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PRECISE PARTITIONS OF LARGE GRAPHS

by

POURIA SALEHI NOWBANDEGANI

(Under the Direction of Colton Magnant)

ABSTRACT

First by using an easy application of the Regularity Lemma, we extend some known

results about cycles of many lengths to include a specified edge on the cycles. The

results in this chapter will help us in rest of this thesis.

In 2000, Enomoto and Ota conjectured that if a graph G satisfies σ2(G) ≥

n + k − 1, then for any set of k vertices v1, . . . , vk and for any positive integers

n1, . . . , nk with
∑

ni = |G|, there exists a partition of V (G) into k paths P1, . . . , Pk

such that vi is an end of Pi and |Pi| = ni for all i. We prove this conjecture when |G|

is large. Our proof uses the Regularity Lemma along with several extremal lemmas,

concluding with an absorbing argument to retrieve misbehaving vertices.

Furthermore, sharp minimum degree and degree sum conditions are proven for

the existance of a Hamiltonian cycle passing through specified vertices with prescribed

distances between them in large graphs.

Finally, we prove a sharp connectivity and degree sum condition for the existence

of a subdivision of a multigraph in which some of the vertices are specified and the

distance between each pair of vertices in the subdivision is prescribed (within one).
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CHAPTER 1

INTRODUCTION

For all basic definitions and notation, see [1]. Let σ2(G) denote the minimum degree

sum of a graph G.

The Traveling Salesman Problem involves finding the best (in some sense) cycle in

a large graph that passes through each vertex exactly once. This corresponds to a

most efficient route that a door-to-door salesman might take to visit each house in

a particular city or each city in a particular region. As if this problem wasn’t hard

enough (it is known to be NP-Hard), what if the same salesman has a list of hotels

he would like to visit on specific nights? The question of actually finding such a

subgraph gets out of hand and it becomes natural to consider only existence results.

One such result is the following, stated here in a simpler form from the original.

Theorem 1 (Faudree, Gould, Jacobson, Magnant [9]). Given a constant k, the

degree of each vertex in G is at least |G|+k−1
2

, then for any selected set of k vertices

(hotels), there exists a cycle passing through all the vertices of G such that the k

selected vertices are approximately equally spaced. Furthermore, this degree condition

is the best possible.

More generally, one need not consider only a cycle. If we let H be any graph or

even multigraph, we may consider the same problem in which we subdivide the edges

of H a specified number of times, map the vertices of H into the vertices of a larger

graph G and then try to find corresponding paths in G to represent those subdivided

edges of H.

The result above is just one of many recent results involving placing specified

vertices on graph substructures in which distances in the substructures are controlled.

More examples can be found in [8, 10, 12, 15].
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1.1 Preliminaries

Given two sets of vertices A and B, let E(A, B) denote set of edges with one end in

A and one end in B and let e(A, B) = |E(A, B)|. Define the density between A and

B to be

d(A, B) =
e(A, B)

|A||B|
.

Definition 1. Let ε > 0. Given a graph G and two nonempty disjoint vertex sets

A, B ⊂ V , we say that the pair (A, B) is ε-regular if for every X ⊂ A and Y ⊂ B

satisfying

|X| > ε|A| and |Y | > ε|B|

we have

|d(X, Y )− d(A, B)| < ε.

We will also use the following one-sided but stronger version of regularity.

Definition 2. Let ε, d > 0. Given a graph G and two nonempty disjoint vertex sets

A, B ⊂ V , we say that the pair (A, B) is (ε, d)-super-regular if for every X ⊂ A and

Y ⊂ B satisfying

|X| > ε|A| and |Y | > ε|B|,

we have

e(X,Y ) > d|X||Y |,

and furthermore dB(a) > d|B| for all a ∈ A and dA(b) > d|A| for all b ∈ B.

The following is the famous Regularity Lemma of Szemerédi.

Lemma 1 (Regularity Lemma - Szemerédi [22]). For every ε > 0 and every

positive integer m, there is an M = M(ε) such that if G is any graph and d ∈ (0, 1)

is any real number, then there is a partition of V (G) into r+1 clusters V0, V1, . . . , Vr,

and there is a subgraph G′ ⊆ G with the following properties:
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(1) m ≤ r ≤ M ,

(2) |V0| ≤ ε|V (G)|,

(3) |V1| = · · · = |Vr| = L ≤ ε|V (G)|,

(4) degG′(v) > degG(v)− (d + ε)|V (G)| for all v ∈ V (G),

(5) e(G′[Vi]) = 0 for all i ≥ 1,

(6) for all 1 ≤ i < j ≤ r the graph G′[Vi, Vj] is ε-regular and has density either 0 or

greater than d.

Given a graph G and appropriate choices of ε and d, let G′ be a spanning subgraph

of G obtained from Lemma 1. The reduced graph R = R(G, ε, d) of G contains a

vertex vi for each cluster Vi in G′ \ V0 and has an edge between vi and vj if and only

if d(Vi, Vj) > d. Hence, V (R) = {vi | 1 ≤ i ≤ r} and E(R) = {vivj | 1 ≤ i, j ≤

r, d(Vi, Vj) > d}.Note that r = |R|.

This next lemma allows the creation of a super-regular pair from an ε-regular

pair by simply removing some vertices.

Lemma 2 (Diestel [4], Lemma 7.5.1). Let (A, B) be an ε-regular pair of density

d and let Y ⊆ B have size |Y | ≥ ε|B|. Then all but at most ε|A| of the vertices in A

each have at least (d− ε)|Y | neighbors in Y .

We use a simple corollary of this result.

Lemma 3. Let (A, B) be an ε-regular pair of density d. There exist subsets A′ ⊆ A

and B′ ⊆ B with |A′| ≥ (1− ε)|A| and |B| ≥ (1− ε)|B| such that the pair (A′, B′) is

(ε, d− 2ε)-super-regular.

Our next lemma follows trivially from the definition of super-regular pairs.
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Lemma 4. Given an (ε, d)-super-regular pair (A, B) and a pair of vertices a ∈ A and

b ∈ B, there exists a path of length at most 3 from a to b in (A, B).

Lemma 5 (Sárközy and Selkow [21]). For every δ > 0, there are ε0 = ε0(δ), n0 =

n0(δ) > 0 such that if ε ≤ ε0 and n ≥ n0, G = (A, B) is an (ε, δ)-super-regular pair

with |A| = |B| = n and x ∈ A and y ∈ B, then there is a Hamiltonian path of G from

x to y.

The following theorem gives us a degree sum condition on R based on our as-

sumed degree sum condition on G.

Theorem 2 (Kühn, Osthus and Treglown [14]). Given a constant c, if σ2(G) ≥

cn, then σ2(R) ≥ (c− 2d− 4ε)|R|.

We also use the following theorem of Ore.

Theorem 3 (Ore [19]). If G is 2-connected, then G contains a cycle of length at

least σ2(G).

We use the following result of Williamson. Recall that a graph is called pancon-

nected if, between every pair of vertices, there is a path of every possible length from

2 up to n− 1.

Theorem 4. Let G be a graph of order n. If δ(G) ≥ n+2
2

, then G is panconnected.



CHAPTER 2

LENGTHS OF CYCLES CONTAINING A SPECIFIED EDGE

The search for cycles of specified lengths in graphs has been a blossoming area of

Graph Theory ever since the classical works of Dirac [5] and Ore [19]. In particular,

Dirac proved the following result which we will use in our proofs.

Theorem 5 ([5]). Any graph G with δ(G) ≥ 2 contains a cycle of length at least

δ(G) + 1.

As opposed to just a long cycle, one may also be interested in having cycles of all

different lengths. A graph is called pancyclic if it contains a cycle of every length from

3 up to n = |G|. Recently, there has been a push to use weaker degree assumptions

while making graphs almost pancyclic in some sense. More specifically, Gould, Haxell

and Scott proved the following.

Theorem 6 ([20]). For every real number c > 0, there exist constants n0 and k such

that the following holds. Let G be a graph with n ≥ n0 vertices and with minimum

degree at least cn. Then G contains all even cycles from length 4 up to ec(G)− k and

all odd cycles from length k up to oc(G)−k, where ec(G) and oc(G) denote the length

of longest even and odd cycles, respectively.

Later, Nikiforov and Schelp showed the following. Here, the upper bounds on

the cycle lengths are the notable differences between this and the previous result.

Theorem 7 ([18]). For every integer k ≥ 2, there exists n0 such that the following

holds. Let G be a graph with n ≥ n0 vertices and with minimum degree at least n/k.

Then G contains all even cycles from length 4 up to δ(G) + 1. Furthermore, if G is

not bipartite, then G contains all odd cycles from length 2k− 1 up to δ(G)+1, unless

k ≥ 6 and G belongs to a known exceptional class depending on k.
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Since the existence problem for cycles has been essentially solved, we consider

placing selected vertices on these cycles of many different lengths. It turns out that

we can get surprisingly similar results even when we place a specified pair of vertices

on the cycles. Our main result is the following.

Theorem 8. For all positive constants λ and c with 0 < λ < c < 1/2, there exists

n0 such that the following holds. Let G be a graph with n ≥ n0 vertices and with

minimum degree at least cn. Then for any pair of vertices u, v ∈ V (G), there exists a

cycle of length ` containing u and v for every integer ` ∈ [8/c, (2c−λ)n]. Furthermore,

if uv = e ∈ E(G), the edge e can be used in each of the constructed cycles.

