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GALLAI-RAMSEY NUMBER OF AN 8-CYCLE
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ABSTRACT

Given a graph G and a positive integer k, define the Gallai-Ramsey number to be the min-

imum number of vertices n such that any k-edge-coloring of Kn contains either a rainbow

(all different colored) triangle or a monochromatic copy of G. In this work, we establish

the Gallai-Ramsey number of an 8-cycle for all positive integers.
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CHAPTER 1

INTRODUCTION

In this work, we consider only edge-colorings of graphs. A coloring of a graph is called

rainbow if no two edges have the same color.

Edge-colorings of complete graphs which contain no rainbow triangle have very inter-

esting and somewhat surprising structure. In 1967, Gallai [4] first examined this structure

under the guise of transitive orientations (a translation of his paper is available in [6]). His

result was restated in [5] in the terminology of graphs and can also be traced back to [1].

For the following statement, a trivial partition is a partition into only one part.

Theorem 1.1. [4, 5, 6] In any coloring of a complete graph containing no rainbow triangle,

there exists a non-trivial partition of the vertices (called a Gallai partition) such that there

are at most two colors on the edges between the parts and only one color on the edges

between each pair of parts.

In honor of this result, rainbow triangle-free colorings have been called Gallai color-

ings. Given a Gallai coloring of a complete graph and an associated Gallai partition, define

the reduced graph of this partition to be the induced subgraph consisting of exactly one

vertex from each part of the partition. Note that the reduced graph is a 2-colored complete

graph.

When considering 2-colored complete graphs, a very natural problem to consider is

the Ramsey problem of finding a monochromatic copy of some desired subgraph. Since

we will be mostly considering cycles in this work, we define the classical Ramsey result

for even cycles which will be used later in our proofs. Here, given a graph G, let Rk(G)

denote the k-color Ramsey number of G, namely the minimum number of vertices m such

that any k coloring (using at most k colors) of Km contains a monochromatic copy of G.

The cycle of order m is denoted by Cm and let Pn be the path of order n.
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Definition 1.2. Given two graphs G and H , the k-colored Gallai Ramsey number grk(G :

H) is defined to be the minimum integer n such that every k-coloring (using all k colors) of

the complete graph on n vertices contains either a rainbow copy of G or a monochromatic

copy of H .

A bipartite graph is a graph whose vertices can be divided into two disjoint sets, A and

B, and such that every edge connects a vertex in A to one in B. Clearly we can see that C8

is bipartite which means grk(K3 : C8) is linear in k. With this result in mind, the orders of

magnitude in the following general bounds for cycles should not be surprising.

Theorem 1.3 ([2]). Let H be a fixed graph with no isolated vertices. Let k be an integer

with k ≥ 1. If H is not bipartite, then grk(K3 : H) is exponential in k. If H is bipartite,

then grk(K3 : H) is linear in k.

Theorem 1.4 ([10]). Given integers n ≥ 2 and k ≥ 1,

(n− 1)k + n + 1 ≤ grk(K3 : C2n) ≤ (n− 1)k + 3n.

Theorem 1.5 ([10]). Given integers n ≥ 2 and k ≥ 1,

n2k + 1 ≤ grk(K3 : C2n+1) ≤ (2k+3 − 3)n log n.

For grk(K3 : Cn) with 3 ≤ n ≤ 6, the exact numbers were shown below.

Theorem 1.6 ([8]). For any positive integer k,

grk(K3 : C3) =


5k/2 + 1 for k even.

2 ∗ 5(k−1)/2 + 1 otherwise.

Theorem 1.7 ([8]). For any positive integer k ≥ 2,

grk(K3 : C4) = k + 4.
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Theorem 1.8 ([9]). For any positive integer k ≥ 2,

grk(K3 : C5) = 2k+1 + 1.

Theorem 1.9 ([9]). For any positive integer k,

grk(K3 : C6) = 2k + 4.

Looking at these known results we can see that the result of even cycles is cleaner than

the result of odd cycle. Note, there is no known sharp result for grk(K3 : C7). From the

bounds above, we can say that, 3k + 5 ≤ grk(K3 : C8) ≤ 3k + 12 for k ≥ 1. Except in the

case when Cn = K3, all of these exact results match the lower bounds in the above general

results. With this in mind we prove the following.

Theorem 1.10. For k ≥ 1, grk(K3 : C8) = 3k + 5

Our proof of Theorem 1.10 suggests that if the Gallai-Ramsey numbers were com-

pletely established for all paths, then we may be able to establish the numbers for all C8.

This is complementary to the results of [3] where the bounds for even cycles were used to

establish bounds for paths.

We also show corresponding results for some subgraphs of C8, completing the liter-

ature of Gallai-Ramsey numbers for all subgraphs of C8. To obtain these subgraphs, we

remove one of the vertices then we have the following.

Theorem 1.11. For k ≥ 1, grk(K3 : P7) = 2k + 5

In Chapter 3, we prove Theorem 1.11 to strengthen our overall result. If we remove a

second vertex then we have the following.

