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The purpose of this thesis is to introduce and illustrate some of the deep connections

between commutative and homological algebra. We shall cover some of the fundamental

definitions and introduce several important classes of commutative rings. The later chap-

ters will consider a particular class of rings, the fiber product, and, among other results,

show that any Gorenstein fiber product is precisely a one dimensional hypersurface. It will

also be shown that any Noetherian local ring with a (nontrivially) decomposable maximal

ideal satisfies the Auslander-Reiten conjecture. To conclude, generalizations of results by

Takahashi [26] and Atkins-Vraciu [2] shall be presented.
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CHAPTER 1

INTRODUCTION

In the past century, commutative ring theory and homological algebra have become nearly

synonymous. The reasons for this can be traced to key results, for which either the tech-

nique of proof utilized theory of another branch, or the surprising correspondences stated

by the conclusions of these results. Historically, homological algebra has its roots in some

of the classical problems of differential geometry and algebraic topology, with regards to

a more rigorous approach to the classification of surfaces. Even the modern language and

terminology reflects this influence, with names such as “differentials” being used for the

homomorphisms of a (co)chain complex. This is no accident; Poincaré’s Theorem asserts

that every exact form is closed. The measure for which the converse holds is precisely the

notion of homology. During the mid 1800’s, Riemann would be a pioneer of this search

for invariance by defining the “connectedness numbers” of a surface S, which were later

discovered to be related to the homology invariant H1(S,Z/2Z) [28].

In the construction of connecting maps between certain sets, mathematicians would

often notice that these maps obeyed a condition of nilpotence, that is, applying the same

map twice would give 0. This condition has a natural interpretation in the case of the

boundary operator in simplicial homology, for instance, where this nilpotence is the geo-

metric statement that taking the boundary of a boundary should just give 0. However, there

were many more exotic constructions that seemed to obey this condition, prompting the

consideration of a more axiomatic approach. This led to the modern definitions of exact

sequences and the more general (co)chain complexes.

Exact sequences, though modern, were hidden in results dating back to Euler. Euler’s

Theorem asserts that for a planar graph with F faces, E edges, and V vertices, F−E +V =

2. We can write this in a way that is more indicative of the underlying structure by saying

(−1)1+(−1)2F+(−1)3E+(−1)4V +(−1)5 = 0. This is of course just an alternating sum,
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and the above is the result of the exactness guaranteed by a certain simplicial complex of

any planar graph. In fact, for higher dimensions, the above alternating sum is an example

of the more general Euler-Poincaré characteristic.

Fast-forwarding to the 20th century, the importance of commutative algebra becomes

more apparent through the various results relating algebraic geometry and ring theory. The

famous Nullstellensatz asserts a bijective correpondence between affine algebraic varieties

and the radical ideals of polynomial rings, similar to the correspondence of subfields and

subgroups in Galois theory. As one could imagine, this connection between commutative

ring theory and geometry immediately implies a connection between homological algebra

and commutative ring theory.

One of the first large results showing the power of homological methods in commu-

tative algebra comes from a rather geometric question. Mathematicians are often very

interested in singular points (and their resolutions) on curves, which may be interpreted

as points where a line intersects itself or is otherwise “pointed”. It turns out that these

singularities can be defined algebraically, without the use of derivatives, by looking at the

multiplicity of certain polynomials. The Auslander-Buchsbaum-Serre Theorem asserts that

singular points are such that the residue field of the localization about these points must

have infinite projective dimension.

Besides the nice characterization of singular points, this theorem more importantly

solved an open problem of regular local rings. It was well known at the time that a regular

local ring had finite global dimension. The Auslander-Buchsbaum-Serre Theorem showed

that the converse was also true, thus giving a completely homological characterization of

an object in commutative algebra. It also showed that the localization of a regular ring

was again regular. Not only this, but the method of proof also used entirely homological

methods, thus demonstrating the power of these techniques.

The purpose of this thesis is to introduce and illustrate some of the deep connections
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between commutative and homological algebra. The later chapters will consider a particu-

lar class of rings, the fiber product, and show that any Gorenstein fiber product is precisely

a one dimensional hypersurface. It will also be shown that any Noetherian local ring with

a (nontrivially) decomposable maximal ideal satisfies the Auslander-Reiten conjecture. To

conclude, generalizations of results by Takahashi [26] and Atkins-Vraciu [2] shall be pre-

sented.



8

CHAPTER 2

HOMOLOGICAL ALGEBRA AND CLASSES OF COMMUTATIVE RINGS

Throughout this thesis, R will denote a commutative Noetherian ring. If R is local, then

its maximal ideal and its residue field will be denoted m and k, respectively. We denote

by Spec(R) and m-Spec(R) the set of prime ideals and maximal ideals of R, respectively.

Also, for the purposes of this thesis all R-modules will be assumed finitely generated. Keep

in mind that many of the results in this chapter have more general statements and do not

require the above assumptions.

2.1 HOMOLOGICAL ALGEBRA

2.1.1 THE BASICS

This section contains some fundamental results and definitions in homological algebra. The

notation modR will be used for the category of finitely generated R-modules.

Definition 2.1.1. For R-modules A and B, the pair of homomorphisms φ and ψ

A
φ // B

ψ //C

are called exact at B if Kerφ = Imψ . A sequence

· · · // Mn−1 // Mn // Mn+1 // · · ·

is called exact if it is exact at each Mn.

The following is a trivial consequence of the above:

Proposition 2.1.2. Let A, B, C be R-modules. Then:

1. The sequence 0 // A
ψ // B is exact at A if and only if ψ is injective.

2. The sequence B
φ //C // 0 is exact at C if and only if φ is surjective.
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We then combine this to deduce the following.

Corollary 2.1.3. The sequence

0 // A
ψ // B

φ //C // 0

of R-modules and R-module homomorphisms is exact if and only if ψ is injective, φ is

surjective, and Kerφ = Imψ . This type of sequence is called a short exact sequence.

Remark 2.1.4. For any homomorphism of R-modules φ : B→C, the sequence

0 // Kerφ // B
φ // Imφ // 0

is a short exact sequence.

Example 2.1.5. An interesting example of exact sequences comes from Poincare’s Lemma.

If X is a smoothly contractible subset of Rn, let Ωp(X) denote the space of differential p-

forms on X . This can be viewed at a module over the set of smooth functions, which is a

commutative ring with addition and multiplication of functions. Then, the sequence

0 d−→Ω
0(X)

d−→Ω
1(X)

d−→Ω
2(X)

d−→ ·· · d−→Ω
n−1(X)

d−→Ω
n(X)

d−→ 0

is exact, where d denotes the exterior derivative.

Example 2.1.6. Consider a symplectic manifold (M,ω), where ω is a closed nondegener-

ate 2-form. Let C∞(M) denote the set of smooth functions on M. A smooth vector field is

defined as any smooth section of the tangent bundle T M. Define the symplectic gradient as

the vector field dragH for H ∈C∞(M) such that

idragHω =−dH

where i denotes the interior product of a differential form. Then a smooth vector field η is

said to preserve ω if Lηω = 0, where L denotes the Lie Derivative. If the 1-form iηω is
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exact, then we call η a Hamiltonian vector field. Denote by Ham(M) the set of Hamiltonian

vector fields on M. Viewed as modules (hence, vector spaces) over R, we then have the

following short exact sequence:

0 // R //C∞(M)
drag // Ham(M) // 0

Definition 2.1.7. Let 0 // A // B //C // 0 a short exact sequence of R-modules

and R-module homomorphisms. Then the sequence is said to be split, or the sequence splits

if B∼= A⊕C.

With this we have the following.

