, |−1||−1| = 1 shows that |−1| = 1 because the only element of finite order

in Γ is 1. Consequently, |−x| = |x| for all x ∈ A.

Example 1.3.2. LetA be a ring and p be a prime ideal of A. Then, a 7→


1, if a /∈ p

0, if a ∈ p

is a valuation with value group {1} and supp = p. Every valuation of A of this

form is called a trivial valuation.

Example 1.3.3. Let |·| be a valuation on a field K and Γ be its value group. Let

A := K[x1, ..., xn] be the ring of n variables over K, and endow the group (R+)n × Γ

with the lexicographic order. Fix some real numbers 0 < s1, ..., sn < 1. Then the

map |·|′ : A→ (R+)n × Γ ∪ {0} defined by∑
i=(i1,...,in)

aix1
i1 · · · xnin 7→ s1

j1 · · · snjn|aj|, where j = inf{i ∈ Zn : ai 6= 0} is a

valuation on A.

Remark. If ϕ : B → A is a ring homomorphism and |·| is a valuation of A. Then

|·| ◦ ϕ is a valuation of B.

Proposition 1.3.4. Let A be a ring and a, b ∈ A such that |a| 6= |b|. Then |a+ b| =

max{|a|, |b|}.

Proof. Without loss of generality, let |a| < |b|. Assume for contrary that |a + b| <

max{|a|, |b|} = |b|. Then, |b| = |b+ a− a| ≤ max{|b+ a|, |a|} < |b|. A contradiction.

Proposition 1.3.5. Let |·| be a valuation of A. Then supp(|·|) is a prime ideal of A.
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Proof. Let ab ∈ supp(|·|). Then |a||b| = |ab| = 0. Thus, we must have |a| = 0 or

|b| = 0. Equivalently, a ∈ supp(|·|) or b ∈ supp(|·|).

Example 1.3.6. Consider the planar curve y = x2, which can be represented by

C : {(x, x2) : x ∈ R} ⊆ R2.

Define the valuation |·| : C → R by |(x1, x21) + (x2, x
2
2)| = max{|x1|, |x2|}. Then

supp(|·|) = {0} which is a prime ideal.

Proposition 1.3.7. Let |·| : A → Γ ∪ {0} be a valuation and K denote the field

of fractions of A/supp(|·|). Then |·|′ : K → Γ ∪ {0}, defined by
ā

b̄
7→ |a||b|−1 is a

valuation, where ā and b̄ are the images of a and b respectively in A/supp(|·|).

The following illustrates the transformations between each algebraic structure:

A→ A/supp(|·|)→ K → Γ ∪ {0}

a, b 7→ ā, b̄ 7→ ā

b̄
7→ |a||b|−1

Proof. First, we show that |·| is well defined. Let
ā

b̄
=

ā′

b̄′
. If ā = 0, then ā′ = 0

and |a||b|−1 = |a′||b′|−1 = 0. Otherwise, we have āb̄′ = ā′b̄. Which implies that

ab′ = a′b + x where x ∈ supp(|·|). Thus, |ab′| = |a′b + x|. But, |a′b + x| = |a′b|

by Proposition1.2.4, since |a′b| > 0 = |x|. Therefore, |a||b′| = |a′||b|, or equivalently,

|a||b|−1 = |a′||b′|−1.

Now, let
ā

b̄
,
c̄

d̄
∈ K. In order to prove that, | ā

b̄
+
c̄

d̄
|′ ≤ max{| ā

b̄
|′, | c̄

d̄
|′}, consider

the following: | ā
b̄

+
c̄

d̄
|′ = | ād̄+ c̄b̄

b̄d̄
|′ = |ad+ cb

bd
|′ = |ad+cb||bd|−1 = |ad+cb||(bd)−1| =

|ad + cb||d−1b−1| = |add−1b−1 + cbd−1b−1| = |ab−1 + cd−1|. Since |·| is a valuation,

we get that | ā
b̄

+
c̄

d̄
|′ = |ab−1 + cd−1| ≤ max{|ab−1|, |cd−1|} = max{| ā

b̄
|′, | c̄

d̄
|′} by the

definition of |·|′.

Next, | ā
b̄
· c̄
d̄
|′ = | āc̄

b̄d̄
|′ = |ac

bd
|′ = |ac||bd|−1 = |acd−1b−1| = |ab−1||cd−1| = | ā

b̄
|′| c̄
d̄
|′.
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Also, |0|′ = | 0̄
b̄
|′ = |0||b|−1= 0 and |1|′ = | b̄

b̄
|′ = |b||b|−1 = 1, completes the proof.

Remark. In the previous Proposition, we have that Γ|·| = Γ|·|′ .

Definition 1.3.8. Two valuations |·|1 and |·|2 on A are said to be equivalent if there

is a totally ordered group isomorphism φ : Γ|·|1 → Γ|·|2 such that φ ◦ |·|1 = |·|2.

Example 1.3.9. Let p be a prime number. The p-adic norm || · ||p (see definition

3.1.8) is a valuation on Z. Fix an integer a > 1 such that gcd(a, p) = 1. Let n ∈ Z,

define |n|p,a as follows:

|n|p,a =


1

av(x)
, if n 6= 0

0, if n = 0

.

Then || · ||p and |·|p,a are equivalent valuations on Z.

Remark. Often when we have a valuation on A and raise it to a certain positive

power, we get equivalent valuations on A.

Proposition 1.3.10. Let |·|1 and |·|2 be two valuations on A. Then the following are

equivalent:

1. |·|1 and |·|2 are equivalent.

2. For all a, b ∈ A, |a|1 ≤ |b|1 if and only if |a|2 ≤ |b|2.

Proof. (⇒) : Let |a|1 ≤ |b|1. Then, φ(|a|1) ≤ φ(|b|1), since φ is a totally ordered

group isomorphism. That is, |a|2 ≤ |b|2 by definition. The converse follows, since φ

is an isomorphism.

(⇐) : Define f : Γ|·|1 → Γ|·|2 by f(|a|1) = |a|2. We wish to show that f is an

isomorphism between totally ordered groups.
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• Surjectivity: Let y ∈ Γ|·|2 . Then, there exists an x ∈ A such that |x|2 = y.

Thus, f(|x|1) = |x|2 = y.