The proof of Theorem 8 is presented in Section 2.1 and serves as an example of

an easy application of the Regularity Lemma (Lemma 1 below).

2.1 Proof of Theorem 8

Choose constants such that

0 < ε � d � λ < c < 1

and let n ≥ n(ε).

First some helpful observations. For the first lemma, after applying Lemma 1,

we consider a regular pair in R with density at least d and, using Lemma 3 , remove

very few vertices from each of the clusters to make the pair of clusters balanced and

(ε, δ)-super-regular, where δ = d− ε.

Lemma 6. Let X and Y be two sufficiently large clusters forming a balanced (ε, δ)-

super-regular pair with |X| = |Y | = L. Then for every pair of vertices x ∈ X and

y ∈ Y , there exist paths of all odd lengths ` between x and y satisfying
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(a) 3 ≤ ` ≤ δL and

(b) 2(1− δ)L + 1 ≤ ` ≤ 2L− 1.

Proof. In order to prove this lemma, we first state an easy fact which follows from

the definition of super-regularity.

Fact 1. Between any two vertices in opposite sets of a super-regular pair, there is a

path of length 3.

If fewer than δL/2 vertices are removed from each of the clusters, then they are

clearly still super-regular (for an appropriately smaller choice of ε and δ). Applying

Fact 1 repeatedly on the clusters after the removal of all but the two center vertices of

a path allows for the extension of a path. This yields all short paths and proves part

(a). Applying Lemma 5 repeatedly on the clusters after the removal of some unused

vertices allows for the creation of almost-spanning paths in X ∪ Y . This yields all

long paths and proves part (b).

Our next observation is a simple application of Lemma 19. Let C be a cycle in

R (and corresponding sets of clusters in G). To this cycle, we apply Lemma 3 to

alternating pairs and remove very few vertices to leave alternating pairs balanced and

super-regular (leaving out one cluster in the cycle from our pairs if |C| is odd). The

resulting cycle of clusters in G is called alternating.

Corollary 9. Let C be an alternating cycle of clusters using t ≥ (c−ε−d)|R| clusters

and let L denote the minimum order of a cluster in C. Then, between any given two

vertices in the clusters of C, there is a path of length ` in G for all ` ∈ [t+3, (t−2)L] of

the appropriate parity. Furthermore, there is also a cycle containing the two selected

vertices of all even lengths ` ∈ [2t + 6, (t− 2)L].
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Proof. Since (c− ε− d) � ε, we see that (c− ε− d)|R|δL � εn > L so combinations

of applications of Lemma 19(a) and Lemma 19(b) easily yield the desired result.

Recall the statement of our main result, that for every sufficiently large 2-

connected non-bipartite graph G with minimum degree at least cn and for every

pair of vertices u, v,there is a cycle of all possibly lengths from 8/c up to (2c − λ)n

containing u and v. Furthermore, for any edge e ∈ E(G), e is contained in cycles of

all possible lengths from 8/c up to (2c− λ)n. We are now able to prove Theorem 8.

Proof. Since, by Lemma 1, we have δ(R) ≥ (c − d − ε)|R|, the following fact is an

easy exercise.

Fact 2. The shortest cycle in the reduced graph has order at most 4.

Although the graph G is 2-connected, we cannot even assume that R is connected,

so the longest cycle we can hope for in R comes from Theorem 5.

Fact 3. The longest cycle in the reduced graph has order at least (c− d− ε)|R|.

By considering a shortest odd cycle and observing that such a cycle must have

no chords, it is an easy exercise to obtain the following fact.

Fact 4. There is an odd cycle of order at most 2
c

+ 1 in G.

Let O be a shortest odd cycle in G obtained from Fact 4. Also let C be a cycle

in R (and, for convenience, also let C denote the corresponding cycle of clusters in

G). Since G is 2-connected, there are two disjoint paths, each with length at most 1
c
,

between vertices of O and vertices of C. Let H denote the subgraph consisting of C,

O and these two short paths.

First choose C to have length 4 (such a cycle exists by Fact 2). For any two

vertices u and v in G, there exist two paths of length at most 1
c

from each of u and v
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to H (or possibly one path or edge between u and v and then one path each to H).

By Lemma 19, since we use two super-regular pairs, we can build all of the desired

short cycles (of both parities) containing u and v of length ` for all ` ∈ [8/c, 2(d−ε)L].

Next choose C to be a longest cycle in R with length t ≥ (c−d−ε)|R| (such a cycle

exists by Fact 3). By Corollary 9, if we make C alternating and if L is the minimum

order of a cluster in C, then there is a cycle containing (or path between) any pair of

vertices in H of all possible lengths ` (of both parities) for ` ∈ [4/c + 2t, (t − 2)L].

Since 2(d− ε)L � 3|R| > 4/c+2t for n sufficiently large, we have therefore produced

cycles containing u and v of all lengths ` ∈ [8/c, (t− 2)L].

If R contains a cycle of length at least (2c − d − ε)|R|, then choosing this cycle

to be C above produces the desired long paths and cycles to complete the proof, so

suppose not. Then R contains at least two cycles C and D each of length at least

(c − d − ε)|R| by Theorem 5. Again, let H be the subgraph defined above, so there

must be two disjoint paths from D to H. Let H ′ denote this new subgraph induced

on H ∪ D along with the two disjoint paths in between. Then the same argument

as above yields paths and cycles between every pair of vertices in H ′ and therefore

paths and cycles between any pair of vertices in G of all lengths from 4L up to

2(c− d− ε)|R|L ≥ 2(c− d− ε)(1− ε)n so if ε, d � λ, the desired result holds.



CHAPTER 3

ENOMOTO-OTA’S CONJECTURE HOLDS FOR LARGE GRAPHS

In 2000, Enomoto and Ota conjectured the following and proved several cases.

Conjecture 1 (Enomoto and Ota [7]). Given an integer k ≥ 3, let G be a graph

of order n and let n1, n2, . . . , nk be a set of k positive integers with
∑

ni = n. If

σ2(G) ≥ n + k − 1, then for any k distinct vertices x1, x2, . . . , xk in G, there exists a

set of vertex-disjoint paths P1, P2, . . . , Pk such that |Pi| = ni and Pi starts at xi for

all i with 1 ≤ i ≤ k.

A partial solution was provided by Magnant and Martin in the sense that the

path lengths could only be prescribed within a small fraction of n.

Theorem 10 (Magnant and Martin [15]). Given an integer k ≥ 3, for every

set of k positive real numbers η1, . . . ηk with
∑k

i=1 ηi = 1, and for every ε > 0, there

exists n0 such that for every graph G of order n ≥ n0 with σ2(G) ≥ n + k − 1 and

for every choice of k vertices S = {x1, . . . , xk} ⊆ V (G), there exists a set of vertex

disjoint paths P1, . . . , Pk which span V (G) with Pi beginning at the vertex xi and

(ηi − ε)n < |Pi| < (ηi + ε)n. Also the condition on σ2(G) is sharp.

When n is sufficiently large relative to k, we prove that Conjecture 1 holds.

Theorem 11. Given an integer k ≥ 3, let G be a graph of sufficiently large order n

and let n1, n2, . . . , nk be a set of k positive integers with
∑

ni = n. If σ2(G) ≥ n+k−1,

then for any k distinct vertices x1, x2, . . . , xk in G, there exists a set of vertex disjoint

paths P1, P2, . . . , Pk such that |Pi| = ni and Pi starts at xi for all i with 1 ≤ i ≤ k.

Our proof utilizes several extremal lemmas based on the structure of the reduced

graph provided by the Regularity Lemma. Our lemmas deal with the cases where
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the minimum degree is small, the reduced graph has a large independent set and the

connectivity of the reduced graph is small.

3.1 Proof Outline

Given an integer k ≥ 3 and desired path orders n1, n2, . . . , nk, we choose constants ε

and d as follows:

0 < ε � d � 1

k
,

where a � b is used to indicate that a is chosen to be sufficiently small relative to

b. Let n be sufficiently large to apply Lemma 1 with constant ε to get large clusters

and let R be the corresponding reduced graph. Note that, when applying Lemma 1,

there are at least 1−ε
ε

clusters so |R| ≥ 1−ε
ε

.

We use a sequence of lemmas to eliminate extremal cases of the proof. Without

loss of generality, we assume n1 ≤ n2 ≤ · · · ≤ nk. Our first lemma establishes the

case when δ(G) is small.

Lemma 7. Conjecture 1 holds when δ(G) ≤ nk

8
.

Lemma 7 is proven in Section 4.3. By Lemma 7, we may assume δ(G) ≥ nk

8
≥ n

8k
.

Our next lemma establishes the case when κ(R) ≤ 1.

Lemma 8. Given a positive integer k, let ε = εk, d = dk > 0, and let G be a graph

of order n ≥ n(ε, d, k) with σ2(G) ≥ n + k − 1 and δ(G) ≥ nk

8
. If κ(R) ≤ 1, then the

conclusion of Conjecture 1 holds.

