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by

ANTHONY BUSH
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ABSTRACT

Part of the implementation of Reinforcement Learning is constructing a regression of

values against states and actions and using that regression model to optimize over actions

for a given state. One such common regression technique is that of a decision tree; or in the

case of continuous input, a regression tree. In such a case, we fix the states and optimize

over actions; however, standard regression trees do not easily optimize over a subset of the

input variables [2]. The technique we propose in this thesis is a hybrid of regression trees

and kernel regression. First, a regression tree splits over state variables at a macro level,

then kernel regression models the effects of actions with a smooth function at a micro level.

Then non-linear optimization is used to optimize the kernel regressed function to find the

best action and get a precise prediction of its value for any given state. This “best action”

is then stored in the tree and is instantly retrieved upon making decisions. This is not only

more appropriate for problems with continuous output, but also for problems with a discrete

output since it also generalizes the knowledge over actions as well as states, providing for

smarter decision-making. The capabilities of this technique are observed for a time series

constructed to realistically model a stock problem.
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CHAPTER 1

INTRODUCTION

As one can imagine, learning from investing in stocks is a complex task. Fitted Q-

Iteration is one powerful method designed to handle decision problems of such complexity.

To execute Fitted Q-Iteration, the problem must be cast as a Markov Decision Process

which maps a state and action at a given index to a reward. The goal here is to find an

optimal policy that maps a given state to the action that gives the highest reward. Fitted

Q-Iteration uses a function “Q” that takes into account the reward of different actions and

iteratively makes guesses and learns at each step to update the Q function until an optimal

policy has been reached. The learning that Fitted Q-Iteration does is dependent on some

form of machine learning algorithm which uses the state and action variables as inputs

and maps them to an expected value. This can be done using a wide variety of different

algorithms, but for this problem, we explore the capabilities of regression trees, especially

the capabilities of regression trees under the proposed construction of splitting only on state

variables and then using a more precise technique to select an optimal action.

Regression trees learn by splitting up the data iteratively until the data has been parti-

tioned into fine enough parts that are homogeneous with respect to the output variable. In

particular, the goal for constructing a regression tree is to make splits such that for every

split, the two sets created from that split are the most different from each other and are each

optimally self similar. Once the data has been partitioned into nodes, each node is assigned

the average response variable as the output. As a result, the tree can be used to map in-

puts to an expected output. For Fitted Q-Iteration, the state and action together constitute

an input which the tree then uses to map to a value indicating how desirable it is to be in

that state, and choose that action. By optimizing over actions for each state, the policy is

extracted.

Classically, tree algorithms consider a discrete action space and construct a different
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tree for each action, at which point a prediction is made based on which tree yields the best

result [6]. However for many problems we have a continuous or large discrete action space,

so we need a different method to handle this type of input. As stated in the abstract, we

resolve this issue by splitting data based on states and then once all the splitting that can be

done on states is done, we optimize over actions using kernel regression to find a so called

“best action”.

Kernel Regression is a technique used to smooth noisy functions, or make smooth

functions out of large amounts of scattered data. Making such a smooth function allows

us to then use some non-linear optimization technique to converge to an estimate for a

maximum of the data given. For this particular problem, stocks can be very noisy, and FQI

only makes guesses, so what we are left with after the regression tree has split on state

variables is scattered noisy observations of actions to values, so we apply kernel regression

to create a smooth function out of all of this noise.

The only obstacle left now is that of how we construct data that accurately models

that of an actual share price over time and is easy to replicate. One such discipline that

deals with such models is that of Time Series Analysis. Not surprisingly, the task of an-

alyzing stocks is one that has received constant attention ever since the idea of stock was

conceptualized. Because of this, myriad techniques exist to attempt to accurately predict

stocks. The field of Time Series Analysis amends its efforts to, for any process indexed by

time (i.e. not just stocks), remove cyclic and long-term trend and observe the “stationary”

residuals. A stationary time series can be thought of as a time series that doesn’t change in

covariance or mean throughout time. Removing cyclic, also called “seasonal”, trends en-

sures that the mean does not alternate periodically. Removing long-term trends of growth

or decay ensures that the mean does not grow or decay over time. Removing long-term

changes in magnitude of fluctuations in data ensures that the covariance stays constant.

Once a time series has been reduced to stationary residuals, a time series analysis
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approach selects a model to try to fit the data. Many different models exist that capture

certain characteristics of the data being analyzed, and many are able to match data with

surprising semblance [3] [10] [7].

Two such characteristics that are common in the stock market are mean reversion

and shock. Mean reversion is the concept that eventually stocks return to their long-term

mean. This concept can be rationalized using probability distributions. Since a probability

distribution must integrate to 1, if a realized value is far away from the mean, then the

number of values that are closer to the mean is higher than the number of values that are

farther away from the mean. Stocks are shown to have this property when long-term and

cyclic trends are removed [8]. In statistics, we refer to shock as “noise.” Looking at any

stock over time, it is easy to see persistent noise created by variability in trading and the

fluctuating success of the company. This shock is not removed when long-term and cyclic

trends are removed and is random, meaning that it doesn’t affect stationarity. A process

commonly used to model shock is the Moving Average Process which uses “white noise”

to model the random shock over time. A process commonly used to model mean reversion

is the Autoreressive Process which adds a percentage of the previous term or terms to create

mean reversion. Both of these processes are combined to form the ARMA model which is

a very commonly used method to model stock residuals. This model is described in more

detail in section 2.5.

Since the ARMA model only models the stationary residuals of a stock, passive in-

vestment should on average yield only the mean with no profit. In other words, any trading

strategy that can yield equity strongly above the mean in an ARMA time series would cer-

tainly do much better in a real stock where the seasonal and long-term trends were known

(which would have to be known to construct the stationary model in the first place). For

the proposed problem we attempt to form such a strategy.
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CHAPTER 2

SUPPORTING METHODS

2.1 MARKOV DECISION PROCESSES

To introduce the concept of Fitted Q-Iteration it is necessary to lay the groundwork

by discussing the idea of Markov Decision Processes. A Markov Decision Process is a

Stochastic Process that models a situation where the next state is dependent on the current

state and an action chosen by a controller or agent, after which a reward is received. As the

name suggests, a Markov Decision Process has the Markov Property. That is, probabilities

for the next state conditioned on the current state are equal to the probabilities for next state

conditioned on not only the current state, but all other prior states as well. In other words,

the probabilities for the next state only depend on the current state and action and not on

any prior states.

To formalize, we begin by defining Stochastic Processes.

Definition 2.1. A Stochastic Process is a sequence of random variables {Xt} indexed by a

set T

Definition 2.2. A Markov Decision Process is a Stochastic Process written as a 4-tuple,

(S,A(s), P (s, s′, a), R(s, a)) where Xt ∈ S is the set of states, A(s) is the set of actions

available from state s ∈ S, P (s, s′, a) is the probability that the state s ∈ S and action

a ∈ A will lead to state s′ ∈ S and R(s, a) is the random variable reward for being in state

s and using an action a. Note that elements of S and A can, themselves, be tuples.

The goal of Markov Decision Processes is to find an optimal policy denoted π∗ : S →

A that maps a given state s to an action a returning the highest reward. The optimal policy

can be thought of as the best choice to make in a given situation. To attempt to solve for

an optimal policy, it seems natural to consider a value function V π : S → R that assigns a
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value to state s for using policy π. A common definition of the value function V π(s) is the

total expected discounted reward criteria [2].

