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ABSTRACT

We introduce two generalizations to convergence approach spaces of classical results

characterizing regularity of a convergence space in terms of continuous extensions of

maps on one hand, and in terms of continuity of limits for the continuous convergence

on the other. Characterizations are obtained for two alternative extensions of reg-

ularity to convergence-approach spaces: regularity and strong regularity. Along the

way, we give a brief overview of the theory of convergence spaces and of convergence

approach spaces.
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CHAPTER 1

PRELIMINARIES

1.1 Categorical Problems of Topological Spaces

In order to work towards introducing convergence approach spaces, we must first

start by introducing a generalization of topology known as convergence theory. In

convergence theory, the structure of a space comes from how generalized sequences,

known as filters, converge. Because convergence theory generalizes topology, it is

possible to describe any topology using the language of convergence theory.

The study of convergence theory is motivated by problems that arise when we

view topological spaces from a categorical perspective. Before we address these issues,

we must introduce a few definitions from category theory.

Definition 1.1. [9] A category C, is a class of objects, ob(C) and a class BA of

C-morphisms from A to B for each pair A,B ∈ ob(C), satisfying the following condi-

tions:

1. For each A ∈ ob(C), there is an identity, 1A ∈ AA,

2. For each A,B,C, there is a map BA × CB → CA with (f, g) 7→ g ◦ f satisfying

the following:

(a) If f ∈ BA, g ∈ CB, and h ∈ DC , then h ◦ (g ◦ f) = (h ◦ g) ◦ f

(b) For every A,B,C ∈ ob(C), every f ∈ BA and every g ∈ AC , f ◦ 1A = f

and 1A ◦ g = g

(c) The sets BA are pairwise disjoint.

We will use the traditional method of denoting a category by writing the category

in bold face, such as Set for the category of sets with functions between sets acting as
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morphisms. Our focus for the time being will be on the category Top, of topological

spaces with continuous maps as morphisms and we will introduce other categories as

they appear.

Definition 1.2. [10] A category C is cartesian closed if it obeys the exponential law:

for every A,B,C ∈ ob(C), there is a bijection from CA×B to (CB)A which is written

as CA×B ∼= (CB)A.

While this property holds for some categories, such as Set, it is well known that

it does not hold in Top.

The problem comes when we take the objects X, Y, Z ∈ ob(Top) and consider

the exponential condition C(X ×Y, Z) ≡ C(X,C(Y, Z)), where C(X, Y ) is the space

of continuous maps between X and Y. In general, there is no topology C(Y, Z) that

satisfies the exponential law. However, if we expand our focus to convergence spaces,

we can define a convergence structure on C(Y, Z) for which the equality holds. Then

we have that the category Conv, with convergence spaces (in particular topologies)

as objects and continuous maps as morphisms, is cartesian closed.

1.2 Convergence Theory

1.2.1 Filters

Now that we have motivation for studying convergence theory, we need to build some

machinery before we are able to define exactly what the objects of Conv are. In order

to do this, we must first introduce the notion of a filter on a set.

Definition 1.3. A (proper) filter F on a set X is a family of subsets of X that satisfy

the following conditions:

1. ∅ 6∈ F
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2. For A ∈ F , if A ⊂ B, then B ∈ F

3. If A,B ∈ F , then A ∩B ∈ F

The space of all filters on a set X will be denoted as FX. If a filter satisfies condi-

tions 2 and 3, but not condition 1, it is called the degenerate filter on X and coincides

with the powerset of X. Unless specified otherwise, filters are always assumed to be

proper.

We say that a family B of nonempty subsets of X is a filter-base if the family

B↑ := {A ⊂ X : ∃B ∈ B with B ⊆ A}

is a filter on X. If G ⊆ P(X) we will use the notation G↑ to denote the closure of G

with respect to supersets. If B is a filter-base for some filter F , then we say that B

generates F .

Example 1.4. Let A ⊂ X, then the filter {A}↑ := {B ∈ X : A ⊆ B} is called a

principal filter.

Example 1.5. For a point x in a metric space X, we define B(x) to be the family of

balls centered at x. This family is a filter-base for the filter B(x)↑, which is called the

vicinity filter, and will be denoted V(x).

Example 1.6. A subset W of a topological space (X, τ) is called a neighborhood of

x ∈ X if there is an open set O ∈ τ such that x ∈ O ⊆ W. Then the family of

neighborhoods of x, denoted N (x), is a filter called the neighborhood filter of x.

Example 1.7. Let {xn}∞n=1 be a sequence on X. The family of tails of {xn}∞n=1 is the

family

(xn)m := {{xk : k ∈ N and k ≥ n} : m ∈ N}.

This family generates a filter, (xn)↑n, called a sequential filter.
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Now that we have an idea of what sequences look like in FX, a natural question is

how can we interpret the convergence of a sequence in terms of the filter it generates?

Recall that in a metric space, a sequence {xn} converges to x, denoted x ∈ limn→∞xn,

if for every ε > 0, there is an N ∈ N such that

B(x, ε) ⊃ {xm : m > N}.

To make a connection between these sets and the families that they are contained in,

we need the following definition.

Definition 1.8. For F ,G ⊆ P(X), we say that F is finer than G, denoted F ≥ G, if

for every G ∈ G there is an F ∈ F such that G ⊃ F.

This relation is reflexive and transitive on P(X), and when it is restricted to

FX it becomes a partial order. With this new definition, we see that x ∈ limn→∞xn

whenever (xn)n ≥ B(x). This relation holds when both families are closed under super

sets, so we have that x ∈ limn→∞xn if and only if

(xn)↑ ≥ B(x)↑ = V(x).

For this partial order, we can define the greatest lower bound of a family of filters

(Fi)i∈I , by ∧
i∈I

Fi :=
{⋃
i∈I

Fi : ∀i ∈ I, Fi ∈ Fi
}↑
.

The greatest lower bound of the family (Fi)i∈I is a filter on X called the infimum of

the filters (Fi)i∈I .