Lemma 8 is proven in Section 3.4. Our final lemma establishes the case where G

contains a large independent set.
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Lemma 9. Given a positive integer k, let ε = εk > 0 be small, and let G be a graph

of order n ≥ n(ε). If σ2(G) ≥ n + k − 1 and α(G) ≥
(

1
2
− ε

)
n, then G satisfies

Conjecture 1.

Lemma 9 is proven in Section 3.5.

With all these lemmas in place, we use Ore’s Theorem (Theorem 3) to construct

a long cycle in the reduced graph of G. Alternating edges of this cycle are then

made into super-regular pairs of G. This structure is then used to construct the

desired paths. The complete proof of our main result, assuming the above lemmas,

is presented in the following section.

3.2 Proof of Theorem 11

By Lemma 8, we may assume R is 2-connected. By Theorem 2, we know that

σ2(R) ≥ (1 − 2d − 4ε)|R|. Thus, we may apply Theorem 3 to obtain a cycle C of

length at least (1− 2d− 4ε)|R| in R. Define a “garbage set” to include V0 and those

clusters not used in C.

Color the edges of C with red and blue such that no two red edges are adjacent

and at most one consecutive pair of edges is blue (if |C| is odd). Apply Lemma 3 on

the pairs of clusters in G corresponding to the red edges of R to obtain super-regular

pairs where the two sets of each super-regular pair have the same order. All vertices

discarded in this process are added to the garbage set and define the clusters Ci to be

the original clusters without the removed vertices. Note that we have added a total

of at most εn vertices to the garbage set.

If C is odd, then let c0 be the vertex in R with two blue edges, let C0 be the

corresponding cluster in G, and let C+
0 and C−

0 be the neighboring clusters in G.

Since the pairs (C−
0 , C0) and (C0, C

+
0 ) are both large and ε-regular, there exists a set



13

of at least k vertices T0 ⊆ C0 with a matching to each of C−
0 and C+

0 . We use these

vertices as transportation and move all of C0 \ T0 to the garbage set.

Let GC denote the graph induced on the set of vertices remaining in clusters

associated with C that have not been moved to the garbage set, and let D denote the

garbage set. Then V (G) =
⋃|C|

i=1 Ci ∪ C0 ∪D (if C0 exists), with |D| ≤ (2d + 7ε)n.

By Lemma 7, we may assume δ(G) ≥ nk

8
. In particular, the vertices in D each

have at least nk

8
− (|D| − 1) � εn edges to GC .

A path is said to balance the super-regular pairs in GC if, for every super-regular

pair the path visits, it uses an equal number of vertices from each set in the pair.

Note that the removal of a balancing path preserves the fact that each super-regular

pair of clusters is balanced. Let (A, B) be a super-regular pair of clusters in GC . A

balancing path starting in A and ending in B which contains a vertex v ∈ D is called

v-absorbing.

Claim 1. Avoiding any selected set of at most εr clusters and any set of at most

16(2d+7ε)n
εr

vertices in each of the remaining clusters, there exists a v-absorbing path of

order at most 17. Otherwise the desired path partition already exists.

Proof. Absorbing paths are constructed iteratively, one for each vertex of D, in an

arbitrary order. Suppose some number of such absorbing paths have been created.

If we have created one for each vertex of D within the restrictions of the claim, the

proof is complete so suppose we have constructed at most |D| − 1 absorbing paths.

Vertices that have already been used and clusters that have lost at least 16(2d+7ε)n
εr

vertices are removed from consideration in following iterations.

Let L′ be the order of the smallest cluster in C.

Fact 5. If we have created at most |D|−1 such paths, at most εr clusters would have

order at most L′ − 16(2d+7ε)n
εr

.
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Proof. Since each absorbing path constructed in this claim has order at most 16 (other

than the vertex v), we lose at most 16 vertices from GC for each vertex of D. The

result follows.

Let v ∈ D such that there is no absorbing path for v of order at most 17. Since

d(v) ≥ nk

8
, v must have edges to at least r

8k
clusters. Let A and B be two clusters

which are not already ignored to which v has at least two edges to vertices that are

not already in a path or an absorbing path. For convenience, we call two clusters X

and Y a couple or spouses if X and Y are consecutive on C and the pair (X, Y ) is

super-regular.

The following facts are easily proven using the structure we have provided and

the lemmas proven before.

Fact 6. A and B are not a couple.

Otherwise it would be trivial to produce a v-absorbing path.

Let A′ and B′ denote the spouses of A and B, respectively, let a′, b′ ∈ R corre-

spond to A′ and B′, respectively, and define the following sets of clusters:

• XA := {couples PQ of clusters such that pa′ and qa′ are edges in R},

• XB := {couples PQ of clusters such that pb′ and qb′ are edges in R}, and

• XAB := {all couples of clusters such that one spouse has an edge to both A′

and B′ in R}. In particular, let X ′
AB denote the clusters in XAB that are not

the neighbors of A′ and B′.

Since we are considering two neighbors of v in A (and two neighbors of v in

B), say v1 and v2, if XA (or similarly XB) contains even a single couple (Q,R),

then we can absorb v using a path of the form v1vv2 −A′ −Q−R−A′. Thus,

we may actually assume XA = XB = ∅.
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Our next fact follows from the fact that σ2(R) ≥ (1− 2d− 4ε)|R|.

Fact 7. There are at most (2d− 4ε)|R| clusters in C which are not in XAB.

If there is an edge xy between two (not already used) vertices in clusters in

X ′
AB, then there is a v-absorbing path of the form v1vv2 −A′− (XAB \X ′

AB)−

xy − (XAB \X ′
AB)−A′. Thus, the graph induced on the vertices in clusters in

X ′
AB contains no edges. By Lemma 9, we have the desired set of paths. This

completes the proof of Claim 7.

For each chosen vertex xi, if xi /∈ GC , use Menger’s Theorem [17] to construct a

shortest path to a vertex, say x′i, in GC . Using an edge of a super-regular pair first,

construct a balancing path from x′i through every cluster of GC . Note that, since

the pairs are either ε-regular or (ε, d)-super-regular, using Lemma 4, this path can be

constructed to use at most 2 vertices from each cluster.

First suppose the path starting at xi already has order at least ni − 17. In this

case, we add at most 76 vertices using a super-regular pair (and Lemma 4) or discard

any excess vertices to obtain the desired path. If a coupled pair of clusters in GC is

left unbalanced by this process, we simply remove a vertex from the larger cluster to

D. Note that repeating this for each short path adds at most k − 1 vertices to D.

By Claim 7, since |D| ≤ (2d+7ε)n, we can construct an absorbing path for each

vertex v ∈ D where these paths are all disjoint. Let P v be an absorbing path for v

with ends of P v in clusters Ci and Ci+1. Suppose uw is the edge of Pk from Ci to

Ci+1. Then using Lemma 4, we can replace the edge uw with the path P v with the

addition of at most 2 extra vertices at either end. Note that absorbing a vertex v ∈ D

into a path Pi using the absorbing path will always change the parity of the length

of Pi.
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For each path Pi that is not already completed and not the correct parity, absorb

a single vertex from D into Pi. This will correct the parity of the path.

Recall the assumption (without loss of generality) that n1 ≤ · · · ≤ nk. By the

same process, all remaining vertices of D can be absorbed into Pk. This makes |Pk|

larger but since |D| ≤ (2d + 7ε)n and each absorbing path P v for v ∈ D has order at

most 17 with at most two extra at either end, we get |Pk| ≤ 3|C|+17(2d+7ε)n < nk.

The following lemma, stated in [16], is an easy exercise using the definition of

(ε, d)-super-regular pairs and the Blow-Up Lemma [13].

Lemma 10 (Magnant and Salehi Nowbandegani [16]). Let U and V be two

clusters forming a balanced (ε, d)-super-regular pair with |U | = |V | = L. Then for

every pair of vertices u ∈ U and v ∈ V , there exist paths of all odd lengths ` between

u and v satisfying

rm (a) 3 ≤ ` ≤ dL and

rm (b) (1− d)L ≤ ` ≤ L.

For each i with ni small, absorb a few pairs of vertices from each super-regular

pair, using Lemma 19, until Pi has the desired order. For each remaining index i,

using Lemma 19 absorb entire super-regular pairs at a time (along with possibly a

few vertices from other super-regular pairs) until each path Pi has the desired order

to complete the proof.

3.3 Proof of Lemma 7

Recall that Lemma 7 claims Conjecture 1 holds when δ(G) ≤ nk

8
.

Proof. Let a ∈ V (G) with |N(a)| = δ(G) ≤ nk

8
, and partition V (G) as follows:

B = G \ (a ∪N(a))
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A =

{
v ∈ a ∪N(a) : |N(v) ∩ V (B)| < 1

8
(n + k − δ(G)− 1)

}
C =

{
v ∈ a ∪N(a) : |N(v) ∩ V (B)| ≥ 1

8
(n + k − δ(G)− 1)

}
Note that,since σ2(G) ≥ n + k − 1, the set A induces a complete graph. Fur-

thermore, the set B has order n − 1 − δ(G), and A is nonempty since a ∈ A. Since

σ2(G) ≥ n + k − 1 and a has no edges to B, each vertex in B has degree at least

n + k − 1 − δ(G) which means δ(G[B]) ≥ n + k − 1 − 2δ(G). Note that G is also

(k + 1)-connected. First, a claim about subsets of B.