Theorem 1.12. For k ≥ 1, grk(K3 : 2P3) = k + 5

In Chapter 4, we prove Theorem 1.12 to strengthen our overall result. Theorem 1.13

is also a result of removing a second vertex.
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Theorem 1.13. For k ≥ 1, grk(K3 : P4 ∪ P2) = 2k + 4

In Chapter 5, we prove Theorem 1.13 to strengthen our overall result. A third case of

removing two vertices would be a P5 and a single vertex. This result is already known [3].

In our arguments, we occasionally use classical Ramsey numbers. The following case

will be helpful.

Theorem 1.14. R2(C8, C8) = 11

At times, we consider a G-partition as a 2-coloring of a reduced graph by choosing

one vertex from each part. For the sake of notation, we define a t-blowup of a colored graph

G to be the graph created by replacing each vertex of G with t vertices and each edge of

color i in G with all edges of color i between the corresponding sets.

More generally than the Gallai-Ramsey numbers, define grk(G : H1, H2, . . . , Hk) to be

the minimum integer N such that every coloring of Kn for n ≥ N using at most k colors

contains either a rainbow copy of G or a monochromatic copy of Hi in color i for some i.

We will commonly use the following definition of a colored complete graph in our

construction of sharpen examples. Define a lexical k-coloring of Kn, say L(n1, n2, . . . , nk)

with
∑

ni = n to be; start with Kn1 , in red, call this G1 and for each i > 1, add ni

vertices to Gi−1 with all incident edges color i. Then L(n1, . . . , nk) := Gk. One of the

main properties of a lexical coloring that we will be using is that it contains no rainbow

triangles.
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CHAPTER 2

PROOF OF THEOREM 10

In order to prove Theorem 1.10, we actually prove the following slightly stronger result.

For the precise statement, let G3 = C8, G2 = P7, G1 = P5, and G0 = P3. Note that all of

these graphs are subgraphs of C8 and represent the results of removing vertices from C8.

Theorem 1.10 follows from Theorem 2.1 by setting ij = 3 for all j.

Theorem 2.1. For k ≥ 1, and for 0 ≤ ij ≤ 3 for all 1 ≤ j ≤ k,

grk(K3 : Gi1 , Gi2 , . . . , Gik) =
∑
j

= 1kij + 5.

Proof. Let Σ =
∑

ij . The proof is by induction on Σ. If Σ = 0, the result is trivial since

each color is only looking for either P2 or P3 and it is easy to see that grk(K3 : P3) = 3.

Thus, suppose Σ ≥ 1 so n ≥ Σ + 5 ≥ 6. Let G be a coloring of Kn with no rainbow

triangle and no monochromatic Gi for any i.

Let T be a largest set of vertices in G with the properties that

1. each vertex in T has one color on all its edges to G \ T , and

2. |G \ T | ≥ 4.

Note that T = ∅ is possible. Let T1, T2, . . . , Tk denote the sets of vertices in T such that

each vertex in Tj has all edges in color j to the vertices in G \ T . If |Tj| > ij , then

Tj ∪ (G \ T ) contains the desired monochromatic copy of a graph in Gij in color j. Thus,

|Tj| ≤ ij for all j. More generally, if T 6= ∅, say with |Tj| = a for some 1 ≤ a ≤ 3 and for

some j, then by induction on Σ applied to G \T , we have the desired result. Thus, we may

assume that T = ∅.

Consider a G-partition of G and let A be a largest part of this partition. Note that if

|A| ≥ 4, we can let T = G \ A and apply induction as above so we may assume |A| ≤ 3.

By the choice of A, this means that every part of the G-partition has order at most 3. We

now prove some helpful claims.



9

Claim 1. If three parts have order at least 3 and at least one additional part has order at

least 2, then there is a monochromatic C8.

Note that the reduced graph R of the four sets is a 2-colored K4.

Proof. Any 2-coloring of K4 contains either a monochromatic K3 or a monochromatic P4

in some color.

For the first case, suppose that we have a blue K3. Let A,B and C be the three

corresponding sets. Let a1, a2, a3 ∈ A, b1, b2, b3 ∈ B and c1, c2 ∈ C. Note that we may

have |C| ≥ 3. Since A,B and C form a blue K3 in the reduced graph all edges between

the sets A,B and C are blue. Then a1 − b1 − a2 − b2 − c1 − a3 − b3 − c2 − a1 induces the

desired monochromatic C8.

For the second case, suppose that we have a blue P4. Suppose the corresponding sets

of the P4 are A,B,C and D and, by symmetry that |B| ≥ 3. Let a1, a2 ∈ A, b1, b2, b3 ∈

B, c1, c2 ∈ C and d1 ∈ D. Since A,B,C and D form a blue P4 in the reduced graph, all

edges between consecutive sets are blue. Then a1 − b1 − c1 − d1 − c2 − b2 − a2 − b3 − a1

induces the desired monochromatic C8

For the sake of our next result, we need an extra definition. Given sets of graphs G

and H , define R(G ,H ) to be the minimum integer N such that any 2-coloring of Kn

for n ≥ N contains either a copy of a graph in G in red or a copy of a graph in H in

blue. This is a simple generalization of Ramsey numbers that has been studied for several

specific classes of graphs (see [3] for example).