If F ,G ⊆ P(X), we say that F and G mesh, denoted F#G, if F ∩ G 6= ∅ for

every F ∈ F and G ∈ G. When one of the filters is a principal filter, {A}↑, we denote

the mesh of {A}↑ and F by A#F or A ∈ F#, where

F# := {A ⊂ X : A#F}.
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If F ,G ∈ FX, then we can get a least upper bound for F and G, whenever F#G,

which we denote by

F ∨ G := {F ∩G : F ∈ F , G ∈ G}.

In order to generalize the least upper bound to a family of filters, we have to generalize

the notion of two filters meshing.

Definition 1.9. A family F of subsets of X has the finite intersection property if⋂
A∈B A 6= ∅ for any finite subset B of F .

A family of filters (Fi)i∈I admits a least upper bound in FX whenever
⋃
i∈I Fi

has the finite intersection property. The least upper bound of the family (Fi)i∈I is

given by ∨
i∈I

Fi :=
{ ⋂
A∈B

A : B ⊂
⋃
i∈I

Fi, cardB <∞
}↑
.

From time to time, we can simplify results by looking at a special class of filters.

Definition 1.10. A proper filter U is called an ultrafilter on X, denoted U ∈ UX, if

it satisfies the following equivalent conditions:

1. If A ∪B ∈ U , then either A ∈ U or B ∈ U .

2. For A ⊆ X, either A ∈ U or AC ∈ U .

3. If G ∈ FX and G ≥ U , then G = U .

4. U# = U .

Example 1.11. The principal filter {x}↑ is an ultrafilter since if A∪B ∈ {x}↑, then

x ∈ A or x ∈ B.

Assuming the axiom of choice, we have the following proposition.

Proposition 1.12. Every family of subsets of X with the finite intersection property

(in particular every filter) is contained in an ultrafilter.
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Definition 1.13. If f : X → Y and F ∈ FX, then the image filter is defined as

f [F ] = {f(F ) : F ∈ F}↑ = {A ⊆ Y : f−1(A) ∈ F}.

1.2.2 Convergences

In this section we define the basics of convergence theory, for the most part without

proofs. The interested reader should consult [3] or [4] for details.

Given a nonempty set X, the family of filters FX, and a relation ξ between X

and FX, we say that F ∈ FX converges to x ∈ X, denoted x ∈ limξF , whenever

(x,F) ∈ ξ.

Definition 1.14. A relation ξ from X to FX is called a convergence if it satisfies

the following properties:

1. For F ,G ∈ FX, F ≤ G =⇒ limξF ⊆ limξG,

2. For every F ,G ∈ FX, limξF ∩ limξG ⊆ limξ(F ∧ G),

3. For x ∈ X, x ∈ limξ{x}↑.

The pair (X, ξ) is called a convergence space, and these are the objects of the

category Conv that was mentioned earlier. If the relation ξ only satisfies 1 and 2,

then we call ξ a preconvergence and the pair (X, ξ) is likewise called a preconvergence

space.

Definition 1.15. A function f : (X, ξ) → (Y, τ) is continuous if for every F ∈ FX

and x ∈ X

x ∈ limξF =⇒ f(x) ∈ limτf [F ].

An equivalent formulation of the continuity of f is that f is continuous if

f(limξF) ⊆ limτf [F ].
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Example 1.16. We define the usual notion of convergence on R, denoted ν, by saying

that for x ∈ R, F ∈ FR

x ∈ limνF ⇐⇒ F ≥
{(

x− 1

n
, x+

1

n

)
: n ∈ N

}↑
.

Example 1.17. A map V(·) : X → FX with {x}↑ ≥ V(x) for every x determines a

convergence ξ on X by

x ∈ limξF ⇐⇒ F ≥ V(x),

then ξ is called a pretopology.

An equivalent method of classifying a convergence as a pretopology is that ξ is

a pretopology if for any family of filters {Fi}i∈I we have the following

limξ(
∧
i∈I

Fi) =
⋂
i∈I

limξFi.

We say that O ⊂ X is ξ-open if whenever O contains limit points of F ∈ FX we

have that O ∈ F , or written symbolically,

limξF ∩O 6= ∅ =⇒ O ∈ F .

If we let Oξ denote the collection of ξ-open sets on X, then it is easy to check that

Oξ satisfies the following conditions

1. ∅, X ∈ Oξ

2. For any B ⊆ Oξ,
⋃
O∈B O ∈ Oξ

3. For any B ⊆ Oξ with cardB <∞,
⋂
O∈B O ∈ Oξ.

In other words, Oξ defines a topology on X. By Ex. 1.6, we can define a filter at

each x ∈ X, called the neighborhood filter, by saying that a set A is a neighborhood

of x if there is an O ∈ Oξ such that x ∈ O ⊂ A and considering the family Nξ(x) of

neighborhoods of x.
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Example 1.18. A convergence space (X, ξ) is a topological space if and only if

x ∈ limξNξ(x) for every x ∈ X. Equivalently, for F ∈ FX, x ∈ limξF if and only if

F ≥ Nξ(x).

Obviously, each topology is a pretopology, but the converse is not true in general.

Example 1.19. Let X = {x∞} ∪ {xn : n < ∞} ∪ {xn,k : n, k < ∞} with every

element distinct. We can define a convergence ξ on X by xn,k ∈ limξF if F =

{xn,k}↑, xn ∈ limξF if {xn}↑ ∧ {xn,k}↑k ≤ F , and x∞ ∈ limξF if {x∞}↑ ∧ {xn}↑n.

It is easy to verify that ξ is a pretopology. To see that ξ is not a topology, let

O be an open set containing x∞. Then there is are n0, k0 ∈ N such that xn ∈ O and

xn,k ∈ O for n ≥ n0 and k ≥ k0. So the neighborhood filter of x∞ is generated by sets

like

{x∞} ∪ {xn : n > n0} ∪ {xn,k : k > k0, n > n0}

and thus does not converge to x∞ with respect to ξ.