• Injectivity: Let |a|1 = |b|1 ∈ Γ|·|1 such that f(|a|1) = f(|b|1). That is, |a|2 = |b|2.

Hence, |a|1 = |b|1 by assumption.

• Homomorphism: Let |a|1, |b|1 ∈ Γ|·|1 . Then, Let f(|a|1|b|1) = f(|ab|1) = |ab|2 =

|a|2|b|2 = f(|a|1) · f(|b|1). Also, |a|1 ≤ |b|1 implies that f(|a|1) = |a|2 ≤ |b|2 =

f(|b|1) by assumption.

Remark. The relation “equivalent” in valuations is an equivalence relation.

1.4 Valuation Rings

Definition 1.4.1. Let B be an integral domain and K be its field of fractions. Then

B is called a valuation ring if for each x ∈ K×, either x ∈ B or x−1 ∈ B (or both).

Proposition 1.4.2. Let B be a valuation ring and K be its field of fractions. Then,

1. B is a local ring.

2. If B′ is a ring such that B ⊆ B′ ⊆ K, then B′ is a valuation ring of K.

Proof. 1. Let m := {x ∈ B : x = 0 or x−1 /∈ B}, the set of non-units in B. To

prove that B is local, it is enough to show that m is an ideal. If a ∈ B and

x ∈ m we have ax ∈ m, otherwise (ax)−1 ∈ B and therefore x−1 = a·(ax)−1 ∈ B

which contradicts the definition of m. Next let x, y ∈ m − {0}. Then either

xy−1 ∈ B or x−1y ∈ B, since B is a valuation ring. If xy−1 ∈ B then x + y =

(1 + xy−1)y ∈ Bm ⊆ m, and similarly if x−1y ∈ B. Hence, m is an ideal and

therefore B is local.
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2. Clear from the definitions.

Proposition 1.4.3. Let B be an integral domain and K be its field of fractions.

Then B is a valuation ring if and only if there exists a valuation | · | on K such that

B = {x ∈ K : |x| ≤ 1}.

Proof. (⇐) : Given any x ∈ K, if |x| ≤ 1 then x ∈ B by definition. Otherwise |x| > 1,

thus |x−1| < 1 and x−1 ∈ B.

(⇒) : Define |·| : K → K×/B× ∪ {0}, by

|x| =


0, if x = 0

[x], if x ∈ K×

where [x] = x + B× and [x] ≤ [y] if xy−1 ∈ B. Then | · | is a valuation on K such

that B = {x ∈ K : |x| ≤ 1}.

Example 1.4.4. Let F be any field. Then F is a valuation ring.

Example 1.4.5. Let K = F (x) where F is a field and F (x) is the field of fractions

of F [x]. Let B be the set of all rational functions f/g ∈ F (x) such that deg f(x) ≤

deg g(x), then B is a valuation ring.

1.5 Categories and Functors

Definition 1.5.1. A category C consists of a class of objects ob(C) and a class of

morphisms (or arrows) between objects A and B denoted Mor(A,B) and a binary

operation defined on compatible pairs called composition and denoted by ◦ in which

1. for any morphisms f ∈ Mor(A,B) and g ∈ Mor(B,C) there exists a morphism

g ◦ f ∈ Mor(A,C),
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2. if f ∈ Mor(A,B), g ∈ Mor(B,C) and h ∈ Mor(C,D) then h◦(g◦f) = (h◦g)◦f ,

3. for any object A ∈ ob(C) there exists an identity morphism idA ∈ Mor(A,A)

such that f ∈ Mor(B,C) implies that f = idC ◦ f = f ◦ idB.

The key idea that we do not discuss elements here, but objects.

Example 1.5.2. 1. The class of sets as objects and functions as morphisms with

the usual composition is a category of sets.

2. The class of groups as objects and group homomorphisms as morphisms with

the usual composition is a category of groups.

3. The class of vector spaces as objects and linear transformations as morphisms

with the usual composition is a category of vector spaces.

4. The class of topological spaces as objects and continuous maps as morphisms

with the usual composition is a category of topological spaces.

Definition 1.5.3. Let C be a category such that A,B,C ∈ ob(C) and f ∈ Mor(A,B)

then,

i) f is monic (or a monomorphism) if for all g1, g2 ∈ Mor(C,A) f ◦ g1 = f ◦ g2

implies that g1 = g2,

ii) f is epic (or an epimorphism) if for all g1, g2 ∈ Mor(B,C) g1◦f = g2◦f implies

that g1 = g2.

Definition 1.5.4. A functor F is a map between two categories C1 and C2 that maps

objects to objects and morphisms to morphisms such that

• if idX is the identity morphism of the object X in C1 then F (idX) = idF (X) is

the identity morphism of the object F (X) of C2,
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• F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z in C1.

Example 1.5.5. 1. The map F1 from the category of groups to the category of

sets that maps each group to the set containing its elements and each group

homomorphism to itself as a function is a functor.

2. The map F2 that maps each topological space to its fundamental group and

each continuous map to the induced map between the fundamental groups is a

functor from the category of topological spaces to the category of groups.

Definition 1.5.6. Let F : C → D be a functor from C toD such that ob(C),Mor(C), ob(D)

and MorD are sets (not proper classes). Then F induces a function FX,Y : MorC(X, Y )→

MorD(F (X), F (Y )) for every object X and Y in C. The functor F is called

i. faithful if FX,Y is injective.

ii. full if FX,Y is surjective.

iii. fully faithful if FX,Y is bijective.

Example 1.5.7. 1. F1 in the previous example is faithful.

2. The inclusion functor from the category of abelian groups to the category of

groups is fully faithful.
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CHAPTER 2

SPECTRAL SPACES AND TOPOLOGICAL ALGEBRA

In this chapter we introduce the language of Spectral Space. Originally appear-

ing in terms of Boolean Space, then in analysis (work of Gel’fand), they have formed

the backbone of algebraic geometry since the second half of the twentieth century.

We then describe the notion of topological algebra which will allow us to talk in

the upcoming chapter of continuous valuations. The main references for this chapter

are [4, 8].

2.1 Spectral Spaces

Definition 2.1.1. Let X be a non-empty topological space. Then X is called

irreducible if it cannot be expressed as the union of two proper closed subsets. A

nonempty subset Z of X is called irreducible if it is irreducible when we endow it

with the subspace topology.

Remark. Equivalently, X is irreducible if every nonempty open subset of X is dense.

