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ABSTRACT

In this thesis, we consider the properties of sparse trees, and summarize a collection of trees

under some constraints (i.e given degree sequence, given number of leaves, given maximum

degree sequence ∆, etc.) which have maximum Wiener index and minimum number of

subtrees at the same time. The Wiener index is one of the most important topological

indices in chemical graph theory. The Steiner k− Wiener index can be regarded as the

generalization of the Wiener index, when k = 2, the Steiner Wiener index is the same as

Wiener index. The Steiner k− Wiener index of a tree T is the summation of all sizes of

subtrees which contain any k−subset of vertex set V (T ). In the case of sparse trees with

given degree sequence, we provide computational results which may shed some light on

the extremal tree with maximum Steiner Wiener index.

INDEX WORDS: Wiener index, Number of subtrees, Steiner Wiener index, Degree
sequence
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LIST OF SYMBOLS

A symbol table can be created in various ways. Here are a few:

Tabular environment:

R Real Numbers

C Real Numbers

Z Integers

N Natural Numbers

N0 Natural Numbers including 0

Lp(R) p-integrable functions over R

L(X, Y ) Linear maps from X to Y

rank(T ) Rank of a linear map

Multicols environment:

R Real Numbers

C Real Numbers

Z Integers

N Natural Numbers

N0 Natural Numbers including 0

Lp(R) p-integrable functions over R

L(X, Y ) Linear maps from X to Y

rank(T ) Rank of a linear map

Itemize environment:

• R Real Numbers

• C Real Numbers
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• Z Integers

• N Natural Numbers

• N0 Natural Numbers including 0

• Lp(R) p-integrable functions over R

• L(X, Y ) Linear maps from X to Y

• rank(T ) Rank of a linear map
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CHAPTER 1

INTRODUCTION

1.1 GRAPH TERMINOLOGIES

In this thesis, we only consider simple graphs with no loops and no multi-edges. Let

G = (V (G), E(G)) denote a graph with vertex set V (G) and edge set E(G). Then, let

|V (G)|(|E(G)|, respectively) be the number of vertex set V (G) (edge set E(G), respec-

tively). A tree is a connected acyclic (no cycles) graph. It is easily verified that a connected

graph G on n vertices is a tree if and only if |E(G)| = n − 1. Keeping in line with ter-

minologies in [2], let T be a tree. For a vertex x of T , the neighborhood of x is the set of

all vertices which are adjacent to x and denoted by NT (v). The degree of x is denoted by

deg(v), and deg(v) = |NT (v)|. A pendant vertex is a vertex of degree 1, and is also called

a leaf. A branch vertex is a vertex of degree ≥ 3. A chemical tree is a tree wherein no

vertex has degree more than 4.

The degree sequence is the non-increasing sequence of vertex degrees, which is cor-

responding to the valences of atoms in a molecular graph.

The distance between two vertices x and y is denoted by dT (x, y) or d(x, y) which is

the number of edges between two vertices x and y in T . The unique path connecting two

vertices x and y in T is denoted by PT (x, y). We will use T − x or T − xy to denote the

graph obtained from T by deleting the vertex x ∈ V (T ) or the edge xy ∈ E(T ).

A tree (T, r) is said to be rooted at r by specifying some r ∈ V (T ). For any two

distinct vertices v, u in a rooted tree (T, r), if PT (r, u) ⊂ PT (r, v), then we say that v is

a successor of u. If u and v are adjacent and dT (r, u) = dT (r, v) − 1, we say that u is a

parent of v and v is a child of u. If v is any vertex of a rooted tree (T, r), let T (v) denote

the subtree induced by v, which contains v and all of its successors in T .

Given the plethora of definitions, we provide an example to illustrate each of these
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important concepts.

With given vertex degrees, the greedy tree is achieved through the following ”greedy

algorithm”:

i Label the vertex with the largest degree as v (the root);

ii Label the neighbors of v as v1, v2, ..., assign the largest degrees available to them

such that deg(v11) ≥ deg(v12) ≥ . . .;

iii Label the neighbors of v1 (except v) as v11,v12,...,such that they take all the largest

degrees available and that deg(v11) ≥ deg(v12) ≥ . . ., then do the same for v2, v3, ...;

iv Repeat (iii) for all the newly labeled vertices. Always start with the neighbors of the

labeled vertex with largest degree whose neighbors are not labeled yet.