Proposition 2.1.8 (Splitting Lemma). Let R be a ring and 0 // A
ψ // B

φ //C // 0

a short exact sequence of R-modules. Then the following are equivalent:

1. There exists a left inverse for ψ , that is, there exists ψ ′ : B→A such that ψ ′◦ψ = IdA.

2. There exists a right inverse for φ , that is, there exists φ ′ :C→B such that φ ◦φ ′= IdC.

3. The sequence splits, that is, B∼= A⊕C.

2.1.2 FREE, PROJECTIVE, INJECTIVE, AND FLAT MODULES

Definition 2.1.9. An R-module F is said to be free on the subset A of F if for every nonzero

x ∈ F , x can be written uniquely as x = r1a1 + . . .rnan for ai ∈ A, ri ∈ R and n ∈ Z+. A set

with the above property will be called a basis for F .

Intuitively, a free module over a ring R is isomorphic to a direct sum of copies of the

ring R. Trivially, this means that every ring R is free as an R-module.

Notation 2.1.10. The set HomR(M,N) will denote the set of R-module homomorphisms

from M to N.
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Consider a short exact sequence 0 // A
ψ // B

φ //C // 0 of R-modules and

R-module homomorphisms. Then it is often the case that there will exist a mapping f from

another R-module M to the module B. Then we would have the following diagram:

M

��
f
�� ��

0 // A
ψ // B

φ //C // 0

(2.1.1)

As the diagram suggests, one may be inclined to ask when this implies the existence of a

mapping from M to each of the modules A and C making the diagram commute. Clearly we

can just take f ′ := φ ◦ f and this gives us a mapping for the right-hand side of the diagram.

The left-hand side is not clear, however.

From a more functorial point of view, we can say

Proposition 2.1.11. If for R-modules A, B, and M the sequence

0 // A
ψ // B

is exact, then the induced sequence

0 // HomR(M,A)
ψ ′ // HomR(M,B)

is also exact with ψ ′ = ψ ◦ f for all f : M→ A.

We say that HomR(M,−) is a left-exact functor in this case. From here, if we have a

map ψ : A→ B, then ψ ′ : HomR(M,A)→ HomR(M,B) will be understood as the induced

map. With this convention, we can say:

Theorem 2.1.12. Let M, A, B, and C be R-modules. Then, if

0 // A
ψ // B

φ //C // 0
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is exact, the induced sequence

0 // HomR(M,A)
ψ ′ // HomR(M,B)

φ ′ // HomR(M,C) (2.1.2)

is also exact.

In the exact sequence 2.1.2, if φ ′ is surjective, then we say that HomR(M,−) is right

exact. It is important to note that this does not happen in general. We hence give a charac-

terization of the much less trivial case concerning the left-hand side of our original diagram

(2.1.1):

Definition 2.1.13. If P is an R-module for which HomR(P,−) is right exact, then P is called

a projective module.

Similarly, a module I will be called injective if the contravariant functor Hom(−, I) is

exact, that is, both left and right exact.

Projective modules are intuitively modules for which if φ : M → N and f : P→ N

are R-module homomorphisms (with φ surjective), then we can lift f to another mapping

F : P→M. Put more succinctly, the following diagram commutes, that is, f = φ ◦F :

P
∃F
~~

f
��

M
φ // N // 0

Injective modules are dual to projective modules. Instead of asking for maps from the

module I, we are asking about how maps into I lift to other maps into it. Put more precisely,

if the sequence 0 // M
φ // N is exact, an injective module I is such that given and

f ∈ Hom(M, I), there exists F ∈ Hom(N, I) making the following diagram commute:

0 // M

f
��

φ // N

∃F~~
I
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Also, the induced maps are reversed. In this case, if we have φ ∈ Hom(M,N), then

φ ′ : Hom(N, I)→ Hom(M, I) (note the reversal due to contravariance) takes f 7→ f ◦φ .

In general, we have the following useful characterizations:

Proposition 2.1.14. The following are equivalent:

1. An R-module P is projective.

2. For R-modules M, N, given a surjective map φ ∈HomR(M,N) and f ∈HomR(P,N),

there exists F ∈ HomR(P,M) making the following diagram commute:

P
∃F
~~

f
��

M
φ // N // 0

3. For R-modules M′, N′, any short exact sequence of the form

0 // M′ // N′ // P // 0

splits.

4. P is the direct summand of a free module.

And similarly, the following are equivalent:

1. An R-module I is injective.

2. For R-modules M, N, given φ ∈ Hom(M,N) with 0 // M
φ // N exact and f ∈

Hom(M, I), there exists F ∈ Hom(N, I) making the following commute:

0 // M

f
��

φ // N

F~~
I
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3. For R modules M′, N′, any short exact sequence of the form

0 // I // M′ // N′ // 0

splits.

To conclude, the following is fundamental and will be used in the later sections.

Theorem 2.1.15. Let M ∈modR. Then the following are equivalent:

1. M is projective.

2. M is locally free, that is, Mp is a free Rp module for all p ∈ Spec(R).

3. Mm is free for every m ∈m-Spec(R).

In particular, if R is a local Noetherian ring, then Rm = R, and hence the properties of

projectivity and free-ness coincide.

2.1.3 RESOLUTIONS AND Ext

We now proceed to the construction of the so called extension groups. To do this, we want

to give the following definition first:

Definition 2.1.16. Given an R-module A, a projective resolution of A is a sequence of

modules Mn and homomorphisms dn such that

· · · // Mn
dn // Mn−1

dn−1 // · · · d1 // M0
ε // A // 0

is exact and each Mn a projective module. The minimal length of a projective resolution

is called the projective dimension of M, denoted pdR M or pdM. Similarly, an injective

resolution is such that
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0 // A ε // M0 d0
// · · · dn

// Mn+1 dn+1
// Mn+2 dn+2

// · · ·

is an exact sequence and each Mi an injective module. The minimal length of an injective

resolution is called the injective dimension of M, denoted idR M or idM.

It is important to consider the construction of such a resolution as given above, be-

cause it may not be obvious that such a resolution is always possible. Consider first the

construction of a projective resolution. Given a module M, choose an ordered generating

set {x1, . . . ,xn}. Then we have the obvious surjective map ε : Rn := P0→M by just sending

(r1, . . . ,rn) 7→ r1x1 + · · ·+ rnxn. Now, do the same process to Kerε in terms of finding a

surjective map d1 from some projective module P1 onto Kerε . Proceeding inductively we

will construct an exact sequence

Kerε

""
· · · // P2

""

d2 // P1

<<

d1 // P0
ε // M // 0

Kerd1

<<

such that each Pi is projective. Hence, this is a projective resolution. Similarly, for the

injective case, we can use the fact that every module sits inside of an injective hull, the

“smallest” injective module containing M. By considering the inclusion of a module into

its injective hull, we can again construct an exact sequence of injective modules satisfying

the above definition. We then have the following:

Theorem 2.1.17. Every module has a free (hence projective) and injective resolution.

It is natural to consider the derived (co)homology groups after applying Hom to an

appropriate resolution. We have the following:
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Definition 2.1.18. Let

· · · // Pn
dn // Pn−1

dn−1 // · · · d1 // P0
ε // A // 0

be a projective resolution of an R-module A. For each R-module D, consider the induced

cochain complex

0 // Hom(A,D)
ε // Hom(P0,D) // · · ·

· · · // Hom(Pn+1,D) // Hom(Pn+2,D) // · · ·

We define:

ExtnR(A,D) = Ker(d′n+1)/ Im(d′n)

where the d′i are the induced differentials by the Hom functor.