Also, X is irreducible if and only if any two nonempty open subsets of X intersect.

Lemma 2.1.2. Let X be a topological space. A subspace Y ⊆ X is irreducible if and

only if its closure Y is irreducible.

Proof. A subset Z of X is irreducible if and only if for any two open subsets U and

V of X with Z ∩ U 6= ∅ and Z ∩ V 6= ∅ we have Z ∩ (U ∩ V ) 6= ∅. This implies the

lemma because an open subset meets Y if and only if it meets Y .

Remark. In particular, a subset of the form {x} for x ∈ X is always irreducible.

Example 2.1.3. If X is a Hausdorff space, then the only irreducible subsets of X

are the sets {x} for x ∈ X.
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Definition 2.1.4. Let X be a topological space.

i) We say that a point α ∈ X is a generic point if {α} = X.

ii) A topological space X is called sober if every irreducible closed subset of X has

a unique generic point.

Example 2.1.5. 1. Let X be an indiscrete topological space. Then every point

of X is a generic point.

2. Let Y be an infinite set endowed with the topology such that the closed sets

different from Y are all finite subsets. Then Y is irreducible but has no generic

point. In particular Y is not sober. If we add a single point α without changing

the closed subsets different from Y ∪ {α}, then Y ∪ {α} is sober.

Definition 2.1.6. A topological space X is called spectral if it is a sober compact

space that has a basis consisting of compact open subsets which is closed under finite

intersections. If X has an open covering by spectral spaces then it is called locally

spectral.

Example 2.1.7. Let A be a ring and endow SpecA := {p : p is a prime ideal } with

the usual topology (i.e. the closed sets of SpecA are of the form V (a) := {p : a ⊆ p}

for ideal a of A). Then SpecA is spectral; for f ∈ A set D(f) := {p : f /∈ p}. Then

the sets of the form (D(f))f∈A form a basis of open compact subsets of SpecA stable

under finite intersections.

2.2 Topological Algebra

Definition 2.2.1. A topological space G that is also a group is called a topological

group if the map (x, y) 7→ xy from G×G onto G is continuous and the map x 7→ x−1

from G onto G is also continuous.
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Remark. Equivalently, a topological group is a group G equipped with a topology

such that the map (x, y) 7→ xy−1 : G×G→ G is continuous.

Theorem 2.2.2. Let a be a fixed element of a topological group G. Then the left

translation map la : x 7→ ax, the right translation map ra : x 7→ xa, the inversion

map x 7→ x−1 and the inner automorphism x 7→ axa−1 are all homeomorphisms of G.

Proof. 1. Left translation la: It is clear that la is bijective. Let W be an open

neighborhood of ax. Since G is a topological group, there exists an open set

U such that aU := {au : a ∈ U} ⊆ W . This shows that la is continuous.

Moreover, it is easy to see that the inverse of la is la
−1 : x 7→ a−1x, which is

continuous by the same argument as above.

2. Right translation ra: It is a homeomorphism, by a similar argument to the

previous case.

3. The inversion map: Let f(x) = x−1. Clearly, f is a continuous bijective map.

Also, f−1(x) = x−1. Hence, f is a homeomorphism.

4. The inner automorphism: It is a composition of two homeomorphisms, namely

x 7→ xa−1 and x 7→ ax. Hence, it is a homeomorphism.

Proposition 2.2.3. Let G be a topological group and H ′ ⊆ H ⊆ G be subgroups. If

H ′ is open in G then H is open in G.

Proof. Note that H =
⋃
h∈H

hH ′ a union of open sets. Therefore H is open.

Example 2.2.4. Let G = R, the real line with addition as the group operation and

the usual metric topology defined by d(x, y) = |x− y|. For each ε > 0, |x| < ε/2 and

|y| < ε/2 imply that |x + y| < ε and therefore addition is continuous. Similarly, one
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sees easily that the inversion x 7→ −x is continuous. Hence R is an abelian topological

group.

Remark. The previous topological group can be extended to Rn by extending the

addition and metric topology to Rn.

Example 2.2.5. Let G be the quotient group Rn/Zn with the usual operation and

the quotient topology of the additive group of Rn. Then G is a compact abelian

topological group.

Definition 2.2.6. A topological space R that is also a ring is said to be a topological

ring if (A,+) is a topological group and (x, y) 7→ xy is continuous from R×R to R.

A topology τ on a topological ring is a ring topology.

Remark. Equivalently, a topological ring A is a ring equipped with a topology such

that the mappings

(x, y) 7→ x+ y : A× A→ A

(x, y) 7→ x · y : A× A→ A

are continuous.

Note that the second axiom implies in particular that y 7→ −y is continuous (fix

x = −1). Combined with the first, it shows that

(x, y) 7→ x− y : A× A→ A

is continuous and the additive group of A is a topological group.

Definition 2.2.7. A function N from a ring A to [0,∞) is a norm if the following

conditions hold for all x, y ∈ A:

1. N(x) = 0 if and only if x = 0.
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2. N(x+ y) ≤ N(x) +N(y).

3. N(−x) = N(x).

4. N(xy) ≤ N(x)N(y).

Remark. If N is a norm on a ring A, then d defined by d(x, y) = N(x − y) for all

x, y ∈ A, is a metric. Indeed, the first condition implies that d(x, y) = 0 if and only

if x = y, the third implies that d(x, y) = d(y, x) and the second yields the triangle

inequality, since d(x, z) = N(x− z) = N [(x− y) + (y− z)] ≤ N(x− y) +N(y− z) =

d(x, y) + d(y, z).

Theorem 2.2.8. Let N be a norm on a ring A. The topology given by the metric d

defined by N is a ring topology.

Proof. Let a, b ∈ A. For all x, y ∈ A, d(x + y, a + b) = N [(x + y) − (a + b)] =

N [(x− a) + (y − b)] ≤ N(x− a) +N(y − b) = d(x, a) + d(y, b). Thus, (a, b) 7→ a+ b

is continuous. For all x ∈ A, d(−x,−a) = N(−x + a) = N(x − a) = d(x, a).

Therefore, a 7→ −a is continuous as well. Finally, for all x, y ∈ A, d(xy, ab) =

N [(x−a)(y−b)+a(y−b)(x−a)b] ≤ N(x−a)N(y−b)+N(a)N(y−b)+N(x−a)N(b).