Claim 2. R({C4, P5}, {C4, P5}) = 5

Proof. If we consider the unique 2-coloring of a K5 with no monochromatic triangles,

then there is a C5 in each color. Thus, we also have the desired P5 in both colors. We

may therefore assume that all other 2-colorings of K5 have a monochromatic triangle. Let

a1, a2, a3 ∈ A be a monochromatic K3 in red and b1, b2 ∈ B be the two remaining vertices
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of the K5. If all the edges from A to B are in one color, then there exists a monochromatic

C4 in that color. Without loss of generality, let e be a red edge a1b1. To avoid a C4 in red,

we let edges a2b1 and a3b1 be blue. To avoid getting a P5 in red we let edges a2b2 and a3b2

be blue. Now we can clearly see that our blue edges make a C4, b1− a2− b2− a3− b1.

By Claim 2, if there are at least five parts of order at least 2, then there is a monochro-

matic C8 since the 2-blow-up of a C4 or a P5 each contains a C8. Thus, by Claims 1 and

2 and Theorem 1.14, if n ≥ 17, there is already a monochromatic C8. This means that,

we may assume n ≤ 16 in addition to the assumption that T = ∅ and so |A| ≤ 3. We

know that R(C8, C8) = 11 from Theorem 1.14. Since the (2-colored) reduced graph is a

subgraph of A by choosing one vertex from each set, there must be at most 10 sets in the

G-partition.

Claim 3. If there are two sets of order 3 and at least five more vertices, then there exist a

monochromatic C8.

Proof. Let A and B be the sets that contains 3 vertices each and have red edges between

them. Let i ≤ 5 and let vi be the other vertices. If four vertices have red edges to both sets

this induces a K6,4 which contains a C8 in red. Similarly, if four vertices have blue edges to

both sets then we have our desired C8 in blue. Therefore, let v1 have red edges to both sets.

This means that the other four vertices have blue edges to both sets induces a K6,4 which

contains a C8 with blue edges. Therefore, let v1 and v2 have red edges to both sets. This

gives us a C8 in red, A−v1−B−A−v2−B−A−B−A, thus v1 and v2 can only have red

edges to one set, say A. If any other vertex outside has red edges to be B then we can find

a red C8, which means all vertices outside must have blue edges to B. Similarly we can

say the same thing about v3 and v4 such that at least four vertices will have red edges to A.

The last vertex must have can have either color to A. We do not need it for this proof so we

will ignore the last vertex. Now we need to look at the edges between these 4 vertices with
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colored edges to both sets. Specifically we want to look a the color of the edges in a path of

these four vertices. With three edges and two colors we know by the pigeon hole principle

at least two edges will have the same color. Since at least two edges have the same color

then we have our desire C8 in that color, blue C8, v1−B− v2− v3−B− v4− v5−B−B,

and red C8, v1 − v2 − v3 − A−B − A−B − A− v1.

Claim 4. If there is one set of order 3, two set of order 2 and at least four other vertices,

then there exists a monochromatic C8.

Proof. Let A be the set of order 3 and let B be one of the sets of order 2 and let C be the

other set of order 2. Let vi be the singletons such that 1 ≤ i ≤ 4. Without loss of generality,

suppose that red appears on most of the edges between A,B and C. Suppose first that A,B

and C all have red edges between them so that c(A,B) = c(B,C) = c(C,A). If one of the

singletons has a red edge to any of the three sets then we can find a C8 in red. Therefore, all

of the singletons will have blue edges to A,B and C which induces a K7,4 which contains

our desired C8.

Now suppose that B and C have blue edges between them such that c(A,B) =

c(A,C). If any of the singletons have a red edge to either B or C then we have a C8

in red. Therefore, all singletons must have blue edges to B and C which induces a K4,4

which contains a C8 in blue.

Finally suppose that A and C have blue edges between them such that c(A,B) =

c(B,C). To avoid a C8 in red, at most one singleton can have red edges to A. Thus, at least

three singletons have blue edges to A. None of these three singletons can have a blue edge

to C, so they must all have red to C. This is induces a red C8, v1−A−B−C − v2−C −

B − A − v1. Therefore all singletons must have blue to A and red to C. To avoid a C8 in

blue we can have at most one singleton with blue edges to B thus at least three red edges to

B, which then we can find our desired C8 in red, v1−B−A−B−v2−C−v3−C−v1.
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Claim 5. If there is one set of order 3, one set of order 2 and at least six singletons, then

there exist a monochromatic C8.

Proof. Let A be the set of order 3 and let B be the set of order 2. Let vi be the singletons

such that 1 ≤ i ≤ 6. Let C be the largest set of singletons with blue edges to A. Suppose

A and B have red edges between them. If at least three singletons have red edges to A and

B then we can find a red C8, v1−A−B− v2−A−B− v3−A− v1. To avoid a C8 in red,

let four singletons have blue edges to A. In this case, |C| = 4. At most one vertex in C can

have a blue edge to B, else we have a C8 in blue, v1−A− v2−A− v3−C − v4−C − v1.