V π(s) = E
[ ∞∑
t=0

γtR(st, π(st)|s0 = s
]

(2.1)

Where γ ∈ [0, 1] is the discount factor. γ serves two purposes. It corresponds to the

idea that present rewards are more valuable than future rewards, and ensures convergence

when rewards are bounded.

A simple rearrangement of the expected discounted reward criteria yields [11]

V π(s) = E
[
R(s, π(s))

]
+ γ

∑
s′∈S

V π(s′)P (s′|s, π(s)) (2.2)

This is known as Bellman’s equation. Q-Learning is based on a generalization of

Bellman’s equation that includes actions. The expected discounted reward criteria in the

form of Bellman’s equation can be used to define for an optimal policy π∗ by requiring

V π∗ = supπV
π(s) ∀s. If transition probabilities and rewards are known, dynamic pro-

gramming and stochastic optimization can be used to find an optimal policy [9], however if

no such probabilities are known, but there are real or simulated data with observed rewards,

then a different technique is required to approximate an optimal policy.

2.2 Q-LEARNING

Define a function Qπ : S × A → R that makes use of the definition of actions under

the policy π. As such, we have

Qπ(s, a) = E[R(s, a)] + γ
∑
s′∈S

V πP (s, s′, a) (2.3)

where V π(s) = E
[∑∞

t=0 γ
tR(st, a|s0 = s

]
is the expected discounted reward criteria

and γ is the discount factor in [0, 1].
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If Qπ∗ , the Q function under the policy π∗, can be determined or approximated on all

of S × A, then we can easily find an optimal policy by π∗(s) = argsupa∈AQ
π∗(s, a). The

Q-Learning algorithm estimates Qπ∗ with Q̂t(s, a) which converges to Qπ∗ as t approaches

∞. For this algorithm, we begin with Q̂0 = 0, and for t > 0, use the recursive definition:

Q̂t(st, at) = (1− α)Q̂t−1(st, at) + α
[
rt + γargmaxa∈AQ̂t−1(st+1, a)

]
(2.4)

where α ∈ [0, 1] is the learning rate. We include pseudocode for clarity in Algorithm

1.

Algorithm 1 Q-Learning Algorithm

Q̂0=0, α=learning rate, M=number of iterations, γ=discount factor

for n in 1 to M do

s=observe current state

a=choose an action

u=state resulting from choosing action a

r= reward for performing action a

Q̂n(s, a) = (1− α)Q̂n−1(s, a) + α
(
r + γmaxb∈A(u)Q̂n−1(u, b)

)
end for

For this technique, we can see that the algorithm learns at each step and then applies

what it learns to select actions. This technique is known as online learning, and is very

powerful since it continues to learn as more information is observed [2]. The only disad-

vantage, however, is that it is computationally inefficient. Learning can be slow since each

observation is used once, and is then discarded. A technique that circumvents this issue

is called, as one may guess, offline learning. In offline learning, the data collection and

learning phases are separated. In the data collection phase, the actions are often chosen
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at random. Then the algorithm learns from the collected data and updates Q. This offline

variant of Q-Learning is known as Fitted Q Iteration.

Fitted Q Iteration can be much faster than traditional Q-Learning because it uses each

observation multiple times, and uses all observations simultaneously [2]. For traditional Q-

Learning, the algorithm makes an educated guess and then learns in the same step for each

sequential step, meaning that they cannot be run in parallel. However Fitted Q Iteration

can run in parallel and is therefore potentially more efficient. A disadvantage of Fitted Q

Iteration is that it may not accurately predict the true maximum if the reward space is not

fully represented by the observed rewards from random actions, but with large data sets, it

is very likely that the true characteristics of the reward function can be extrapolated.

For the specifics of how Fitted Q Iteration is implemented, we begin with data in the

form of four-tuples (st, at, ut, rt) where st is the state at time t, at is the (usually randomly

chosen) action at time t, ut is the next state at time t (i.e. ut = st+1), and rt is the reward of

choosing action at while in state st. For the purpose of the algorithm, we initialize it to be

(st, at) and w0,t to be rt at each time t. it and wk,t can be thought of as the input and output

of the algorithm respectively. We also initialize Q̂0 = 0 to begin with. Then the sequential

portion takes place by updating the output as

wk,t = rt + γQ̂k−1(ut) (2.5)

for all time t and then evaluating Q̂k using some regression technique on {it} and

{wt}. This procedure is carried out for k until some stopping criterion is met. We see the

pseudocode for this in Algorithm 4.

A natural question arises as to which regression technique is suitable for evaluating

Q̂k on each iteration. For this, we introduce Regression Trees.
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Algorithm 2 Fitted Q Iteration

γ=discount factor, Q̂0=0, k=1, T=set of observations, M=size of T, RM=regression model,

while stopping criterion not met do

for t in 1 to M do

it = (st, at)

wk,t = rt + γQ̂k−1

end for

Q̂k = RM(i, w)

k=k+1

end while

2.3 REGRESSION TREES

Regression Tree Learning is a type of Machine Learning algorithm that trains on a

data set of inputs and outputs and recursively partitions data into left and right subsets at

several “nodes” to make a tree structure, which can be followed from the root node to return

a predicted output for any input. The process for doing this is as follows:

1. Begin at node 1

2. Loop over input variables and values on which to bisect the data such that each part

is maximally self-similar

3. Go node by node and repeat process until the observations in each node are suffi-

ciently homogeneous in the output.

For Regression Trees, there are several key terms that come along with the implemen-

tation:
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Algorithm 3 Regression Tree Construction
node=1, numnodes=1 T=set of observations, numin=number of input variables

while node ≤ numnodes do

If (node is splittable) do (

bestsplit=initial bad split

for i in 1 to numin do

splitcand = best numerical split for variable i

If (splitcand is better than bestsplit) do (bestsplit=splitcand)

end for

Create two new nodes labelled node+1 and node+2 and designate observations to each

using bestsplit

numnodes=numnodes+2

node=node+1

)

end while
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Figure 2.1: In this figure, we can see an input space partitioned by splits on Input 1 and

Input 2.

• Each time a node splits, the two new nodes that are created are called “children”

nodes

• The node from which these two children nodes originated is called the “parent” node

• When a node cannot split it is called a “terminal” node

To visualize, in Figures 2.1 and 2.2 we can see an example of how successive splits

can partition an input space of two input variables to make a tree that makes predictions

based on these splits.

As stated, the splits are determined in a way such that each “child” node contains data
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Figure 2.2: In this figure, we can see the tree that corresponds to the partitioned input space

in Figure 2.1. We can see that there are 14 splits, 4 levels and 8 terminal nodes in this tree.
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that is optimally self-similar. This is done so that the tree accurately decides where to send

observations that display distinct characteristics for prediction purposes. The measure of

how self-similar a node is most commonly calculated as some form of error. One way to

make this calculation is using the SSE (sum of squares) for each group. In such a case, our

goal is to minimize this error so that we have made a split that maximizes the homogeneity

of both the groups. The formula for the error that we would like to minimize would then

be the sum of the SSE’s of both groups, stated below:

Error = SSL + SSR =

nl∑
i=1

(yi − ȳl)2 +
n∑

i=nl+1

(yi − ȳr)2 (2.6)

where ȳl denotes the average of observations of the left child, ȳr denotes the average

of observations of the right child, n denotes the total number of observations in the parent

node, and nl denotes the number of nodes designated to the left child under the proposed

split. Later we will use nr to denote the number of nodes designated to the right child under

the proposed split.