Hence, (a, b) 7→ ab is also continuous.

Example 2.2.9. On any ring A, the discrete topology is compatible with the ring

structure. A topological ring whose topology is discrete is called a discrete ring.

Example 2.2.10. Let X be a set and B(X) be the ring of all bounded real-valued

(or complex valued) functions on X. Define N(f) := sup{|f(x)| : x ∈ X}. Then N is

a complete norm on B(X), so B(X) and each of its subrings is a topological ring for

the topology defined by N .

Definition 2.2.11. Let F be a field. Then F is said to be a topological field if it is

a topological ring such that x 7→ x−1 from F× to F× is continuous.
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CHAPTER 3

P -ADIC INTEGERS AND F -ADIC RINGS

In this chapter, we finally move to the p-adic world. We start by a gentle

introduction to p-adic integers and p-adic numbers. We then move on to the notion

of f -adic or Huber rings, topological rings where the topology is generated by certain

ideals. This material is based on [6, 9, 10].

3.1 p-adic Integers and p-adic Numbers

Definition 3.1.1. A p-adic integer is a formal series of the form α = a0 + a1p +

a2p
2 + a3p

3 + ..., where p is a prime integer and ai ∈ {0, 1, 2, ..., p− 1} for all i. The

set of all p-adic integers is denoted by Zp.

If we truncate α ∈ Zp at its kth term, we get αk = a0 + a1p+ a2p
2 + a3p

3 + ...+

ak−1p
k−1, which represents an element in Z/pkZ, which yields a map Zp → Z/pkZ.

A sequence {αk} in which αk ≡ αk′ mod pk
′

for all k′ < k defines a unique

p-adic integer α ∈ Zp. Start with k = 1, α1 = a0, then for k = 2, α2 = a0 + a1p

and so on, then α = limk→∞ αk. A formal way to discuss this guides to the notion of

inverse limits.

Definition 3.1.2. Let {Ai}i∈I be a family of groups and µij : Aj → Ai be a family

of homomorphisms for all i ≤ j such that:

i. µii is the identity map of Ai.

ii. µij ◦ µjk = µik for all i ≤ j ≤ k.

Define the inverse limit of the system {Ai} as follows:

lim
←
Ai := {(ai) ∈

∏
i∈I

Ai : ai = µij(aj)}.
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Remark. In the discussion before this definition, letting Ak := Z/pkZ introduces a

bijection between

Zp → lim
←

Z/pkZ.

Moreover, since each element in Z/pkZ can be expressed as αk ∈ Zp and each element

element in Zp can be written uniquely as a sequence {αk} in which αk ∈ Z/pkZ for

all k, we may redefine Zp as:

Zp := lim
←

Z/pkZ = {(αi) ∈
∏
i∈N

Z/piZ : αi = µij(αj)}.

Remark. The sum of a geometric series 1 + r + r2 + r3 + ... =
1

1− r
if |r| < 1.

The denominator still makes since if r 6= 1, so we may extend the convergence radius

by allowing r to be anything different from 1. For instance, 1 + 2 + 22 + 23 + ... =

1

1− 2
= −1. The sum of course does not converge in the usual sense. It does however

converge in the sense of Abel.

Theorem 3.1.3. Any integer can be uniquely written as a p-adic integer for any

prime p.

Proof. Let n ∈ Z and p be any prime. We wish to write n as n = a0 + a1p+ a2p
2 + ...

with ai ∈ {0, 1, 2, ..., p− 1}.

i. n ≥ 0. Without loss of generality assume that n > p and p - n. Let a0 = n

mod p ∈ {0, 1, 2, ..., p− 1}. Then n− a0 > 0 is divisible by p. Let n1 =
n− a0
p

,

consider the following:

n = a0 + a1p+ a2p
2 + ...

⇒ n− a0 = a1p+ a2p
2 + a3p

3...

⇒ n1 =
n− a0
p

= a1 + a2p+ a3p
2 + ...

Now, let a1 = n1 mod p and repeat the same process until getting p ≤ ni < 2p.

Then ni − ai = p and ni+1 = 1 so ai+1 = 1 and ak = 0 for all k ≥ i + 2. The

uniqueness follows from the fact that each ai ∈ {0, 1, 2, ..., p− 1}.
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ii. n < 0. We repeat the same procedure of case i, but here we will have an infinite

series, since the sum of finite positive numbers cannot be negative.

Corollary 3.1.4. For any prime p, Z ⊆ Zp.

Example 3.1.5. In the previous remark we introduced the idea of geometric series

with r > 1 and found that
∑

2n = −1. Here we start reversely using the method

of the proof of the previous theorem, with n = −1 and p = 2. Let −1 = a0 +

a12 + a22
2 + ..., then a0 = −1 mod 2 = 1. Thus, −2 = a12 + a22

2 + a32
3 + ..., so

−1 = a1 + a22 + a32
2 + ... and again a1 = 1. Continue in this way, we find that

−1 = 1 + 2 + 22 + 23 + ... .

Proposition 3.1.6. For any prime p, Zp is an integral domain.

Proof. 1. (Zp,+) is an abelian group:

• Let a0 +a1p+a2p
2 + ... , b0 + b1p+ b2p

2 + ... ∈ Zp. Then (a0 +a1p+a2p
2 +

...) + (b0 + b1p+ b2p
2 + ...) = (a0 + b0) + (a1 + b1)p+ (a2 + b2)p

2 + ... ∈ Zp.

(Addition mod p).

• 0 is the additive identity in Zp.

• The existence of inverses follows from the existence of them in
Z
pZ

.

• The associativity follows from that one in
Z
pZ

.

• The commutativity of Zp follows from the commutativity of usual addition

in Z/pZ.

2. (Zp,·) is a semi-group:

• Let a0+a1p+a2p
2+... , b0+b1p+b2p

2+... ∈ Zp. Then (a0+a1p+a2p
2+...)·

(b0+b1p+b2p
2+...) = (a0b0)+(a0b1+a1b0)p+(a0b2+a1b1+a0b2)p

2+... ∈ Zp.

(Multiplication mod p).
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• The associativity of the multiplication of Zp follows from the associativity

of usual multiplication and the associativity of Z/pZ.

3. 1 is the identity of Zp.