Claim 2. Every subset of B of order at least 3nk

8
is panconnected.

Proof. With |B| = n − δ(G) − 1 and δ(G[B]) ≥ n + k − 1 − 2δ(G), we see that

δ(G[B]) ≥ |B|−δ(G) ≥ |B|−nk

8
. Therefore, for any subset B′ ⊆ B with |B′| ≥ 3nk

8
, we

have δ(G[B′]) ≥ |B′|− nk

8
> |B′|+2

2
. By Theorem 4, we see that B′ is panconnected.

Consider k selected vertices X = {x1, . . . , xk} ⊆ V (G). Let XA denote the

(possibly empty) set X ∩ A and let X ′
A denote XA ∪ v where v ∈ A \ XA if such a

vertex v exists. If no such vertex v exists, then let X ′
A = XA. The vertices of X ′

A

will serve as start vertices for paths that will be used to cover all of A. By Menger’s

Theorem and since κ(G) ≥ k + 1, there exists a set of disjoint paths PA starting

at the vertices of X ′
A and ending in B and avoiding all other vertices of X. Choose

PA so that each path is as short as possible, contains only one vertex in B and, by

construction, has order at most 4. If any of the paths in PA begins at a selected

vertex xi and has order at least ni, we call this desired path completed and remove

the first ni vertices of the path from the graph and continue the construction process.

If A \ V (PA) 6= ∅, let Pv be a path using all remaining vertices and ending at v.

This path Pv together with the path of PA corresponding to v provides a single path

that cleans up the remaining vertices of A and ends in B. The ending vertices of
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these paths, the vertices of B, will serve as proxy vertices for the start vertices (v or

xi ∈ X∩A). Thus far, we have constructed paths that cover all of A, start at vertices

of X ∩ A (when such vertices exist) and end in B.

As vertices of B are selected and used on various paths, we continuously call the

set of vertices in B that have not already been prescribed or otherwise mentioned the

remaining vertices in B. For example, so far B \ (X ∪V (PA)) is the set of remaining

vertices of B. Our goal is to maintain at least 3nk

8
+ 1 remaining vertices to be able

to apply Claim 8 as needed within these remaining vertices.

Since |C| ≤ δ(G) ≤ nk

8
and dB(u) ≥ 1

8
(n+k−δ(G)−1) for all u ∈ C, there exists

a set of two distinct neighbors in B \ (X ∪ V (PA)) for each vertex in C. For each

vertex xi ∈ X∩C, select one such vertex to serve as a proxy for xi and leave the other

aforementioned neighbor in the remaining vertices of B. By Claim 8, there exists a

path through the remaining vertices of B with at most one intermediate vertex from

one neighbor of a vertex of C to a neighbor of another vertex of C. Since |C| ≤ nk

8
,

such paths can be built and strung together into a single path PC starting and ending

in B, containing all vertices of C \X with |PC | < 4|C| ≤ nk

2
.

We may now construct what is left of the desired paths within B. The paths

P1, P2, . . . , Pk−1 can be constructed in any order starting at corresponding proxy ver-

tices and ending at arbitrary remaining vertices of B using Claim 8 in the remaining

vertices of B. Finally, there are at least

|B| −
∣∣B ∩

(
∪k−1

i=1 V (Pi)
)∣∣− |B ∩ V (PA)| − |B ∩ V (PC)|

≥ (n− 1− δ(G))− (k + 1)− (3|C|)

>
3nk

8
+ 1

remaining vertices in B. With these and Claim 8, we construct a path with at most

one internal vertex from an end of PC to the proxy of v (if such a vertex exists) and
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a path containing all remaining vertices of B from xk (or its proxy) to the other end

of PC . This completes the construction of the desired paths and thereby completes

the proof of Lemma 7.

3.4 Proof of Lemma 8

Assume σ2(G) ≥ n + k− 1. We begin with a result ensuring that low connectivity in

the reduced graph R results in at most two components after removal of a minimum

cut set.

Lemma 11. Let ε, d > 0 be small real numbers and k be a positive integer. If G is a

graph with σ2(G) ≥ n + k − 1 and reduced graph R with connectivity at most 1, then

R consists of only two components after removal of a minimum cut set.

Proof. Applying Lemma 1 to G, let G′′ = G′[V (G) \V0]. Since dG′′(v) > dG(v)− (d+

2ε)n, it immediately follows that σ2(R) > (1 − 2(d + 2ε))|R|. Let D be a minimum

cutset of R (if one exists) so |D| ∈ {0, 1}. Suppose R (or R\D) contains at least three

components, three of which being A, B, and C. Let a ∈ A, b ∈ B and c ∈ C. Then

d(a) + d(b) > (1− 2(d + 2ε))|R|, which implies |A|+ |B| > (1− 2(δ + 2ε))|R| − 2|D|.

Similarly, the same is true for |B| + |C| and |A| + |C|. Finally 2(|R| − |D|) =

2(|A| + |B| + |C|) > 3(1 − 2(d + 2ε))|R| − 6|D|, or |D| > 1
4
(1 − 2(d + 2ε))|R|, a

contradiction.

Remark 1. Given small real numbers ε, d > 0 and a positive integer k, let G be

a graph of order n =
∑k

i=1 ni ≥ n(ε, d, k) with σ2(G) ≥ n + k − 1 and δ(G) ≥ nk

8
.

Let G′ be the subgraph of G from Lemma 1 and let E ′ be the set of edges that were

removed from G to obtain G′. We replace the smallest matching M possible (from

E ′ back into G′) to recover the condition that κ(G′) ≥ k + 1. Since the reduced

R graph of G′ is assumed to have connectivity at most 1, let D ⊂ V (G′) be the
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cluster corresponding to a cut vertex of R. (If R contains no cut vertices, then

D = ∅.) Let V0 be the garbage cluster of G′ resulting from Lemma 1, and let C be

a minimum cutset of G′. By Lemma 1, each vertex of R corresponds to a cluster

in G′ of order L ≤ εn. Since there is a cutset with C ⊆ D ∪ V0 ∪ M , we have

k + 1 ≤ |C| ≤ |D|+ |V0|+ (k + 1) ≤ 2εn. By Corollary 18, we may define A and B to

be the two components of G′ \ C and write G′ = A ∪ C ∪ B. It immediately follows

from σ2(G) ≥ n + k − 1 that σ2(G
′) ≥ n + k − 1− 2εn and

δ(G′[A]) > |A| − |C| − 2εn ≥ |A| − 4εn,

δ(G′[B]) > |B| − |C| − 2εn ≥ |B| − 4εn.

(3.1)

From the condition δ(G) ≥ nk

8
≥ n

2k
(Lemma 7), we know |A|, |B| ≥ nk

8
− |C| − 2εn ≥(

1
8k
− 4ε

)
n > n

8(k+1)
.

While panconnected sets give paths of arbitrary length, only the endpoints are

specified. Hence, to create disjoint paths of arbitrary length, we must create sets

using vertices that are not part of an already existing desired path. Fortunately, even

small subsets of A and B induce panconnected graphs.

Lemma 12. Let ε, d, k, and G′ = A ∪ C ∪ B be defined as in Remark 2. Then the

induced graph on any subgraph of A or B of order at least 8εn is panconnected.

Proof. We see from (4.4) that δ(G′[A]) > |A| − 4εn. Then for all U ⊂ A of order at

least 8εn, we have

δ(G[U ]) ≥ |U | − 4εn + 1

≥ |U |+ 2

2
.

By Theorem 4, the graph G′[U ] is panconnected. A symmetric argument shows that

if U ⊂ B has order at least 8εn, then G′[U ] is panconnected.

With this information, we prove the following lemma which is completes the

proof of Lemma 8.
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Lemma 13. Given small real numbers ε, d > 0 and a positive integer k, let G be a

graph of order n =
∑k

i=1 ni ≥ n(ε, d, k) with σ2(G) ≥ n + k − 1 and δ(G) ≥ nk

8
. If

κ(R) ≤ 1, then the conclusion of Theorem 11 holds.

Proof. Suppose κ(R) ≤ 1, and let G′ = A ∪ C ∪ B as in Remark 2. As noted

before (4.4), we know k + 1 ≤ |C| ≤ 2εn. As noted after (4.4), we know |A|, |B| >

n
8(k+1)

. Since C is a minimum cut set, for each vertex c ∈ C, we may reserve 2 unique

neighbors ac ∈ A\X and bc ∈ B \X. Call AC = {ac ∈ A\X | c ∈ C} (symmetrically

BC = {bc ∈ B \X | c ∈ C}) the set of proxy vertices in A (symmetrically B). Then

we have

|C| = |AC | = |BC |.

Given a vertex x, let an x-path be a path containing x as an endpoint. Namely, each

desired path Pi in G′ is an xi-path.

Our strategy is as follows, first we suppose that G′[A] and G′[B] are complete

and create “shadows” of our desired paths with some simple properties. Then we use

Lemma 20 to create the desired paths, based on the shadows, in G′[A] and G′[B].