However, this definition of a topology isn’t always useful, and we instead find

ourselves using the equivalent view of our convergence being diagonal. Before we do

that, we have to define a selection map, which takes each point x ∈ X to a filter

S(x) ∈ FX that converges to x. When we let this map act on a filter on X, we get

what is called the contour filter S(F) which is defined as

S(F) :=
∨
F∈F

∧
x∈F

S(x).

Definition 1.20. A convergence ξ is diagonal if for every selection S : X → FX

and every filter F converging to x ∈ X, the contour filter converges to x:

x ∈ limξS(F).

With diagonality, we obtain a more useful characterization of topologies as con-

vergences.
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Proposition 1.21. A convergence ξ is a topology if and only if ξ is a pretopology

and is diagonal.

Theorem 1.22. A convergence ξ is a topology if and only if for every set A, every

map l : A→ X and S : X → FX such that l(a) ∈ limξS(a) for each a ∈ A,

limξl[F ] ⊆ limξS(F)

for every F ∈ FA.

Since we have a way of talking about a topology on a space by considering the

convergence structure of the space and have seen how to interpret continuous maps

in this language, a natural question is how we can talk about other topological ideas

in terms of convergences. While we could give convergence generalizations of all of

the ideas of topology, this is outside of the scope of this paper, and we will instead

only look at the notions that we will need to state the theorems of interest.

The first notion that we will look to generalize is that of the topological closure.

Recall that the topological closure of A ⊆ X, denoted cl(A), is the collection of all

points x ∈ X such that every neighborhood of x contains a point of A. Note that this

means that A ⊆ clA. So in the case of filters, when the convergence ξ is a topology,

we want our generalization of closure to have A#Nξ(x) for every x in the generalized

closure.

Definition 1.23. If A is a subset of a convergence space X, then the adherence of

A is defined by

adhξA :=
⋃

A∈F#

limξF

Proposition 1.24. For any subset A of a convergence space

adhξA =
⋃

A∈F#

limξF =
⋃
A∈G

limξG =
⋃

A∈U∈UX

limξU
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Claim 1.25. If ξ is a topology, then cl(A) = adhξA for every A ⊂ X

Proof. First, let x ∈ cl(A). Then we have that A ∈ Nξ(x)#, and since ξ is a topology,

then we have that x ∈ limξNξ(x), so x ∈ adhξA.

Conversely, let x ∈ adhξA. Then there is a F ∈ FX with A ∈ F# such that

x ∈ limξF . Since ξ is a topology, x ∈ limξF if and only if F ≥ Nξ(x). Then we have

that A ∈ Nξ(x)#, so we conclude that x ∈ cl(A) since A ∈ Nξ(x)#.

Since we can apply adhξ to any subset of X, we can also apply it to any family

of subsets of X. In particular, if F ∈ FX, we consider

adh\ξF := {adhξF : F ∈ F}↑.

Since several of our main results deal with regularity, we need to generalize the

idea into convergence spaces. Recall that a topological space (X, τ) is said to be

regular if for every closed A ⊂ X and every x /∈ A, there are disjoint U, V ∈ τ such

that x ∈ U and A ⊂ V.

Proposition 1.26. A topological space (X, ξ) is regular if and only if for every x ∈

X, Nξ(x) = adh\ξ(Nξ(x)).

This leads to the the following definition.

Definition 1.27. A convergence ξ is regular if for every filter F ,

limξF ⊆ limξadh\ξF .

We can obtain a characterization of regularity dual to that of topologies given in

Theorem 1.22.

Theorem 1.28. A convergence space (X, ξ) is regular if and only if for every set A,

every map l : A→ X, and S : A→ FX with l(a) ∈ limξS(a) for each a ∈ A,

limξS(F) ⊆ limξl[F ].
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The first of our main theorems is a generalization of Thm. 2.6 in [12]. Adapting

this theorem to the convergence space setting requires us to revisit the problem that

first motivated our interest in convergence spaces: for X, Y, Z ∈ ob(Conv), what is

the structure required on C(Y, Z) so that C(X × Y, Z) ≡ C(X,C(Y, Z))?

To answer this question, we begin by defining the relation [X, Y ] on the space of

all functions from X to Y . To do this, we say that for f ∈ Y X and F ∈ F(Y X),

f ∈ lim[X,Y ]F ⇔ ∀x ∈ X, ∀G ∈ FX, (x ∈ limξG ⇒ f(x) ∈ limY 〈G,F〉) .

where

〈G,F〉 := {〈G,F 〉 : G ∈ G, F ∈ F}↑

and

〈G,F 〉 := {h(g) : g ∈ G, h ∈ F}.

It turns out that [X, Y ] only satisfies properties 1 and 2 in 1.14, and that f ∈

lim[X,Y ]{f}↑ only when f ∈ C(X, Y ). So [X, Y ] defines a convergence on C(X, Y )

called the continuous convergence, and it is exactly this structure that is required to

make C(X × Y, Z) ≡ C(X, [Y, Z]) in Conv.

Theorem 1.29. [12, Thm. 2.6] A convergence space (Y, τ) is regular if and only if

for every topological space X, every f ∈ Y X and every F ∈ F(Y X), f ∈ lim[X,Y ]F

implies that f ∈ C(X, Y ).

This theorem generalizes the fact that while the pointwise limit of a sequence

of continuous functions need not be continuous, the uniform limit of a sequence of

continuous functions is continuous.

The second theorem that we are interested in generalizing is due to Fric̆ and

Kent and deals with extending a function from what they call a strict subspace to a

larger subspace.
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Definition 1.30. Let (X, ξ) be a convergence space and S ⊆ X. Then S is a strict

subspace if for every x ∈ adhξS and F ∈ F(adhξS) with x ∈ limξF , there is a G ∈ FS

such that adh\ξG ≤ F and x ∈ limξG.

Consider S ⊆ X and a continuous function f : S → Y. If x ∈ adhS, then

for f to extend to S ∪ {x} continuously, it is necessary (and sufficient) that f(x) ∈⋂
F∈FS,x∈limF limτf [F ].