The remaining singletons, v5 and v6, must have red edges to A by definition of C. If v5 or

v6 have at least two blue edges to the vertices in C then we have a blue C8, C−A−C−A−

C − v4 −C −A−C. Therefore, v5 and v6 must have at least two red edges to the vertices

in C. This induces our desired C8 with red edges, C −B−A− v5−A−B−C − v6−C.

Now, let |C| = 5. Again, C can have at most one vertex with blue edges to B. By

definition of C, v6 must have red edges to A. If v6 has at least two blue edge to the vertices

in C then we can find a blue C8, C−A−C−v6−C−A−C−A−C, therefore v6 can have

at most one blue edge to C. If there is at least two blue edges between the vertices in C

then we can find a blue C8, C−C−C−A−C−A−C−A−C, which means there can be

at most one blue edge between the vertices in C. Therefore, there must be at least two red

edges between them, which induces our desired C8, C−C−C−B−C−B−A−v6−C.

Now, let |C| = 6. Again, C can have at most one vertex with blue edges to B. Of the

vertices in C that have red edges to B, there can be at most one blue edge between them.

Therefore, at least three of the vertices have red edges such that they do not form a triangle.

of the vertices in C with red edge to A, when can see that of the two vertices with blue

edges between and red edges to A and the rest of C acts the claim, if there is one set of

order 3, two set of order 2 and at least four more vertices, then there exist a monochromatic

C8 which follows from Claim 4.
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Finally, suppose v1, v2, v3 have red edges to A. To avoid a C8 in red, v1, v2, v3 must

blue edges to B. If v4, v5, v6 have a red edge to B, then we will have a C8 in red. Therefore,

all six singletons must have blue edges to B. Of the singletons that have red edges to A,

v1, v2, v3, no two vertices can have a red edge to a singleton that does not have a red edge

to A, v4, v5, v6. Furthermore, those two vertices must have blue edges to a singleton that

does not have a red edge to A. This will give us at least a P5 in blue, combined with all the

singletons having blue edges to B, we can find our desired C8, v1 − v4 − v2 − v5 − v3 −

B − v6 −B − v1.

Claim 6. If there is one set of order at least 3 and at least nine more vertices, then there

exist a monochromatic C8.

Proof. Let A be our set order 3. We define B to be the set of vertices with red edges to A

and we define C to be the set of vertices with blue edges to A. By the pigeon hole principle

at least five edges will have the same color edges to A. Therefore let us say |B| = 5 which

induces a K3,5 in red. Therefore, |C| = 4 and induces K3,4 in blue. To avoid a rainbow

a triangle, one vertex from either set, say B, must have red or blue edges, say red, to the

other set and this induces a C8, B − A−B − A−B − A−B − C −B.

Claim 7. If there are four sets of order at least 2 and at least three more vertices, then there

exist a monochromatic C8.

Proof. Let A,B,C and D each be sets of order 2. The trivial case is ABCD all have red

edges between them. Therefore, suppose we have a P4 in the reduced graph, ABCD, with

red edges and all other edges edges in the reduced graph must be blue which is also a P4,

CADB. If any of the vertices outside have red edges to A or D then we can find a C8 with

red edges. Therefore, all the vertices outside must have blue edges to A and D, this induces

our desired C8 with blue edges on v1 − A− C − A− v2 −D −B −D − v1.
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Claim 8. If there are three sets of order at least 2 and at least five more vertices, then there

exist a monochromatic C8.

Proof. Let A,B and C each be sets of order 2. Let A,B and C have red edges between

them. If two of the vertices outside have red edges to at least two of the sets, say A and B,

we can find a red C8, v1 − A − C − B − v2 − B − C − A − v1. Therefore, we can have

at most one vertex from outside with red edges to the sets which means at least 4 vertices

outside have blue edges to the sets. This induces a K6,4 which contains C8 with blue edges.

Now suppose that we have red edges between A and B and also between B and C, and

therefore blue edges between A and C. If at least 4 outside vertices have blue edges to both

set A and C then this induces a K4,4 which contains a blue C8. So we can only have at most

three blue edges to A and C which means at least 2 vertices have red edges to A and C.

This induces a C8 in red, v1−A−B−C−v2−A−B−C−v1. Therefore all five outside

vertices have red edges to A and blue edges to C. If at least 3 vertices have red edges to B

then have a C8 in red, v1 −A− v2 −B −C −B − v3 −A− v1. So we can have at most 2

vertices outside with red edges to B, which means at least 3 of the vertices must have blue

edge to B, this also induces a blue C8, v1 − C − A− C − v2 −B − v3 −B − v1.

Claim 9. If there are two sets of order at least 2 and at least 8 more vertices, then there

exist a monochromatic C8.

Proof. Let A and B each be a set of order 2. If at least 4 vertices have red edges to both

A and B this induces a K4,4 which contains a C8. Therefore, let at most 3 vertices have

red edges to A and B. This means that least 5 vertices have blue edges to A and B which

induces a K4,5 which contains a C8 in blue. Thus, let all of the outside vertices have red

edges to A and blue edges to B. We know that we have a P3 in red,v1 − A − v2, and a P3

in blue, v1 − B − v2. We need to find a P6 in red or blue in the outside vertices. From [3]

we know that R(P6, P6) = 8, which means can find a P6 in, say red, to connect to our red



15

P3 to give us our desired C8 with red edges.