First suppose that G′[A] and G′[B] are complete. If |C| is even, build paths

P1, P2, . . . Pk such that each time a path visits a vertex in C, the path passes from

A \ AC , to AC , to C, to BC and then to B \ BC (or the opposite direction) and

furthermore, all except at most one path segment of Pi in G′[A] and one path segment

of Pi in G′[B] have length 2 for all 1 ≤ i ≤ k. If |C| is odd, we first move one vertex

of C \X 6= ∅ to either A or B (this vertex must have many edges to at least one of

A or B) and then create the paths as above. Let PA
i and PB

i denote the segments

Pi ∩G′[A] and Pi ∩G′[B] respectively.

Arrange the set of path segments {PA
1 , . . . PA

t } of the shadows in nondecreasing

order, |P ′
1| ≤ · · · ≤ |P ′

t |, and suppose P ′
i is a path from vi to v′i where vi, v

′
i ∈ A. By
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construction we have 2 ≤ P ′
i for all 1 ≤ i ≤ t.

Back in the original graph G′, our goal is to construct path segments with same

lengths and end vertices as P ′
i for all 1 ≥ i ≥ t. Since |A| > n

8(k+1)
> 8εn by

Lemma 20 we can build a path from v1 to v′1 of order |P ′
1|. We inductively construct

the remaining paths in G′[A] with the following claim. Here we let A∗ denote the

vertices in A \ AC that have not already been used on a path.

Claim 3. After constructing P ′
1, . . . P

′
t−1, there are at least 8εn vertices remaining in

A∗ to apply Lemma 20 and create P ′
t .

Proof. By construction, at most k paths of P ′
i have length greater than 2. Thus, we

get |P ′
t | ≥

|A|−2(t−k)
k

. Also, t ≤ |C| + k because each path segment in A connects

two vertices in X ∪ AC . Therefore, |P ′
t | ≥

|A|−2(|C|)
k

and since A ≥ n
8(k+1)

, we have

|A|−2(|C|)
k

≥ n
8k(k+1)

− 2(|C|)
k

> 8εn as desired.

By Claim 9, we can create all desired paths in G′[A] based on their shadows.

Similarly, we can create the desired paths in G′[B]. Using corresponding vertices of

C to connect the constructed paths yields the desired final paths.

3.5 Proof of Lemma 9

Recall that Lemma 9 says for a positive integer k, a small ε = εk > 0, and a graph

G of order n ≥ n(ε), if σ2(G) ≥ n + k − 1 and α(G) ≥
(

1
2
− ε

)
n, then G satisfies

Conjecture 1.

Proof. Let A be a maximum independent set of G, and let B = V (G) \ A. By the

assumption on σ2(G), we have |B| ≥ 1
2
(n + k − 1). This implies(

1

2
− ε

)
n ≤ |A| ≤ 1

2
(n− k + 1)
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and

1

2
(n + k − 1) ≤ |B| ≤

(
1

2
+ ε

)
n.

Claim 4. Let B′ be the set of vertices in B each with at least
(

1
2
− 1

16k

)
n edges to A.

Then |B′| ≥ n
2
(1− 16kε).

Proof. Each vertex in A (except possibly one) has at least 1
2
(n + k − 1) neighbors in

B, which means there are at least (|A| − 1) · 1
2
(n + k − 1) edges between A and B.

On the other hand, there are fewer than |B′|
(

1
2
− ε

)
n + (|B \B′|)

(
1
2
− 1

16k

)
n edges

out of B. Since |A| ≥
(

1
2
− ε

)
n and |B| ≤

(
1
2

+ ε
)
n, we get

|B′|
(

1

2
− ε

)
n+

((
1

2
+ ε

)
n− |B′|

) (
1

2
− 1

16k

)
n ≥

((
1

2
− ε

)
n− 1

)
1

2
(n+k−1)

which implies that |B′| ≥ n
2
(1− 16kε) as desired.

A bipartite graph U∪V is bipanconnected if for every pair of vertices x, y ∈ U∪V ,

there exist (x, y)-paths of all possible lengths at least 2 of appropriate parity in U∪V .

That is, for every pair of vertices x ∈ U and y ∈ V , there exist (x, y)-paths of every

possible odd length except 1, and for every pair of vertices x, y ∈ U (and V ), there

exist (x, y)-paths of every even length. Note that we must exclude the value 1 from

our definition in order to allow graphs U ∪ V that are not complete bipartite. Also

observe that the sets U and V need not be balanced, so the longest possible length

may be only 2 min{|U |, |V |}.

Lemma 14 (Coll, Halperin and Magnant [2]). If G[U∪V ] is a balanced bipartite

graph of order 2m with δ(G[U ∪ V ]) ≥ 3m
4

, then G[U ∪ V ] is bipanconnected.

Our next claim shows that any reasonably large subsets of B′ induce bipancon-

nected subgraphs when paired with any corresponding subset of A.

Claim 5. For all m ≥ n
4k

, if U ⊆ A and V ⊆ B′ with |U |, |V | ≥ m, then U ∪ V

induces a bipanconnected subgraph of G.
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Proof. For m ≥ n
4k

, let U and V be subsets of A and B′ respectively with |U |, |V | ≥ m.

Each vertex in U has at least |V |−2εn > 3m
4

neighbors in V . Each vertex in B′ misses

at most 1
16k

n vertices in A so each vertex in V has degree at least |U | − 1
16k

n ≥ 3m
4

into U . It follows from Lemma 14 that G[U ∪ V ] is bipanconnected.

Let D = B \B′ so

|D| ≤ max{|B|} −min{|B′|} (3.2)

=

(
1

2
+ ε

)
n− n

2
(1− 16kε) (3.3)

= (16k + 1)εn. (3.4)

Let M be a maximum matching between D and A and let D′ be the vertices of D

that are not covered by edges of M . In particular, vertices in D′ must have many

edges to B, and therefore behave as if they are in A. Let τ be the minimum number

of edges in B \D′ that must be used in order to ensure all paths can be constructed

as desired. In particular, if we let o(S) denote the number of odd ordered desired

paths that must start at a vertex in the set S, we get

τ = |B \D′| − |A ∪D′| − o(B \D′) + o(A ∪D′).

By definition, there are no edges from D′ to A \ V (M). This means that if we

pick two vertices u and v in A \ V (M), we get d(u) + d(v) ≤ 2|B \ D′| but since

σ2(G) ≥ n + k − 1, this means

|B| − |A| − k + 1 ≥ 2|D′|,

which implies that τ ≥ −1.

We first assume τ ≥ 0 and build the desired paths. We will address the other

case in Claim 6 later.
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By the definition of D \D′, each vertex in this set has many neighbors in B \D.

Let D∗ denote those vertices in D \D′ that can be strung together on a path (or a

set of at most k paths vertices of X are involved) that starts in A and ends in B′ and

uses an equal number of vertices from B \D′ and A ∪D′. Let D0 be the remaining

vertices in D \ (D′ ∪D∗). If we choose a vertex u ∈ A with no neighbors to D0 ∪D′

(note that such a vertex must exist by the definitions of these sets) and v ∈ D0, we

get

n + k − 1 ≤ d(u) + d(v) ≤ |B \ (D′ ∪D0)|+ |B \D′| − 1

which reduces down to |D0| ≤ τ . Thus, we may assume τ is rather large and we need

only show that we are always able to use τ edges within B in constructing the desired

path system.

By definition, each vertex of D \ D′ can use either 1 or 2 edges within B in

constructions. If τ larger than |D \D′|, the degree sum condition, applied to vertices

in B, provides many edges within B, easily enough to find τ edges that can be

used. Finally, applying Claim 5, we may construct each desired path starting at the

corresponding selected vertex, with the prescribed length. We construct these paths

in order from shortest to longest so that, when constructing the final path, there will

certainly be enough vertices remaining to apply Claim 5. This completes the proof

in the case when τ ≥ 0. We now show that this assumption is justified.

Claim 6. We have τ ≥ 0.

Proof. For a contradiction, suppose τ = −1. In order for this to occur, all desired

paths must be odd and all selected vertices must be in B \D′. The set A ∪D′ must

contain no edges, since otherwise such an edge could be used in the construction of

the paths as above. Thus, by the choice of A with |A| = α(G), we must have D′ = ∅.

This gives us |B| = |A|+k−1 which means A∪B induces a complete bipartite graph.
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If k is even, this means n is even (since n =
∑

ni) but n = |A|+|B| = 2|A|+k−1

which is odd, a contradiction. If k is odd, this means n is odd but n = 2|A| + k − 1

which is even, again a contradiction. This completes the proof of Claim 6

This also completes the proof of Lemma 9.



CHAPTER 4

PLACING SPECIFIED VERTICES AT PRECISE LOCATIONS ON A

HAMILTONIAN CYCLE

Recently, there have been several results concerning the placement of specified vertices

on a Hamiltonian cycle. Kaneko and Yoshimoto proved the following result.

Theorem 12 (Kaneko and Yoshimoto [12]). Let G be a graph of order n, d ≤ n
4

a positive integer and A a set of at most n
2d

vertices. If δ(G) ≥ n
2

then there exists a

hamiltonian cycle in G with the distance, along the cycle, between any pair of vertices

of A at least d.

Sárközy and Selkow managed to produce specified distances between almost all

the consecutive pairs but did not put the specified vertices in order.