Definition 1.31. Let (X, ξ) and (Y, τ) be two convergence spaces, S ⊆ X, and f :

(S, ξ|S)→ (Y, τ) be continuous. The hull of extensionability of S for f is

h(S, f) := {x ∈ adhξS :
⋂

F∈FS,x∈limξF

limτf [F ] 6= ∅}.

Theorem 1.32. A convergence space (Y, τ) is regular if and only if whenever S is a

strict subspace of a convergence space (X, ξ) and f : (S, ξ|S)→ (Y, τ) is a continuous

map, there is a continuous map f̂ : (h(S, f), ξ|h(S,f))→ (Y, τ) such that f̂|S = f.

Theorem 3.10 generalizes this result to Cap.



CHAPTER 2

APPROACH SPACES

In [8], R. Lowen showed that there is a category that contains the categories Top

(topological spaces with continuous maps) and Met(metric spaces with contractive

maps) as full subcategories. That is, from a categorical point of view, that topological

spaces and metric spaces can be considered as special cases of a common type of

object. One of the insights that sparked this result was that certain topological

notions have metric counterparts that have similar characterizations.

For example, in topological spaces, compactness of a topological space is similar

to the concept of total boundedness of a metric space. Recall that a topological

space (X, τ) is a compact space if for any open covering of the space, there is a finite

subcover. A metric space (X, d) is a totally bounded space if and only if for every

ε > 0, there is a finite collection of open balls of radius ε that covers X. It turns out

that both notions are instances of measure of compactness 0 in approach spaces.

This insight lead to the introduction of the category Ap, with approach spaces

as objects and contractions as morphisms. Since Ap contains both Top and Met,

we are able to combine the notions that make topological spaces nice to use without

having to give up the ability to obtain the quantifications that make metric spaces

nice. In fact, in Ap we are able to measure how much structure a space has, such as

how close a topological space is to being compact.

However, it turns out that Ap and Top share the same categorical problems.

Luckily Ap can be embedded in a larger but better behaved category, in the same way

that we were able to embed Top into Conv. This generalization, Cap(convergence

approach spaces with contractions as morphisms) contains Conv and Met as full

subcategories and is free of the categorical problems present in Ap.

This chapter will be focused on providing the basics of the theory of convergence
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approach spaces, and, as in the first chapter, many results will be stated without

proof. The interested reader is directed to [9] for a reference on approach spaces.

2.1 Convergence Approach Spaces

In our treatment of convergence approach spaces, we will define the spaces by focusing

on functions λ : FX → [0,∞]X known as limits, that we compare pointwise.

Definition 2.1. A function λ : FX → [0,∞]X is called a (convergence-approach)

limit if it satisfies the following properties:

1. For any x ∈ X, λ({x}↑)(x) = 0,

2. For F ,G ∈ FX, if F ≤ G, then λ(G) ≤ λ(F),

3. For all F ,G ∈ FX, λ(F ∧ G) = λ(F) ∨ λ(G),

where λ(F) ∨ λ(G) = sup{λ(F), λ(G)} in [0,∞]X ordered pointwise.

A limit can be thought of as a map that measures how close a filter is to con-

verging to a point x ∈ X. So, the first condition can be interpreted as saying that

the principal filter of a point fully converges to the point. Similarly, the second con-

dition states the finer the filter, the better it converges. The pair (X,λ) is called a

convergence approach space, and these are the objects of Cap.

Now, we turn our attention to defining the morphisms of Cap.

Definition 2.2. For two convergence approach spaces (X,λX) and (Y, λY ) a map

f : (X,λX)→ (Y, λY ) is called a contraction if for every x ∈ X

λY (f [F ])(f(x)) ≤ λX(F)(x)
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Cap λ({x}↑)(x) = 0 Conv x ∈ limξ{x}↑

F ≥ G =⇒ λ(G) ≤ λ(F) F ≥ G =⇒ limξG ⊆ limξF

λ(F ∧ G) = λ(F) ∨ λ(G) limξ(F ∧ G) = limξ(F) ∩ limξ(G)

PrAp λ(
∧
i∈I Fi) =

∨
i∈I λ(Fi) PrTop limξ(

∧
i∈I Fi) =

⋂
i∈I limξFi

Ap PrAp+λ(S(F)) = λ(F) +
∨
x∈X λ(S(x))(x) Top PrTop + diagonal

Table 2.1: The relationship between Cap and Conv

We can consider any convergence space (X, ξ) as a convergence approach space

by defining its limit in the following way

λξ(F)(x) =


0 if x ∈ limξF

∞ otherwise.

Also, a map from f : (X, ξ) → (Y, τ) is continuous if and only if it is a contraction

from (X,λξ) to (Y, λτ ).

Table 2.1 demonstrates the relationship between convergence approach spaces

and convergence spaces, as well as their associated subcategories. There are several

other ways of defining an approach space, such as using distance functions, but each

of these can be shown to be equivalent [9], so we will focus on limit functions.

Comparing the convergence side of the table and the convergence approach side,

we see that the condition that

λ(S(F)) = λ(F) +
∨
x∈X

λ(S(x))(x)

is the convergence approach generalization of diagonality.

The generalization of adherence to Cap is defined by letting A ⊆ X and ε ≥ 0

and considering the set

A(ε) := {x ∈ X : ∃U ∈ UX, A ∈ U , λ(U)(x) ≤ ε},

and extending it to G ⊆ P(X) by

G(ε) := {G(ε) : G ∈ G}.
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With this generalization of adherence to convergence approach spaces, we can now

generalize regularity of a space to convergence approach spaces.

Definition 2.3. A convergence approach space (X,λ) is regular if for every F ∈

FX, ε ≥ 0, and x ∈ X

λ(F (ε))(x) ≤ λ(F)(x) + ε.

Definition 2.4. A convergence approach space (X,λ) is strongly regular if for every

F ∈ FX, ε ≥ 0, and x ∈ X

λ(F (ε))(x) ≤ λ(F)(x) ∨ ε.