4. The commutativity of Zp follows easily from the commutativity of R.

5. Assume a0 + a1p + a2p
2 + ... , b0 + b1p + b2p

2 + ... ∈ Zp and their product

(a0b0) + (a0b1 + a1b0)p + (a0b2 + a1b1 + a0b2)p
2 + ... = 0. Assume for contrary

that there exist i, j ∈ N such that ai, bj 6= 0. Without loss of generality suppose

the rest of ai’s and bj’s are all zero. Then aibj ≡ 0 mod p. But p - ai and p - bj

implies p - aibj a contradiction. Hence Zp has no zero divisors.

Definition 3.1.7. Let a =
∑

i∈N aip
i be a p-adic integer. If a 6= 0 there is a first index

v = v(a) ≥ 0 such that av 6= 0. This index is the p-adic order of a, v = v(a) = ordp(a).

Definition 3.1.8. Let x, y ∈ Zp. Define the p-adic norm by

||x||p =


1

pv(x)
, if x 6= 0

0, if x = 0

,

and the p-adic metric by

dp(x, y) = ||x− y||p.

Remark. || · ||p is a norm and (Zp,dp) is a metric space.

Remark. With this metric, multiplication by p in Zp is a contracting map

d(px, py) =
1

p
d(x, y)

and hence is continuous.

Theorem 3.1.9. For any prime p, Zp is a topological ring.
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Proof. We need to prove that Zp is a topological group and continuous under multi-

plication.

i. Zp is a topological group.

We have indeed, x ∈ a + pnZp and y ∈ b + pnZp implies x − y ∈ a − b + pnZp

for all n ∈ N. In other words, using the p-adic metric, we have

||x−a||p ≤ ||pn||p = p−n, ||y− b||p ≤ ||pn||p = p−n ⇒ ||(x−y)− (a− b)||p ≤ p−n,

proving the continuity of the map (x, y) 7→ x− y at any point (a, b).

ii. Multiplication is continuous.

Fix a, b ∈ Zp and consider x = a+ h and y = b+ k in Zp. Then,

||xy − ab||p = ||(a+ h)(b+ k)− ab||p = ||ak + hb+ hk||p

≤ max(||a||p, ||b||p)(||h||p + ||k||p) + ||h||p||k||p → 0 as ||h||p, ||k||p → 0.

This proves the continuity of multiplication at any point (a, b) ∈ Zp × Zp.

Proposition 3.1.10. Let p and q be prime numbers with gcd(p, q) = 1, then
1

q
∈ Zp.

Proof. Let
1

q
= a0+a1p+a2p

2+a3p
3+..., where ai ∈ {0, 1, ..., p−1} for all i ∈ N. Then,

1 = qa0+qa1p+qa2p
2+qa3p

3+... and so 1 ≡ qa0 mod p, which has a nonzero solution

since gcd(p, q) = 1. Now, let n := 1 − qa0 < 0. Then n = qa1p + qa2p
2 + qa3p

3 + ...

and all ai’s can be found using the method in the proof theorem 3.1.3 with the fact

that gcd(p, q) = 1. Hence, 1/q ∈ Zp.

Corollary 3.1.11. Let a, b ∈ Z and p be prime with gcd(p, b) = 1. Then
a

b
∈ Zp.

Proof. Knowing that Zp is an integral domain with a ∈ Zp and using the fact that b

can be written uniquely as a product of distinct primes that are relatively prime to p

completes the proof.
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Example 3.1.12. p-adic Long Division: Let n1 = 7, n2 = 4 and p = 5. Now,

4

7
= a0 + a15 + a25

2 + ..., thus 4 = 7a0 + 7a1 · 5 + 7a2 · 52 + 7a3 · 53 + ... . So,

7a0 ≡ 4 mod 5 and a0 = 2. Therefore, −10 = 7a1 · 5 + 7a2 · 52 + 7a3 · 53 + ... . So,

−2 = 7a1 + 7a2 · 5 + 7a3 · 52 + ... and 7a1 ≡ −2 mod 5. This gives that a1 = 4.

Continue in this way and find all such ai’s.

Remark. Q is not a subset of Zp because
1

p
/∈ Zp. For example, let p = 2. Assume

that
1

2
= a0 + a1 · 2 + a2 · 22 + ..., which implies that 1 + 0 · 2 + 0 · 22 + 0 · 23 + ... =

1 = a0 · 2 + a1 · 22 + a2 · 23 + ... . Thus 1 ≡ 0 mod 2 by the uniqueness of ai’s. A

contradiction, hence
1

2
/∈ Zp.

Remark. Zp is not a field. In fact, the element a = a0 + a1p+ a2p
2 + ... is invertible

in Zp if and only if a0 is invertible in
Z
pZ

(if and only if a0 6= 0). In other words

Zp× =

{
a =

∑
i∈N

ai ∈ Zp : a0 6= 0

}
.

Definition 3.1.13. The field of fractions of Zp is denoted by Qp and called the field

of p-adic numbers.

Remark. For any prime p, Q ⊆ Qp.

3.2 f-adic Rings

Definition 3.2.1. A topological ring A is called adic if there exists an ideal I of A

such that {In : n ∈ N} is a basis of neighborhoods of 0 in A. Such an ideal I is called

an ideal of definition and such a topology is called an I-adic topology.

Example 3.2.2. I = (p) is an ideal of definition of Zp.

Definition 3.2.3. A topological ring A is called an f -adic ring or a Huber ring if

there exists an open adic subring A0 ⊆ A with finitely generated ideal of definition

I. Such a subring is called a ring of definition of A.
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Example 3.2.4. Let A = Qp (or A = Zp) and A0 = Zp. Then A is an f -adic ring

by the previous example.

Example 3.2.5. Any ring A can be given the discrete topology is f -adic with A0 = A

and I = {0}.

Definition 3.2.6. A subset S of a topological ring A is bounded if for every open

neighborhood U of 0 there exists an open neighborhood V of 0 such that V S = {vs :

v ∈ V s ∈ S} ⊆ U . An element a ∈ A is power bounded if {an : n ∈ Z+} is bounded.

If lim an = 0, then a is topologically nilpotent. Set

A◦ := {a ∈ A : a is power bounded},

A◦◦ := {a ∈ A : a is topologically nilpotent}.

Remark. A◦ is a subring of A, and A◦◦ is an ideal of A.

