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ABSTRACT

Medical image reconstruction by total variation minimization is a newly devel-

oped area in computed tomography (CT). In compressed sensing literature, it has

been shown that signals with sparse representations in an orthonormal basis may be

reconstructed via l1-minimization. Furthermore, if an image can be approximately

modeled to be piecewise constant, then its gradient is sparse. The application of l1-

minimization to a sparse gradient, known as total variation minimization, may then

be used to recover the image. In this paper, the steepest descent method is employed

to update the approximation of the image. We propose a way to estimate an optimal

step size so that the total variation is minimized. A new minimization problem is

also proposed. Numerical tests are included to illustrate the improvement.
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CHAPTER 1

INTRODUCTION

Medical imaging is a process that provides visual images of the interior of the human

body. These visual images allow for a noninvasive way to examine what goes on inside

of the body. With this procedure, doctors are able to observe, diagnose, and treat

various medical conditions. An accurate interpretation of what is happening on the

inside of the body could mean the retardation or complete circumvention of certain

ailments.

There are many different techniques, such as nuclear and optical imaging, that are

used to obtain medical images. We focus on radiological methods, more specifically

computerized tomography (CT). CT scanning combines x-ray images and computer

processing to generate cross-sectional views, and sometimes three dimensional views,

of the body. The mathematical process of converting x-ray projection data into a

digital image is called image reconstruction.

Image quality is a growing concern in medicine. Image reconstruction techniques

obtain the projection data, perform extensive data analysis and transformation, and

produce a medical image. Traditionally, data is measured, or recorded, in full length

and then compressed [2]. Direct methods are highly accurate due to the high num-

ber of measurements taken. But what happens when radiation, or other potentially

harmful methods, are used to measure the data? We now have other factors to con-

sider, such as safety and radioactive exposure. For this reason, we are interested

in the conditions under which an image may be reconstructed using a significantly

reduced number of measurements. The latter results in compressed data, where the

interpretation, analysis and reconstruction of this data is called compressive sensing
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(CS).

We consider the system Ax = b, where A ∈ Rm×N is the projection matrix,

b ∈ Rm is the projection data, and x ∈ RN is the reconstructed signal. For the reasons

explained earlier, this is usually an underdetermined system, where typically m� N

(for simplicity, N is a perfect square). Assume that x has a sparse representation

in some orthonormal basis. CS theory states that for A satisfying the restricted

isometry property (RIP), this system can be recovered at a high level of accuracy

from fewer measurements m [4, 5, 6]. A highly underdetermined system usually has

infinitely many solutions. However, it has been proven with high probability that

when these conditions are satisfied the solution is unique and is the sparsest solution

(see Theorem A.2.4).

Sparsity is defined as the number of nonzero elements of a vector. Inexact sparisty

occurs when a vector has entries that are nonzero but are within a very small neigh-

borhood of 0. A vector is called k sparse if it contains k nonzero entries. (For an

inexact k-sparse vector, we consider the k largest entries, while very small entries are

considered to be zero.) Finding the sparsest solution means identifying the zero and

nonzero components. The sparsest solution problem is:

min
x∈RN

‖x‖0 subject to Ax = b, (P0)

where ‖ · ‖0 represents the number of nonzeros of x.

(P0) is a nonconvex problem and is not easily solved. Consequently, the l1-

minimization problem was proposed as follows:

min‖x‖1 subject to Ax = b. (P1)

where ‖x‖1 =
∑
i

|xi|. The l1-minimization problem solves for the x with the least
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total magnitude in hopes that the approximation coincides with actual solution. For

a sufficiently sparse x and for A satisfying certain conditions, (P0) and (P1) have

the same solution [2]. However, the l1-minimization problem measures magnitude

and not sparsity. In general, it tells us nothing about the locations of the nonzero

entries. Therefore the results are not always the most accurate. In fact this method

is inadequate for any x with entries that have relatively large, or small, magnitudes.

This restriction led to the formulation of the reweighted l1-minimization problem.

Instead of solving (P1), we solve the weighted problem

min‖WRx‖1 subject to Ax = b, (P2)

where WR = diag{w1, w2, ..., wN} ∈ RN×Nwith wi = 1
|xi|+ε , i = 1, . . . , N (ε being

used to avoid division by 0) are weights. The idea is that WR is nearly inversely

proportional to x so that the affects of larger magnitudes are minimized [1]. By

proportionality, the smallest xi will have the largest weight while the largest xi will

have the smallest weight. This weight function also reduces the affect of individual

magnitudes on the l1 norm.