Unfortunately, using (2.6) to calculate error requires looking at n observations for each

split for each variable over each node. As one can imagine, this is a very costly calculation,

and we would like a way to reduce its complexity.

There is a well known [13] simplification of SSE that goes as follows:

∑n
i=1(yi − ȳl)2 =

∑n
i=1 y

2
i − 2yiȳ − ȳ2 =

∑n
i=1 y

2
i − 2ȳ

∑n
i=1 yi +

∑n
i=1 ȳ

2

=
∑n

i=1 y
2
i − 2nȳ2 + nȳ2 =

∑n
i=1 y

2
i − nȳ2

This is commonly referred to as the computational formula for the sum of squared

errors and allows us to simplify (2.6) as

∑nl

i=1(yi − ȳl)2 +
∑n

i=nl+1(yi − ȳr)2 =
∑nl

i=1 y
2
i − nlȳl2 +

∑n
i=nl+1 y

2
i − nrȳr2

=
∑n

i=1 y
2
i − nlȳl2 − nrȳr2 =

∑n
i=1 y

2
i −

[
(
∑nl

i=1 yi)
2

nl
+

(
∑n

i=nl+1 yi)
2

nr

]
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We notice here that
∑n

i=1 y
2
i does not depend on which split we make, so in order to

minimize (2.6) we need only maximize the remaining portion of the above formula, which

we call the “error reduction”, formalized below:

Error Reduction =

(∑nl

i=1 yi

)2
nl

+

(∑n
i=nl+1 yi

)2
nr

(2.7)

In such a case, our goal is to find the split that maximizes the error reduction, thus

minimizing the error within both groups and maximizing the homogeneity in both groups,

indicating the best split. If we define SL =
∑nl

i=1 yi and SR =
∑n

i=nl+1 yi, then we can

update (2.7) iteratively by examining each split left to right and, at each one, updating SL

to be SL+yi and SR to be SR−yi while updating nl to be nl+1 for one gained observation

and nr to be nr−1 for one lost observation. This gives us an iterative strategy for comparing

errors of splits. In particular, we have only a small fixed number of operations to compute

rather than a number that increases directly with n, thus greatly reducing the complexity of

the algorithm.

Also notice that the decision to label a node as terminal is dependent on whether or

not it has enough observations to be able to split on and whether the output values are ho-

mogeneous. If splits were able to continue without stopping criteria, eventually the tree

would split into data merely being near each observed value over all input variables. This

is called ”overfitting” and causes a tree to not only be costly to build, but costly to use.

Overfitting occurs when the input space has been split so finely that it has become just as

“noisy” as the original data. This happens in particular when the stopping criteria param-

eters haven’t been selected appropriately for the training data and therefore have allowed

the splits to continue for too long. A tree like this is useless because it merely returns the

output corresponding to the input that is given rather than making a prediction on the re-

gression of the data [14]. For this reason, it is left up to the programmer to determine the

stopping criteria to make sure the tree is of the proper size. Multiple stopping criteria exist



21

that can determine this, including the cross-validated error, the MSE, and the minimum

number of observations designated to terminal nodes [14]. More specifics on the stopping

criteria used for this particular construction are detailed in Section 3.2.

Regression Trees are very useful for making predictions when considering all input

variables, however they are not as accurate when regressing the output against input vari-

ables in isolation. For such a task, other techniques exist.

2.4 KERNEL REGRESSION

With noisy functions, attempting to use a gradient ascent (descent) method to converge

to a maximum (minimum) can often be an exercise of futility since it is very likely to ascend

to one of the myriad misleading local maximums provided the method converges at all. For

this reason it is often a good idea to use some sort of smoothing algorithm that can be used

to calculate less volatile gradients and increase the likelihood of reaching an estimate that

is closer to the true maximum. One such algorithm is that of kernel regression.

As its name suggests, kernel regression applies a kernel density function to weight

observations based on how close they are to a given input value. From this, a weighted

average is calculated. An important parameter for kernel regression is the bandwidth, which

controls the width of the kernel. With a proper bandwidth selected, the number of points

near an input value should be relatively small, making this a fairly efficient extrapolation

method. Also, if the largest gap in input values is smaller than the bandwidth, and the kernel

density function is twice differentiable on its support, then the kernel regressed function is

also twice differentiable, allowing us to calculate gradients and Hessians on it, which are

needed for most optimization methods. Note that when we mention a gap between two

input values, we mean the norm of the distance between these to points in their input space.

The process for creating a kernel regression is as follows:

1. Pick an input value. Note that this does not have to be a value from the training set.
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2. For each point within bandwidth distance from the chosen input value, plug distance

from input value into kernel function.

3. This assigns a weight to the observation that corresponds to the chosen input value.

An example of a noisy function extrapolated by kernel regression can be seen in Figure

2.3

For the computation of the norm of the distance between two input values, we need

only apply a norm that is appropriate for the dimension of the input. In most cases, the

euclidean distance suffices. The norm is then plugged in to a chosen function f(n) where n

is the norm of the distance between the input and the point. For f(n) to be able to calculate

weights for each norm, it needs to be non-negative, symmetric, and non-increasing for n

at least 0. Since n in this case is a norm, it always will be. Once we have an appropriate

norm, we calculate the weighted average as:

K̂(x) =

∑n
i=1 f(||x− xi||) ∗ yi∑n
i=1 f(||x− xi||)

(2.8)

A natural first choice for the kernel density function would seem to be a standard

normal since it meets these criteria, but this function has infinite support and has no roots,

so using this kernel would require calculating the kernel for all observations, many of which

would be very small and would not contribute much to the prediction. For these reasons we

would like a function that has roots, meaning it has finite support, so for each starting input

value, a small number of norms have to be calculated. Several functions exist that transform

a normal to work around this problem or use polynomials, trig, absolute value or other

elementary functions to mimic the shape of a normal distribution. One very commonly

used function for the kernel is that of Epanechnikov’s kernel [5] defined

f(n) =
3

4
(1− n2) (2.9)
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Figure 2.3: This figure is an example of a kernel regression of a sin function with noise.

The kernel regression done here uses the Kpred and rKernel functions discussed in Sec-

tion 3.3. The randomly generated data is marked in points, while the kernel regressed

function is displayed as a curve. We can see that the height of the kernel regressed function

at a given input value is determined by the outputs of input values multiplied by the kernel

function of the norm of the distance between these input values. In such a way, the height

of the kernel regressed function for a given input value is influenced more by observations

with input values closer to the given input value.
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Epanechnikov’s Kernel is optimal in the sense that it minimizes the asymptotic mean

integrated squared error or AMISE [12]. Also, since Epanechnikov’s kernel is quadratic, it

is twice differentiable on its support, making the kernel regressed function that results from

using this kernel twice differentiable (provided the largest gap in input values is smaller

than the bandwidth).

Epanechnikov’s kernel has support 0 ≤ n ≤ 1, but can be scaled to have a larger

support by altering bandwidth. Bandwidth scales the kernel function for any function as

fh(n) =
1

h
f(
n

h
) (2.10)

where h is the bandwidth. (2.10) gives us a formula for Epanechnikov’s kernel with

bandwidth h

fh(n) =
3

4h
(1− (

n

h
)2) (2.11)

We can see a picture of Epanechnikov’s kernel in Figure 2.4.