It can be seen that ExtnR(A,D) can also be derived using an injective resolution for D

as follows. Let

0 // D ε // I0 d0
// · · · dn

// In+1 dn+1
// In+2 dn+2

// · · ·

be an injective resolution of A. Then, consider the induced cochain complex

0 // Hom(A,D) // Hom(A, I0) // · · ·

· · · // Hom(A, In+1) // Hom(A, In+2) // · · ·

Then we have:

ExtnR(A,D) = Ker(d′n+1)/ Im(d′n)

The following is a trivial consequence of the above

Proposition 2.1.19. For any R-modules A and B, we have that Ext0R(A,B)∼= HomR(A,B).

And, much less obvious is the following important result:
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Theorem 2.1.20. For R-modules A and B, the modules ExtiR(A,B) do not depend on the

choice of projective resolution for A or injective resolution for B.

Combining 2.1.19 with the long exact cohomology sequence:

Theorem 2.1.21. Suppose

0 // A // B //C // 0

is a short exact sequence of R-modules and R-module homomorphisms. Then, we have the

induced long exact sequence:

0 // HomR(C,D) // HomR(B,D) // HomR(A,D) //

Ext1R(C,D) // Ext1R(B,D) // Ext1R(A,D) // · · ·

Similarly, we have the induced long exact sequence:

0 // HomR(D,A) // HomR(D,B) // HomR(D,C) //

Ext1R(D,A) // Ext1R(D,B) // Ext1R(D,C) // · · ·

Noting that for an injective R-module Q, 0−→Q−→Q−→ 0 is an injective resolution

(and similarly in the projective case), we get the following:

Proposition 2.1.22. The following are equivalent:

1. An R-module P is projective.

2. Ext1R(P,A) = 0 for all R-modules A.

3. ExtnR(P,A) = 0 for all R-modules A and all n > 1.

Similarly, the following are also equivalent:

1. An R-module Q is injective.
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2. Ext1R(A,Q) = 0 for all R-modules A.

3. ExtnR(A,Q) = 0 for all R-modules A and all n > 1.

Remark 2.1.23. The notation Ext comes from extension. Extension refers to the fact that

any short exact sequence can be thought of as an extension of the first term A by the last

term C. For a short exact sequence

0 // A // B //C // 0

there is always a trivial extension with B = A⊕C. The Ext functor, or more precisely,

Ext1R(C,A), is a measure of how many inequivalent extensions of A by C there are. Equiv-

alence is taken in terms of certain commutative diagrams between short exact sequences.

This description of Ext was discovered by Yoneda, see the paper by Weibel [28].

2.2 RING THEORY

With the language of homological algebra, we will soon see that many unsightly ring the-

oretic definitions have very elegant characterizations in terms of Ext.

2.2.1 SOME DIMENSION THEORY

Definition 2.2.1. Let p∈ Spec(R). Then the height of p is defined to be the maximal length

r of any strictly descending chain of prime ideals p = pr ⊃ pr−1 ⊃ ·· · ⊃ p0. This quantity

is denoted htp.

The coheight of p∈ Spec(R) is the maximal length of ascending chains of prime ideals

p= p0 ⊂ ·· · ⊂ pr. This quantity is denoted cohtp.

Now, consider taking the supremum over heights for all p ∈ Spec(R). This is called

the Krull Dimension of R, and is denoted simply dimR.
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Definition 2.2.2. Let I ⊂ R be an ideal. Then, define

V (I) := {p | p⊃ I, p ∈ Spec(R)}

Then, we define a topology on Spec(R) in which V (I) is closed for all ideals I ⊂ R.

This topology is known as the Zariski topology. For the rest of the thesis, Spec(R) will

always be considered with the Zariski topology.

Example 2.2.3. In a topological space X , a closed set is irreducible if it cannot be expressed

as the union of two nonempty (disjoint) closed sets. The combinatorial dimension is taken

as the maximal length of all strictly increasing or decreasing chains of irreducible closed

subsets of X . It can be shown that the combinatorial dimension of Spec(R) is precisely the

Krull dimension of R [16].

Proposition 2.2.4. Let A be a ring with p ∈ Spec(A). We have the following:

htp= dimAp

cohtp= dimA/p

htp+ cohtp6 dimA

Example 2.2.5. Every principal ideal domain (that is not a field) has Krull dimension 1.

Example 2.2.6. Suppose that R is Artinian, and note that since R/p is an Artinian integral

domain for all p ∈ Spec(R), every prime ideal is a maximal ideal. However, this immedi-

ately implies that there exist no nontrivial chains of decreasing ideals in R, and hence R has

Krull dimension 0.

This in fact gives us a converse for a theorem of Akizuki (see [16, Theorem 3.2])

Theorem 2.2.7. A ring R is Artinian if and only if it is Noetherian of dimension 0.
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Definition 2.2.8. We can define the height of any ideal I ⊂ A as

ht I := inf{htp : p ∈V (I)}

We then have the analog to the final inequality of 2.2.4: ht I + htA/I 6 dimA. We

want to now extend this idea of dimension to modules.

Definition 2.2.9. For any A-module M, define

dimM := dim
(
A/Ann(M)

)
Where Ann(M) denotes the annihilator of M, that is, the set of all r ∈ R such that rM = 0.

Recalling the definition of the support of a module, it is easy to see that Supp(M) =

V (Ann(M)). By definition of the Zariski topology, this is a closed subset of Spec(A), and

if M is finitely generated we have that dimM is precisely the combinatorial dimension of

Supp(M)⊂ Spec(A).

Using a prime avoidance argument, the following can be proved:

Theorem 2.2.10. Let I be a proper ideal of R of height n. Then there exist x1, . . . ,xn ∈ I

such that ht(x1, . . . ,xi) = i for all i = 1, . . . ,n.

And we have a useful characterization in the local case:

Theorem 2.2.11. For the local ring (R,m), the following are equivalent:

1. dimR = n

2. htm= n

3. n is precisely the infimum over all m such that there exist x1, . . . ,xm ∈m with
√
(x1, . . . ,xm)=

m.
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4. n is precisely the infimum over all m for which there exist x1, . . . ,xm ∈ m such that

R/(x1, . . . ,xm) is Artinian.

Remark 2.2.12. The property of the xi given in part (3) of the above theorem is known as

being a system of parameters of A. Indeed, every local Noetherian ring admits a system of

parameters. This definition will be used again once we begin classifying rings.

This definition can be extended to M ∈ modR. If dimM = n, then x1, . . . ,xn ∈ m is a

system of parameters for M if M/(x1, . . . ,xn)M is Artinian.

Proposition 2.2.13. Let (R,m) be a local ring with M ∈modR and x1, . . . ,xr ∈m. Then

dim(M/(x1, . . . ,xr)M)> dimM− r

Equality holds if and only if x1, . . . ,xr is part of a system of parameters of M.

2.2.2 ASSOCIATED PRIMES, REGULAR SEQUENCES, GRADE, AND DEPTH

We begin with the following

Definition 2.2.14. An associated prime p ∈ Spec(R) of an R-module M is an ideal such

that p= Ann(z) for some z ∈M.

The set of associated primes is denoted AssM.

It would be nice to have an explicit realization of an associated prime. This is not too

hard to construct, however. Consider the family of annihilators

F := {Ann(x) | 0 6= x ∈M}

Since R is Noetherian, we can choose some maximal element (with respect to inclusion)

Ann(x) := m ∈ F . Suppose ab ∈ m for a, b ∈ R. By definition, abx = 0, and by symmetry

there is no loss of generality in assuming b /∈ m. Then we see that a ∈ Ann(bx) ⊂ m, by

maximality. Hence a ∈ m, and by definition m is prime. We have just proved
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Theorem 2.2.15. Let M be a nonzero R-module.