Suppose the system Ax = b has a k-sparse solution x∗. Consider the case of

noisy measurements u = Ax+ e, where e is a noise vector. Then the error for the l1

minimization has an upperboud of 2α
1−ρ · ε, with ρ =

√
2δ

1−δ , δ ∈ (0,
√

2− 1), and α > 0

(these values depend on the properties of A) [3]. For the reweighted minimization

problem, the error has an upperbound of 2α
1+ρ
· ε [11]. As ρ approaches its limit of 1,

the upperbound for the l1-minimization problem increases to∞ while the reweighted

problem remains bounded. Thus, the reweighted problem provides a more accurate

approximation than the unweighted l1-minimization problem because its error has a

smaller upperbound.
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Though the reweighted l1-minimization problem outperforms the unweighted l1-

minimization problem, it idoes not necessarily provide the best choice of weights for

very small or very large entries of x. Further improvement of the weight function is

proposed by Zhu and Li [1], leading to what is known as the generalized l1 greedy

method. Let M = ‖x0‖∞ and initialize 0 ≤ α ≤ β ≤ 1, γ ≥ 1000, δ ∈ (0, 1
1000

],

s ∈ (0, 1] and ε > 0. The generalized l1 greedy algorithm is:

min‖WGx‖1 subject to Ax = b, (P3)

where WG is a diagonal matrix whose diagonal entries are given by

wi =


δ, for |xi| ≥ βMsk−1

γ, for |xi| < αMsk−1

1
|xi|+ε , otherwise.

This is an improvement upon the reweighted l1 minimization problem in that it further

exaggerates the weights of smaller and larger entries of x by making those weights

even larger or smaller, respectively.

Unfortunately, not all signals have sparse representations in an orthonormal basis.

Is it possible to reconstruct a signal given that it does not satisfy sparsity conditions?

Recoverability depends on the properties of the subspace Ω containing x. Exact

recovery was originally guaranteed for any x satisfying the condition

‖x‖0 ≤
m

log(N
m

)
,

where m and N are the dimensions of projection matrix A [8, 10]. Recoverability

results were extended such that exact recovery is also ensured for x satisyfing

‖x‖0 ≤
c21
4
· m

log(N
m

)
,
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where c1 > 0) [2]. This extension implies that the measurement matrix need only

to be in the null space of some matrix B, where the columns of B are Gaussian

vectors with independent standard normal entries [8]. Consider an image x that can

be approximately modeled to be piecewise constant (here, we let the image represent

a signal with some additional properties). Then the gradient µ of x is sparse. In this

context, the application of l1-minimization to the gradient is known as total variation

minimization.

For a projection matrix A and corresponding projection data b, the total variation

minimization problem is

min‖x‖TV subject to Ax = b. (P4)

We enhance the recoverability of x∗ by improving the selection of step size. A new

problem is also presented as follows:

min‖x‖TV + λ‖µ‖0 subject to Ax = b, (P5)

where λ ∈ (0, 1
2
]. Unlike (P4), (P5) also takes into account the sparsity level of the

gradient.



CHAPTER 2

TOTAL VARIATION

In this chapter we will introduce notations, definitions, and the properties of the

total variation function. We will also discuss the necessity of using both forward and

backward differences to calculate the gradient of an image.

2.1 Properties

Total variation (TV) is real-valued function that measures the difference, or variation,

between the entries of a matrix. The TV functional is convex and is not differentiable.

Convexity guarantees that the minimizer is unique. TV minimization is the applica-

tion of l1 minimization to the gradient of an image x. TV minimization is an edge

preserving method for denoising images was introduced by Rudin, Osher and Fatemi

in a praised 1992 paper[12].

Throughout this paper, for any vector a ∈ RN , where N = n2, we let â =

reshape(a, n, n). In the discrete setting, the total variation of a square image x is

defined as

TV (x) = ‖x‖TV =
∑
t

|µt| =
∑
i,j

√
((Dx)1i,j)

2 + ((Dx)2i,j)
2, (1)

where (Dx)1i,j = x̂i+1,j − x̂i,j and (Dx)2i,j = x̂i,j+1 − x̂i,j and µ is the gradient of x.

Here, we assume that x̂ is piecewise constant so that the gradient is sparse. With very

little changes, we can apply the iterative methods mentioned earlier to the gradient

in order to solve for x.
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2.2 Derivation

In our implementation of each algorithm, we let (Dx)i,j be a 4 dimensional vector of

forward and backward differences (an idea proposed in [9]). That is,

‖x‖TV =
∑
i,j

√
1

2
[((Dx)1i,j)

2 + ((Dx)2i,j)
2 + ((Dx)3i,j)

2 + ((Dx)4i,j)
2], (2)

where (Dx)3i,j = x̂i−1,j − x̂i,j, (Dx)4i,j = x̂i,j−1 − x̂i,j, and (Dx)1i,j, (Dx)2i,j as defined

before. (It is important to note that defining (Dx) in this way results in a gradient

that is less sparse.)