As stated, the bandwidth is the width of the kernel. Choice of suitable bandwidth is

left up to the programmer. Smaller bandwidths have the advantage of being more accurate

provided they are not so small as to lead to overfitting. They also have a greater risk of

reaching an input value that has no observations within the bandwidth resulting in false

zero predictions which lead to false convergence or failure to compute gradients or Hes-

sians. On the other hand, large bandwidths take longer to compute since they include more

observations within the bandwidth that need to be added to the calculation of the prediction

and can also lead to predictions being made outside of the domain of inputs. In addition,

large bandwidths may also underfit, and miss the shape of the underlying function by mak-

ing near-flat predictions thus losing the behavior of the function that need be optimized.

An appropriate bandwidth depends on the data. If the data is sparse, it is best to use a

large bandwidth, while if there is a large amount of data, and being far outside of the action
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Figure 2.4: This is a graph of Epanechnikov’s kernel with bandwidth 1. We can see that

the closer the norm of the distance is to 0, the higher the weight is, meaning that the

kernel gives more weight to values closer to a given input value. Note that the norm of the

distance can never be negative, but we show negative values in this figure to give the reader

an understanding of the shape of the kernel.
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space is not an issue, it is best to go with a smaller bandwidth. Several studies have been

conducted for optimal bandwidth selection. One of these is what is commonly referred to

as the “Rule of Thumb” bandwidth [4]:

ĥ =
5
√

4(2 + c2v)sn
2
5 (2.12)

Where s is the sample standard deviation, cv is the coefficient of variation defined by

cv = s/x̄, and n is the number of observations.

For data with multiple input variables, it is common for each variable to have a differ-

ent mean and variance, so if a bandwidth is optimal for one variable in terms of (2.12), then

it is not optimal for a variable with a different variance or standard deviation. Since (2.12)

consists of standard deviation and average, we notice that if each input variable is standard-

ized to have the same mean and standard deviation then the same bandwidth will apply to

every variable. A natural choice then would be to have mean 0 and standard deviation 1,

but a mean of 0 in (2.12) yields an undefined bandwidth, so we choose mean 10. This is

done by, for each variable, subtracting each observation by the mean of the observations

in that variable and dividing by the standard deviation of the observations in that variable,

and then adding 10. Since standardizing the data automatically makes the mean 10 and

standard deviation 1, this reduces the formula to:

ĥ =
5√
8.04n

2
5 (2.13)

As we can see, this reduced formula is only dependent on the number of observations

in the data set. Note that it is important to “unstandardize” the inputs afterwards for the

values to have any meaning. For this reason, when this method is applied, it is impor-

tant to save the standard deviation and mean of observations for each variable before the

standardization is done.
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2.5 THE ARMA MODEL

As mentioned before, the ARMA Model is a stationary process that consists of a

Moving Average Model and an Autoregressive Model. It is mean-reverting and “noisy,”

making it a good option for modeling the stationary residuals of stocks. We begin by

discussing the concept of stationarity. For each one of the definitions in this section, let Xt

be a sequence of random variables indexed by t ∈ T such that T is countable.

Definition 2.3. Xt is called stationary ifE[Xt] is independent of t ∀t ∈ T andCov(Xt, Xt′)

is independent of t and t′ for all t, t′ ∈ T .

Note that the definition used above is often referred to as “weakly” stationary, while

“strongly” stationary refers to sequences such that Xt has the same joint distribution for

every t ∈ T , but this definition does not usually apply to time series, and thus for the pur-

poses of this problem, we will use the word stationary to mean weakly stationary, defined

above.

Definition 2.4. {Xt} is called White Noise with mean zero and variance σ2 if each random

variable Xt is uncorrelated to one another and has mean zero and variance σ2. We then

denote {Xt} as WN(0, σ2).

Definition 2.5. {Xt} is called a First Order Autoregression or AR(1) Process if

Xt = φXt−1 + Zt (2.14)

∀ Xt ∈ {Xt} where Zt is WN(0, σ2) and φ is some constant.

Note that a First Order Autoregression Process can be extended to a general Autore-

gression orAR(p) Process by replacing φXt with
∑p

i=1 φiXt−i for constants φ1, ..., φp, and

forcing Xt to be stationary. This is done by making sure that all φ1, ..., φp are not on the

unit circle. For AR(1) Processes stationarity is achieved by simply making |φ| < 1.
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Definition 2.6. {Xt} is called a First Order Moving Average or MA(1) Process if

Xt = Zt + θZt−1 (2.15)

∀ Xt ∈ {Xt} where Zt is WN(0, σ2) and θ is some constant.

Note that a First Order Moving Average Process can be extended to a general Moving

Average or MA(q) Process by replacing θZt−1 with
∑q

i=1 θiZt−i for constants θ1, ..., θq.

Since the Moving Average consists of only noise and a constant it is easy to see that it is

stationary for any q ≥ 1 and any choice of parameter(s) θ1, ..., θq.

Definition 2.7. {Xt} is called an ARMA(1,1) Process if {Xt} is stationary for all t and

Xt = φXt−1 + Zt + θZt−1 (2.16)

∀ Xt ∈ {Xt} where Zt is WN(0, σ2) and φ and θ are constants such that |φ| < 1.

Note that an ARMA(1,1) Process can be extended to a general ARMA(p,q) Process

by the same replacements for the extension of the Autoregression and Moving Average

Processes, and add the requirement that the polynomials (1−φ1x−φ2x
2− ...−φpxp) and

(1 + θ1x+ θ2x
2 + ...+ θqx

q) have no common factors [1].
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CHAPTER 3

PROCEDURES

Executing Q-Learning, constructing regression trees, and using Kernel Regression are

all functions that are either built-in to R or available in R packages, however these functions

restrict us to a traditional tree structure, whereas what we need to be able to do is only split

on state variables and then use a different method for action variables. Likewise, what

we need is an algorithm that can differentiate between state and action variables, store

information on values and best actions, and return them for given state values. As a result,

the scripts for Fitted Q Iteration, regression tree construction, and Kernel Regression have

all been written from scratch. These programs have been designed to be able to work for

state and action spaces of any dimension, whether continuous or discrete.

3.1 FITTING THE Q FUNCTION

For Fitted Q iteration, we use a technique similar to Algorithm 2 in section 2.3. We

assign a discount factor γ called gam and a number of iterations called iterations naming

how many times Qhat should update. Then we apply the same technique as Algorithm

2 from section 2.3, but we vectorize the computation of w = r + gam ∗ Qhat for speed

and expand Qhat = RM(i, w) where RM is a selected regression model, using a loop to

make predictions using the tree found from rtree over all values of t from 1 to number of

periods* number of trajectories.