1. Associated primes are precisely the maximal elements of the family of ideals

F = {Ann(x) | 0 6= x ∈M}

2. The set of zero divisors is the union of all p ∈ AssM.

Remark 2.2.16. For an R-module M and p ∈AssM with p= Ann(z), z ∈M, let I ⊂ p be an

ideal. Consider the homomorphism φ : R/p→M induced by sending 1+p 7→ z. The kernel

is precisely p, so this is an injection. Restricting, this gives us a non-zero homomorphism

φ : R/I→M. We will use this seemingly inconsequential observation soon.

Definition 2.2.17. An element x ∈ R is M-regular (or just regular) if xm = 0 for m ∈ M

implies m = 0.

A regular M-sequence (or just M-sequence) is a sequence x1, . . . ,xn such that each xi

is a regular element of M/(x1, . . .xi−1)M, and M/xM 6= 0 (where x denotes either the ideal

(x1, . . . ,xn) or just x1, . . .xn. The context should make this meaning clear).

If we have that M/xM = 0 but the other condition for the sequence x is satisfied, then

x is called a weak M-sequence. In the local case, these definitions coincide when x ⊂ m

since if M/xM = 0, Nakayama’s Lemma gives that M = 0.

Consideration of the length of an M-regular sequence will lead us into the first natural

question: what is the maximal length of any M-sequence? However, even more nuanced

is the consideration of a maximal M-sequence, which is any such M-sequence with the

property that it cannot be extended to any strictly larger M-sequence. It turns out that this

length is extremely important for classification of rings. We can also add the additional

restriction that each xi in our desired regular sequence must be contained in some ideal I.

It is not obvious that the length of any maximal M-sequence contained in I is invariant.
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Now from Remark 2.2.16, if any ideal I consists entirely of zero divisors, there exists

some nonzero homomorphism. Similarly, consider trying to find a homomorphism between

two R modules M,N. If there is some M-regular element z ∈ Ann(N), then for any φ ∈

HomR(N,M), n ∈ N:

φ(zn) = 0 = zφ(n)

Since z is M-regular, we conclude that φ(n) = 0 for all n ∈ N. We have just proved the first

part of the following:

Proposition 2.2.18. Let M,N ∈modR. Set I := Ann(N).

1. If I contains any M-regular element, then HomR(N,M) = 0.

2. Conversely, if R is Noetherian and M,N ∈ modR, HomR(N,M) = 0 implies that I

contains some M-regular element.

We now have the following fundamental theorem due to Rees:

Theorem 2.2.19. Let M ∈ modR and I be an ideal such that M 6= IM. Then all maximal

M-sequences have the same length given by

n = min{i : ExtiR(R/I,M) 6= 0}

Definition 2.2.20. Let M ∈modR and I be an ideal such that M 6= IM. Then the common

length of all maximal M-sequences in I is called the grade of I on M, and is denoted

grade(I,M). By the previous theorem,

grade(I,M) = min{i : ExtiR(R/I,M) 6= 0}
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Of course, as is usual, we can consider the case when (R,m) is a local ring and M ∈

modR satisfy the above hypotheses. We have a special notation in this case:

grade(m,M) := depthM

and we call this the depth of M. The following proposition consists of a collection of very

useful formulas for grade.

Proposition 2.2.21. Let I, J be ideals of R, and M ∈modR. Then:

1. grade(I,M) = inf{depthMp | p ∈V (I)}

2. grade(I,M) = grade(
√

I,M)

3. grade(I∩ J,M) = min{grade(I,M),grade(J,M)}

4. If x is an M-sequence in I, then

grade(I/(x),M/xM) = grade(I,M/xM) = grade(I,M)−n

5. If N ∈modR with SuppN =V (I), then

grade(I,M) = inf{i : ExtiR(N,M) 6= 0}

2.2.3 RELATIONSHIPS BETWEEN DEPTH, KRULL DIMENSION, AND PROJECTIVE

DIMENSION

It turns out that the depth of a module and the dimension of a module are intimately con-

nected. The next inequality is fundamental, and the case in which equality occurs is used

to define a very special class of rings.

Proposition 2.2.22. Let (R,m) be a local ring and 0 6=M ∈modR. Then every M-sequence

is part of a system of parameters of M, and we have the inequality:
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depthM 6 dimR/p

for all p ∈ AssM. In particular,

depthM 6 dimM

Definition 2.2.23. Let (R,m,k) be a local ring. For M ∈ modR with depthM = n, we

define the type of M, denoted γM, as the dimension of the vector space ExtnR(k,M). More

precisely:

γM = dimk ExtnR(k,M)

The following elegant and useful formula relates depth and projective dimension:

Theorem 2.2.24 (Auslander-Buchsbaum Formula). Let (R,m) be a local ring with 0 6=

M ∈modR. If pdR M < ∞, then

pdM+depthM = depthR

2.3 CLASSIFICATION OF RINGS

This section will introduce the fundamental classes of rings with examples of each type.

Similar to how in elementary algebra, one learns that field =⇒ Euclidean Domain =⇒

Principal Ideal Domain =⇒ Unique Factorization Domain, there is a similar string of

implications for the classes we introduce here.

2.3.1 REGULAR RINGS

We have already introduced the notion of a system of parameters x1, . . . ,xn for a local

ring (R,m), and moreover mentioned that any Noetherian local ring admits a system of
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parameters. One may be tempted to ask what happens if we can strengthen the condition

that
√

(x1, . . . ,xn) =m to simple (x1, . . . ,xn) =m. We have:

Definition 2.3.1. A Noetherian local ring (R,m) is regular if it has a system of param-

eters generating m. In this case, the system of parameters is called a regular system of

parameters.

In the case that R is not local, if the localization Rm of a ring R at each m ∈m-SpecR

is a regular local ring, then R is called regular.

Proposition 2.3.2. A Noetherian local ring (R,m) is regular if and only if its m-adic com-

pletion R̂ is regular.

Remark 2.3.3. Denoting by µ(m) the minimal number of generators of m, the above def-

inition is equivalent to stating that µ(m) = dimR. Krull’s Height Theorem gives that any

ideal I generated by n elements has ht I 6 n. In the local case, dimR = htm6 µ(m). Then,

we see that the case of equality is precisely the condition that the ring R be a regular local

ring.

Proposition 2.3.4 (Auslander-Buschsbaum-Nagata). Let (R,m) be a regular local ring.

Then R is an integral domain.

Theorem 2.3.5 (Auslander-Buchsbaum-Serre Theorem). Let (R,m,k) be a local ring. Then

the following are equivalent:

1. R is regular.

2. pdM < ∞ for every M ∈modR.

3. pdk < ∞.

Given an affine variety V , the property of being regular corresponds to the geometric

property of being a nonsingular point of V . The following theorem shows that regular local

rings are in fact a smaller class than the more standard class of UFD’s.
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Theorem 2.3.6 (Auslander-Buschsbaum-Nagata). A regular local ring R is a Unique Fac-

torization Domain.

Theorem 2.3.7. A Noetherian ring R is regular if and only if R[X1, . . . ,Xn] is regular. Sim-

ilarly, a Noetherian ring R is regular if and only if R[[X1, . . . ,Xn]] is regular.

2.3.2 COMPLETE INTERSECTION RINGS AND HYPERSURFACES

We now expand the class of regular rings by considering a new definition. As mentioned

above, a regular local ring is the result of the localization at a smooth point on an algebraic

variety. This motivates the terminology of calling a Noetherian local ring singular if it is

not regular. If we do not have regularity, we can hope for a weaker condition by considering

even smaller neighborhoods of a point on an algebraic variety. Of course, more precisely

this means taking the m-adic completion R̂.