Consider an element µ̂
(p)
i,j of a gradient matrix µ̂(p), with p being the number of

directions used to calculate the gradient (total variation). If either x̂i+1,j 6= x̂i,j or

x̂i,j+1 6= x̂i,j, then µ̂
(2)
i,j is a nonzero entry. That is, µ̂

(2)
i,j =

√
((Dx)1i,j)

2 + ((Dx)2i,j)
2 >

0 ⇒
√

1
2
[((Dx)1i,j)

2 + ((Dx)2i,j)
2 + ((Dx)3i,j)

2 + ((Dx)4i,j)
2] = µ̂

(4)
i,j > 0. Vice versa,

suppose that x̂i+1,j = x̂i,j+1 = x̂i,j and, without loss of generality, x̂i−1,j 6= x̂i,j. Then

µ̂
(4)
i,j > 0 while µ̂

(2)
i,j = 0. (Note that µ̂

(4)
i,j = 0 ⇒ µ̂

(2)
i,j = 0.) The calculation of total

variation at a given point in two directions results in the loss of information. Any

information obtained in µ̂(2) is also included in µ̂(4). That is, the nonzero entries that

are located from variation measured at two directions are still recorded as nonzero

entries in µ̂(4).

We see that information is excluded at certain boundary points of the image. Let

Fi,j = {x̂i+1,j, x̂i−1,j, x̂i,j+1, x̂i,j−1} be the set of entries corresponding to x̂i,j, where

these entries are the surrounding elements. Any component x̂i,j is considered a bound-

ary point if there exists an x̂b ∈ Fi,j such that x̂b 6= x̂i,j. For certain boundary points,

the corresponding gradient in the 2 direction case is recorded as 0 so that there is no

variation. If there is no variation at this point, then it is not necessarily a boundary.
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(a) (b)

Figure 2.1: Visual comparision of the reconstructed Shepp Logan phantom at (a) 2 directions

and (b) 4 directions via TV minimization.

Rather, the variation is recorded at the entries that surround the actual boundary

point. The resulting image is less sharp and the algorithm cannot efficiently recon-

struct the boundaries, nor can it distinguish which entries are causing the variation

at the surrounding points. (See Figure 2.1)

Calculation of total variation at any given component that uses partial informa-

tion creates an incomplete image. There is no way to explicitly connect the entries

that surround the component. Information pertaining to the set of backwards dif-

ferences at this component may only be obtained through the calculation of forward

differences at two other seperate components.

Additionally, there is an extra emphasis placed on the variation between any

consecutive entries. Therefore, if there is zero variation between a given pair of

entries, then the variation is reflected as truly being zero. Likewise, if variation exist

between a pair, then that variation is reflected at both entries and is twice minimized

with respect to their surrounding entries.

Though using 4 directions causes an increase in the sparsity level, the total
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variation at each x̂i,j is more accurately reflected. This option quickly distinguishes

the boundary locations of the constant pieces in the image. In doing so, the algorithm

does not waste time in determining whether or not the variation at a given point is

truly 0. The quick identification of nonzero entries immediately reflects in the weight

function, leading to a more accurate descent direction.



CHAPTER 3

STEP SIZE

In this chapter we will discuss the importance of step size, as well as the advantages

and disadvantages of using a geometric sequence as the sequence of step sizes. We

will also provide background information for strip based projection and block cyclic

projection for CS (BCPCS).

3.1 Block Cyclic Projection

In the code, we use strip based projection to generate the projection matrix A with

the assumption that an image will be scanned using equidistant parallel X-rays. For

an n by n image, the strip based model will intersect, at most, n entries at one time.

Suppose that at a certain scan direction we have a resulting matrix A ∈ Rm×N . Since

each row of A has at most n nonzeros entries, it follows that A is highly sparse, and

thus compressible. We take advantage of this by only including the nonzero entries of

A and update A such that A ∈ Rm×n, where the entries of A record the locations of

the non-zero entries of x and are zero otherwise. We then update of the approximation

x by applying a cyclic orthogonal projection at each block (BCPCS).

Iterative methods are progressions that begin with an initial guess x0 and gener-

ate a sequence of iterates such that converges to x∗. The (k+ 1)-th iterate is defined

as xk+1 = xk + τkdk, where k ≥ 0, xk, dk ∈ RN and τk ∈ (0, 1). Here, xk is the

previous iterate, dk is the steepest descent direction of the total variation of xk, and

τk represents the step size. In this paper, dk is a unit vector.