To make the predictions for the RM step, we introduce a function treepred which

takes tree and state as inputs and returns a reward and action. treepred does this by

using state to follow the tree all the way down to a terminal node and then returning the

bestaction for that terminal node in the tree. This whole process is done iterations number

of times until an optimal Qhat is reached at which point we have constructed a tree that is

an estimate for the best possible trading strategy for the modeled stock.
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Algorithm 4 Fitted Q Iteration

γ=discount factor, Q̂0=0, k = 1, T=set of observations (s,a,u,r), M=size of T,

RM=regression model

while stopping criterion not met do

for t in 1 to M do

it = (st, at)

wt = rt + γQ̂k−1,t

end for

tree = rtree(i, w)

for t in 1 to M do

Q̂k,t = tree(ut, wt)

end for

k = k + 1

end while
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3.2 TREE CONSTRUCTION

To construct the tree that we use for the learning step of Fitted Q Iteration, we make

a function rtree which takes input values input, output, numstate, minleaf , tol, and re-

turns splitvar, splitval, children, parent, obsnode, bestactions, objective, and h. These

variables are defined here:

• input is the input for FQI, i.e. the states and actions in matrix form with each column

being a state or action variable and each row being an observation at a time step. If T

is the set of observations in the form of (s, a, u, r), input falls out of T as the (s, a)

portion of T . As such, input is a set of elements of S × A

• output is the output from fitted Q iteration, i.e. the estimates of the RHS of Bellman’s

equation (2.3). If T is the set of observations in the form of (s, a, u, r), output falls

out of T as the r portion of T . As such, output is a set of elements of R

• numstate is the number of states in the input. The number of actions in the input is

easily calculable as the difference between the number of columns in the input and

numstate, and referred to in several places as numact

• minleaf is the minimum number of leaves allowed to be in a node

• tol, a tolerance, is the minimum MSE of the observations designated to a node to be

able to consider a split on that node

• splitvar is a long vector where each entry is the variable at which the node of that

index splits. If a node does not split, that entry is 0

• splitval is a long vector where each entry is the value at which the splitvar splits

the node of that index into left and right. Like splitvar, if a node does not split, that

entry is 0
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• children is a 2 by long matrix such that each column represents the children of the

node of the column index. The first row is the left child and the second row is the

right child. If a node does not split, the first and second row are left with 0.

• parent is the long vector where each entry is the parent of the node of that index.

Node 1 has no parent, so parent[1]=0.

• obsnode is a list of vectors, where each entry of each vector is the index of the obser-

vations from input and output that are designated to the node of the list entry index.

e.g. the 5th vector in obsnode may be [1, 3, 6, 8, 10] meaning that the observations

designated to node 5 are given by rows 1,3,6,8,and 10 of the input and output.

• bestactions is a numact+1 by long matrix where the entry in the first row is the

node, and each other row represents a variable on which the best action has been

found. e.g. the 5th column may [8, 4.5, 7.6]T . This means that for the 8th node,

which is the 5th terminal node, the best action is to choose 4.5 for the first action

variable and 7.6 for the second action variable. Note that unlike splitvar, splitval,

children, and parent, the column index doesn’t match up with the node, but rather

the first row gives the node for which the best action is being found. This indexing is

done for ease of looping over terminal nodes.

• objective is the reward value for each column given by the terminal node and actions

in the same column of bestactions. e.g. (in corroboration of bestactions example)

if the 5th column of objective is 100, then the reward for reaching terminal node 8

and choosing 4.5 for the first action and 7.6 for the second action is 100.

• h is the bandwidth used in kernel regression for the observations designated to each

terminal node. e.g.(in corroboration of bestactions example) if the 5th entry of h is

2.3, then the bandwidth used to do kernel regression on the observations designated
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to the 5th terminal node, node 8, is 2.3

Below, we can see the output returned from running rtree on data randomly generated

from a normal distribution:

> input=round(matrix(data=rnorm(100,mean=5),nrow=20,ncol=5)*10)/10

> output=round(rnorm(20,10)*10)/10

> minleaf=4

> tol=.003

> numstate=3

> input

[,1] [,2] [,3] [,4] [,5]

[1,] 4.7 4.9 5.1 4.5 4.7

[2,] 3.9 3.5 3.8 5.9 3.5

[3,] 4.4 4.9 6.1 4.5 6.4

[4,] 3.7 5.7 3.4 5.6 3.2

[5,] 5.1 4.0 5.3 5.7 5.3

[6,] 4.5 4.8 4.6 5.2 5.3

[7,] 4.6 6.0 4.4 4.7 5.7

[8,] 6.0 4.2 5.2 4.7 2.9

[9,] 4.3 6.1 3.9 6.0 5.2

[10,] 4.3 4.0 4.8 4.4 5.7

[11,] 4.9 6.7 6.5 3.7 5.0

[12,] 3.3 8.3 5.2 3.4 5.4

[13,] 5.5 5.0 5.7 4.8 5.1

[14,] 5.3 5.2 4.6 5.1 6.0

[15,] 5.4 3.7 3.1 4.3 4.6

[16,] 6.8 6.1 5.0 3.8 4.2
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[17,] 4.4 5.2 4.4 6.1 4.5

[18,] 5.5 3.1 6.5 5.5 5.6

[19,] 4.3 5.8 3.9 5.1 4.1

[20,] 4.5 4.5 4.5 5.3 6.4

> output

[1] 10.4 8.4 10.8 8.8 8.5 9.2 9.9 9.0 10.4 9.9 10.2 8.5 11.4 11.1 9.9 9.0

[17] 9.3 11.4 10.2 9.2

> tree=rtree(input, output, numstate, minleaf, tol)

> tree

$splitvar

[1] 3 2 0 0 1 0 0

$splitval

[1] 5.50 4.85 NA NA 4.50 NA NA

$children

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 2 4 0 0 6 0 0

[2,] 3 5 0 0 7 0 0

$parent

[1] 0 1 1 2 2 5 5

$obsnode

$obsnode[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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$obsnode[[2]]

[1] 1 2 4 5 6 7 8 9 10 12 14 15 16 17 19 20

$obsnode[[3]]

[1] 3 11 13 18

$obsnode[[4]]

[1] 2 5 6 8 10 15 20

$obsnode[[5]]

[1] 1 4 7 9 12 14 16 17 19

$obsnode[[6]]

[1] 4 9 12 17 19

$obsnode[[7]]

[1] 1 7 14 16

$bestactions

[,1] [,2] [,3] [,4]

[1,] 3.0 4.0 6.0 7.0

[2,] 3.7 5.3 6.1 5.1

[3,] 5.0 6.4 4.5 6.0

$objective
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[1] 10.2 9.2 9.3 11.1

$h

[1] 0.8714194 0.6966458 0.7970090 0.8714194

The output variable from which it is easiest to visualize what the tree created looks

like is the matrix children. From the output above, we can see that node 1 splits into nodes

2 and 3, node 2 splits into node 4 and 5, node 3 does not split etc. From this, one can easily

draw a tree. As soon as the tree is drawn, we can also label each node and associate it with

the variable and value that it splits on from splitvar and splitval respectively. The parents

of each node are stored in parent for traceback purposes and for checking the number of

levels in a tree after it has been constructed. And, lastly obsnode is output to detail the

indices of observations designated to that node. These indices are mostly meaningless, but

it can give us an idea of the size of each node.

The remaining outputs are the ones that have nothing to do with how the tree looks,

but more so what happens after the tree has split on state variables only. This part of the

rtree function is detailed in the next section, but we can still interpret the results here. For

the previously listed output, we can see that the first row of bestactions is 3,4,6,7, meaning

that these are the terminal nodes. This should be corroborated by seeing 0’s in the 3rd, 4th,

6th, and 7th columns of splitvar and splitval should be 0’s and NA’s respectively, which

we can see they are. We can also see from obsnode that these are the smallest nodes, which

makes sense since, for reasons discussed later in this section, larger nodes have a higher

likelihood of being able to be split. If we look at the 3rd column of bestaction we can see

that if a state is partitioned by the tree to flow down to node 6, which is the 3rd terminal

node, then the best action would be to choose 6.1 for the first action and 4.5 for the second

action. Furthermore, the 3rd entry in objective tells us that the kernel predicted reward of

making that action for that state is 9.3. The 3rd entry of h gives us the bandwidth used in
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the kernel prediction of the standardized inputs designated to terminal node 6 at which the

best action was determined.