Lemma 2.2. Let Qi = P5 for all i. Then grk(K3 : Q1, Q2, . . . , Qt, P3, . . . , P3) = t + 5.

Proof. The proof is by induction on t. If t = 0, the result is trivial since each color is

looking for a P3 and it is easy to see that grk(K3 : P3) = 5 for all k ≥ 3. If t = 1,

grk(K3 : Q1, P3) = 6, we are looking for a P5 in the first color and a P3 in the second

color. Let H be the biggest partition. If H has 3 ≤ |H| ≤ n− 3, then at least two vertices

outside have the same color on edges to all of H . Then we have as induced K3,2 in that

color, which contains our desired P5. Now we want to assume that the set H is small. If

|H| = 2, then we can have at most two vertices outside H with edges in blue to H (to

avoid a P5). Therefore the other 2 vertices must outside of H must have edges in red H . To

avoid a rainbow triangle, we know that the edge between a vertex outside of H with a red

edge and a vertex outside of H with blue edge, must be either red or blue. Either one will

give of our desired P5. If |H| = 1, which means we just have all singletons making this a

2-coloring Ramsey number, thus R(P5, P5) = 6

Thus, suppose t ≥ 2 so n ≥ t + 5 ≥ 7. Let H be the biggest set in the partition. If H

has 2 ≤ |H| ≤ n− 2, then at least two vertices outside have the same color on edges to all

of H . Then we have as induced K2,3 in that color, which contains our desired P5. Now we

want to assume that the set H is small. If |H| = 1, which means we just have all singletons

making this a 2-coloring Ramsey number, thus R(P5, P5) = 6.

This means we may assume that |H| ≥ n − 2 and the vertices outside H each have

only one color to H . We will assume |H| = n − 2 since the case |H| = n − 1 follows

similarly. Suppose colors t and t − 1. By induction on t, H has a monochromatic P5 in

color i, where 1 ≤ i ≤ t− 2, or a monochromatic P3 in color j where t− 1 ≤ j ≤ k. Any

of these would complete the proof except P3 in color i = t or t − 1. Suppose we have a

vertex, w, outside of H and we have a P3 = v1, v2, v3 inside of H in color i. Let w have

color i edges to H . Therefore, we must have a vertex inside of H called u that was an edge
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in color i from w. Thus if we have such a P3, along with the corresponding vertex outside

H , makes a P5 in color i to complete the proof.

To complete the proof, we consider cases based on small values of Σ.

Case 1. Σ = 1.

With loss of generality, G1 = P5 and Gi = P3 for i ≥ 2. Therefore, we have G = K6

we want to show grk(K3 : P5, P3, P3, ..., P3) = 6. Since red is the only color allowed

to contain adjacent edges, each other color induces only a matching. In fact, to avoid a

rainbow triangle, the edges induced on all colors other than red together must induce a

matching. The compliment of this matching contains a P5 in red to complete the proof in

this case.

Case 2. Σ = 2.

Subcase 2.1. grk(K3 : P7, P3, . . . , P3) = 7

In this case, all colors other than red together induce a matching M . In K7 \M , it is

easy to find a P7.

Subcase 2.2. grk(K3 : P5, P5, P3, . . . , P3) = 7.

This result follows from Lemma 16.

Case 3. Σ = 3.

Subcase 3.1. grk(K3 : C8, P3, P3, . . . , P3) = 8.

In this case, all colors other than red together induce a matching M . In K8 \M , it is

easy to find a C8.

Subcase 3.2. grk(K3 : P7, P5, P3, . . . , P3) = 8˙
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Since R2(P7, P5) = 8, we may assume that there are at most 7 parts in the partition.

Thus, there must exist a part of the partition of order at least 2. Other than colors red and

blue, all other colors together induce a matching so if we choose our G-partition to have

the most possible parts, we may assume all parts have order at most 2.

Let A be a part of order 2. At most two of the vertices outside can have blue to A (to

avoid a P5). Therefore at least 4 vertices outside all have red to A. This induces a K2,4 in

red. Each of blue vertices can have at most one red edge to the red set and actually only

total. All other edges are of blue. This gives us our desired result of a P5 in blue.

Next suppose 2 sets have size 2 called A and B. If blue appears between A and B then

all other edges will be red to the 2 sets. This gives us a K4,4 which contains a P7. Therefore

the edges between A and B must be red. If there are at least 2 vertices outside with red to

A and one vertex to B then there is a P7 in red. On the other hand if there are 2 vertices

outside with blue to A, then we might as well have blue in between the 2 sets. Therefore

we have found our desired P7 in one color and P5 in the other color.

Subcase 3.3. grk(K3 : P5, P5, P5, P3, . . . P3) = 8.

This result follows from Lemma 16.

The cases Σ = 4− 7 follow similarly and tediously.
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CHAPTER 3

PROOF OF THEOREM 11

In order to prove Theorem 1.11, we actually prove the following slightly stronger result.