Consider a projection matrix A ∈ Rm×N and the corresponding projection data
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b ∈ Rm, where A = [A1, . . . , Ar]
T contains r blocks corresponding to the scanning

directions of an image and b = [b1, . . . , br]
T . Let x∗ be the solution to (1). We solve

(1) for x∗ using the steepest descent method. We use Algorithm 1 to solve the total

variation minimization problem. Algorithm 2 solves the same problem using weights.

Algorithm 1: TV Minimization for CT

1 Generate x0 by initial guess

2 for k = 1 to kmax do

3 for j = 1 to r do

4 update xk via BCPCS for the system Ajxk = bj

5 calculate the gradient µ of xk

6 calculate the steepest descent direction dk of µ

7 solve τk = arg min
τ∈(0,1)

‖xk + τkdk‖TV by numerical method

8 update xk = xk + τkdk

9 end

10 update xk+1 = xk

11 exit if a stop criterion is satisfied

12 end
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Algorithm 2: Generalized TV Minimization for CT

1 Generate x0 by initial guess or reweighted l1 minimization

2 Set M = ‖x0‖∞ and initialize 0 ≤ α ≤ β ≤ 1, γ ≥ 1000, δ ∈ (0, 1
1000

],

s ∈ (0, 1] and ε > 0

3 for k = 1 to kmax do

4 for j = 1 to r do

5 update xk via BCPCS for the system Ajxk = bj

6 calculate the gradient µ of xk

7 update the diagonal matrix W k by wki =


δ, for |xi| ≥ βMsk

γ, for |xi| < αMsk

1
|xi|+ε , otherwise.

8 calculate the steepest descent direction dk of µ

9 set a reweighted direction dk = W kdk

10 solve τk = arg min
τ∈(0,1)

‖xk + τdk‖TV by numerical method

11 update xk = xk + τkdk

12 end

13 update xk+1 = xk

14 exit if a stop criterion is satisfied

15 end
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3.2 The Influence of the Step Size

We need to determine the amount of influence that the step size has on the conver-

gence rate of this sequence of iterates. Is the task of ”finding an optimal τ” one worth

pursuing? For a simple test, we will reconstruct the 2D Shepp Logan phantom, a 256

× 256 image, using reweighted l1 minimization and provide results at small perturba-

tions in the parameter τ . Let {τk} be a geometric sequence of step sizes corresponding

to the sequence of iterates {xk} with τ0 = 0.7 and a common ratio r. We test this

sequence of step sizes as being unbounded below, bounded below by 0.001, and with

a change in ratio, respectively. The algorithm performs a maximum of 85 iterations

and stops if the relative error is less than tol.

From Table 3.1, it is obvious that step size has a very dramatic affect on the

performance of the algorithm. For this simple example, and at only one value of τ0,

we have very different results that are perhaps most obvious in sparsity level and error.

(Recall that we are actually seeking out the sparsest solution.) We need a general

procedure that will yield acceptable results without having to worry ourselves with

whether or not to bound τ or what is the best common ratio. Later in this paper, we

will use numerical methods to find a suitable τ .
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τ Ratio Iterations Total Variation Relative Error Sparsity

0.7 0.9 78 1919.53 0.000963 3852

0.7 (bounded) 0.9 85 1942.17 0.001368 16128

0.7 0.7 85 2217.49 0.153821 49449

Table 3.1: We reconstruct the Shepp Logan 256 phantom with tol = ε = 0.001 and a

maximum of 100 iterations. (1) τ unbounded and r = 0.9, (2) τ > ε and r = 0.9, and

(3) τ unbounded and r = 0.7. The algorithm stops once the relative error is less than our

tolerance or if the algorithm reaches the maximum number of iterations.

3.3 Disadvantages of a Geometric Sequence

We now examine the case where the sequence of step sizes is chosen to be geometric.

Iterative algorithms first generate x0 and the corresponding descent direction d0. The

geometric series then assigns a given number τ0 as the initial step size. The idea of the

geometric series is this: At the first iteration, a generous amount of descent should

be applied to x0. That is, we begin with a step size τ0 close to 1. Successive step

sizes are defined as τk = τ0r
k. Thus, the sequence {τk} is monotonically decreasing.

A geometric sequence is typically used because it guarantees the convergence of

the BCPCS algorithm, which requires that
∑
k

τk <∞. While the choice of a geometric

sequence has performed well, it is not necessarily conducive for quick convergence. A

major flaw of a geometric sequence of step sizes is that it does not take into account

the descent direction. Another issue is that this type of sequence is independent

of the image itself. The geometric sequence is always fixed and has no correction

capabilities.