Now we go more in depth into the details of how the tree is constructed. For our

approach, we need to construct a tree that partitions over state variables only. Including all

of input and not just the state variables allows us to include the finding of the best action

at each terminal node of the tree within the rtree function. But before we do that, we

need to make the tree. We do this by making splits until a certain stopping criterion is met.

The way that we tell the tree to stop trying to split is that we define two variables: node

and nextnode. What we do now is to iterate by node and attempt to make a split at each

one. If we can’t split (determined by several factors including minleaf and tol), then we

start over, but if we can split then we increase nextnode by 2 for each new node created.

Naturally, we continue this process until node “catches up with” nextnode i.e. when node

becomes the total number of nodes created.

For the actual splitting, it is stated in section 2.3 that the idea is to make splits such that

the difference between the SSE of the observations in a node and the sum of the individual

SSE’s of the two child nodes is minimized. To do this with an iterative strategy, we make

use of equation 2.7 from section 2.3 to make this calculation faster. Now, we have a way

to calculate a split on a node, but first, it is important to consider if the node is even large

and diverse enough to consider splitting and if so, which splits of that node are themselves

worthy of consideration. Hence, we have several checks that we perform before splitting a

node:

Check 1 Size of the node: To be able to effectively maintain minleaf in two children nodes,

the number of observations in the parent node must be at least 2*minleaf . If node

has exactly 2*minleaf , there is only one possible split to consider, namely, right

down the middle.

Check 2 MSE of the output values in the node: Checking the MSE of the observations desig-
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nated to a node allows us to make sure that there is enough error to consider splitting

on. If the observations designated to a node are already homogeneous enough, there

is no need to make a split at that node.

Check 3 Variance of the input values in the node: If the variance of the observations in a node

is 0, that means that every value in the node is the same.

Now that we have splitting criteria, we need to know for which values in each node it

is even reasonable to split on. Surely we cannot split a node into two parts such that one

part has less than minleaf , so the only splits we consider are splits that occur between

the minleaf th to n−minleaf th observations. This ensures that each node that is created

from a proposed split will contain at least minleaf observations. Note that since we only

consider splits from the minleaf th to n −minleaf th observations, we need the variance

of the input values of just these observations to be > 0. So, Check 3 needs to be amendend

to the variance of the input values of the minleaf th to n −minleaf th observations being

> 0 as a requirement for splitting.

Upon creation of a split, splitvar, splitval, children, parent, and obsnode are all up-

dated to include information gained from this process. This is done until node=nextnode,

completing the splitvar, splitval, children, parent, and obsnode data structures, thus

completing the construction of the tree over state variables. Now we need only find the

best action to choose at each variable which constitutes bestactions, objective, and h,

found in the function findbestaction of the following section.

3.3 FINDING THE BEST ACTION

Once the tree has been constructed by partitioning over state variables, the action

variables we are left with mapped to the output forms a very noisy function. So, in order

to maximize this function, it becomes necessary to smooth the function. The method we
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use to do this is kernel regression. with a selected bandwidth. In order to implement kernel

regression, we first need a function that transforms norms into weights for all observations

within a given bandwidth. We define this function as rKernel and use the Epanechnikov

Kernel adjusted by bandwidth h to give us the function 3
4h

(1 − (n
h
)2). Once the weight is

computed, we also need a function that can make predictions using the weights of nearby

values. To make predictions on output for an input value say x, we calculate the weights of

all nearby values and then, for observations near x, say x1, ..., xn, and observed outputs of

those input values, y1, ..., yn, compute

K̂(x) =

∑n
i=1 rKernel(xi, h) ∗ yi∑n
i=1 rKernel(xi, h)

(3.1)

Note that we vectorize both of these functions in the program for computational speed.

We define this function asKpred and is the smoothed function mapping actions to rewards.

Now we need only maximize this function, which we do using nlminb, a non-linear opti-

mizer on a bounded domain, in R. The nlminb function requires a starting point, a function

to optimize, an input, an output, a bandwidth, and an upper and lower bound. The reason

we use nlminb instead of simply nlm is because of this upper and lower bound. nlminb

makes sure that the predicted maximum is within these bounds so that we get a reasonable

maximum. SinceKpred is smooth, nlminb easily converges to an estimate for a local max-

imum of this function. Note that nlminb only finds minimums; however, we are looking

for a maximum. To overcome this, we set the output as the negative output and minimize

this. We then have a negative maximum, which we multiply by −1 to get a positive max.

To get the data for a terminal node ready to optimize using Kpred and nlminb, we

first do the standardization mentioned in section 2.5 for each variable, and then compute

the Rule of Thumb bandwidth. Now, we know that nlminb will converge easily, but to

avoid getting a local maximum rather than the absolute maximum, we consider a grid of

starting points for nlminb across a possibly multidimensional plane of actions along with
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several randomly picked observed values so that we are likely to avoid any astronomically

inconveniently placed maximums that avoid the grid. Once the grid and random points

are assigned, nlminb is performed for each starting point and then the max of all of these

is taken as the absolute max. All of this constitutes the function findbestaction in the

program and returns the bestaction, objective, and bandwidth which are later placed in

bestactions, objective, and h in rtree.
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CHAPTER 4

RESULTS

4.1 TRANSITION-REWARD DATA CONSTRUCTION

To execute QFit, we need a model for data construction. This allows us to learn

iteratively before we test as many times as we want. If we wanted to do this with real

observed data, we would be limited as to the number of different ways that the time series

would happen, and thus would not be able to learn as much. So we use an ARMA model

to construct our data set, so that QFit can learn from as many different possibilities as we

would like. Since Q Learning uses Markov decision processes, where each state is only

dependent on the previous state and action, using an ARMA process is appropriate for this

type of learning.

First, we set up a configuration list that holds global variables and parameters. This

list consists of φ, θ, σ, number of periods, number of trajectories, minimum share

price allowed, and maximum share price allowed. φ and θ represent φ from the AR(1)

process and θ from the MA(1) process. σ is the standard deviation of white noise, and the

rest of the variables are self-explanatory. In the program, the configuration list is called

configList. To construct transition-reward data, we need a function to take one step in

time and assign a reward to a state and action, and a script to execute this over the desired

number of periods and trajectories to create trdata, the matrix of transition-reward data.

The function used to take one step in time and assign a reward to a state and action is called

transitionreward. To construct transitionreward, we need a function that goes from a

state S, and action A and transitions to a “next state” U . The variable S consists of cash,

share price, number of shares, white noise, and period, also represented by t. Since

we want the stock to follow an ARMA(1, 1) process, we calculate the share price using

the ARMA(1, 1) model. We remember from (2.16) in section 2.5 that the next term in an
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ARMA(1,1) process is calculated

Xt+1 = φXt + Zt+1 + θZt (4.1)

The variable A, representing action, is interpreted as the number of shares bought at a

step in time so that all of the other variables in S are calculated following how they would

be updated naturally given the action and share price.

casht+1 = casht − At ∗ share pricet

number of sharest+1=number of sharest + At

white noiset+1 is assigned randomly from a normal distribution of mean 0 and stan-

dard deviation σ from configList

share pricet+1=φ ∗ share pricet+white noiset+θ ∗ white noiset (if this value is

above maximum share price allowed, then share pricet+1 is set to be maximum

share price allowed and vice versa for minimum share price allowed. This en-

sures that our share price is always between the minimum share price allowed and

maximum share price allowed)

Then the variable U is set to be the result of each of these executions in the same orga-

nization as S. i.e. U=(casht+1, number of sharest+1, share pricet+1, white noiset+1, t+

1). The reward R is naturally calculated as R = casht+1 + number of sharest+1 ∗ share

pricet+1. The reward can be calculated at each time step, however in order to demonstrate

the capabilities of this method, we hold off the reward calculation until the last time step,

so that we are only looking at the final reward, and all of the actions that it took to get there.