A greedy tree with degree sequence

(4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, . . . , 1).

v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Figure 1.1: A greedy tree T

In Figure 1.1, T is a chemical tree. There are three vertices v, v1, v2 having degree

4, vertices v3, v4, v11, v12, v13, v21, v22 have degree 3, and they are all branch vertices. The
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degree sequence is the non-increasing sequence of degrees of all vertices. The distance

between vertices v11 and v21 is 4, and the unique path connecting vertices v11 and v21 is

PT (v11, v21) : v11, v1, v, v2, v21 (see Figure 1.2).

v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Figure 1.2: A greedy tree and the distance

Let v be the root of T , for vertices v2 and v21 in this rooted tree (T, r), it is easy to see

that PT (v, v2) ⊂ PT (v, v21), so v21 is a successor of v2, similarly, v22, v23 are successors of

v2, too. Furthermore, v2 and v21 are adjacent and dT (v, v2) = dT (v, v21)− 1, therefore, v2

is a parent of v21 and v21 is a child of v2. The subtree induced by v2, T (v2), is the subtree

which is induced by v2 and all its successors in T (see Figure 1.3)

v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Figure 1.3: A greedy tree and the subtree
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1.2 WIENER INDEX AND THE NUMBER OF SUBTREES

In 1947, Harry Wiener [21, 22] realized that there exist correlations between the boiling

points of paraffins and their molecular structure. He introduced the first chemical index,

which is called the Wiener index, and he show that the Wiener index of organic compunds is

closely related to its structure The Wiener index is defined as the sum of distances between

all pairs of vertices:

W (G) =
∑

u,v∈V (G)

d(u, v).

In the past years, the Wiener index has been investigated in many aspects and many papers

are published (see [8, 12, 13, 18, 19, 20]).

The Steiner distance is closely related to the Wiener index. For a subset S of V (T )

of size k, the Steiner distance of S, dentoed d(S) is the minimum size of a connected

subgraph of T whose vertex set contains S. In the case where k = 2, the Steiner distance

of S = u, v, is exactly the distance between u and v. The Steiner k-Wiener index of G,

denoted SWk(G), which was first introduced by Li, Mao, and Gutman, is defined by

SWk(G) =
∑

S⊆V (G),|S|=k

d(S).

It appears to the Steiner k−Wiener index SWk(G) was studied by Dankelmann [3, 4] under

the term average Steiner Wiener index. Recently, the Steiner Wiener index has received

more and more attention. (see [10, 11])

Here we give an example to show how to compute SWk(G). For the graph in Fig-

ure 1.4, when k = 4, we first present all subsets of order 4 of the set of vertices V (G) =

{v1, v2, v3, v4, v5, v6}, then we compute the Steiner distance d(S). After summing up all

possible subsets S of order 4, we will obtain SW4(G).

• S1 = {v1, v2, v3, v4}, d(S1) = 3;

• S2 = {v1, v2, v3, v5}, d(S2) = 3;
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v1 v2 v3 v4

v6v5

Figure 1.4: An example to show how to compute SW4(G)

• S3 = {v1, v2, v3, v6}, d(S3) = 3;

• S4 = {v1, v2, v4, v5}, d(S4) = 4;

• S5 = {v1, v2, v4, v6}, d(S5) = 4;

• S6 = {v1, v2, v5, v6}, d(S6) = 3;

• S7 = {v2, v3, v4, v5}, d(S7) = 3;

• S8 = {v2, v3, v4, v6}, d(S8) = 3;

• S9 = {v2, v3, v5, v6}, d(S9) = 3;

• S10 = {v2, v4, v5, v6}, d(S10) = 4;

• S11 = {v3, v4, v5, v6}, d(S11) = 4;

• S12 = {v1, v4, v5, v6}, d(S12) = 5;

• S13 = {v1, v3, v4, v5}, d(S13) = 4;

• S14 = {v1, v3, v4, v6}, d(S14) = 4;

• S15 = {v1, v3, v5, v6}, d(S15) = 4;

Then we sum up all values d(S1), · · · , d(S15),

SW4(G) = d(S1) + · · ·+ d(S15) = 3× 7 + 4× 7 + 5 = 54.
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Székely and Wang [15] first studied the number of subtrees of some trees. For a tree