Though it is generally the case that τk+1 < τk, this is not necessarily true for all
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(a) τ∗k ≈ 0.2 (b) τk = 0.35 (c) τk = 0.05

Figure 3.1: Total Variation: (a) Observe the location of the minimum at τ∗k at the current

iteration, (b) TV at the next iteration if τk is too large, (c) TV at the next iteration if τk

were too small

k. How do we determine the amount of descent to apply to xk? Though the amount

of descent needed may be small, it is possible that the geometric step size is not small

enough. Hence, the image is still not updated to the best possible approximation.

Furthermore, what happens if the need for descent slightly increases at some xk?

Suppose we want to minimize the total variation of a certain image. Suppose we

are at the (k + 1)-th iteration and want to determine a good step size τk. Figure 3.1

shows the differences in potential total variation at the next iteration when τk 6=

arg min
τ∈(0,1)

‖xk + τkdk‖TV in the absence of BCPCS. Figure 3.1a shows the τ ∗k at which

the lowest possible total variation is achieved for the (k+ 1)-th iteration. Figure 3.1b

shows the total variation graph at the next iteration if the step size is chosen such

that τk > τ ∗k while Figure 3.1c shows what happens if τk < τ ∗k . From this example

we see that in overestimating τk, the total variation for xk+1 (given at τ = 0), may

not decrease by much, if at all. In fact, the graphs in Figures 3.1a and 3.1b are

practically the same. In other words, ‖xk+1‖TV ≈ ‖xk‖TV . We also observe that in

the case where τk < τ ∗k , we have ‖xk+1‖TV < ‖xk‖TV . Obviously this is because dk is

a descent direction. Therefore ‖xk + τkdk‖TV < ‖xk‖TV for all τk (0, τ ∗k ].
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It is better to underestimate τk than to overestimate it. Since the right side of

τ ∗k represent values at which there is too much descent is applied, this side shoots

up very quickly. By continuity, ∃ε > 0 such that ‖xk + τkdk‖TV < ‖xk‖TV for all

τk ∈ (τ ∗k , τ
∗
k + ε). Though we acknowledge that it is possible to choose a τk ∈ (τ ∗k , 1)

such that ‖xk+1‖TV < ‖xk‖TV , on average this does not happen. Choosing a step size

that is larger than the optimal step size does not guarantee that the total variation of

the approximation will be reduced. It is by chance that Figure 3.1b does not display

horrible results. On the other hand, choosing τk such that 0 < τk < τ ∗k is much safer

because it guarantees that the total variation of xk+1 is at least smaller than that of

xk; however, it does not yield in the lowest possible total variation of xk+1. Figure B.1

shows the total variation of xk+1 when τk ≈ τ ∗k .

Now consider the Shepp Logan and Cardiac phantoms (see Figure B.2) and their

respective gradients. These images have their own unique properties. The Shepp

Logan phantom is much more piecewisely constant than the Cardiac phantom. For

that reason, the gradient of the Shepp Logan phantom has a lower sparsity level than

the gradient of the cardiac phantom. Therefore the approximations for the cardiac

phantom will converge more slowly than that of the Shepp Logan phantom, and yet

(given that τ0 and r are the same in both methods) the same exact sequence of step

sizes will be used to update both images. It is clear that this could present a problem.

We need a sequence of step sizes that is customized for each image. Beginning

with some random τ0 could definitely sabotauge the convergence rate of the algorithm

since the subsequent step sizes are all dependent on the first. If τ0 is a horrible choice

for x0, and even if it is a good choice, we have no control over the behavior of the

algorithm. That is, if at some τk, the algorithm took a turn for the worst, we would

have no way of correcting it. We could only hope that the behvior of the image
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eventually rebound to align itself with the step size. We need step sizes that are

indepent of themselves and dependent on the behavior of the objective function.

3.4 Determining the Optimal Step Size

The total variation function (1) is not a differentiable function of x. However, when

we replace xk+1 with xk + τdk, the total variation becomes a function of τ . This

simple substitution results in a differentiable function of τ , which we denote as φ(τ) =

‖xk+τdk‖TV for a given x and d. Since we know the values xk and dk, minimizing this

function at the (k + 1)-th iteration is the same as solving for the (k + 1)-th optimal

step size, where τ ∗k+1 = arg min
τ∈(0,1)

φ(τ).