To then construct trdata, we assign a starting state, and perform transitionreward

for each time step in number of periods for the total number of trajectories. at each

step , S is stored in the first 5 columns, A is stored in the 6th column, U is stored in the
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7th-11th columns, and R is stored in the 21th column. The resulting trdata is a number

of periods*number of trajectories by 12 matrix with each row being a variable, and

each row representing observations at a time step. Note that under this construction, each

trajectory comes after one another to avoid adding an unneeded dimension to our matrix.

4.2 PARAMETER SPECIFICATIONS

To decide which parameters we want for this experiment, we have a number of dif-

ferent selections to make. We begin by going over the parameters in a configuration list

referred to as configList:

φ, θ, and σ are the parameters used in the sharePrice which is modelled by an

ARMA(1,1) process. For experimentation we will play around with these parameters

to see if our tree structure can learn from different scenarios. The effect that each

parameter has on the behavior of trajectories is described below:

φ is the parameter for the AR(1) portion of the ARMA(1,1) process. As we can

see from equation 2.13 from section 2.5, φ affects the only part of this process

that is not random, so a value of φ > 1 makes the process increase over time,

and φ > 1 makes the process decrease over time.

θ is the parameter used in the MA(1) portion of the ARMA(1,1) process. More

specifically, it controls how the observed white noise in the previous sharePrice

affects the current value for the sharePrice. A positive θ means that positive

shock in the previous sharePrice affects the current sharePrice positively,

while negative θ means that positive shock in the previous sharePrice affects

the current sharePrice negatively. If θ is large in absolute value then the shock

in the previous sharePrice has a large effect on the sharePrice whether pos-

itive or negative. σ is the standard deviation of the normal distribution from
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which the white noise is drawn. Effectively, σ determines how much shock is

in the process. Large σ means there is a lot of shock in the process, while small

σ means there is little shock in the process. Notice that σ = 0 nullifies θ and

eliminates any randomness in the process, making each trajectory deterministic,

and only differing with respect to the chosen value for φ.

For the number of periods, or endT ime, we need a parameter that will be large

enough to show that QFit can back-propagate. Without overdoing it, let us pick

endT ime=5

For numTraj we want to choose a number of trajectories that our tree will have to

learn from, so we want to choose a large number, numTraj=15000

For priceMin and priceMax we want to bound the stock so that fitted Q Iteration

can fully explore the state action space quicker, so without giving any bias to one

side or the other we pick priceMin=30 and priceMax=130 centered at 80

Aside from configList we also want to set the conditions under which S will be

initialized:

For the starting cash, we begin with an investment of 1, 000

For the starting sharePrice we begin with a price of 80 as the center of priceMin

and priceMax

For the number of shares to begin with, we want to think about the beginning of this

situation as having not bought any shares yet, so we start with numShares=0

For white noise, we don’t want to give the model any positive bias, so that we can

see that our tree is capable of obtaining a positive return. Therefore we choose initial

whtNoise=0
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For period, we simply choose a starting period of 1

To run rtree we also need to choose numstate, minleaf , and tol:

For numstate, we select the number of state variables. Our state consists of the

the five variables, cash, sharePrice, numShares, whtNoise, and per, so we pick

numstate=5

For minleaf we want to pick a minleaf small enough that it can make predictions

on small enough clusters of data, but also not too small as to overfit the data. Also,

the smaller minleaf is, the more splits that will be created, resulting in the rtree

function taking longer with each iteration. So we pickminleaf=30 as a good middle

ground.

tol is just used to make sure that we do not have an MSE too small on observa-

tions designated to a node. This is a check that should only be in effect in extreme

circumstances, so we pick a small value of tol=100 which is small compared to an

investment 1, 000

For running QFit, we also need to choose a value for γ and the number of iterations,

iterations:

γ represents the lasting impact of rewards on Qhat, and is the way that Qhat is able

iteratively learn the effect that prior actions have on the end reward even if those

actions don’t immediately result in rewards themselves at that period. So in order to

create a tree with a lot of foresight, we pick gamma=.9

Note that iterations should be at least number of periods from configList so

that Qhat can use gam to propagate all the way back over each time step. So, for

iterations, we set iterations to go a little past endT ime and set iterations=endT ime+1
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4.3 IMPLEMENTATION AND ANALYSIS

As discussed in the previous section, φ, θ, and σ control the behavior of a set of

trajectories, so we want to test out a few different combinations of these parameters to

show that this tree structure is able to perform in various types of scenarios. So, we set up

three different experiments to test out different combinations of these parameters.

4.3.1 EXPERIMENT 1: REALISTIC STOCK RESIDUALS

For the first experiment, we want to choose a combination that will yield stock resid-

uals that we would expect under usual circumstances, so we pick φ=.999, θ=2, and σ=5, so

that we have a fair amount of noise.

We create trdata with these parameters using transitionreward and get a process

with a sharePricemodeled by an ARMA(1,1) distribution. A representation of the sharePrice

over time t and trajectory can be seen in Figure 4.1.

Now, we run QFit iterations number of times to build a tree that has fully propa-

gated. This gives us a large tree with 26 levels and 3095 nodes in total. This tree is too big

to represent here, however, we can look at the number of times the tree split on each state

variable, giving us an idea of the importance of each state variable in the tree’s ability to

predict.

State Variable Cash Share Price Number of Shares White Noise Period

# of Splits 364 691 112 376 4

Table 4.1: Here we can see the number of times the tree split on each state variable for data

that resembles realistic stock residuals.

From Table 4.1, we can see that the most important variable for splitting was Share

Price with 691 splits in total, followed by White Noise with 376. This is good, since this
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Figure 4.1: This is a plot of the share price over index in trdata. Since endT ime is 5, we

show 50 trajectories, giving us an idea of how much the share price can vary over time and

trajectory. As we can see, the trajectories are not biased above or below the initial share

price of 80, so one would not expect to be able to make any profit above seasonal or cyclic

trends from investing in a stock with such residuals.
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Figure 4.2: Here we see the average best action predicted by the tree over 10,000 trajecto-

ries. Note that with sharePrice 80 and an investment of 1000, the most that our tree can

buy at the first step is 12 after rounding to ensure a realistic action. We can see that under

the parameters for this model, the tree usually buys the most during the early periods in

each trajectory, thus reassuring us that QFit has properly back-propagated. This provides

us with a means for comparison to the tree’s actions given different parameters.

means that our tree has learned to predict the next share price using the previous share price

and white noise, which are both used in the calculation of the current share price.

Another aspect of the tree worthy of note is the average action that it takes at each

period, shown in Figure 4.2.