T and a vertex v of T , let FT (v) be the number of subtrees of T that contain v. Let F (T )

denote the number of non-empty subtrees of T . Numerical evidence suggests that there

exists some negative correlation between the Wiener index and the number of subtrees in

trees: extremal trees with minimum Wiener index also maximizes the number of subtrees

and vice versa. Many papers with regard to the number of subtrees have been published,

see for example [1, 14, 16, 17, 28].
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CHAPTER 2

SURVEY OF SPARSE TREES

In this chapter we explore sparse trees that maximize the Wiener index and minimize the

number of subtrees in various classes of trees.

2.1 WIENER INDEX

First, it is well known that the Wiener index is maximized by a path in general trees.

Theorem 2.1. [5] Amongst all trees with a given order n, the path maximizes the Wiener

index.

A binary tree is a tree T such that every vertex of T has degree 1 or 3. A path is

obviously not a binary tree. Among binary trees of given order we have the following.

Theorem 2.2. [7] Amongst binary trees with n leaves, the Wiener index is maximized by

some binary caterpillar.

Along the same line, we are sometimes interested in trees with a given maximum

degree.

Suppose maximum degree ∆ ≥ 2. Let Tn,∆ be the tree obtained from path Pn−∆+1 by

attaching ∆− 1 pendant edges to one of the pendant vertices of Pn−∆+1.

︸
︷︷

︸

v1 v2 vn−δ
v
n−
δ+

1

δ − 1

··
·

Figure 2.1: Tn,∆

Theorem 2.3. [7] Let ∆ be a positive integer more than two, and let T be a tree with n

vertices, which has the maximum degree at least ∆. Then the Wiener index is maximized

by Tn,∆, with equality if and only if T = Tn,∆.
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Corresponding to the maximum degree constraint is the diameter. It has been of inter-

est to study extremal structures, sparse trees in particular, in trees with a given diameter.

The dumbbell D(n, a, b) consists of the path Pn−a−b together with a pendant edges

attached to one pendant vertex of Pn−a−b and b pendant edges attached to the other pendent

vertex. See Figure 2.2.

v1 v2 v3 vn−a−b
a b

Figure 2.2: The dumbbell D(n, a, b)

Theorem 2.4. [6, 13] Let T be a tree on n vertices with k pendent vertices,D(n, bk+1
2
c, bk

2
c)

maximizes the Wiener index.

2.2 THE NUMBER OF SUBTREES

With respect to the number of subtrees, again the path is extremal with minimum value

among general trees.

Theorem 2.5. [15] Amongst all trees with a given order n, the path minimizes the number

of subtrees.

Similarly for binary trees.

Theorem 2.6. [15] Amongst binary trees with n leaves, the number of subtrees is mini-

mized by some binary caterpillar.

For trees with a given maximum degree or a given diameter, the following state that the

same trees that maximize the Wiener index indeed also minimize the number of subtrees.
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Theorem 2.7. [23] Let ∆ be a positive integer more than two, and let T be a tree with

n vertices, which has the maximum degree at least ∆. Then the number of subtrees is

minimized by Tn,∆, with equality if and only if T = Tn,∆.

Theorem 2.8. [25] Let T be a tree on n vertices with k pendent vertices, D(n, bk+1
2
c, bk

2
c)

maximizes the number of subtrees.

2.3 TREES WITH GIVEN DEGREE SEQUENCE

Next we consider a more general case, when the trees with a given degree sequence are

considered. Similar to the binary tree case the sparse trees are caterpillars. Identifying

these sparse caterpillars is, however, very difficult. Letting the backbone of the caterpillar

be P , we can then be more specific about these sparse caterpillars.

We say that a tree satisfies V− properties, if the degrees of vertices on the path P ,

listed from one end to the other end, form a sequence deg(v1), deg(v2), · · · , deg(vk), and

satisfy

deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vj) ≤ · · · ≤ deg(vk),

for some j ∈ {1, 2, · · · , k}.

Theorem 2.9. [26] Amongst all trees with given degree sequence, there exists caterpillars

satisfying the V -property which maximize the Wiener index.