Expanding φ(τ) yields

φ(τ) = ‖xk+1‖TV = ‖xk + τdk‖TV

=
∑
i,j

√
[(x̂k + τ d̂k)i+1,j − (x̂k + τ d̂k)i,j]2 + [(x̂k + τ d̂k)i,j+1 − (x̂k + τ d̂k)i,j]2.

Setting (Dx)1i,j = (x̂k + τ d̂k)i+1,j − (x̂k + τ d̂k)i,j and (Dx)2i,j = (x̂k + τ d̂k)i,j+1 − (x̂k +

τ d̂k)i,j, we get

φ′(τ) =
dφ

dτ
=

∑
i,j

[(Dx)1i,j
2

+ (Dx)2i,j
2
]′

2 ·
√

(Dx)1i,j
2

+ (Dx)2i,j
2

=
∑
i,j

(Dx)1i,j · ((Dx)1i,j)
′ + (Dx)2i,j · ((Dx)2i,j)

′√
(Dx)1i,j

2
+ (Dx)2i,j

2

=
∑
i,j

(Dx)1i,j · (∆dk)1i,j + (Dx)2i,j · (∆dk)2i,j√
(Dx)1i,j

2
+ (Dx)2i,j

2
,



18

where (∆dk)
1
i,j = (d̂k)i,j − (d̂k)i+1,j and (∆dk)

2
i,j = (d̂k)i,j − (d̂k)i,j+1. For simplicity,

we may rewrite φ′(τ) as ∑
i,j

g(τ)i,j
h(τ)i,j

where

g(τ)i,j = (Dx)1i,j · (∆dk)1i,j + (Dx)2i,j · (∆dk)2i,j (2)

and

h(τ)i,j =
√

((Dx)1i,j)
2 + ((Dx)2i,j)

2, (3)

with h(τ)i,j > 0 for all τ . It is important to note that when h(τ)i,j = 0 this means

that the corresponding gradient element µi,j is zero and this element is not included

in the calculation of total variation.

Then the second derivative is calculated to be

φ′′(τ) =
d2φ

dτ 2

=
∑
i,j

h(τ)i,j · g′(τ)i,j − h′(τ)i,j · g(τ)i,j
(h(τ)i,j)2

=
∑
i,j

h(τ)i,j · [((∆dk)1i,j)2 + ((∆dk)
2
i,j)

2]− g(τ)i,j
h(τ)i,j

· g(τ)i,j

(h(τ)i,j)2

=
∑
i,j

(h(τ)i,j)
2 · [((∆dk)1i,j)2 + ((∆dk)

2
i,j)

2]− (g(τ)i,j)
2

(h(τ)i,j)3

with g(τ)i,j and h(τ)i,j previously defined in (2) and (3) respectively.

Theorem 3.4.1. Let xk+1 = xk + τdk be the kth approximation to x∗. Then φ(τ)

concaves upward.
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Proof. Suppose that µi,j is nonzero. Fix i, j, and τ ∈ (0, 1).

(h(τ)i,j)
2 · [((∆dk)1i,j)2 + ((∆dk)

2
i,j)

2]− (g(τ)i,j)
2

= (((Dx)1i,j)
2 + ((Dx)2i,j)

2) · [((∆dk)1i,j)2 + ((∆dk)
2
i,j)

2]− ((Dx)1i,j · (∆dk)1i,j + (Dx)2i,j · (∆dk)2i,j)2

= ((Dx)1i,j(∆dk)
1
i,j)

2 + ((Dx)1i,j(∆dk)
2
i,j)

2 + ((Dx)2i,j(∆dk)
1
i,j)

2 + ((Dx)2i,j(∆dk)
2
i,j)

2

− ((Dx)1i,j(∆dk)
1
i,j)

2 − 2(Dx)1i,j(∆dk)
2
i,j(Dx)2i,j(∆dk)

1
i,j − ((Dx)2i,j(∆dk)

2
i,j)

2

= ((Dx)1i,j(∆dk)
2
i,j)

2 − 2(Dx)1i,j(∆dk)
2
i,j(Dx)2i,j(∆dk)

1
i,j + ((Dx)2i,j(∆dk)

1
i,j)

2

= [((Dx)1i,j(∆dk)
2
i,j)

2 − ((Dx)2i,j(∆dk)
1
i,j)

2]2

Therefore, (h(τ)i,j)
2 · [((∆dk)1i,j)2 + ((∆dk)

2
i,j)

2]− (g(τ)i,j)
2 ≥ 0 for all i, j and

φ′′(τ) =
∑
i,j

(h(τ)i,j)
2 · [((∆dk)1i,j)2 + ((∆dk)

2
i,j)

2]− (g(τ)i,j)
2

(h(τ)i,j)3
> 0

Since the total variation function is concave upward, we may now approximate

the root of φ′(τ) through the utilization of certain numerical methods.
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NUMERICAL METHODS FOR STEP SIZE

In this chapter, we use the bisection method and newton’s method to approximate the

optimal step size. Since the general trend in iterative methods is that τk+1 ∈ N∗(τk, ε),

we assume this to be true and use τk to calculate τk+1. We discuss the advantages

and disadvantages of each method. (Please note that our step size τ is only updated

at the first block at each iteration.)