Definition 3.2.7. A topological ring A is called Tate if A is f -adic and has a topo-

logically nilpotent unit.

Example 3.2.8. Qp is Tate with a topological nilpotent unit p.

Proposition 3.2.9. Let A be a Tate ring and let B be a ring of definition of A. Then

B contains a topologically nilpotent unit u of A. For any such u, A = Bu and uB is

an ideal of definition of B.

Proof. Since B is an open neighborhood of 0, there exists for every topologically

nilpotent element t an n ∈ N such that u = tn ∈ B. This shows the first assertion.

For every a ∈ A there exists n ∈ N such that aun ∈ B, hence A = Bu. Mul-

tiplication with un is a homeomorphism A → A. This shows that unB is open.

Moreover, as B is bounded, for every neighborhood V of 0 there exists n ∈ N such

that unB ⊆ V .
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3.3 Adic Homomorphisms

Definition 3.3.1. Let A and B be f -adic rings. A ring homomorphism ϕ : A → B

is called adic if there exist rings of definitions A0 of A and B0 of B and an ideal of

definition I of A0 such that ϕ(I)B0 is an ideal of definition of B0.

Remark. Any adic ring homomorphism is continuous. Conversely, for every con-

tinuous homomorphism ϕ : A → B there exist always rings of definitions A0 of A

and B0 of B and finitely generated ideals of definition I of A0 and J of B0 such

that ϕ(A0) ⊆ B0 and such that ϕ(I) ⊆ J . But in general ϕ(I)B0 is not an ideal of

definition of B0.

Example 3.3.2. Let A be a discrete ring. Then A is adic with ideal of definition

I = {0}. Any homomorphism ϕ : A → B to an f -adic ring B is continuous. It is

adic if and only if B also carries the discrete topology.

Proposition 3.3.3. Let ϕ : A → B be a continuous ring homomorphism between

f -adic rings. Assume that A is Tate. Then B is Tate, ϕ is adic and for every ring

of definition B0 of B we have ϕ(A) ·B0 = B.

Proof. Let A0 and B0 be rings of definition of A and B respectively such that ϕ(A0) ⊆

B0. Let s ∈ A be a topologically nilpotent unit of A. Then ϕ(s) is a topologically

nilpotent unit of B and hence B is a Tate ring. Replacing s by some power, we may

assume that s ∈ A0. Then sA0 is an ideal of definition of A0 and ϕ(s)B0 is an ideal

of definition of B0 (proposition 3.2.9). This shows that ϕ is adic. Let B0 ⊆ B be

an arbitrary ring of definition. Replacing s by some power we may assuume that

ϕ(s) ∈ B0. Moreover one has A = (A0)s and B = (B0)ϕ(s) by proposition 3.2.9

again and hence ϕ(A) ·B0 = B.

Remark. Let ϕ : A → B and ψ : B → C be continuous ring homomorphisms of

f -adic rings.
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1. If ϕ and ψ are adic, then ψ ◦ ϕ is adic.

2. If ψ ◦ ϕ is adic, then ψ is adic.

3.4 Huber Pairs and Adic Spectrum

Definition 3.4.1. 1. Let A be an f -adic ring and let A◦ be the subring of power

bounded elements. A subring B of A is called a ring of integral elements if

B is open and integrally closed in A and if B ⊆ A◦.

2. A Huber pair (or an affinoid pair) is a pair (A,A+), where A is an f -adic ring

and A+ is a ring of integral elements. If it is not ambiguous we may simply

write A instead of (A,A+).

3. A Huber pair (A,A+) is called complete (respectively adic, respectively Tate,

etc.) if A has this property.

4. A morphism of Huber pairs (A,A+) → (B,B+) is a ring homomorphism φ :

A → B such that φ(A+) ⊆ B+. It is called continuous (respectively adic) if

φ : A→ B is continuous (respectively adic).

Example 3.4.2. 1. Let A be an adic ring with finitely generated ideal of definition

I. Then A is f -adic with A = A0 and ideal of definition I. Every subset of A

is bounded and A◦ = A. Hence (A,A) is a Huber pair.

A special case is a ring A endowed with the discrete topology, i.e. I = {0}.

Then for every subring A+ of A that is integrally closed in A, (A,A+) is a Huber

pair.

2. Let k be a non-archimedean field (i.e., k is a topological field whose topology

is given by a nontrivial non-archimedean norm |·| : k → [0,∞)). Then Ok :=
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{a ∈ k : |a| ≤ 1} = k◦ and (k,Ok) is a Huber pair. Every element ω̄ ∈ k − {0}

with |ω̄| < 1 is a topologically nilpotent unit.

3. More generally, let (A, || · ||) be any k-Banach algebra with power-multiplicative

norm. Then A is a Tate ring with topologically nilpotent unit ω̄. As a ring of

definition one can take A0 = A◦ = {a ∈ A : ||a|| ≤ 1} which is an Ok-algebra.

4. Let R be any ring with its discrete topology; then the power series ring A =

R[[T1, ..., Tn]] is a Huber ring with ring of definition A0 = A and ideal of defini-

tion (T1, ..., Tn). Note that R is not Tate.

5. Let A = Qp[[T ]]. It is tempting to say that A is a Huber ring with ring of

definition A0 = Zp[[T ]] and ideal of definition (p, T ). But in fact one cannot put

a topology on A which makes this work. Indeed, in such a topology T n → 0,

and since multiplication by p−1 is continuous, p−1T n → 0 as well. But this

sequence never enters A0, and therefore A0 ⊆ A is not open. (It is fine to say

that Qp[[T ]] is a Huber ring with ring of definition Qp[[T ]] and ideal of definition

(T ), but then you are artificially suppressing the topology of Qp, so that the

sequence pn does not approach 0.)

Definition 3.4.3. Let A be a topological ring. Let v be a valuation on A and Γ be its

valuation group. Then v is called continuous if for every γ ∈ Γ, {a ∈ A : v(a) < γ}

is open in A.

Notation. We denote the set of equivalence classes of continuous valuations of A by

Cont(A).

Definition 3.4.4. Let A = (A,A+) be Huber. The adic spectrum of A is the

subspace Spa(A) := {v ∈ Cont(A) : ∀a ∈ A+, v(a) ≤ 1} of Cont(A).

Notation. If x ∈ Spa(A) and f ∈ A, then x(f) is denoted by |f(x)|.