Theorem 13 (Sárközy and Selkow [21]). There are ω, n0 > 0 such that if G is a

graph on n ≥ n0 vertices with δ(G) ≥ n/2, d is an arbitrary integer with 3 ≤ d ≤ ωn/2

and S is an arbitrary set of vertices in G with 2 ≤ |S| = k ≤ ωn/d, then for every

sequence di of integers with 3 ≤ di ≤ d, 1 ≤ i ≤ k − 1, there is a Hamiltonian cycle

C of G and an ordering of the vertices of S, a1, a2, . . . , ak, such that the vertices of

S are visited in this order on C and we have |distC(ai, ai+1)− di| ≤ 1 for all but one

1 ≤ i ≤ k − 1.

More recently, Faudree et al. placed specified vertices in order but were unable

to prescribe the distances exactly.

Theorem 14 (Faudree et al. [9]). Let t ≥ 3 be an integer and ε, γ1, γ2, . . . , γt

positive real numbers having
∑t

i=1 γi = 1 and 0 < ε < min{γ2
i

2
}. For n ≥ 7t12×1010

ε6
,

let G be a graph of order n having δ(G) ≥ n+t−1
2

or δ(G) ≥ n
2

and κ(G) ≥ 3t
2
. For

every X = {x1, x2, . . . , xt} ⊆ V (G), there exists a hamiltonian cycle H containing
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the vertices of X in order such that (γi − ε)n ≤ distH(xi, xi+1) ≤ (γi + ε)n for all

1 ≤ i ≤ t. Furthermore, the minimum degree and connectivity conditions are sharp.

In the case where there are only two vertices specified, the following conjecture

has been attributed to Enomoto.

Conjecture 2 ([6]). If G is a graph of order n ≥ 3 and δ(G) ≥ n/2 + 1, then for

any x, y ∈ V (G), there is a Hamiltonian cycle C of G such that dC(x, y) = flrn/2.

This conjecture was generalized by Faudree and Li.

Conjecture 3 (Faudree and Li [11]). If G is a graph of order n with δ(G) ≥

n/2 + 1, then for any integer 2 ≤ m ≤ n/2 and for any x, y ∈ V (G), there is a

Hamiltonian cycle C of G such that dC(x, y) = m.

The case of Conjecture 3 where n ≥ 6m was proven in [10]. Faudree and Gould

recently provided a sharp minimum degree condition for the placement of specified

vertices at precise locations relative to each other on a Hamiltonian cycle.

Theorem 15 (Faudree and Gould [8]). Let n1, . . . , nk−1 be a set of k− 1 integers

each at least 2 and {x1, . . . , xk} be a fixed set of k ordered vertices in a graph G of

order n. If δ(G) ≥ (n + 2k − 2)/2, then there is N = N(k, n1, . . . , nk−1) such that

if n ≥ N , there is a Hamiltonian cycle C of G such that dC(xi, xi+1) = ni for all

1 ≤ i ≤ k − 1.

Our first result is very closely related to Theorem 15. Our degree assumption is

lower but since our choices of the lengths ni must be large, we are not bound by the

sharpness example noted in [8].

Theorem 16. Given an integer k ≥ 3, let G be a graph of sufficiently large order

n. Then there exists n0 such that if n1, n2, . . . , nk are a set of k positive integers
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with ni ≥ n0 for all i,
∑

ni = n, and δ(G) ≥ n+k
2

, then for any k distinct vertices

x1, x2, . . . , xk in G, there exists a Hamiltonian cycle such that the length of the path

between xi to Xi+1 on the Hamiltonian cycle is ni.

Theorem 16 includes the best possible bound on δ(G) by the following example.

Suppose n is large and satisfies appropriate divisibility constraints with respect to k.

Consider two complete graphs A and B each of order n−(k+1)
2

. Let C be the remaining

k+1 vertices. If we let + denote the standard graph join of inserting all edges between

two disjoint sets, then let G = A+C+B where this notation means (A+C)∪(C+B)

where the copies of vertices of C are identified. If all of the vertices x1, . . . , xk are

chosen from A and each length ni is chosen to be n
k
, there is no Hamiltonian cycle

with consecutive specified vertices at distance precisely ni apart. Furthermore, this

graph has δ(G) = |A|+ |C| − 1 = n−k−1
2

+ k = n+k−1
2

.

Our next result provides a degree sum condition for the same placement of spec-

ified vertices on a Hamiltonian cycle.

Theorem 17. Given an integer k ≥ 3, let G be a graph of sufficiently large order

n. Then there exists n0 such that if n1, n2, . . . , nk are a set of k positive integers with

ni ≥ n0 for all i,
∑

ni = n, and σ2(G) ≥ n + 2k − 2, then for any k distinct vertices

x1, x2, . . . , xk in G, there exists a Hamiltonian cycle such that the length of the path

between xi to Xi+1 on the Hamiltonian cycle is ni.

Theorem 17 includes the best possible bound on σ2(G) by the following example.

Let A be a complete graph on k vertices and B be a complete graph on n− (3k − 2)

vertices. Let C be the remaining 2k − 2 vertices. If we let G = A + C + B, choose

all vertices xi ∈ A, and choose lengths of paths ni to be at least 3 each, there is no

Hamiltonian cycle with these specified vertices at distance ni apart. Furthermore,

this graph has σ2(G) = (|A| − 1) + |C|+ (|B| − 1) = n + 2k − 3.
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Theorems 16 and 17 are proven in Section 4.2.

Our proof follows the same outline as the proof in [3]. It utilizes several extremal

lemmas based on the structure of the reduced graph provided by the Regularity

Lemma. The lemmas deal with the cases where the minimum degree is small, the

reduced graph has a large independent set and when the connectivity of the reduced

graph is small.

4.1 Proof Outline

Given an integer k ≥ 3 and desired path segment lengths n1, n2, . . . , nk, we choose

constants ε and d as follows:

0 < ε � d � 1

k
,

where a � b is used to indicate that a is chosen to be sufficiently small relative to

b. Let n be sufficiently large to apply the Regularity Lemma 1 with constant ε to

get large clusters and let R be the corresponding reduced graph. Note that, when

applying Lemma 1, there are at least 1
ε

clusters so |R| ≥ 1
ε
.

We use a sequence of lemmas to eliminate extremal cases of the proof. Without

loss of generality, we assume nk ≥ ni for all i. Our first lemma establishes the case

of Theorem 17 when δ(G) is small.

Lemma 15. Theorem 17 holds when δ(G) ≤ nk

8
.

Lemma 15 is proven in Section 4.3. By Lemma 15, we may assume δ(G) ≥ nk

8
≥

n
8k

in the proof of Theorem 17. Our next lemmas establish the case where G contains

a large independent set. Although the statements are almost identical, the different

degree assumptions require slightly different proofs.

Lemma 16. Let ε > 0 be a sufficiently small real number. If α(G) ≥
(

1
2
− ε

)
n, then

Theorem 16 and Theorem 17 hold.
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The proofs of Lemma 16 is almost identical to the proof of Lemma 9.

Our final lemmas establish the case when κ(R) ≤ 1. Again the statements

look identical but the different assumptions of the theorems require slightly different

proofs.

Lemma 17. If κ(R) ≤ 1, then Theorem 16 holds.

Lemma 18. If κ(R) ≤ 1, then Theorem 17 holds.

Lemmas 17 and 18 are proven in Section 4.4.

Once all these lemmas are in place, we use Ore’s Theorem (Theorem 3) to con-

struct a long cycle in the reduced graph. Alternating edges of this cycle are made into

super-regular pairs of the graph. This structure is then used to construct the desired

paths. The complete proof of our main results are presented in the following section.

Since the non-extremal case, the case when all of the above lemmas are assumed,

looks generally the same for both of our main results and the conclusions are the

same, we are able to combine both proofs into one.

4.2 Proof of Theorems 16 and 17

Since the conclusions of both results are identical and the proofs are the same aside

from applications of different lemmas, we provide a single proof for both theorems.

Proof. By Lemma 17 or 18, we may assume R is 2-connected. By Theorem 2, we

know that σ2(R) ≥ (1 − 2d − 4ε)|R|. Thus, we may apply Theorem 3 to obtain a

cycle C of length at least (1− 2d− 4ε)|R| in R. Define a “garbage set” to include V0

and those clusters not used in C.

Color the edges of C with red and blue such that no two red edges are adjacent

and, as few blue edges as possible are adjacent. Note that if C is even, the colors will
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alternate and if C is odd, there will be only one consecutive pair of blue edges while

all others are alternating. Apply Lemma 3 on the pairs of clusters in G corresponding

to the red edges of R to obtain super-regular pairs where the two sets of each super-

regular pair have the same order. All vertices discarded in this process are added to

the garbage set and redefine the clusters Ci to be the clusters without the removed

vertices. Note that we have added at most εn vertices to the garbage set.

If C is odd, let c0 be the vertex with two blue edges, let C0 be the corresponding

cluster and let C+
0 and C−

0 be the neighboring clusters. Since the pairs (C−
0 , C0) and

(C0, C
+
0 ) are both large and ε-regular, there exists a set of k vertices T0 ⊆ C0 with

a matching to each of C−
0 and C+

0 . We will use these vertices as transportation and

move all of C0 \ T0 to the garbage set.

Let GC denote the set of vertices remaining in clusters associated with C that

have not been moved to the garbage set and let D denote the garbage set. Note that

|D| ≤ (2d + 7ε)n.