Theorem 1.11 then follows from this result in the case when t = k.

Theorem 3.1. Given 1 ≤ t ≤ k, let G1, G2, . . . , Gt = P7 and Gt+1, . . . , Gk = P5. Then

grk(K3 : G1, G2, . . . , Gk) = k + t + 5.

Proof. For the lower bound, the graph L(k, 6, 2, . . . , 2, 1, . . . , 1) where 2 occurs t−1 times,

has no rainbow triangles, no monochromatic P7 in any of the first t colors, no monochro-

matic P5 in any of the remaining colors and has order k + t + 4.

For the upper bound, suppose n = k + t + 5 and G is a k-coloring of Kn with

no rainbow triangle. If k ≥ 2, the result is trivial or follows from the classical Ramsey

number. Thus suppose k ≥ 3, so n ≥ 9.

Consider a G-partition of G. Let A be a largest part of this partition.

Claim 10. If 3 ≤ |A| ≤ n− 5, then there exists the desired monochromatic P7.

Proof. Since |A| ≤ n − 5, there are at least n − (n − 5) = 5 vertices in G \ A. Let

a1, a2, a3, a4 ∈ A and let b1, b2, b3, b4, b5 ∈ G \ A. Since A is a part of the G-partition, for

each bi, c(biaj) = c(bia`) for all j, `. With at least 5 vertices in G \ A, by the pigeon hole

principle three of them must have the same color on all edges to A, let b1 b2 b3 have all

red edges to A. Then {a1, a2, a3, a4} ∪ {b1, b2, b3} induces a monochromatic K4,3, which

contains the desired monochromatic P7. Now let A only have three vertices, a1, a2, a3.

Since n is at least 9 then G \ A has at least 6. Since A is a part of the G-partition, for

each bi, c(biaj) = c(bia`) for all j, `. With at least 6 vertices in G \ A, by the pigeon hole

principle three of them must have the same color on all edges to A, let b1 b2 b3 have all red

edges to A. Then {a1, a2, a3} ∪ {b1, b2, b3} induces a monochromatic K3,3 in red and in
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blue. To avoid a rainbow triangle the edge between b3 and b4 must be either red or blue,

which contains the desired monochromatic P7.

We break the remainder of the proof into two cases based on |A|.

Case 1. Suppose |A| ≥ n− 4.

If there exist 3 vertices outside of A with all edges to A in a single color, then G

contains a monochromatic P7 since this induces a monochromatic K3,|A| with |A| ≥ 4.

Thus by structure of the G-partition, suppose there are at most 2 vertices in G \ A, each

with its own color on all edges to A. We will assume there are actually two vertices u and

v with all one color on the edges to A, since the proof is similar if there was only one.

Suppose c(uA) = i and c(vA) = j. If Gi = P7 or Gj = P7, the proof is complete so

suppose Gi = Gj = P5. By induction on
∑k

l=1Gl, we have

grk(G1, G2, · · · , Gi − 1, · · · , Gj − 1, · · · , Gk) = (k − 1) + (t− 1) + 5,

so we can find either Gl in color l or P5 in color i or j in G\{u, v}. Suppose without loss of

generality, that we find a P5 in color i in G \ {u, v}. Then this P5, along with another P3 in

color i centered at u, completes the proof. The base of this induction is when t = 1, k = 1

and here the result follows gr14(K3 : P7) = 7.

Case 2. All sets in the partition have order at most 2.

Subcase 2.1. There exist at least four sets with order 2.

Let A1, A2, A3, A4 be these sets of order 2. Let Ai = {ai1, ai2} for 1 ≥ i ≥ 4. Since

k ≥ 3, n ≥ 9 and we know there is a vertex in G \ (A1 ∪ A2 ∪ A3 ∪ A4). First suppose

the edges between three pairs of the sets have a single color, say red, to make a K2,2,2. Say

c(A1, A2) = c(A2, A3) = c(A3, A1). Then all we need the vertex in G\(A1∪A2∪A3∪A4)

to have red edges to any of the three sets A1, A2, A3 then we have our desired P7. Else we

can find a P7 in the opposite color. Now suppose there is no monochromatic K2,2,2. Then
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there must exists a permutation of the sets A1, . . . , A4 so that c(A1, A2) = c(A2, A3) =

c(A3, A4). Then we can find our desired P7, A1 − A2 − A3 − A4 − A3 − A2 − A1.

Subcase 2.2. There exists three sets with order 2.

Let A1, A2, A3 be the three sets of order 2. Without loss of generality, suppose

c(A1, A2) = c(A2, A3) is red. Since k ≥ 3, n ≥ 9 so there at at least 3 vertices in

G \ (A1 ∪A2 ∪A3). Then all we need is a vertex from G \ (A1 ∪A2 ∪A3) to either set A1

or A3 with a red edge to get our desired P7. If none of the 3 vertices in G \ (A1 ∪A2 ∪A3)

have a red edge to A1 or A3 then it must have a blue edge. That induces a K4,5 and we can

easily find a P7 from this.