Let ⊕ : [0,∞] → [0,∞] be a commutative and associate binary operation that

satisfies the following two conditions

0⊕ r = r (2.1)

r ⊕
∧
a∈A

a =
∧
a∈A

(r ⊕ a) (2.2)

for every r ∈ [0,∞] and A ⊂ [0,∞]. This is the same as saying that [0,∞] with reverse

order is a unital quantale in the sense of [11]. In the case of the non-negative reals,

the two main examples of a unital quantale are standard additon + and pairwise

maximum ∨. This tensor preserves order, that is

a ≤ b and c ≤ d =⇒ a⊕ c ≤ b⊕ d, (2.3)

and it also respects limits,

(a+ ε)⊕ (b+ ε)→ a⊕ b, as ε→ 0. (2.4)

Combining (2.1) and (2.3), it is easy to see that ∨ ≤ ⊕.

Using this tensor, we are able to generalize both cases of regularity that were

just introduced with the following definition.
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Definition 2.5. A convergence approach space (X,λ) is ⊕-regular if for every F ∈

FX, ε ≥ 0, and x ∈ X

λ(F (ε))(x) ≤ λ(F)(x)⊕ ε.

Of course, in this definition, if we take ⊕ to be + or ∨ then we obtain the

definitions for regularity or strong regularity respectively. If for every F ∈ FX 2.5

holds for some x ∈ X, then we call x an ⊕-regularity point.

We are also able to generalize diagonality using the tensor.

Definition 2.6. A convergence approach space (X,λ) is ⊕-diagonal if for every map

S : X → FX and F ∈ FX we have that

λ(S(F))(·) = λ(F)(·)⊕
∨
x∈X

λ(S(x))(x)

Similar to the case in convergence spaces, we have an alternative way of charac-

terizing regularity using maps from a non-empty subset and selection maps.

Proposition 2.7. A convergence approach space is ⊕-regular if and only if for every

A 6= ∅, l : A→ X, F ∈ FA, and S : X → FX,

λ(l[F ])(·) ≤ λ(S(F))(·)⊕
∨
a∈A

λ(S(a))(l(a)).

The final thing that we need to generalize is the continuous convergence [X, Y ]

on Y X . For two convergence approach spaces (X,λX) and (Y, λY ), the limit on the

space C(X, Y ) of contractions from X to Y, is defined by

λ[X,Y ](F)(f) := inf{α ∈ [0,∞] : ∀G ∈ FX,SλY 〈G,F〉 (f(·)) ≤ λX(G)(·) ∨ α},

where 〈G,F〉 is defined as it was in the case of convergence spaces.



CHAPTER 3

REGULARITY IN Cap

3.1 Regularity and continuous convergence

We define the default of contraction of a function f ∈ Y X , denoted m+(f), in the

following way:

m+(f) := inf{α ∈ [0,∞] : ∀G ∈ FX, λY (f [G]) ◦ f ≤ λX(G) + α}.

The default of contraction measures how far away the function is from being a con-

traction, so it is clear that f is a contraction if and only if m+(f) = 0. We generalize

the default of contraction using the tensor ⊕ that was defined in the previous chapter

by

m⊕(f) := inf{α ∈ [0,∞] : ∀G ∈ FX, λY (f [G]) ◦ f ≤ λX(G)⊕ α}.

For our two examples of this tensor, + and ∨, it is easy to see that for every f,

m+(f) ≤ m∨(f)

because a ∨ b ≤ a+ b for all a, b ∈ [0,∞].

Theorem 1.29 states that if if the codomain is regular, then [X, Y ]-limits are

automatically continuous. In the case of convergence approach spaces, we will see

that the level of convergence in [X, Y ] controls the default of contraction:

Theorem 3.1. [1] If Y is a ⊕-regular convergence-approach space, X is a convergence-

approach space, and f ∈ Y X then

m⊕(f) ≤

 ∧
F∈F(Y X)

λ[X,Y ](F)(f)

⊕
 ∧
F∈F(Y X)

λ[X,Y ](F)(f)

 .

Conversely, if Y is not ⊕-regular, there is a topological space X and f ∈ Y X with

m⊕(f) >

 ∧
F∈F(Y X)

λ[X,Y ](F)(f)

 .
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In particular, considering convergence spaces as convergence-approach spaces, we

get as an immediate corollary:

Corollary 3.2. Let Y be a convergence space. The following are equivalent:

1. Y is regular;

2.

f ∈ lim[X,Y ]F =⇒ f ∈ C(X, Y )

for every convergence space X, every f ∈ Y X and every F ∈ F(Y X);

3.

f ∈ lim[X,Y ]F =⇒ f ∈ C(X, Y )

for every topological space X, every f ∈ Y X and every F ∈ F(Y X).

In particular, this result generalizes [12, Theorem 2.6] of Wolk, which establishes

the equivalence between (1) and (3), under the assumption that Y be topological.

Corollary 3.3. If a convergence-approach space Y is regular then for every convergence-

approach space X and f ∈ Y X ,

m+(f) ≤ 2
∧

F∈F(Y X)

λ[X,Y ](F)(f).

If Y is not regular, there is a topological space X and f ∈ Y X with

∧
F∈F(Y X)

λ[X,Y ](F)(f) < m+(f).

Corollary 3.4. A convergence-approach space Y is strongly regular if and only if for

every convergence approach (equivalently, topological) space X and f ∈ Y X ,

m∨(f) ≤
∧

F∈F(Y X)

λ[X,Y ](F)(f).
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We will need the following observation to prove Theorem 3.1.

Lemma 3.5. If α ∈ [0,∞], G ∈ FX, F ∈ F(Y X) and f ∈ Y X satisfy

λY (〈x,F〉)(f(x)) ≤ α,

for every x ∈ X, then

f [G] ≥ 〈G,F〉(α).