34

Remark. We endow Spa(A) with the topology generated by the subsets {x ∈ Spa(A) :

|f(x)| ≤ |g(x)| 6= 0} with f, g ∈ A.

Definition 3.4.5. Let A be a topological ring. A point x ∈ Cont(A) is called analytic

if supp(x) is not open in A.

Notation. If A = (A,A+) is Huber, then the subset of analytic points in SpaA is

denoted by (SpaA)a. Its complement in SpaA is denoted by (SpaA)na.

Remark. Let A = (A,A+) be Huber. For x ∈ Cont(A) the following assertions are

equivalent.

• x has non-open support.

• There exists a ∈ A◦◦ such that x(a) 6= 0.

Lemma 3.4.6. Let ϕ : A→ B be a continuous homomorphism between Huber pairs

and let f = Spa(ϕ) : X := SpaB → Y := SpaA be the attached continuous map.

1. f(Xna) ⊆ Yna, and if ϕ is adic, then f(Xa) ⊆ Ya.

2. If ϕ is adic, then for every rational subset V of Y the preimage f−1(V ) is

rational.

In particular f is spectral.

Proof. 1. The first assertion is clear and the second follows from the previous

remark.

2. Let s ∈ A and T ⊆ A be a finite subset such that T ·A is open in A. If ϕ is adic,

then ϕ(T ) · B is open in B. Hence f−1(R(T
s
)) is the rational subset R(ϕ(T )

s
) of

Spa(B).
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CHAPTER 4

ADIC SPACES

In this chapter we describe Adic spaces, spaces described locally by Huber pairs.

We show that they define a general framework englobing rigid geometry, schemes, etc.

We conclude by working out the case of scheme and highlighting how to see them as

‘trivial’ adic spaces. This chapter is based on [9, 10].

4.1 The Presheaf

Definition 4.1.1. Let (A,A+) be a Huber pair and X := Spa(A,A+). Let s1, ..., sn ∈

A and T1, ..., Tn ⊆ A be nonempty finite subsets such that TiA is an open ideal of A

for all i. We define a subset

U

({
Ti
si

})
= U

(
T1
s1
, ...,

Tn
sn

)
:= {x ∈ X : ∀ti ∈ Ti, |ti(x)| ≤ |si(x)| 6= 0}.

This is open because it is an intersection of a finite collection of the sort of opens

which generate the topology on X. Subsets of this form are called rational subsets.

Remark. Note that a finite intersection of rational subsets is again rational, just by

concatenating the data that define the individual rational subsets.

Theorem 4.1.2. Let U ⊆ Spa(A,A+) be a rational subset. Then there exists a com-

plete Huber pair (OX(U),O+
X(U)) and a morphism (A,A+) → (OX(U),O+

X(U))

such that the map Spa(OX(U),O+
X(U)) → Spa(A,A+) factors over U , and is uni-

versal for such maps. Moreover this map is a homeomorphism onto U . In particular

U is quasi-compact.

Proof. Choose si and Ti such that U = U({Ti
si
}). Choose A0 ⊆ A a ring of definition

and I ⊆ A0 a finitely generated ideal of definition. Take (A,A+) → (B,B+) such

that Spa(B,B+)→ Spa(A,A+) factors over U . Then,
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1. The si’s are invertible in B, so that we get a map A[{ 1

si
}]→ B.

2. All ti/si are of |·| ≤ 1 everywhere on Spa(B,B+), so that ti/si ∈ B+ ⊆ B◦.

3. Since B◦ is the inductive limit of the rings of definition B0, we can choose a B0

which contains all ti/si. We get a map A0[ti/si] → B0, where i = 1, ..., n and

ti ∈ Ti for all i. Endow A0[{ti/si}] with the IA0[{ti/si}]-adic topology.

Remark. This defines a ring topology on A[{1/si}] making A0[{ti/si}] an open sub-

ring.

Lemma 4.1.3. If T ⊆ A is a subset such that TA ⊆ A is open, then TA0 is open.

Proof. After possibly replacing I with some power we may assume that I ⊆ TA.

Write I = (f1, ..., fk). There exists a finite set R such that f1, ..., fk ∈ TR. Since

I is topologically nilpotent, there exists n such that RIn ⊆ A0. Then for all i =

1, ..., k, fiI
n ⊆ TRIn ⊆ TA0. Sum this over all i and conclude that In+1 ⊆ TA0.

Back to the proof of the theorem. We have A[{1/si}], a (non-complete) Huber

ring. Let A[{1/si}]+ be the integral closure of the image of A+[{t/si}] in A[{1/si}].

Let (A〈{Ti/si}〉, A〈{Ti/si}〉+) be its completion, a Huber pair. This has the desired

universal property.

For the claim that Spa of this pair is homeomorphic to U : Use that Spa does not

change under completion. (Also that the operation of taking the integral closure does

not change much, either.)

Definition 4.1.4. Define a presheaf OX of topological rings on Spa(A,A+): If U ⊆ X

is rational, OX(U) is as in the theorem. On a general open W ⊆ X, we put

OX(W ) = lim←
U⊆W is rational

OX(U).
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One defines O+
X similarly. If OX is a sheaf, we call (A,A+) a sheafy Huber pair.

Proposition 4.1.5. For all U ⊆ X = Spa(A,A+),

O+
X(U) = {f ∈ OX(U) : |f(x)| ≤ 1, for all x ∈ U}.

In particular O+
X(U) is a sheaf if OX(U) is. If (A,A+) is complete, then OX(X) = A

and O+
X(X) = A+.

4.2 Adic Spaces

Definition 4.2.1. An adic space is an object of V that is locally isomorphic to

Spa(A,A+) for some sheafy Huber pair (A,A+). The category of adic spaces is the

full subcategory of V whose objects are the adic spaces. An adic space is called

affinoid, if it is isomorphic to Spa(A,A+) for some sheafy Huber pair (A,A+).

We obtain a functor (A,A+) 7→ Spa(A,A+) from the category of sheafy Hu-

ber pairs to the category of adic spaces. The canonical morphism of adic spaces

Spa(Â, Â+)→ Spa(A,A+) is an isomorphism of adic spaces. The functor (A,A+) 7→

Spa(A,A+) from the category of sheafy complete Huber pairs to the category of adic

spaces is fully faithful. More precisely one has for every adic space Y and every sheafy

Huber pair (A,A+) a bijection

Hom(Y, Spa(A,A+))
∼−→ Hom((A,A+), (OX(X),O+

X(X))),

where the right hand side denotes continuous ring homomorphisms φ : A → OX(X)

such that φ(A+) ⊆ O+
X(X).