Subcase 2.3. There exists two sets with order 2.

Let A1, A2 be the two sets of order 2. Since k ≥ 3, n ≥ 9 there are 5 vertices in

G \ (A1 ∪ A2). If at least 3 vertices in G \ (A1 ∪ A2) in both sets induces a K4,3 which

contains a P7.

Subcase 2.4. There exists at most one set A with order 2.

Let A be the set of order 2, if one exists. Since k ≥ 3, n ≥ 9 so there are at least 7

vertices in G \ A. Choosing one vertex from A along with 7 of the singletons induces a

2-colored K8, which contains the desired monochromatic P7.

Subcase 2.5. All singletons.

Since R2(P7) = 9 [7], this case is trivial.
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CHAPTER 4

PROOF OF THEOREM 12

In order to prove Theorem 1.12, we actually prove the following slightly stronger result.

Theorem 1.12 then follows from this result in the case when t = k.

Theorem 4.1. Given 0 ≤ t ≤ k, let m1 = · · · = mt = 2 and mt+1 = · · · = mk = 1. Then

grk(K3 : m1P3, . . . ,mtP3,mt+1P3, . . . ,mkP3) = t + 5.

Proof. For the lower bound, L(t, 5, 1, . . . , 1) has no rainbow triangles, no mono-chromatic

2P3 and has order t + 5.

For the upper bound, suppose G is a k-coloring of Kn with no rainbow triangle. Con-

sider a G-partition of G. Let A be largest part of this partition.

Claim 11. If 3 ≤ |A| ≤ n− 5, then there exists the desired monochromatic 2P3.

Proof. Since |A| ≤ n − 5, there are at least n − (n − 5) = 5 vertices in G \ A. Let

a1, a2, a3 ∈ A and let b1, b2, b3, b4, b5 ∈ G \ A. Since A is a part of the G-partition, for

each bi, c(biaj) = c(bia`) for all j, `. With at least 5 vertices in G \ A, by the pigeon hole

principle three of them must have the same color on all edges to A, let b1 b2 b3 have all red

edges to A. Then {a1, a2, a3} ∪ {b1, b2, b3} induces a monochromatic K3,3, which contains

the desired monochromatic 2P3.

We break the remainder of the proof into two cases based on |A|.

Case 1. Suppose |A| ≥ n− 4.

If there exist 2 vertices outside of A with all edges to A in a single color, then G

contains a monochromatic 2P3 since this induces a monochromatic K2,|A| with |A| ≥ 4.

Thus by the structure of the G-partition, there are at most 2 vertices in G \ A, each with

its own color on all edges to A. We will assume there are actually two vertices u and v

with all one color each on edges to A, since the proof is similar if there was only one.
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Suppose c(uA) = i and c(vA) = j. If mi = 1 or mj = 1, the proof is complete so suppose

mi = mj = 2. By induction on
k∑̀
=1

m`, we have

grk(m1P3,m2P3, · · · , (mi − 1)P3, · · · , (mj − 1)P3, · · · ,mkP3) = (t− 2) + 5,

so we can find either m`P3 in color ` or P3 in color i or j in G \ {u, v}. Suppose, without

loss of generality, that we find a P3 in color i in G\{u, v}. Then this P3, along with another

P3 in color i centered at u, completes the proof. The base of this induction is when t = 0

and here the result follows from the trivial observation that grk(K3 : P3) = 3 for all k.

Case 2. All sets in the partition have order at most 2.

Subcase 2.1. There exist at least three sets with order 2.

Let A1, A2, A3 be three sets of order 2. Then the edges between two pairs of sets must

have a single color. Say c(A1, A2) = c(A2, A3). Then A2 ∪ (A1 ∪ A3) induces a K2,4 in

this color, containing the desired 2P3.

Subcase 2.2. There exist two sets with order 2.

Let A1 and A2 be the two sets of order 2. Without loss of generality, suppose c(A1, A2)

is red. Since k ≥ 3, we get n ≥ 8, so there are at least 4 vertices in G\ (A1∪A2). To avoid

creating a red 2P3, at most one vertex v ∈ G \ (A1 ∪ A2) may have red edges to A1 ∪ A2.

This means that three of the vertices in G \ (A1 ∪ A2) and must have all the other color,

say blue, on all edges to A1 ∪ A2. This induces a blue K3,4 which contains the desired

monochromatic 2P3.

Subcase 2.3. There exists at most one set A with order 2.

Let A be the set of order 2, if one exists. Since k ≥ 3, n ≥ 8 so there are at least 6

singletons in G \ A. Choosing one vertex from A along with six of the singletons induces

a 2-colored K7, which contains the desired monochromatic 2P3.
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Subcase 2.4. All singletons.

Since R2(2P3) = 7 [3], this case is trivial.
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CHAPTER 5

PROOF OF THEOREM 13

In order to prove Theorem 1.13, we actually prove the following stronger result. Theo-

rem 1.13 then follows from this result in the case when t = k.

Theorem 5.1. Given 1 ≤ t ≤ k, let G1, G2, . . . , Gt = P4 ∪ P2 and Gt+1, . . . , Gk = 2P2.