Note that the case α = 0 states that if F converges pointwise to f ∈ Y X then

for any G ∈ FX, f [G] ≥ adh\c(Y )〈G,F〉, where c(Y ) is the convergence defined by

x ∈ limc(Y )F if and only if λY (F)(x) = 0. (1)

Proof. Let x ∈ G for some G ∈ G. We consider the filter 〈{x}↑,F〉 on 〈G,F 〉 for

F ∈ F . Then by the assumption,

λY (〈{x}↑,F〉)(f(x)) ≤ α,

so f(x) ∈ 〈G,F 〉(α). Thus f(G) ⊆ 〈G,F 〉(α) for any G ∈ G and F ∈ F , so f [G] ≥

〈G,F〉(α).

Proof of Theorem 3.1. Let Y be a ⊕-regular convergence-approach space and let

c :=
∧

F∈F(Y X)

λ[X,Y ](F)(f).

For ε > 0, there is an Fε ∈ F(Y X) such that λ[X,Y ](Fε)(f) < c+ ε, and, by definition

of λ[X,Y ], there is αε < λ[X,Y ](Fε)(f) + ε < c+ 2ε such that λ 〈G,Fε〉 ◦ f ≤ λX(G)∨αε

for every G ∈ FX. In particular,

λ
〈
{x}↑,Fε

〉
(f(x)) ≤ λX({x}↑)(x) ∨ αε = αε

so that f [G] ≥ 〈G,Fε〉(αε) by Lemma 3.5.

1c(Y ) is known as the Conv-coreflection of Y .
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Since Y is ⊕-regular,

λY (〈G,Fε〉(αε)) ◦ f ≤ λ 〈G,Fε〉 ◦ f ⊕ αε ≤ (λX(G) ∨ αε)⊕ αε,

≤ λX(G)⊕ (αε ⊕ αε),

using (2.3) and the fact that ∨ ≤ ⊕. Thus λY (f [G]) ◦ f ≤ λX(G)⊕ (αε⊕αε) because

f [G] ≥ 〈G,Fε〉(αε). However, αε ⊕ αε < (c + 2ε) ⊕ (c + 2ε), and since ε is arbitrary,

the inequality becomes λY (f [G])◦ f ≤ λX(G)⊕ (c⊕ c) by (2.4), and we conclude that

m⊕(f) ≤ c⊕ c.

For the converse, assume that Y is not ⊕-regular. Then in view of Proposition

2.7, there exists A 6= ∅, l : A→ Y , S : A→ FY , H ∈ FA, and y0 ∈ Y such that

λY (l[H])(y0) > λY (S(H))(y0)⊕
∨
a∈A

λY (S(a))(l(a)). (3.1)

From this, we build a topological approach space X, a filter F0 on Y X , and a

function f ∈ Y X with m⊕(f) > λ[X,Y ](F0)(f).

The space X and function f

Let X := (Y × A) ∪ A ∪ {x∞} where x∞ /∈ A. Define pY : Y × A → Y by

pY (y, a) = y for all (y, a) ∈ Y × A, and let f : X → Y be defined by f|A = l,

f|Y×A = pY , and f(x∞) = y0. Let

N :=
⋃
H∈H

⋂
a∈H

(S(a)× {a}↑) ∧ {a}↑.
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Now we define λX by, for all a ∈ A and y ∈ Y :

λX(G)((y, a)) :=


0 if G = {(y, a)}↑

∞ otherwise

λX(G)(a) :=


0 if G ≥

(
S(a)× {a}↑

)
∧ {a}↑

∞ otherwise

λX(G)(x∞) :=


0 if G ≥ N ∧ {x∞}↑

∞ otherwise.

A

Y × A

x∞
A

Y × A

x∞

(y, a)

A

Y × A

x∞ a
A

Y × A

x∞

Figure 3.1: The space X and the approach structure defined on X

Note that X is then a topological CAP space, and that

m⊕(f) > λY (S(H))(y0)⊕
∨
a∈A

λY (S(a))(l(a)),

because of (3.1) and f [H] = l[H].

The filter F0

Let P := {h ∈ Y X : h|Y×A = pY and h(x∞) = y0}, and for each a ∈ A, let

â : Y X → Y

h 7→ h(a).
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Let

A :=
⋃
a∈A

{
â−1(S) ∩ P : a ∈ A, S ∈ S(a)

}
B :=

⋃
H∈H

{
⋂
a∈H

â−1(SHa ) ∩ P : (SHa )a∈H ∈
∏
a∈H

S(a)}.

Then A ∪ B has the finite intersection property, in the sense of Def 1.9, and thus

generates a filter F0 on Y X .

Controlling λ[X,Y ](F0)(f)

It suffices to show that

λ[X,Y ](F0)(f) ≤ λY (S(H))(y0) ∨
∨
a∈A

λY (S(a))(l(a))

because then

λ[X,Y ](F0)(f) ≤ λY (S(H))(y0)⊕
∨
a∈A

λY (S(a))(l(a)) < m⊕(f).

To this end, by definition of [X, Y ], we only need to show that

λY (〈G,F0〉)(f(x)) ≤ λY (S(H))(f(x)) ∨
∨
a∈A

λY (S(a))(l(a)) ∨ λX(G)(x)

for every G ∈ FX and x ∈ X.

If G ≥ N ∧{x∞}↑ then 〈G,F0〉 ≥ S(H)∧ {y0}↑ since for each B ∈ S(H) there is

HB ∈ H and for each a ∈ HB, there is Sa ∈ S(a) such that
⋃
a∈HB Sa ⊆ B and〈 ⋃

a∈HB

((Sa × {a}) ∪ {a}),
⋂
a∈HB

â−1(Sa) ∩ P

〉
⊆
⋃
a∈HB

Sa.

Thus

λY (〈G,F0〉)(y0) ≤ λY (S(H))(y0) = λY (S(H))(y0) ∨ λX(G)(x∞).

If G ≥
(
S(a)× {a}↑

)
∧ {a}↑ for some a ∈ A, then

〈G,F0〉 ≥ S(a).
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Indeed, by definition of P , 〈S × {a}, â−1(S) ∩ P 〉 ⊆ S for any S ∈ S(a). Moreover,

〈a, â−1[S(a)] ∨ P 〉 ≥ S(a), so that 〈a,F0〉 ≥ S(a).