4.1 Newton’s Method

First, consider using Newton’s method in solving for the optimal step size τk. New-

ton’s method is known to converge very quickly given that the initial guess is within

a reasonable ”distance” of the actual solution. We use Newton’s method to solve the

problem φ′(τ) = 0.

Newton’s method requires the computation of the second derivative. In applying

Newton’s Method, we update τk as follows:

τk = τk−1 −
φ′(τk−1)

φ′′(τk−1)

and use Algorithm 3 to implement it.

The disadvantage of Newton’s method is that the choice of initial step size τ0 is

crucial. Consider a very small ε > 0 and δ > ε. During simulations, the graph φ′(τ)

is extremely steep for most τ ∈ N∗(τ ∗, ε) (see Figure 4.1). Furthermore, for τ not in

N∗(τ ∗, δ), the graph is more shallow. Since Newton’s method uses the tangent lines

to solve for a root, it follows that a slight overestimation (or underestimation) of τ ∗

would cause the approximation τk to be negative.
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Algorithm 3: Newton’s Method for Step Size at kth step

1 Generate τk0 by initial guess or numerical method using τk−1..

2 Set tk = i = j = l = 0, τk = t = τk0 and t1 = τk−1. Initialize ε = 10−(5+dg1∗ke),

tol1 = 0.001 and tol2 = 10bg2∗kc, with g1 ∈ [ 1
20
, 1
10

] and g2 ∈ [ 1
20
, 1
5
]

3 If φ′(1) ≤ 0, return

4 while i < 5

5 Calculate φ′(τk)
φ′′(τk)

.

6 Set t2 = τk

7 while φ′(τk)
φ′′(τk)

− j ≥ τk or φ′(τk)
φ′′(τk)

+ j ≤ τk − 1

8 If φ′(τk)
φ′′(τk)

≤ τk, update t2 = 0.8 · t2, else update t2 = 1.2 · t2.

9 Generate τk via bisection method on [0, t2].

10 If τk − φ′(τk)
φ′′(τk)

∈ (0, 1), update j = 1 and break.

11 If l > 3, break, else update l = l + 1.

12 end

13 Update τk = τk − φ′(τk)
φ′′(τk)

.

14 if τk ∈ (0, 1)

15 If (|φ′(τk)| ≤ tol1) or (|φ′(τk)| ≤ tol2 and i == 4), return.

16 else

17 If |φ′(t1)| ≤ tol2, update τk = t1 and return.

18 Otherwise, update τk = t1 and return.

19 end

20 Store t1 = τk and update i = i+ 1.

21 end

22 output τk
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Figure 4.1: Graph of the first derivative, φ′(τ).

In this algorithm, the tolerance tol1 is nearly 0 while the tolerance tol2 increases

as the iterations progress. This increase in the second tolerance is to accommodate

for the drastic increase in the slope at some step sizes that are within a reasonable

distance of τ ∗. Therefore, the slope of the current approximation for step size, τ , is

checked at each iteration of Newton’s method to see if it is nearly 0. Should this not

be the case, then the slope at τ is checked at the last iteration of Newton’s method to

see if it is within a reasonable distance of τ ∗. In either case, choose τk = τ . Otherwise,

either the previous approximation is used or the initial guess (which, in our case, is

calculated using the bisection method).

Observe Figure 4.2. For a fixed τ such that φ′′′(τ) = 0, |τ ∗ − τ | is arbitrarily
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Figure 4.2: (a) Observe the location of the root, τ∗ ≈ 0.0338, of the first derivative and the

root, τ3 ≈ 0.0349, third derivative. (Note: the first derivative graph is stretched for better

observations.)

small. (The central difference formula φ′′′(τ) ≈ φ′(τ+h)−2φ′(τ)+φ′(τ−h)
h2

, h > 0, along

with observations, are used to confirm this statement.) This causes the method to

diverge if τ0 is not already a highly accurate approximation of τ ∗. Therefore, it is

almost useless to put in the extra effort to generate a suitable initial step size. Thus,

we see that a general application of Newton’s method yields unfavorable results.
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4.2 Bisection Method

The bisection method is ideal for finding an optimal step size. Since step size τ is

restricted to values between 0 and 1, the bisection method is able to find τ relatively

quickly. The bisection method only requires the computation of the first derivative.