To test the predictive capabilities of the tree, we test it against a random strategy

where, at each time step, the action is chosen at random from the action space for that state,

and a passive strategy which invests the full 1,000 for the initial action, and then chooses

0 for all subsequent actions. The random strategy represents a strategy that will yield the

expected reward in a given scenario, and the passive strategy is a well known strategy that
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many investors use along with diversification. Evaluating the mean of each strategy over

10,000 trajectories gives us Figure 4.2.

Strategy Mean Reward Standard Deviation

Tree 12.84828 1.894258

Passive -0.5741673 1.740495

Random -4.37676 3.268695

Table 4.2: Here we can see the mean reward and standard deviation of reward for each

policy technique trading on realistic stock residuals.

As we can see from the mean reward column in Table 4.2, the tree policy does much

better than passive or random strategies. With the small standard deviation observed, this

means that the tree policy has yielded a strongly positive reward in a setting where it is not

expected to be able to make a reward at all. This means that if we know the seasonal and

long-term trend of a stock and the ARMA process that the residuals of a stock are modeled

by, which are much easier to observe, then we can use this algorithm to learn from the

ARMA model and earn a reward on top of cyclic and seasonal trend.

4.3.2 EXPERIMENT 2: DETERMINISTIC BEAR MARKET TRAJECTORIES

For the second combination of parameters, we want to observe how this algorithm

runs for a bear market with almost no noise, so we choose φ=.8, θ=2, and σ=.01. Having

a φ of this size makes the process decrease for each trajectory. The goal here is to see

whether or not the tree can pickup on declining trajectories.

Using these values to construct trdata we observe trajectories each having a similar

declining shape to the one in Figure 4.3. Given this strictly declining shape, we know that

the best strategy would be to not invest anything, but does the tree learn to do that?
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Figure 4.3: Here we see one trajectory of trdata under these parameters. Since σ is so

small, we can expect all trajectories created under these parameters to look almost identical.

Running QFit we obtain a tree with 23 levels and 3029 nodes in total. Since we want

to see if this tree is learning to invest nothing, we look at the average action for each period

in Figure 4.4. From this we can see that, on average, the tree buys a lot at the start and then

quickly switches to selling to avoid losing more money. This does not seem optimal, so

is there a way to show that increasing the number of trajectories that the tree learns from

will make the average action converge to zero? Making numTraj = 1000, much less than

the previous numTraj of 15,000, we get an average action for each period that looks like

Figure 4.5.

Comparing, these two trajectories, we can see that the tree that learned from less

trajectories seems to be more volatile in strategy with more propensity to buy than the

more “experienced” one. From this, we can infer that the more trajectories we learn from,

the closer to the optimal strategy we get. But how good is the first tree we looked at in this

experiment with only 15,000 trajectories to learn from?
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Figure 4.4: This is a plot of the average action over 10,000 trajectories chosen by a tree

that has been trained on 15,000 trajectories. Here we can see that the tree chooses some

investment at the start, and then quickly slows down its investment strategy.
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Figure 4.5: This is a plot of the average action at each period, 1 to endT ime, over 10,000

trajectories. This suggests an average strategy of investing a middle-sized amount at the

beginning, declining in buying amounts, and then finishing with a large amount of buying.
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Strategy Mean Reward Standard Deviation

Tree -142.6745 .510527

Passive -602.7681 .0004110662

Random -361.5742 .8612267

Table 4.3: Here we can see the mean reward and standard deviation of reward for each

policy technique trading on near-deterministic bear market trajectories.

Comparing the tree to random and passive strategies we get:

Note that standard deviation is very small due to the near-deterministic trajectories

brought on by low σ. From Table 4.3, we can see that, as expected, each strategy took a

heavy loss. Passive strategy lost the most at around 603 which is to be expected since with

this strategy, all of the user’s value is declining for the entire trajectory. Random strategy

does poorly as well which makes sense since one would expect to lose money no matter

what, given a trajectory of this shape. We see that our tree strategy did poorly too, but

not nearly as poorly as the other two losing less than half as much as random strategy.

Hopefully, an investor who knew that a stock was modelled by such parameters would

know not to invest anything at all in such a situation, but this experiment does a good job

of depicting how a tree can learn from downward trends as well.

4.3.3 EXPERIMENT 3: BULL MARKET TRAJECTORIES

In contrast to the second combination of parameters. we want to observe how the

algorithm will run for bull markets, so we choose φ=1.2, θ=5, and σ=2. φ > 1 here makes

the data increase over time. The purpose for this particular combination is to see if this

algorithm can pick up on positive trend.

Creating trdata with these parameters gives us upward shapes With σ = 2 and θ=2,

these trajectories have a more noise than the trajectories of experiment 2, but not so much
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Figure 4.6: Here we can see five trajectories under the parameters detailed at the beginning

of this experiment. As we can see, each trajectory is mostly increasing, but each one is

somewhat different because of the noise in the process.

as experiment 1. We observe five trajectories with these parameters in Figure 4.6.

For such a case we know that passive strategy is a near-optimal strategy since each

trajectory is mostly increasing. We say near-optimal because the optimal strategy would be

to invest the maximum amount at every period, not just the first one. The reason so many

investors use this method, along with diversification, is so that they can capitalize on the

long-term upward trend in the stock market. For this example we hope to see the tree do

better than random reward, but should not expect to exceed a passive strategy on average.

Running QFit, we get a tree with 29 levels and 3065 nodes in total. We also observe

an average action for each period in Figure 4.7.

With an investment of 1,000 and an initial share price of 80, we can buy at most 12

stocks, rounding down to avoid buying fractions of stocks. We can see here that, over

10,000 trajectories, the tree on average immediately buys 11.8944422 shares amounting in
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Figure 4.7: This figure is a plot of the average share price for each time step in 1 to

endT ime over the course of 10,000 trajectories. From this plot, we can see that the tree

begins by investing a large amount and then proceeding to invest small amounts over the

remainder of the trajectory.
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Strategy Mean Reward Standard Deviation

Tree 491.4343 .7567455

Passive 596.476 .3099254

Random 272.8962 1.141544

Table 4.4: Here we can see the mean reward and standard deviation of reward for each

policy technique trading on somewhat random bull market trajectories.

roughly 951.56, nearly as much as the initial investment for passive strategy. We can see

here that the tree is converging to an optimal policy. For a full comparison, we have:

As we can see from Table 4.4, tree strategy does strides better than random strategy,

and still has a long way to go before converging to optimal strategy, but given the strategy

that we observed, we expect that with a higher number of trajectories, we will converge to

the optimal policy in this situation. In particular, we have seen that this tree structure can

learn from yet another scenario.
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CHAPTER 5

CONCLUSION

For reinforcement learning, we need to regress values against inputs in the form of

states and actions and use that regression model to optimize over actions for a given state.

When we use the regression model to optimize over actions for a given state we fix the

states, and then find the most valuable action. For regression trees, fixing a subset of

the input variables makes it very difficult to find values for the remaining input variables

which maximize the output. So, we introduce a hybrid kernel regression tree that partitions

the state space with a regression tree and then uses kernel regression to find the action that

maximizes the reward for each part. To test the capabilities of this technique, we use the tree

construction described to create an effective stock market trading strategy. As we can see,

the strategy created by this construction has been proven to do much better than traditional

trading strategies in realistic settings and to exceed expectations in unusual settings.

For training the kernel regression tree in these experiments, we chose minleaf to be

30 and tol to be 100 to avoid overfitting; however, for many tree algorithms, cross validation

is often performed to be able to get specific values for these parameters on individual data

sets. With cross validation we are likely to converge to equal or better results with a lower

number of trajectories.
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