Thus, taking into account that f(a) = l(a),

λY (〈G,F0〉)(f(a)) ≤ λY (S(a))(l(a)) = λY (S(a))(l(a)) ∨ λX(G)(a).

Finally, if G is a principal ultrafilter {t}↑ then 〈{t}↑,F0〉 = {f(t)}↑ if t ∈ (Y × A) ∪

{x∞}, by definition of f and F0. If t = a ∈ A, however, we have 〈a,F0〉 ≥ S(a), so

that λY 〈a,F0〉 (f(a)) ≤ λY (S(a))(l(a)).

Thus

λ[X,Y ](F0)(f) ≤ λY (S(H))(y0) ∨
∨
a∈A

λY (S(a))(l(a)).

3.2 Regularity and contractive Extensions

In this section, we investigate the conditions under which a contractive map f : S →

Y , where S ⊂ X and X, Y are CAP spaces, can be extended to a contraction defined

on a larger subset of X. In particular, we will provide a generalization of Theorem

1.32. First, we need a convergence approach analogue of the hull of extensionability

of Def 1.31.

We proceed following the terminology used in [6]. Given two CAP spaces X and

Y , x ∈ X, S ⊂ X, f : S → Y and α, ε ∈ [0,∞], define

Hε
S(x) := {F ∈ FS : λX(F)(x) ≤ ε}

F ε
S(x) := {y ∈ Y : ∀F ∈ Hε

S(x), λY (f [F ])(y) ≤ ε}

h(S, f, α) :=
{
x ∈ S(α) :

⋂
ε∈[0,∞]

F ε
S(x) 6= ∅

}
h(S, f) := h(S, f, 0).
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Note that F ε
S(x) = Y if Hε

S(x) = ∅, that S ⊆ h(S, f) ⊆ h(S, f, α) for each α, and

that if X and Y are convergence spaces (considered as CAP spaces) then

h(S, f) =
{
x ∈ adhS :

⋂
F∈FS, x∈limX F

limY f [F ] 6= ∅
}
,

is the hull of extensionability as in definition 1.31.

Definition 3.6. Given a contraction f : S → Y where S ⊆ X, and α ∈ [0,∞],

we call a function g : h(S, f, α) → Y with g|S = f and g(x) ∈
⋂

ε∈[0,∞]

F ε
S(x) for each

x ∈ h(S, f, α) an admissible extension of f . If each g(x) is also a ⊕-regularity point,

then we call g a ⊕-regular extension of f .

Note that we can adopt a similar terminology in Conv (2).

Definition 3.7. Let X be a CAP space and S ⊆ X and α ∈ [0,∞]. Then S is called

an α-⊕-strict subspace if for every x ∈ S(α) and every F ∈ FS(α) there is G ∈ FS

such that G(α) ≤ F and

λ(G)(x) ≤ λ(F)(x)⊕ α. (3.2)

S is called ⊕-strict if it is α-⊕-strict for every α ∈ [0,∞].

Definition 3.8. S is called a uniformly α-⊕-strict subspace if for every F ∈ FS(α)

there is G ∈ FS such that G(α) ≤ F and

λ(G) ≤ λ(F)⊕ α. (3.3)

on S(α).

S is called uniformly ⊕-strict if it is uniformly α-⊕-strict for every α ∈ [0,∞].

2Namely if f : S → Y is continuous for S ⊂ X, we call a function g : h(S, f) → Y with g|S = f

and g(x) ∈
⋂

x∈limX F ;S∈F
limY f [F ] for each x ∈ h(S, f) an admissible extension of f . If moreover

each g(x) is a regularity point, g is a regular extension of f .
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Thus a subspace of a convergence space is strict, in the sense of definition 1.30,

if and only if it is ⊕-strict, equivalently ε-⊕-strict for some ε < ∞, when considered

as a CAP space.

Proposition 3.9. If X is a ⊕-diagonal CAP space, then every subspace is uniformly

⊕-strict.

Proof. Let S ⊆ X, let α ∈ [0,∞] and take a filter on S(α) and call F is the filter

generated on X. For each x ∈ S(α), take S(x) ∈ FS such that λ(S(x))(x) ≤ α and

for x 6∈ S(α) let S(x) = {x}↑. Since X is ⊕-diagonal, for G = S(F) we have

λ(G) = λ(S(F)) ≤ λ(F)⊕
∨
x∈X

λ(S(x))(x) ≤ λ(F)⊕ α

on X. Clearly S ∈
⋂
x∈S(α) S(x) and since S(α) belongs to F we have S ∈ G. We

finally check that G(α) ≤ F . Let Z ∈
⋂
x∈F∩S(α) S(x) for some F ∈ F . With u ∈

F ∩ S(α) the filter S(u) contains Z and λS(u)(u) ≤ α. So u ∈ Z(α). It follows that

F ∩ S(α) ⊆ Z(α).

We are now ready to generalize Theorem 1.32 to convergence approach spaces.

Theorem 3.10. Let α ∈ [0,∞] and let Y be a CAP space. If S is an α-⊕-strict

subspace of a convergence approach space X and f : S → Y is a contraction, then

every ⊕-regular extension g : h(S, f, α)→ Y of f satisfies m⊕(g) ≤ α⊕ α.

Proof. We may assume α <∞. Let g be an ⊕-regular extension g : h(S, f, α)→ Y .

Let F ∈ F (h(S, f, α)) and x0 ∈ h(S, f, α). Since S is an α-⊕-strict subspace of X

there is a G ∈ FS such that G(α) ≤ F and

λX(G)(x0) ≤ λX(F)(x0)⊕ α.

Since G(α) ∨ h(S, f, α) ≤ F we have

(f [G])α ≤ g[G(α) ∨ h(S, f, α)] ≤ g[F ],
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where the first inequality follows from the assertion g(Gα ∩ h(S, f, α)) ⊆ (f(G))α.