Upon taking the completion, we know by 2.3.2 that this must also be singular, however

we can hope that R̂ is in fact the quotient of some regular local ring, since we may be able to

pull back the elements of R̂ to a ring with nicer properties. In this case, we have a definition

Definition 2.3.8. A local ring (R,m) is a complete intersection (ring) if its m-adic comple-

tion R̂ is a residue class ring of a regular local ring S with respect to an ideal generated by

an S-sequence. More precisely,

R̂ = S/(x1, . . . ,xn)

where (x1, . . . ,xn) is S-regular.

It should be obvious that a regular ring R is a complete intersection ring, since R̂ is

regular by 2.3.2 and is the quotient of itself with the ideal (0), which is generated by ∅

(and this is vacuously an R-sequence). The converse does not hold, however:
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Example 2.3.9. Consider the ring k[x]/(x2) where k is some field. Then the maximal ideal

is (x)/(x2) and taking the completion yields k[[x]]/(x2). This is clearly the quotient of a

regular ring by some regular element, and hence is a complete intersection. However, this

is not an integral domain (since x2 = 0), so our ring is certainly not regular.

Finally, we give another definition that will be used in the upcoming chapter:

Definition 2.3.10. A ring R is called a hypersurface if its m-adic completion R̂ is the quo-

tient of a regular local ring by some principal ideal.

2.3.3 GORENSTEIN RINGS

In this section we shall see that consideration of the length of injective resolutions for a

ring will lead us to the definition of another new class of rings.

Proposition 2.3.11. Let M be an R-module. The following are equivalent:

1. idM 6 n

2. Extn+1
R (N,M) = 0 for all R-modules N.

3. Extn+1
R (R/J,M) = 0 for all ideals J of R

The above proposition is obvious from the material of the previous section on homo-

logical algebra. Similar to the characterization of projective dimension in terms of Ext, we

see:

Proposition 2.3.12. Let (R,m,k) be a local ring and M ∈modR. Then

idM = sup{i : ExtiR(k,M) 6= 0}

Now we can introduce our next class of rings:
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Definition 2.3.13. A local ring R is called a Gorenstein Ring if idR R<∞. A not necessarily

local ring is called Gorenstein if its localization at every maximal ideal is Gorenstein.

We then have the following Proposition:

Proposition 2.3.14. 1. Suppose R is Gorenstein. Then, Rp is Gorenstein for every p ∈

Spec(R) (indeed this holds for any multiplicative subset).

2. Suppose that x is an R-regular sequence. If R is Gorenstein, then so is R/(x). If R is

local, the converse also holds.

3. Suppose that R is local. Then R is Gorenstein if and only if its m-adic completion is

Gorenstein.

Now suppose that the local ring (R,m) is a complete intersection. Then, R̂ = S/(x)

and hence by (2) in the above proposition, it suffices to show that S is Gorenstein. However,

since (S,n, `) is a regular local ring, it has finite projective dimension which in turn implies

that ExtiR(`,S) = 0 for i� 0.

To see this, we can find a finite projective resolution of the residue field ` by 2.3.5.

Applying the contravariant functor HomR(−,R), we find that ExtiR(k,R) must eventually

vanish. Then, using 2.3.12, we conclude that injective dimension is finite and hence S is

Gorenstein. Then, R is Gorenstein as well. We have proved:

Proposition 2.3.15. Any complete intersection is Gorenstein.

Example 2.3.16. Consider the ring of formal power series over a field k,

k[[X ,Y,Z]]/(X2−Y 2,Y 2−Z2,XY,Y Z,ZX)

this is Gorenstein. However, it can be shown that this is not a Complete Intersection [16].



30

Remark 2.3.17. There is another characterization of Gorenstein rings that will be discussed

in the following subsection that requires another definition. This characterization allows

one to construct entire classes of rings that are Gorenstein but not complete intersections

(see [7]).

To conclude, we state the following which will be used in the next subsection.

Theorem 2.3.18. Let (R,m,k) be a local ring, and let M ∈ modR be of finite injective

dimension. Then,

dimM 6 idM = depthR

2.3.4 COHEN-MACAULAY RINGS

Recalling 2.2.22, we can now define another class of rings:

Definition 2.3.19. Let R be a local ring. 0 6= M ∈ modR is called a Cohen-Macaulay

module if depthM = dimM. If R is a Cohen-Macaulay module over itself, then it is called

a Cohen-Macaulay Ring.

A Cohen-Macaulay module is called maximal if M is Cohen-Macaulay and dimM =

dimR. In the non-local case, a module is called Cohen-Macaulay if the localization Mm at

every maximal ideal m is Cohen-Macaulay.

Note that if R is Gorenstein, then 2.3.18 combined with 2.2.22 shows that dimR =

depthR. Hence:

Proposition 2.3.20. Any Gorenstein ring is Cohen-Macaulay.

Theorem 2.3.21. Let (R,m) be a local ring and M 6= 0 a Cohen-Macaulay module. Then

1. dimR/p= depthM for all p ∈ AssM.
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2. grade(I,M) = dimM−dimM/IM for all ideals I ⊂m.

3. x = x1, . . . ,xn is an M sequence if and only if dimM/xM = dimM−n.

4. x is an M-sequence if and only if it is part of a system of parameters of M.

Recalling the definition of type, we have the following:

Theorem 2.3.22. Let (R,m,k) be a local ring. The the following are equivalent:

1. R is Gorenstein.

2. R is Cohen-Macaulay of type 1.

Definition 2.3.23. Let (R,m,k) be a local Cohen-Macaulay ring. A maximal Cohen-

Macaulay module C with type 1 and finite injective dimension is called a canonical module

of R.

With the above definition, we see that 2.3.22 tells us that, up to isomorphism, a Goren-

stein ring is its own canonical module.

Example 2.3.24. Consider the ring of formal power series k[[t3, t5, t7]]. It can be shown

that this ring is Cohen-Macaulay but not Gorenstein.

Remark 2.3.25. To conclude this subsection, we shall leave the reader with the following

chain of inclusions:

Regular⊂ Complete Intersection⊂ Gorenstein⊂ Cohen-Macaulay (2.3.1)

2.3.5 POINCARÉ AND BASS SERIES

Definition 2.3.26. Let X be a generating set for an R-module M. If no proper subset of X

generates M, then X is called a minimal basis or minimal generating set.
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Consider the following construction: given an R-module M over a local ring (R,m,k),

take the quotient M/mM ∼= k⊗M. As a module over a field, this is actually a vector space.

Choose a basis {x1, . . . , xn} of this vector space and consider the preimage xi ∈M of each

xi with respect to the canonical projection. Then it is obvious that any proper subset of this

set of generators cannot generate M. Also, the set X = {x1, . . . , xn} generates all of M

since for any x ∈M its image in M/mM is in the span of our {xi}. Taking the preimage of

this linear combination, we find that x = r1x1 + · · ·+ rnxn for some ri ∈ R.

Set β0 := dimk HomR(M,k) and construct a homomorphism φ0 : Rβ0→M with φ0(ei)=

xi, where x1, . . . ,xβ0 is a minimal basis for M. The kernel of this map is called the first

syzygy. Now, set β1 = µ(Kerφ0), where µ(−) denotes the minimal number of generators

for the given module, and construct the same type of map φ1 : Rβ1 → Kerφ0. Continuing

inductively, we construct what is called a minimal free resolution for M, since we are con-

structing a resolution by successively finding minimal bases of the ith syzygy. The number

βi(M) is called the ith Betti number. We have the following characterization:

Proposition 2.3.27. Let (R,m,k) be a local ring and M ∈modR. Then, βi(M)= dimk ExtiR(M,k)

for all i, and,

pdR M = sup{i : ExtiR(M,k) 6= 0}= sup
i
{i : βi(M)neq0}

We have a similar dual to the Betti numbers:

Definition 2.3.28. The Bass numbers µi(M) of a module M over a local ring (R,m) are

defined as the vector space dimension of ExtiR(k,M).