Theorem 2.10. [27] Amongst all trees with degree sequence, there exist caterpillars which

minimize the number of subtrees.
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CHAPTER 3

STEINER WIENER INDEX AND SPARSE TREES

Based on the Steiner distance, the concept of Steiner Wiener index was introduced recently.

We now examine sparse trees with respect to the Steiner Wiener index in different classes

of trees. Our brief survey and study here include both the sparse and dense tree cases, as

well as other related work.

3.1 STEINER WIENER INDEX: SURVEY

Theorem 3.1. [9] Amongst all trees of order n, the star minimizes the Steiner Wiener index,

and the path maximizes the Steiner Wiener index.

Theorem 3.2. [9] For all trees T , we have

SW2(T ) = W (T ),

SW3(T ) =
n− 2

2
W (T ),

SWn−1(T ) = n(n− 1)− p, wherep is the number of leaves of T

Theorem 3.3. [9] If T is a tree, then the Steiner k−Wiener index

SWk(T ) =
∑

e=xy∈E(T )

k−1∑
i=1

(
n1(e)

i

)(
n2(e)

k − i

)
,

where n1(e)(n2(e), respectively) is the number of vertices in T closer to x(y, respectively).

3.2 STEINER WIENER INDEX WITH A GIVEN DEGREE SEQUENCE

For trees with a given degree sequence we can once again show that the sparse tree needs

to be a caterpillar satisfying the V−property.

Theorem 3.4. [24] Amongst all trees with given degree sequence, the caterpillar satisfying

the V− property maximizes the Steiner Wiener index.
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3.3 COMPUTATIONAL RESULTS OF STEINER WIENER INDEX

As an effort to further examine the structure of the sparse caterpillar, we first provide some

computational work.

Let a, b, c, x, and y, describe a chemical caterpillar whose backbone has the following

properties:

• a, b, c, are the number of vertices with degree 4, 3, 2 respectively;

• x, y, are the number of vertices with degree 4, 3 in the left side of the tree respec-

tively;

• v0 is a pendant leaf of the backbone;

• v1, v2, . . . , vx all have degree 4;

• vx+1, vx+2, . . . , vx+y all have degree 3;

• vx+y+1, vx+y+2, . . . , vx+y+c all have degree 2;

• vx+y+c+1, vx+y+c+2, . . . , vx+b+c all have degree 3;

• vx+b+c+1, vx+b+c+2, . . . , va+b+c all have degree 4;

• va+b+c+1 is a pendant leaf of the backbone.

Let k = 4, 5, 6, 7, we compute the values of maxSWi(T ), i = 4, 5, 6, 7, in the case

when T be a chemical caterpillar, the label of T is as follows:

v0 v1 vx vx+1 vx+y
vx+y+1 vx+y+c

vx+y+c+1 vx+b+c
vx+b+c+1 va+b+c

va+b+c+1

· · · · · · · · · · · · · · ·

Figure 3.1: A caterpillar with maximum degree 4
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It is natural to conjecture that the extremal chemical trees that maximize the Steiner k-

Wiener index is “symmetric”, this is indeed what we observed from the tables and formally

stated below.

Here we will give three examples to explain the tables below, which include the differ-

ent value of a, b, c, x, and y. As shown in second line of the left side in Table 3.1, a = 11,

b = 8, c = 2. Since a is odd and b is even, hence x = (11 − 1)/2 = 5, y = 8/2 + 1 = 5,

then we obtain the result of maximum values of SW4 = 12552746. Last line of right side

in Table 3.2, a = 19, b = 11, c = 2. Both a and b are odd, so x = (19 − 1)/2 = 9,

y = (11 + 1)/2 = 6, then obtain the result of maximum values of SW5 = 2040002356.

The ninth line of left side in Table 3.3, a = 12, b = 12, c = 2. Both a and b are even,

so x = 12/2 = 6, y = 12/2 = 6, then we obtain the result of maximum values of

SW6 = 4050773941.

To conclude this thesis, we give a conjecture about the structure of the extremal chem-

ical trees that maximize the Steiner k-Wiener index: For a chemical tree with given degree

sequence d1, d2, · · · , dn, the Steiner k-Wiener index, for k ≥ 4, is maximized when the

chemical tree is of the structure in Figure 3.1 with:

• x = a/2, y = bb/2c if a is even;

• x = (a− 1)/2, y = (b+ 1)/2 if both a and b are odd;

• x = (a− 1)/2, y = b/2 + 1 if a is odd and b is even.
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Table 3.1: Maximum values of SW4 with given degree sequence and the extremal trees.