By Lemma 15, we may assume δ(G) ≥ nk

8
for both proofs. In particular, the

vertices in D each have at least nk

8
− (|D| − 1) � εn edges to GC , even in the proof

of Theorem 17.

A path is said to balance the super-regular pairs in GC if for every super-regular

pair the path visits, it uses an equal number of vertices from each set in the pair.

Note that the removal of a balancing path preserves the fact that if a pair of clusters

is super-regular, then the two clusters have the same order.

For each chosen vertex xi, if xi /∈ GC , use Menger’s Theorem to construct two

shortest paths to vertices, say x′i and xpp
i , in GC . By Lemma 15, these paths are

actually just single edges.

For each index i with 1 ≤ i ≤ k, construct a path Pi from xpp
i through every

cluster of GC by going all the way around the cycle C and continuing on to x′i+1,
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where indices are taken modulo k. This path is constructed to be balancing except

possibly at one end (since both xpp
i and x′i+1 might be in the later spouse of their

respective couples for a particular orientation of C). If the path is not balancing, we

remove a single vertex from the unbalanced pair to make it balanced again, and place

that vertex in D. This process adds at most k � |D| vertices to D. Using Lemma 4,

this path can be constructed to use at most 2 vertices from each cluster for each time

the path passes through. Since each path goes around the cycle at most twice, each

path has length at most 4|R|. Together these paths form a cycle with the selected

vertices xi appearing in order. The goal of the rest of the proof is to extend these

paths to their desired lengths in a controlled way.

Let (A, B) be a super-regular pair of clusters on C. A balancing path starting in

A and ending in B which contains a vertex v ∈ D is called v-absorbing. The following

claim was proven in [3]

Claim 7 (Coll et al. [3]). Avoiding any selected set of at most ε` clusters and any

set of at most 16(2d+7ε)n
ε`

vertices in each of the remaining clusters, there exists a v-

absorbing path of order at most 17. Otherwise the desired Hamiltonian cycle already

exists.

By Claim 7, since |D| ≤ (2d+7ε)n, we can construct an absorbing path for each

vertex v ∈ D where these paths are all disjoint. Let P v be an absorbing path for v

with ends of P v in clusters Ci and Ci+1. Suppose uw is the edge of Pk from Ci to

Ci+1. Then using Lemma 4, we can replace the edge uw with the path P v with the

addition of at most 4 extra vertices at either end. Note that absorbing a vertex v ∈ D

into a path Pi using the absorbing path will always change the parity of the length

of Pi.

For each path Pi that is not already completed and not the correct parity, absorb
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a single vertex from D into Pi. This will change the parity of the path. At this point,

every path has the correct parity and has length at most 4|R|+ 17 ≤ 4M + 17 where

M is a function of ε provided by Lemma 1.

By the same process, all remaining vertices of D can be absorbed into Pk. This

makes |Pk| larger but since |D| ≤ (2d + 7ε)n and each absorbing path P v for v ∈ D

has order at most 17, we get |Pk| ≤ 3|C|+ 17(2d + 7ε)n < nk.

The following lemma, stated in [16], is an easy exercise using the definition of

(ε, δ)-super-regular pairs and Lemma 5.

Lemma 19 ([16]). Let U and V be two clusters forming a balanced (ε, δ)-super-

regular pair with |U | = |V | = L. Then for every pair of vertices u ∈ U and v ∈ V ,

there exist paths of all odd lengths ` between u and v satisfying

(a) 3 ≤ ` ≤ δL and

(b) (1− δ)L ≤ ` ≤ L.

For each i with ni small, absorb a few pairs of vertices from each super-regular

pair (using Lemma 19) until Pi has the desired order. For each remaining index i,

using Lemma 19 absorb entire super-regular pairs at a time (along with possibly a

few vertices from other super-regular pairs) until each path Pi has the desired order

to complete the proof.

4.3 Proof of Lemma 15

Recall that Lemma 15 claims Theorem 17 holds when δ(G) ≤ nk

8
.

Proof. Let a ∈ V (G) with |N(a)| = δ(G) ≤ nk

8
, and partition V (G) as follows:

B = G \ (a ∪N(a))
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A =

{
v ∈ a ∪N(a) : |N(v) ∩ V (B)| < 1

8
(n + k − δ(G)− 1)

}

C =

{
v ∈ a ∪N(a) : |N(v) ∩ V (B)| ≥ 1

8
(n + k − δ(G)− 1)

}
Note that, since σ2(G) ≥ n+2k−2, the set A induces a complete graph. Furthermore,

the set B has order n − 1 − δ(G), and A is nonempty since a ∈ A. Since σ2(G) ≥

n+2k−2 and a has no edges to B, each vertex in B has degree at least n+2k−2−δ(G)

which means δ(G[B]) ≥ n+2k−3−2δ(G). Also note that κ(G) ≥ 2k. First, a claim

about subsets of B.

Claim 8. Every subset of B of order at least 3nk

8
is panconnected.

Proof. With |B| = n − δ(G) − 1 and δ(G[B]) ≥ n + 2k − 2 − 2δ(G), we see that

δ(G[B]) ≥ |B|−δ(G) ≥ |B|−nk

8
. Therefore, for any subset B′ ⊆ B with |B′| ≥ 3nk

8
, we

have δ(G[B′]) ≥ |B′|− nk

8
> |B′|+2

2
. By Theorem 4, we see that B′ is panconnected.

Consider k selected vertices X = {x1, . . . , xk} ⊆ V (G). Let XA denote the

(possibly empty) set X ∩ A. First assume that |XA| = t ≥ 1. Since κ(G) ≥ 2k ≥ 2t,

by Menger’s theorem there exists a set of 2t disjoint paths PA starting at the vertices

of XA, each vertex of XA having two paths, and ending in B, avoiding all other vertices

of X. If there are any vertices remaining in A\XA that have not been used on the 2t

paths, we redefine one of the paths to include these vertices using Menger’s theorem

and the fact that A is complete. If t = 0, then simply use Menger’s Theorem to find

two paths from A to B and use all of A to patch these two together into a single path

including all of A.

As vertices of B are selected and used on various paths, we continuously call the

set of vertices in B that have not already been prescribed or otherwise mentioned

the remaining vertices in B. For example, so far, the set B \ (X ∪ V (PA)) is all the
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remaining vertices of B. Our goal is to maintain at least 3nk

8
+ 1 remaining vertices

to be able to apply Claim 8 as needed within these remaining vertices.

Since |C| ≤ δ(G) ≤ nk

8
and dB(u) ≥ 1

8
(n + k − δ(G) − 1) for each u ∈ C,

there exists a set of two distinct neighbors in B \ (X ∪ V (PA)) for each vertex in

C. For each vertex xi ∈ X ∩ C, select these two vertices to serve as proxies for xi.

By Claim 8, there exists a path, through the remaining vertices of B, with at most

one intermediate vertex from one neighbor of a vertex of C to a neighbor of another

vertex of C. Since |C| ≤ nk

8
, such paths can be built and strung together into a

single path PC starting and ending in B and containing all vertices of C \ X with

|PC | < 4|C| ≤ nk

2
.

We may now construct paths within B to build the desired Hamiltonian cycle.

Each path Pi for 1 ≤ i ≤ k−1 can be constructed can be constructed in any order by

starting at xi (or a corresponding proxy vertex) and ending at xi+1 (or a corresponding

proxy vertex) using Claim 8 within the remaining vertices of B so that the path Pi

has precisely the desired length ni. Finally, there are at least

|B| −
∣∣B ∩

(
∪k−1

i=1 V (Pi)
)∣∣− |B ∩ V (PA)| − |B ∩ V (PC)|

≥ (n− 1− δ(G))− (k + 1)− (3|C|)

≥ 3nk

8
+ 2

remaining vertices in B. With these and Claim 8, we construct a short path with

at most one internal vertex from an end of PC to xk (or a corresponding proxy

vertex) and a path containing all remaining vertices of B from x1 (or a corresponding

proxy vertex) to the other end of PC . This completes the construction of the desired

Hamiltonian cycle and thereby completes the proof of Lemma 15.
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4.4 Proof of Lemmas 17 and 18

Assume σ2(G) ≥ n+2k−2. We begin with a result ensuring that low connectivity in

the reduced graph R results in at most two components after removal of a minimum

cut set, which is an easy corollary of the corresponding lemma in [3].

Corollary 18. Let ε, d > 0 be small real numbers and k be a positive integer. If G

is a graph with σ2(G) ≥ n + 2k − 2 and reduced graph R with connectivity at most 1,

then R consists of only two components after removal of a minimum cut set.

Remark 2. Given small real numbers ε, d > 0 and a positive integer k, let G be a

graph of order n =
∑k

i=1 ni ≥ n(ε, d, k) with σ2(G) ≥ n + 2k − 2 and δ(G) ≥ nk

8
.