Definition 2.3.29. Let M ∈modR. The Poincaré series and the Bass series of M, denoted
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PM
R (t) and IR

M(t), respectively, are the formal Laurent series defined as follows:

PM
R (t) := ∑

i>0
βi(M)t i

IR
M(t) := ∑

i>0
µi(M)t i.

We simply denote IR
R (t) by IR(t).

The coefficient of tdepthR in IR(t) is precisely the type of R introduced in Defini-

tion 2.2.23. Note that γR 6= 0 and all the coefficients of t i in IR(t) for i < depthR are

zero by the characterization of depth given in Theorem 2.2.19 (with I =m of course).

Also, note that the constant term in Pk
R(t) is 1. This is because we have that the

coefficient of t0 is Ext0R(k,k)∼= HomR(k,k)∼= Homk(k,k)∼= k, where the last isomorphism

is the natural map f 7→ f (1).

For simplicity we will denote PM
R (t) and IR

M(t) by PM
R and IR

M, where it is understood

that these are functions of t. These series will be used to prove results in the next chapter.

2.3.6 THE AUSLANDER-REITEN CONJECTURE

To conclude this chapter, we introduce a conjecture put forth originally as a generalization

of Nakayama’s Conjecture. As will be seen, this thesis will show that another class of rings

shall satisfy the Auslander-Reiten conjecture. This conjecture claims: over a local ring R,

if M is a finitely generated R-module such that ExtiR(M,M⊕R) = 0 for i > 0, then M is

projective.

Definition 2.3.30. A ring R is said to satisfy the Auslander Condition if for every finitely

generated R-module M there exists a nonnegative integer bM such that for every finitely

generated R-module N one has that ExtiR(M,N) = 0 for i > bM whenever ExtiR(M,N) = 0

for i� 0.
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It is well known (see [27]) that any ring R satisfying the above Auslander condition

must also satisfy the Auslander-Reiten conjecture. In the case of commutative Noetherian

rings, it has been shown that any Gorenstein local ring of codimension 6 4 and any fiber

product of commutative Noetherian local rings must satisfy the Auslander-Reiten conjec-

ture (see [23] and [18], respectively).

Other notable classes for which the Auslander-Reiten conjecture holds are Artinian

local rings (R.m) with m3 = 0 (see [13]), Gorenstein normal Rings (see [3]), and Complete

Intersections (see [6]).

In [27, Theorem 1.2], a string of implications is introduced for different conditions of

commutative Noetherian local rings, showing that different classes are forced to obey the

Auslander-Reiten conjecture.
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CHAPTER 3

COHEN-MACAULAY AND GORENSTEIN FIBER PRODUCTS

In this chapter, (S,mS,k) and (T,mT ,k) will denote local rings with common residue field

k such that mS 6= 0 6=mT .

3.1 FIBER PRODUCTS, POINCARÉ SERIES AND BASS SERIES

Definition 3.1.1. The fiber product of S and T , denoted S×k T , is the pull-back in the

following commutative diagram

S×k T //

��

T

πT
��

S
πS // k

in which πS and πT are the natural surjections onto the residue field k. In fact,

S×k T = {(s, t) ∈ S×T | πS(s) = πT (t)}.

Remark 3.1.2. The ring S×k T is a non-trivial noetherian local ring with maximal ideal

mS×kT =mS⊕mT , and there are ring isomorphisms (S×k T )/mT ∼= S and (S×k T )/mS∼= T .

We also have the following equalities:

dimS×k T = max{dimS,dimT} (3.1.1)

depthS×k T = min{depthS,depthT,1} (3.1.2)

The first equality follows immediately by noting that the prime ideals of S×k T are of the

form p×k T and S×k q for p ∈ Spec(S) and q ∈ Spec(T ).

The second equality is a consequence of the formulas presented in [8, Remark 3.1].

For the rest of this section, we collect some well-known results that we will need in

the future. Recall that the definitions of the Poincaré series and Bass series are given in

Definition 2.3.29.
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Remark 3.1.3. The following equality is due to Kostrikin and Šafarevič [14] (see also Chris-

tensen, Striuli, and Vraciu [8])

1
Pk

S×kT
=

1
Pk

S
+

1
Pk

T
−1 (3.1.3)

which relates the Poincaré series of the residue field k over the fiber product and over each

of the rings defining the fiber product.

The following are due to Lescot [15, Theorem 3.1].

Case 1: If S and T are singular (that is, are not regular rings), then we have the

following equality:
IS×kT

Pk
S×kT

= t +
IS

Pk
S
+

IT

Pk
T
. (3.1.4)

Case 2: If S is singular and T is regular with dimT = n, then we have

IS×kT

Pk
S×kT

= t +
IS

Pk
S
− tn+1

(1+ t)n . (3.1.5)

Case 3: And finally, if S and T are both regular with dimS = m and dimT = n, then

we have
IS×kT

Pk
S×kT

= t− tm+1

(1+ t)m −
tn+1

(1+ t)n . (3.1.6)

Using (3.1.3) we can find the following relations, found through basic manipulations.

First, when S and T are singular:

IA

(
Pk

T +Pk
S −Pk

T Pk
S

)
= tPk

T Pk
S + ISPk

T + IT Pk
S . (3.1.7)

When S is singular and T is regular with dimT = n, we obtain:

IA

(
Pk

T +Pk
S −Pk

T Pk
S

)
(1+ t)n =

(
t(1+ t)n− tn+1)Pk

T Pk
S +(1+ t)nISPk

T . (3.1.8)
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3.2 COHEN-MACAULAY FIBER PRODUCTS AND HYPERSURFACES OF DIMENSION 1

Using (3.1.1) and (3.1.2), we have the following proposition, which we shall employ in the

proof of some results in the future.

Theorem 3.2.1 ([19]). The fiber product S×k T is Cohen-Macaulay if and only if dimS×k

T 6 1 and both S and T are Cohen-Macaulay satisfying the following equality

dimS = dimT = dimS×k T.

Proof. Suppose first the A := S×k T is Cohen Macaulay. Hence, dimA = depthA, and we

automatically find that dimA 6 1, since depthA 6 1 by (3.1.2). Without loss of generality,

we can assume dimA = dimS. Then, dimS > dimT , and we have 3 cases. Assume first

that dimS = depthS. Then, S is Cohen-Macaulay, and we have the following string of

inequalities:

dimS = depthS 6 depthT 6 dimT 6 dimS

So that all inequalities in the above are actually equality. Hence, dimT = depthT and

T is Cohen-Macaulay as well.

If dimS = depthT , we have two similar strings of inequalities:

dimS = depthT 6 depthS 6 dimS

dimS = depthT 6 dimT 6 dimS

So the above is again actually equality, and we conclude that dimT = depthT and

dimS = depthS, so S and T are again Cohen-Macaulay.

Finally, for dimS = depthA = 1, this means that depthS > 1 and depthT > 1. Then

we have:
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1 6 depthS 6 dimS = 1

1 6 depthT 6 dimT 6 dimS = 1

And we conclude that depthS = dimS = 1, and likewise for T , so that S and T are

Cohen-Macaulay.

Conversely, if dimS×k T 6 1 and S, T are Cohen-Macaulay with dimS = dimT =

dimS×k T , then we see that

depthA = min{dimA,1}

But since dimA 6 1, we have depthA = dimA, so A is Cohen-Macaulay.

Next result will be used in the proof of a result in the next section.

Proposition 3.2.2 ([19]). Assume that R is a hypersurface of dimension 1 that is complete,

and let I be a non-zero ideal of R such that R/I is a regular ring of dimension 1. Then,

R/I ∼= Q/( f ), where Q is a regular local ring and f ∈ Q is a prime element.