SW4 a b c x y SW4 a b c x y

12552746 11 8 2 5 5 16699509 12 8 2 6 4

18262227 11 10 2 5 6 20005336 12 9 2 6 4

25874586 11 12 2 5 7 23814099 12 10 2 6 5

35827839 11 14 2 5 8 28179089 12 11 2 6 5

48622178 11 16 2 5 9 33160679 12 12 2 6 6

21869883 13 8 2 6 5 38819716 12 13 2 6 6

30631706 13 10 2 6 6 45224857 12 14 2 6 7

41989999 13 12 2 6 7 69888155 14 14 2 7 7

56480362 13 14 2 6 8 80070401 14 15 2 7 7

74706971 13 16 2 6 9 103980784 14 17 2 7 8

85709642 15 14 2 7 8 70074808 16 11 2 8 5

110935973 15 16 2 7 9 80294671 16 12 2 8 6

141761110 15 18 2 7 10 91668195 16 13 2 8 6

179065245 15 20 2 7 11 104292897 16 14 2 8 7

56768510 17 8 2 8 5 65434039 17 9 2 8 5

75123399 17 10 2 8 6 85924267 17 11 2 8 6

97929150 17 12 2 8 7 111235513 17 13 2 8 7

125945907 17 14 2 8 8 179605763 17 17 2 8 9

201063991 17 18 2 8 10 224519775 17 19 2 8 10

250108870 17 20 2 8 11 70215621 18 8 2 9 4

86087796 19 8 2 9 5 80463451 18 9 2 9 4

111468329 19 10 2 9 6 104533448 18 11 2 9 5

142490188 19 12 2 9 7 190352497 18 16 2 9 8

180040477 19 14 2 9 8 212829627 18 17 2 9 8

225094076 19 16 2 9 9 264130592 18 19 2 9 9

278717737 19 18 2 9 10 293238635 18 20 2 9 10
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Table 3.2: Maximum values of SW5 with given degree sequence and the extremal trees.

SW5 a b c x y SW5 a b c x y

125476340 11 8 2 5 5 272517819 12 10 2 6 5

648225526 11 16 2 5 9 334217003 12 11 2 6 5

918311726 11 18 2 5 10 592958183 12 14 2 6 7

1276107057 11 20 2 5 11 709497719 12 15 2 6 7

245482195 13 8 2 6 5 1179116947 12 18 2 6 9

369359507 13 10 2 6 6 1383858171 12 19 2 6 9

775223742 13 14 2 6 8 1617369687 12 20 2 6 10

1087698601 13 16 2 6 9 302176017 13 9 2 6 5

1498520445 13 18 2 6 10 649560770 13 13 2 6 7

650323169 15 10 2 7 6 1279447903 13 17 2 6 9

921848852 15 12 2 7 7 1747938392 13 19 2 6 10

1281696158 15 14 2 7 8 846890675 16 10 2 8 5

1751421719 15 16 2 7 9 1003332080 16 11 2 8 5

2356293127 15 18 2 7 10 1623642767 16 14 2 8 7

1090509138 17 10 2 8 6 1890468368 16 15 2 8 7

1503151177 17 12 2 8 7 2919018587 16 18 2 8 9

2038146645 17 14 2 8 8 3351046296 16 19 2 8 9

2722856302 17 16 2 8 9 3835022321 16 20 2 8 10

3588975644 17 18 2 8 10 922603736 17 9 2 8 5

4672967991 17 20 2 8 11 1753741345 17 13 2 8 7

1283830534 19 8 2 9 5 3131077766 17 17 2 8 9

2362299333 19 12 2 9 7 4101260229 17 19 2 8 10

3134830449 19 14 2 9 8 1621101744 14 17 2 7 8

4106868832 19 16 2 9 9 776258692 15 11 2 7 6

5317544106 19 18 2 9 10 3840995850 18 17 2 9 8

6811457623 19 20 2 9 11 2040002356 19 11 2 9 6
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Table 3.3: Maximum values of SW6 with given degree sequence and the extremal trees.