Example 4.2.2. i) Let k be a non-archimedean field. Then Spa(k, k◦) consists of

a single point x, the equivalence class of the valuation |·| : k → [0,∞] defining

the topology of k. One has κ(x) = k̂.
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ii) Let A be a valuation ring of height 1. Then Spa(A,A) consists of an open point

η and a closed point s with κ(η) = Frac(A) =: k and κ(s) = A
mA

. The canonical

morphism S0 = Spa(k,A)→ S is an open immersion onto the open point.

Example 4.2.3. Endow Z and Z[t] with the discrete topology. Then Spa(Z,Z) is

the final object in the category of adic spaces and for every adic space X we find

Hom(X, Spa(Z[t],Z)) = OX(X),

Hom(X, Spa(Z[t],Z[t])) = O+
X(X).

Endow Z[[t]] with the t-adic topology and set D0 := Spa(Z[[t]],Z[[t]]). Then for every

affinoid adic space X = SpaA we have

Hom(X,D0) = OX(X)◦◦ = Â◦◦.

Indeed, first note that every integrally closed open subring of Â contains Â◦◦. In

particular (Â+)◦◦ = Â◦◦. Every continuous homomorphism ϕ : Z[[t]]→ O+
X(X) = Â+

is determined by the image a of t. As t is topologically nilpotent, a is topologically

nilpotent. Conversely, let a ∈ O+
X(X) be topologically nilpotent. As O+

X(X) is

complete and 0 has a fundamental system of neighborhoods consisting of additive

subgroups, a series
∑

n λna
n converges if and only if limn na

n = 0. But this is the

case if n ∈ ϕ(Z) because ϕ(Z) is automatically bounded (as ϕ(Z) is contained in every

ring of definition of A) and a is topologically nilpotent. We view D0 as the formal

open unit disc.

Definition 4.2.4. Let X be an adic space. A point x ∈ X is called analytic if there

exists an open neighborhood U of x such that O(U) contains a topologically nilpotent

unit.

Proposition 4.2.5. Let X be an adic space and x ∈ X. Then the following are

equivalent:
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1. x is analytic.

2. For every open affinoid neighborhood U = SpaA of x, the point suppx ⊆ A is

not open in A.

We set Xa := {x ∈ X : x is analytic} and Xna := X −Xa.

Proof. We may assume that X = SpaA, A is a complete affinoid ring.

(⇐) : Let x ∈ SpaA such that suppx is not open in A. By the remark after definition

3.4.5 there exists a topologically nilpotent element s of A with x(s) 6= 0. Then

U := {y ∈ SpaA : y(s) 6= 0} is an open neighborhood of x in SpaA. As the restriction

A = OX(X)→ OX(U) is a continuous ring homomorphism, the image of s in OX(U)

is again a topologically nilpotent unit.

(⇒) : Let x ∈ SpaA such that suppx is open in A, and let U be an open neighborhood

of x. We have to show that OX(U) has no topologically nilpotent unit.

Let V be a rational subset of SpaA with x ∈ V ⊆ U and set p := {f ∈ OX(V ) :

vx(f) = 0}. Then p is a prime ideal of OX(V ) with p ∩ A = suppx. As suppx

contains an ideal of definition of (a ring of definition of) A, p contains an ideal of

definition of OX(V ) by definition of OX(V ). Thus p is an open prime ideal of OX(V )

and contains therefore all topologically nilpotent elements of OX(V ). As p contains

no units, OX(V ) contains no topologically nilpotent units. Hence OX(U) does not

contain a topologically nilpotent unit.

Remark. Let X be an adic space. Then for every open subspace U of X we have

Ua = Xa ∩ U and Una = Xna ∩ U .

Definition 4.2.6. A morphism f : X → Y of adic spaces is called adic if for every

x ∈ X there exist open affinoid neighborhoods U of x in X and V of f(x) in Y

with f(U) ⊆ V such that the ring homomorphism of f -adic rings OY (V ) → OX(U)

induced by f is adic.
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Proposition 4.2.7. Let f : X → Y be a morphism of adic spaces.

1. If f is adic then f(Xa) ⊆ Ya.

2. f(Xna) ⊆ Yna.

Proof. It follows from the previous remark that we may assume that X and Y are

affinoid. But in this case we have already shown the all results in Lemma 3.4.6.

4.3 Formal Schemes as Adic Spaces

Definition 4.3.1. A ringed space (X,OX) is a pair of a topological space X with a

sheaf of rings OX on X. The sheaf OX is called the structure sheaf of X.

Remark. For every complete noetherian adic ring A let Spf(A) denote its formal

spectrum. Then the functor Spf(A) → Spa(A,A) from noetherian affine formal

schemes to the category of adic spaces can be globalized to a fully faithful functor

t : X → Xad from the category of locally noetherian formal schemes to the category

of adic spaces. More precisely for every locally noetherian formal scheme X there

exists an adic space Xad and a morphism of locally and topologically ringed spaces

π : (Xad,O+
Xad)→ (X,OX) satisfying the following universal property. For every adic

space Z and for every morphism f : (Z,O+
Z )→ (X,OX) of locally and topologically

ringed spaces there exists a unique morphism of adic spaces g : Z → Xad making the

following diagram commutative

(Z,O+
Z ) (X,OX)

(Xad,O+
Xad)

f

g+
π

For X = Spf(A) for a complete noetherian adic ring A, the underlying continuous

map of π is given by Xad = Spa(A,A) 3 x 7→ {f ∈ A : |f(x)| < 1} which is an open

prime ideal of A.
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CHAPTER 5

CONCLUSION

In this thesis we built the notion of adic spaces starting from the concept of or-

dered group and progressively adding the geometric and algebraic features necessary.

We have shown how a relatively simple axiomatic construction is able to englobe

many geometric models and can be used to work with objects coming from the p-adic

world.

Huber (or f -adic) spaces are a relatively new construction in geometry but their use-

fulness is undeniable. This thesis can for example serve as an introduction to the

incredible work of Scholze and the latest developments in the area.
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