Proof. By definition of hypersurface (given by 2.3.10), we have R∼=Q/(g) with Q a regular

local ring, and g is a regular element in Q. With this, we see that 1 = dimR = dimQ/(g) =

dimQ−1, so that dimQ = 2. Thus, (g) is not the maximal ideal of Q.

Now, since any regular local ring is an integral domain, we see that I is a prime ideal

so there corresponds q ∈V
(
(g)
)
∩Spec(Q) such that I corresponds to q/(g).

By the Auslander-Buchsbaum-Nagata Theorem 2.3.6, Q is a UFD and we can factor-

ize g = g1g2 . . .gn into primes. Note that q is a prime ideal, so by definition at least one

prime gi ∈ q. Define f := gi.

We claim that ( f ) = q. To see this, since by assumption dimR/I = 1 and R is Cohen-

Macaulay, we have that

1 = dimR/I = dimR−htR I
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implying that htR I = 0. This implies that htQq = htQ( f ). Since f ∈ Q is prime, the ideal

( f ) of Q is a prime ideal and therefore, ( f ) = q, as claimed.

From here, we see:

R/I ∼=
Q/(g)
q/(g)

=
Q/(g)
( f )/(g)

∼= Q/( f ) (3.2.1)

as asserted.

Finally, we record the following result without proof, as it will be used later.

Proposition 3.2.3 ([8]). If S and T are regular rings of dimension 1, then S×k T is a

hypersurface.

3.3 GORENSTEIN FIBER PRODUCTS

This section contains a result that characterizes the Gorenstein fiber products. In fact, it

says that the class of Gorenstein fiber products coincides with that of hypersurface fiber

products and hence, with that of complete intersection fiber products; see the diagram in

(2.3.1).

Theorem 3.3.1 ([19]). The fiber product A := S×k T is Gorenstein if and only if it is a

hypersurface with dimA = 1. We also have S and T are regular rings with dimS = 1 =

dimT .

Moreover, under the above assumptions, if A is complete, then

A∼= Q/(p)×k Q/(q)

where Q, Q/(p), and Q/(q) are regular rings with residue field k and p and q are prime

elements in Q.
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Proof. First note that if A is a hypersurface, then by (2.3.1) it is Gorenstein.

Assume now that A is Gorenstein. Note that by Proposition 2.3.15, A is Cohen-

Macaulay. Hence, by Theorem 3.2.1 we have dimA is either 0 or 1. Note also that we

have 3 possible cases for the rings S and T , as given by the conditions on (3.1.4), (3.1.5),

and (3.1.6). Thus, in total we have 6 possible cases. We shall show that 5 of these cases are

impossible, as we describe below.

Case 1: Suppose dimA = 0 and S and T are both singular. Since A is Gorenstein, it is

Cohen-Macaulay and the first nonzero coefficient of IA is the coefficient γA of 1. Since A

is isomorphic to its canonical module by definition of Gorenstein, we deduce immediately

that γA = 1. Using this, we want to compare coefficients of (3.1.4). On the left side of

this equality, the constant term of Pk
T +Pk

S −Pk
T Pk

S is 1+1−1 = 1, so the constant term of

IA
(
Pk

T +Pk
S −Pk

T Pk
S

)
is just γA = 1. On the right, note that by Proposition 3.2.1, S and T

also have 0 depth so that the constant term is merely γS + γT , since tPk
T Pk

S has no constant

term. Thus, comparing the left and right side, we see that 1 = γS + γT . But this is clearly

impossible, since the right hand side it the sum of two strictly positive integers. Hence, this

case cannot occur.

Case 2: Suppose dimA= 1 and S and T are both singular. Again, examining the left of

(3.1.4), there will be no constant term since IA starts at the term tdepthA = t, with coefficient

γA = 1. Examining the right, we want to find the coefficients of t. Again, S and T are

Cohen Macaulay and also have depth 1 by Proposition 3.2.1. Also, the term tPk
T Pk

S now

contributes a 1, and comparing both sides, we see that γA = 1 = 1+ γS + γT . Subtracting,

this means γS + γT = 0, which is again impossible.

Case 3: Suppose dimA = 0, S singular, and T regular. Since T is regular of dimension

0, it is equal to its residue field k, which is a contradiction.

Case 4: Suppose dimA= 1, S singular, and T regular. We want to compare coefficients

of the t terms in (3.1.8). Then, almost identically as in the second case, we see the the left
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of (3.1.8) has constant term γA = 1. On the right, first notice that
(
t(1+ t)n− tn+1)Pk

T Pk
S

has coefficient 1 of t. Similarly, we know that S is Cohen Macaulay with depthS = 1, so the

term (1+ t)nISPk
T has coefficient γS on t. Comparing coefficients, we find γA = 1 = 1+ γS,

implying γS = 0. Again, this is impossible.

Case 5: Suppose dimA = 0, and S and T are regular. Then, since S and T are reg-

ular rings of dimension 0, they are in fact equal to the residue field k, which is another

contradiction. Hence, the only possible case is the next case.

Case 6: Suppose dimA = 1, and S and T are regular. Then, by using Proposition 3.2.3

we see that A is a hypersurface of dimension 1.

Now assume further that A is complete. Then, A/mS ∼= T and A/mT ∼= S are both

regular of dimension 1. We can now employ the result of Proposition 3.2.2 to conclude that

S ∼= Q/(p) and T ∼= Q/(q) for prime elements p and q in Q, where Q, Q/(p) and Q/(q)

are regular rings. Hence,

A∼= Q/(p)×k Q/(q).

This completes the proof.

As mentioned before, the above theorem has shown that a Gorenstein fiber Product is

indeed a hypersurface. The natural question is whether or not it is regular as well. However,

we shall now show that this is the best we can get:

Proposition 3.3.2 ([19]). The fiber product A := S×k T is not regular.

Proof. Suppose that A is regular. Note that A is not a field because mS 6= 0 6= mT . Note

also that A is Cohen-Macaulay. Thus, by Theorem 3.2.1 we have dimA = 1.

Since A is regular we have pdA(A/mT ) < ∞ by Theorem 2.3.5. By the Auslander-

Buchsbaum formula 2.2.24, we also have

depthA/mT +pdA(A/mT ) = depthA = 1.
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Therefore, pdA(A/mT )6 1. However, using the short exact sequence

0→mT → A→ A/mT → 0

this then implies that pdAmT = 0. Thus, we find that mT is isomorphic to a free A-module.

However, mTmS = 0, implying that mS = 0, which is a contradiction. Thus, A is not regular,

as desired.
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CHAPTER 4

APPLICATIONS

The notation used in this chapter comes from Chapters 2 and 3.

4.1 A CHARACTERIZATION OF FIBER PRODUCTS AND VANISHING OF Ext

In this chapter we shall apply the results of Chapter 3 to generalize results of Takahashi [26]

and Atkins-Vraciu [2]. The following is a result of Ogoma that provides a useful charac-

terization of the fiber products.

Proposition 4.1.1 ([20]). A local ring (R,m) is a fiber product of the form S×k T if and

only if its maximal ideal is decomposable.

Proof. Suppose first that we have a fiber product S×k T . Then, as we mentioned in Re-

mark 3.1.2 its maximal ideal is decomposable.

Conversely, suppose m∼= I⊕ J. Then consider the natural homomorphism

Θ : R→ R/I×R/m R/J

sending r 7→ (r+ I,r+ J). We show that Θ is bijective.

Suppose Θ(r) = (I,J). Then, r ∈ I∩ J = (0), so r = 0 and Θ is injective.