SW6 a b c x y SW6 a b c x y

1012780165 11 8 2 5 5 1012780165 11 8 2 5 5

1331264987 11 9 2 5 5 1731853951 11 10 2 5 6

3608813138 11 13 2 5 7 10560454511 11 18 2 5 10

4534950599 11 14 2 5 8 15550588149 11 20 2 5 11

5657460420 11 15 2 5 8 1520069287 12 8 2 6 4

7009819461 11 16 2 5 9 2524690253 12 10 2 6 5

8629912837 11 17 2 5 9 4050773941 12 12 2 6 6

4050773941 12 12 2 6 6 8638448434 13 14 2 6 8

5072056334 12 13 2 6 6 12866164659 13 16 2 6 9

6306285405 12 14 2 6 7 18753342267 13 18 2 6 10

7788997943 12 15 2 6 7 26809726522 13 20 2 6 11

9560684147 12 16 2 6 8 3209798013 14 8 2 7 4

11666519353 12 17 2 6 8 5072598241 14 10 2 7 5

14157618741 12 18 2 6 9 7792737757 14 12 2 7 6

17090630090 12 19 2 6 9 11675925315 14 14 2 7 7

20529253585 12 20 2 6 10 17109278133 14 16 2 7 8

2230809113 13 8 2 6 5 24576550725 14 18 2 7 9

2849499660 13 9 2 6 5 34675147413 14 20 2 7 10

3609554789 13 10 2 6 6 4535536561 15 8 2 7 5

4536872092 13 11 2 6 6 7016085327 15 10 2 7 6

5661003560 13 12 2 6 7 10576941961 15 12 2 7 7

11675925315 14 14 2 7 7 26852307547 17 14 2 8 8

14170985717 14 15 2 7 7 37738910924 17 16 2 8 9

12873364697 15 13 2 7 7 22504194271 19 10 2 9 6

15583925551 15 14 2 7 8 31906141453 19 12 2 9 7

18768967316 15 15 2 7 8 44486984775 19 14 2 9 8

26838534790 15 17 2 7 9 82748051279 19 18 2 9 10
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Table 3.4: Maximum values of SW7 with given degree sequence and the extremal trees.

SW7 a b c x y SW7 a b c x y

1418556619 2 8 20 1 4 36550875 3 4 10 1 1

311943405 2 10 9 1 5 250749064 3 4 17 1 1

9480478 4 1 9 2 0 6815667522 5 17 2 2 2

1410192140 4 9 12 2 4 2733232 5 1 3 2 2

1725148897 6 4 17 3 2 81418949602 7 14 20 3 3

12762797695 6 14 9 3 7 56604679058 7 15 15 3 3

2060679963 6 8 10 3 4 17107655060 7 13 10 3 3

2465287834 6 10 7 3 5 145118866 7 4 3 3 3

80771821986 8 20 5 4 10 11046686401 9 7 13 4 4

90975587497 8 19 8 4 9 269950250613 9 19 15 4 4

19802685951 8 10 14 4 5 81507618756 9 12 18 4 4

22525721449 8 16 3 4 8 4958945486 9 7 8 4 4

17171414855 10 7 13 5 3 299171553379 11 16 16 5 5

533280126619 10 20 17 5 10 298912671768 11 17 14 5 5

298312777485 10 20 11 5 10 747441139 11 1 4 5 5

10984094929 10 8 8 5 4 22636924848 11 9 8 5 5

26005196806 12 7 10 6 3 3494203506 13 1 6 6 6

127990789661 12 16 5 6 8 534919367157 13 14 20 6 6

220140245657 14 12 12 7 6 365324821137 15 10 18 7 7

271271782123 14 9 20 7 4 56191006016 15 9 3 7 7

770114429581 16 12 19 8 6 71824937336 17 5 7 8 8

7950884958 16 1 2 8 0 38406698567 17 4 4 8 8

102326615747 18 3 11 9 1 299353872718 19 4 16 9 9

1187801963929 18 11 20 9 5 90868252330 19 3 7 9 9

441278902696 20 8 9 10 4 1400733246698 19 14 13 9 9

485826390403 20 7 12 10 3 2448113446450 19 17 14 9 9
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