Then grk(K3 : G1, . . . , Gt, Gt+1, . . . , Gk) = k + t + 4.

Proof. For the lower bound, L(k, t, 2, · · · , 2, 1, · · · , 1) where 2 occurs t times, has no rain-

bow triangles, no monochromatic P4 ∪ P2 in any of the first t colors, no monochromatic

2P2 in any of the remaining colors, and has order k + t + 4.

For the upper bound, suppose G is a k-coloring of Kn with no rainbow triangle. Con-

sider a G-partition of G. Let A be a largest part of this partition.

Claim 12. If 3 ≤ |A| ≤ n− 5, then there exists the desired monochromatic P4 ∪ P2.

Proof. Since |A| ≤ n − 5, there are at least n − (n − 5) = 5 vertices in G \ A. Let

a1, a2, a3 ∈ A and let b1, b2, b3, b4, b5 ∈ G \ A. Since A is a part of the G-partition, for

each bi, c(biaj) = c(bia`) for all j, `. With at least 5 vertices in G \ A, by the pigeon hole

principle three of them must have the same color on all edges to A, let b1 b2 b3 have all red

edges to A. Then {a1, a2, a3} ∪ {b1, b2, b3} induces a monochromatic K3,3, which contains

the desired monochromatic P4 ∪ P2.

We break for the remainder of the proof into two cases based on |A|.

Case 1. |A| ≥ n− 4.

If there exist 3 vertices outside of A with all edges to A in a single color, then G

contains a monochromatic P4∪P2 since this induces a monochromatic K3,|A| with |A| ≥ 4.

Thus by the structure of the G-partition, assume there are at most 2 vertices in G \A, each

with its own color on all edges to A. We will assume there are actually two vertices u and
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v with all one color each on edges to A, since the proof is similar if there was only one.

Suppose c(uA) = i and c(vA) = j. If Gi = P4∪P2 or Gj = P4∪P2, the proof is complete

so suppose Gi = Gj = 2P2. By induction on
k∑̀
=1

G`, we have

grk(G1, G2, · · · , Gi − 1 · · · , Gj − 1, · · · , Gk) = (k − 1) + (t− 1) + 4

so we can find either G` in color ` or 2P2 in color i or j in G \ {u, v}. Suppose without

lose of generality we find 2P2 in color i in G \ {u, v}. Then this 2P2 along with another

P3 is color i centered at u this completes the proof. The base of this induction is when

t = 1, k = 1 and here the result follows from grk(K3 : 2P2) = 4.

Case 2. All sets in the partition have order at most 2.

Subcase 2.1. There exist at least four sets with order 2.

Let A1, A2, A3, A4 be these sets of order 2. Let Ai = {ai1, ai2} for 1 ≤ i ≤ 4. First

suppose the edges between three pairs of sets have a single color to make a K2,2,2. Say

c(A1, A2) = c(A2, A3) = c(A3, A1). Then a11a21a31a12 and a22a32 form a monochromatic

P4 ∪ P2. Now suppose there is no monochromatic K2,2,2. Then there exists a permutation

of the sets A1, · · · , A4 so that c(A1, A2) = c(A2.A3) = c(A3, A4). Then a11a21a31a41 and

a22a32 form a monochromatic P4 ∪ P2.

Subcase 2.2. Suppose there exist three sets with order 2.

Let A1, A2, A3 be the three sets of order 2. Without loss of generality, Suppose

c(A1, A2) = c(A2, A3) is red. Since k ≥ 3, n ≥ 10 so there are at least 4 vertices in

G \ (A1 ∪ A2 ∪ A3). We define these 4 vertices to be si for 1 ≤ i ≤ 4. Let all vertices in

G\ (A1∪A2∪A3) have all the other color, say blue, on all edges to A1∪A3 and c(A1, A3)

is blue. This induces a blue K6 which contains the desired monochromatic P4 ∪ P2.

Subcase 2.3. Suppose there exists two sets with order 2.
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If there are two sets, let A1, A2 be the two sets of order 2. Since k ≥ 3, n ≥ 10 so

there are at least 6 singletons in G \ (A1 ∪ A2). Choosing one vertex from each set of

order 2 (even if there are fewer than 2 such sets) along with all of the singletons induces a

2-colored K8

Subcase 2.4. Suppose there exists at most one set A with order 2.

Let A be the set of order 2, if one exists. Since k ≥ 3, n ≥ 10 so there are at least 8

singletons in G \ A. Choosing one vertx from A along with eight of the vertices induces a

2-colored K9, which induces a monochromatic P4 ∪ P2.

Subcase 2.5. All singletons.

Since R2(P4 ∪ P2) = 8 [3], this case is trivial.
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CHAPTER 6

CONCLUSION

In this work, we have proven Theorem 1.10 the Gallai-Ramsey number for an 8-cycle.

grk(K3 : C8) = 3k + 5

We also show corresponding results for some subgraphs of C8, completing the literature of

Gallai-Ramsey numbers of all subgraphs of C8, proving Theorem 1.11, Theorem 1.12 and

Theorem 1.13. All other subgraphs have already been proven and cited in this work.
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