Let G′ be the subgraph of G from Lemma 1 and let E ′ be the set of edges that

were removed from G to obtain G′. We replace the smallest matching M possible

(from E ′ back into G′) to recover the condition that κ(G′) ≥ 2k. Since the reduced

R graph of G′ is assumed to have connectivity at most 1, let D ⊂ V (G′) be the

cluster corresponding to a cut vertex of R. (If R contains no cut vertices, then

D = ∅.) Let V0 be the garbage cluster of G′ resulting from Lemma 1, and let C be

a minimum cutset of G′. By Lemma 1, each vertex of R corresponds to a cluster

in G′ of order L ≤ εn. Since there is a cutset with C ⊆ D ∪ V0 ∪ M , we have

2k ≤ |C| ≤ |D|+ |V0|+2k ≤ 2εn. By Corollary 18, we may define A and B to be the

two components of G′ \ C and write G′ = A ∪ C ∪ B. It immediately follows from

σ2(G) ≥ n + 2k − 2 that σ2(G
′) ≥ n + 2k − 2− 2εn and

δ(G′[A]) > |A| − |C| − 2εn ≥ |A| − 4εn,

δ(G′[B]) > |B| − |C| − 2εn ≥ |B| − 4εn.

(4.1)

From the condition δ(G) ≥ nk

8
≥ n

2k
(Lemma 15), we know |A|, |B| ≥ nk

8
−|C|−2εn ≥(

1
8k
− 4ε

)
n > n

8(k+1)
.
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While panconnected sets give paths of arbitrary length, only the endpoints are

specified. Hence, to create disjoint paths of arbitrary length, we must create sets

using vertices that are not part of an already existing desired path. Fortunately, even

small subsets of A and B induce panconnected graphs.

Lemma 20. Let ε, d, k, and G′ = A ∪ C ∪ B be defined as in Remark 2. Then the

induced graph on any subgraph of A or B of order at least 8εn is panconnected.

Proof. We see from (4.4) that δ(G′[A]) > |A| − 4εn. Then for all U ⊂ A of order at

least 8εn, we have

δ(G[U ]) ≥ |U | − 4εn + 1

≥ |U |+ 2

2
.

By Theorem 4, the graph G′[U ] is panconnected. A symmetric argument shows that

if U ⊂ B has order at least 8εn, then G′[U ] is panconnected.

With this information, we prove the following lemma which is completes the

proof of Lemma 18.

Lemma 21. Given small real numbers ε, d > 0 and a positive integer k, let G be a

graph of order n =
∑k

i=1 ni ≥ n(ε, d, k) with σ2(G) ≥ n + 2k − 2 and δ(G) ≥ nk

8
. If

κ(R) ≤ 1, then the conclusion of Theorem 17 holds.

Proof. Suppose κ(R) ≤ 1, and let G′ = A ∪ C ∪ B as in Remark 2. As noted

before (4.4), we know 2k ≤ |C| ≤ 2εn. As noted after (4.4), we know |A|, |B| > n
8(k+1)

.

Since C is a minimum cut set, for each vertex c ∈ C, we may reserve 2 unique

neighbors ac ∈ A\X and bc ∈ B \X. Call AC = {ac ∈ A\X | c ∈ C} (symmetrically

BC = {bc ∈ B \X | c ∈ C}) the set of proxy vertices in A (symmetrically B). Then

we have

|C| = |AC | = |BC |.



39

Given vertices x and y, let an x-y-path be a path containing x and y as endpoints.

Namely, each desired path Pi in G′ is an xi-xi+1-path.

Our strategy is as follows, first we suppose that G′[A] and G′[B] are complete

and create “shadows” of our desired paths with some simple properties. Then we use

Lemma 20 to create the desired paths, based on the shadows, in G′[A] and G′[B].

First suppose that G′[A] and G′[B] are complete. If |C| is even, build paths

P1, P2, . . . Pk (of the Hamiltonian cycle) such that each time a path visits a vertex

in C, the path passes from A \ AC , to AC , to C, to BC and then to B \ BC (or the

opposite direction) and furthermore, all except at most one path segment of Pi in

G′[A] and one path segment of Pi in G′[B] have length 2 for all 1 ≤ i ≤ k. If |C|

is odd, we first move one vertex of C \ X 6= ∅ to either A or B (this vertex must

have many edges to at least one of A or B) and then create the Hamiltonian cycle as

above. Let PA
i and PB

i denote the segments Pi ∩G′[A] and Pi ∩G′[B] respectively.

Arrange the set of path segments {PA
1 , . . . PA

t } of the shadows in nondecreasing

order, |P ′
1| ≤ · · · ≤ |P ′

t |, and suppose P ′
i is a (vi, v

′
i)-path where vi, v

′
i ∈ A. By

construction we have 2 ≤ P ′
i for all 1 ≤ i ≤ t.

Back in the original graph G′, our goal is to construct path segments with same

lengths and end vertices as P ′
i for all 1 ≥ i ≥ t. Since |A| > n

8(k+1)
> 8εn by Lemma 20

we can build a v1-v
′
1-path of order |P ′

1|. We inductively construct the remaining paths

in G′[A] with the following claim. Here we let A∗ denote the vertices in A \ AC that

have not already been used on a path.

Claim 9. After constructing P ′
1, . . . P

′
t−1, there are at least 8εn vertices remaining in

A∗ to apply Lemma 20 and create P ′
t .

Proof. By construction, at most k paths of P ′
i have length greater than 2. Thus, we

get |P ′
t | ≥

|A|−2(t−k)
k

. Also, t ≤ |C| + k because each path segment in A connects
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two vertices in X ∪ AC . Therefore, |P ′
t | ≥

|A|−2(|C|)
k

and since A ≥ n
8(k+1)

, we have

|A|−2(|C|)
k

≥ n
8k(k+1)

− 2(|C|)
k

> 8εn as desired.

By Claim 9, we can create all desired paths in G′[A] based on their shadows.

Similarly, we can create the desired paths in G′[B]. Using corresponding vertices of

C to connect the constructed paths yields the desired Hamiltonian cycle.

By same argument as proof of Lemma 18 we can prove Lemma 17. The only

additional case occurs when κ(G) < 2k. In this case, the sets A and B are almost

complete and we can create the desired Hamiltonian cycle trivially using Lemma 20

and an analogy of Lemma 21 within A and B.



CHAPTER 5

SEMI-LINKAGE WITH ALMOST PRESCRIBED LENGTHS IN

LARGE GRAPHS

If we let H be any graph or even multigraph, we may consider the same problem in

which we subdivide the edges of H a specified number of times, map the vertices of

H into the vertices of a larger graph G and then try to find corresponding paths in

G to represent those subdivided edges of H. The following is our main results

Theorem 19. Let H be a multigraph with e edges, S ⊆ V (H), s = v0(S)+
∑

v∈S dH(v)

and c > 0. There exists `0 and n0 such that if G is a graph of order n ≥ n0 with

κ(G) ≥ s and σ2(G) ≥ cn and L = {`1, `2, . . . , `e} is a set of lengths with `0 ≤ `i ≤ cn
3k

for all i, then G is (H, S, L , 1)-semi-linked.

5.1 Proof of Theorem 19

Given 0 < c < 1, we choose constants ε and d so that

0 < ε � d � c < 1

where a � b is used to indicate that a is chosen to be sufficiently small relative to b.

Apply Lemma 1 on G to obtain the reduced graph R.

By Theorems 2 and 3, there is a cycle C in R of length at least 1
2
(c−2d−4ε)|R|.

For convenience, we will also use C to denote the corresponding set of clusters in

G. Color the edges of C with red and blue such that no two red edges are adjacent

and at most two consecutive blue edges are adjacent. Note that if C is even, then

the colors will alternate. Apply Lemma 3 on the pairs of clusters in G corresponding

to the red edges of C to obtain super-regular pairs where the two clusters of each

super-regular pair have the same order. Note that we lose at most εn vertices in total
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from the clusters in C. Let L′ be the smallest order of a cluster in C. Any vertices

not removed from the clusters of C and not already selected (as the image of a vertex

in S) or used on a path will be called remaining. If we let C be the set of all vertices

in G remaining in the clusters of C, then |C| ≥ tL′ − |H| ≥ 1
2
(c− 2d− 6ε)n.

By Menger’s Theorem, there is a set of paths starting at those images of vertices

in S that fall outside C and ending in C such that the paths are disjoint except at

the starting vertices and each image of a vertex v ∈ S has d(v) paths to C. We will

let the ends of these paths in C serve as proxy vertices for the images of the vertices

of S. Note that, since σ2(G) ≥ cn and vertices at distance 3 on these paths share no

neighbors (except possibly some vertices on other paths), these paths can be chosen

to have length less than 12
c

each.

For each edge uv ∈ E(H), we construct a preliminary path from the image of u

to the image of v (or their corresponding proxies) using at least one remaining vertex

of each cluster in C. By Lemma 19, such paths can be constructed to use at most

four vertices of each cluster, going around the cycle C once and then continuing on

to the destination. At this point, each preliminary path has length at most 24
c

+ 4|R|

so this defines `0.

For each i with `i small (say less than 2L′), absorb a few pairs of vertices from

each super-regular pair into the preliminary path, using Lemma 19, until the path

is within one of the desired order. For each remaining index i, using Lemma 19,

absorb entire super-regular pairs at a time (along with possibly a few vertices from

some other super-regular pairs) until each path is within one of the desired order to

complete the proof.
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des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of
Colloq. Internat. CNRS, pages 399–401. CNRS, Paris, 1978.


	Precise Partitions Of Large Graphs
	Recommended Citation

	tmp.1415847947.pdf.0mhPO