Indeed for x ∈ G(α) ∩ h(S, f, α) there is an ultrafilter U on G with λ(U)(x) ≤ α, that

is with U ∈ Hα
S (x). Since g is an admissible extension of f , g(x) ∈

⋂
β∈[0,∞]

F β
S (x) so

that in particular g(x) ∈ Fα
S (x) and λY (f [U ])(g(x)) ≤ α. Thus g(x) ∈ (f(G))(α).

Therefore

λY (g[F ])(g(x0)) ≤ λY (f [G])(α)(g(x0)) ≤ λY ((f [G]))(g(x0))⊕ α,

since g(x0) is a regularity point of Y. With λX(G)(x0) = γ, using the fact that

g(x0) ∈ F γ
S (x0) we obtain

λY (f [G])(g(x0)) ≤ γ = λX(G)(x0).

Finally we obtain

λY (g[F ])(g(x0)) ≤ λG(x0)⊕ α ≤ λF(x0)⊕ α⊕ α

Corollary 3.11. If S is a ⊕-strict subspace of a CAP space X, and Y is a ⊕-

regular CAP space, then every admissible extension g : h(S, f)→ Y of a contraction

f : S → Y is a contraction.

The restriction of Theorem 3.10 to Conv is essentially (in fact, it is slightly more

general than) the direct part of [5, Theorem 1.1]:

Corollary 3.12. If S is a strict subspace of a convergence space X and Y is a

convergence space, then every regular extension g : h(S, f)→ Y of a continuous map

f : S → Y is continuous. In particular, if Y is regular, every admissible extension

g : h(S, f)→ Y of a continuous map f : S → Y is continuous.

Using a construction similar to that of the proof of Theorem 3.1, we obtain a

partial converse:



28

Theorem 3.13. If Y is not ⊕-regular, then there is a ⊕-approach space X, a ( uni-

formly ⊕-strict) subspace S, a contraction f : S → Y , α ∈ [0,∞), and an admissible

extension g : h(S, f, α)→ Y that is not contractive (that is, m⊕(g) > 0).

Proof. Since Y is not ⊕-regular, there exists A 6= ∅, l : A→ Y , S : A→ FY , H ∈ FA,

and y0 ∈ Y such that

λY (l[H])(y0) > λY (S(H))(y0)⊕
∨
a∈A

λY (S(a))(l(a)). (3.4)

Let X := (Y × A) ∪ A ∪ {x∞}, S := Y × A, and f : S → Y be f(y, a) = y. Let

N :=
⋃
H∈H

⋂
a∈H

(S(a)× {a}↑) ∧ {a}↑.

On X, we define the following CAP structure:

λX(G)((y, a)) :=


0 if G = {(y, a)}↑

∞ otherwise

λX(G)(a) :=


0 if G = {a}↑

λY (S(a))(l(a)) if G ≥
(
S(a)× {a}↑

)
∧ {a}↑and G 6= {a}↑

∞ otherwise

λX(G)(x∞) :=


0 if G = {x∞}↑

λY (S(H))(y0) if G ≥ N

∞ otherwise.

Note that f is a contraction and that X is a ⊕-approach space. Thus, in view

of Proposition 3.9, S is a ⊕-strict subspace.

We claim that h(S, f, α) = X for α := λY (S(H))(y0) ∨
∨
a∈A λY (S(a))(l(a)),

which is finite by (3.4). Indeed, A ⊆ h(S, f, α) because if G ≥ (S(a)× {a}↑) ∧ {a}↑,



29

λX(G)(a) = λY (S(a))(l(a)) ≤ α. Also, l(a) ∈
⋂

ε∈[0,∞]

F ε
S(a), since Hε

S(a) = {G ∈ FS :

G ≥ S(a)× {a}↑} and f [G] = S(a) imply that λY (f [G])(l(a)) = λY (S(a))(l(a)).

Moreover x∞ ∈ S(α) because λX(N ∨ S)(x∞) = λY (S(H))(y0) ≤ α, and x∞ ∈

h(S, f, α) because y0 ∈
⋂

ε∈[0,∞]

F ε
S(x∞). Indeed, if ε < λY (S(H))(y0) then Hε

S(x∞) = ∅,

so that F ε
S(x∞) = Y . If λY (S(H))(y0) ≤ ε <∞, then

Hε
S(x∞) = {G ∈ FS : λX(G)(x∞) ≤ ε} = {G ∈ FS : G ≥ N ∨ S}.

Thus if G ∈ Hε
S(x∞) then f [G] ≥ S(H), and λY (f [G])(y0) ≤ λY (S(H))(y0) =

λX(G)(x∞) ≤ ε. Thus y0 ∈ F ε
S(x∞).

Consider the admissible extension g : h(S, f, α) → Y of f defined by g|S = f ,

g|A = l and g(x∞) = y0. Then

m⊕(g) >
∨
a∈A

λY (S(a))(l(a)) ≥ 0

because

λY (g[H])(y0) = λY (l[H])(y0) > λY (S(H))(y0)⊕
∨
a∈A

λY (S(a))(l(a))

> λX(H)(x∞)⊕
∨
a∈A

λY (S(a))(l(a)).

Note that if, in the proof above, Y is a convergence space (considered as a CAP

space), then we can assume λY (S(a))(l(a)) to be 0 for each a ∈ A, and λY (S(H))(y0)

to be 0. Thus, X is then a topological CAP space. Therefore, we recover:

Corollary 3.14. [5, Theorem 1.1] A convergence space Y is regular if and only if,

whenever S is a strict subspace of a convergence (equivalently, topological) space X

and f : S → Y is a continuous map there exists a continuous map f̄ : h(S, f)→ (Y, τ)

with f̄|S = f .
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Since every subspace of a diagonal convergence space is strict, we also recover:

Corollary 3.15. [2] A Hausdorff convergence space Y is regular if and only if for

every diagonal convergence space X, every subspace S of X, and every continuous

map f : S → Y there exists a (unique) continuous map f̄ : h(S, f)→ Y with f̄|S = f .
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