Now let (r1 + I,r2 + J) ∈ R/I×R/m R/J. Following Definition 3.1.1 consider the dia-

gram of ring homomorphism

R/I×k R/J //

��

R/J

πR/J
��

R/I
πR/I // R/m

Then, by definition of πR/I and πR/J , we see that r1 +m = r2 +m, which implies that

r1−r2 ∈m. Since m∼= I⊕J, we see that r1−r2 = i+ j for i∈ I and j ∈ J. Set r := r1− i =

r2 + j. Then, r+ I = r1− i+ I = r1 + I, and likewise r+ J = r2 + j+ J = r2 + J. Hence,

Θ(r) = (r1 + I,r2 + J), and this implies that Θ is a surjective map.
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Corollary 4.1.2 ([19]). If R has a decomposable maximal ideal, then R is not regular.

Proof. By Proposition 4.1.1 we have that R is a fiber product of the form S×k T . Now

Proposition 3.3.2 implies that R is not regular.

We now proceed to examine vanishing properties of Ext over rings with decomposable

maximal ideals. Since 4.1.1 tells us that decomposable maximal ideals force the structure

of a fiber product, we can now apply results of fiber products to deduce deeper properties.

First, we will use the following (see [18, Corollary 4.2]):

Proposition 4.1.3 ([18]). Let R be a fiber product and let M,N ∈modR. If ExtiR(M,N) = 0

for i� 0, then pdR(M)6 1 or idR(N)6 1.

Corollary 4.1.4 ([19]). Let the maximal ideal m of the local ring R be decomposable, and

let M,N ∈modR. If ExtiR(M,N) = 0 for i� 0, then pdR(M)6 1 or idR(N)6 1.

Proof. By Proposition 4.1.1, R is isomorphic to a fiber product. By Proposition 4.1.3,

we see that if R is a fiber product and ExtiR(M,N) = 0 for i� 0, then pdR(M) 6 1 or

idR(N)6 1.

We state the following without proof:

Theorem 4.1.5 ([18]). Let A := S×k T and assume that M ∈modA.

(a) If ExtiA(M,M⊕A) = 0 for i� 0, then pdA(M)6 1.

(b) If ExtiA(M,M⊕A) = 0 for i > 1, then M is A free.

The following is an immediate corollary of the above results (see Section 2.3.6 of

Chapter 2).

Corollary 4.1.6 ([19]). Let the maximal ideal m of the local ring R be decomposable. Then

R satisfies the Auslander-Reiten Conjecture.

Proof. Again, since m is decomposable, R is a fiber product. Using Theorem 4.1.5, the

conclusion follows immediately.
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4.2 GENERALIZATION OF A RESULT OF TAKAHASHI

In this section we will give a brief excursion into the notion of totally reflexive modules

and Gorenstein dimension.

Definition 4.2.1. An R-module M will be called totally reflexive if

HomR(HomR(M,R),R)∼= M

and ExtiR(M,R) = 0 = ExtiR(HomR(M,R),R) for all i > 0.

Formally, a reflexive module is one for which HomR(−,R) is idempotent when applied

to M, and total reflexivity is an analog of projectivity but with the additional vanishing of

ExtiR(HomR(M,R),R). We use this to define another example of a homological dimension:

Definition 4.2.2. Let M be an R-module. The Gorenstein Dimension of M is the smallest

integer n for which there exists a resolution of M by totally reflexive modules of length n.

This quantity will be denoted G-dimR M or just G-dimM when R is clear.

The above immediately implies that G-dimM = 0 for a totally reflexive module.

Gorenstein dimension also obeys the following:

Theorem 4.2.3 (Compare 2.3.5). Let (R,m,k) be a local ring. Then the following are

equivalent:

1. R is Gorenstein.

2. G-dimM < ∞ for every M ∈modR.

3. G-dimk < ∞.

Theorem 4.2.4 (Compare 2.2.24). Let (R,m) be a local ring with 0 6= M ∈ modR. If

G-dimR M < ∞, then

G-dimR M+depthM = depthR
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The above immediately gives that when both pdM and G-dimM are finite, they are

equal, however in general we have that G-dimM 6 pdM.

We give a result of Takahashi [26, Theorem A]:

Theorem 4.2.5 ([26]). Let (R,m) be a complete local ring. Then the following are equiva-

lent:

1. There is an R-module M with G-dimR M < ∞ = pdR M, and m is decomposable.

2. R is Gorenstein, and m is decomposable.

3. There are a complete regular local ring S of dimension 2 and a regular system of

parameters x,y of S such that R∼= S/(xy).

To give a generalization of this result, we will need the following result of Foxby.

Lemma 4.2.6 ( [12]). If there exists a non-zero R-module with finite projective and injective

dimension, then R is Gorenstein.

Here is the main result of this subsection, generalizing Takahashi’s result.

Theorem 4.2.7 ([19]). If the maximal ideal m of the complete local ring R is decomposable,

then the following are equivalent.

(i) There is E ∈modR with idR(E)< ∞ such that ExtiR(E,R) = 0 for all i� 0;

(ii) R is Gorenstein;

(iii) R is a hypersurface of dimension 1. In this case, R is isomorphic to a fiber product

Q/(p)×k Q/(q), where Q, Q/(p), and Q/(q) are regular local rings with residue

field k and p,q ∈ Q are prime elements;

(iv) There is M ∈modR with pdR(M) = ∞ such that ExtiR(M,R) = 0 for all i� 0.
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Proof. (i) =⇒ (ii): By 4.1.4 we know that pdR(E) 6 1 or idR(R) 6 1. If idR(R) 6 1,

then by definition R is Gorenstein. If pdR(E) 6 1, then as E already has finite injective

dimension, by using 4.2.6 we conclude that R is Gorenstein as well.

(ii) =⇒ (iii): This holds obviously by noting that R is a fiber product and hence, by

Theorem 3.3.1, the statement of (iii) holds.

(iii) =⇒ (iv): By Corollary 4.1.2 we know that R is not regular. Hence, by Theo-

rem 2.3.5 we have pdR(k) =∞. Also, since R is Gorenstein we have idR(R)<∞. Therefore,

ExtiR(k,R) = 0 for all i� 0.

(iv) =⇒ (i): Let M ∈modR with pdR(M) = ∞ such that ExtiR(M,R) = 0 for all i� 0.

Then by Corollary 4.1.4 we conclude that idR(R)< ∞. Hence, letting E := R we obviously

have ExtiR(R,R) = 0 for all i > 0 because R is free.

4.3 GENERALIZATION OF A RESULT OF ATKINS-VRACIU

Recall the definition of a totally reflexive module as given in the previous section. We state

the result of Atkins-Vraciu here for reference:

Theorem 4.3.1 ([2]). Let (R,m) be an Artinian local ring with m3 = 0. Assume that m is

decomposable, and µ(m)> 3. Then M has no non-free totally reflexive modules.

The following is a generalization of this theorem.

Theorem 4.3.2. Assume that the maximal ideal m of the local ring R is decomposable. If R

is Artinian, then R has no non-free finitely generated modules M such that ExtiR(M,R) = 0

for all i� 0. (Hence, R has no non-free totally reflexive modules.)

Proof. Assume on the contrary that there exists non-free M ∈modR with ExtiR(M,R) = 0

for all i� 0. Then, by Corollary 4.1.4 we have pdR(M)6 1 or idR(R)6 1. If pdR(M)6 1,

then by Auslander-Buchsbaum we have

pdR(M) = depthR−depthR M = 0
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and hence, M is free over R by Theorem 2.1.15, which is a contradiction. This means that

we must have idR(R)6 1, and therefore R is Gorenstein. Hence, by Theorem 4.2.7 we must

have dimR = 1, which is again a contradiction.

These contradictions show that there is no non-free finitely generated R-module M

such that ExtiR(M,R) = 0 for all i� 0 over an Artinian ring R.
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