For φ(τ) defined on any interval [a, b] ⊂ [0, 1], let {[ak, bk]} be the sequence of intervals

determined by the bisection method. If a minimum exists, then continuity ensures

that ∀ε > 0,∃δ > 0 such that |φ′(τ)| < ε whenever bk − ak < δ for some k. The

bisection method solves the problem for optimal step size with high accuracy, where

the choice of δ ∈ (0, 10−k/M ] (for some M ∈ Z) directly influences the accuracy of

selection.

In general, the step size in bisection method is updated as

τk = ak

where [ak, bk] is the interval containing τ ∗k and satisfies the condition bk − ak < δ. By

defining τk as the left endpoint, we have that‖xk+1‖TV < ‖xk‖TV . This is a reasonably

accurate approximation of τ ∗k . It is obvious that τk most likely underestimates τ ∗k ;

however, the narrowness of the interval, along with the guarantee that the minimizer

is contained within this interval, ensures that we choose a step size that is within an

acceptable distance of the optimal step size.

The bisection method uses two instances in solving for step size. The first is used

for an approximation of the initial step size τ0, and the second for all subsequent τk.

We call this method as follows:

τk =


bisection(x̂k, d̂k, Ŵ k, 1), for k = 0

bisection(x̂k, d̂k, Ŵ k, τk−1), otherwise
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and it is executed as shown in Algorithm 4 on a given interval [a, b].

Algorithm 4: Bisection Method for Step Size at kth step

1 Set a = 0 and b = τk−1. Initialize δ = 10dg1∗ke and tol = 10bg2∗kc, with

g1 ∈ [ 1
20
, 1
10

] and g2 ∈ [ 1
20
, 1
5
].

2 If |φ′(b)| ≤ tol, update τk = b and return.

3 If φ′(1) < 0, update τk = τk−1 and return.

4 while b− a > δ

5 c = a+b
2

6 If |φ′(c)| ≤ tol, update τk = c and return.

7 If φ′(a) and φ′(c) have the same sign, update a = c.

8 If φ′(b) and φ′(c) have the same sign, update b = c.

9 If a 6= 0, update τk = a. Otherwise, update τk = b.

10 end

11 output τk

This algorithm searches for τ0 on the interval (0, 1). In subsequent iterations, the

algorithm computes τk using the interval (0, τk−1], again with the assumption that

τk < τk−1. In the case that the minimum is not contained within this interval (this is

not usually the case), the algorithm searches interval [τk−1, 1].

If (0, 1) contains no minimum, then φ(τ) is monotonically decreasing on the

interval and the algorithm returns a default step size according to the behavior of the

function. At the kth step, τk = τk−1 is chosen for a default step size. (This number

was chosen after many numerical tests and there is currently no formal proof to show

that it is a good choice.) If the condition φ′(0) < 0 < φ′(1) is satisfied, then the

bisection method is executed.
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4.3 Comparision Results

This section is used to analyze the performance of both methods. Each method has

its own set backs. In general, however, both methods yield better results than a

geometric sequence and eliminate the need to determine a τ0. The results shown are

for the 256 × 256 Shepp Logan Image, whose representation has a sparsity level of

3736 and total variation 1905.6. The geometric sequence of step sizes is generated

using τ0 = 0.7 and ratio r = 0.9.

It is obvious that applying a weight function negatively affects the performance of

Newton’s method. However, we see that the bisection method yields far better results

than the geometric method in error, total variation and computational time. Though

the results for the geometric sequence are good, these results are for a specific τ0 and
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Comparison

Algorithm Method Total Variation Rel. Error Sparsity Iterations CPU Time

TV Min.
Geometric 2060.86 0.109178 10582 100 106.546 s

Bisection 1861.41 0.070389 7628 100 130.743 s

Newton’s 1858.76 0.040523 6004 100 133.153 s

GTV

Geometric 1920.58 0.001092 3736 72/100 80.007 s

Bisection 1908.36 0.000998 3736 57/85 66.993 s

Newton’s 2723.24 0.261017 30648 72/100 98.523 s

Table 4.1: We compare the performance of the geometric sequence to that of the bisection

and newton methods. Conditions:100 max iterations and relative error ‖xk−x
∗‖

‖x∗‖ < tol, where

tol = 0.001.

ratio. The results for the bisection method are, as mentioned before, independent

of an initial guess. Table 4.1 gives the results for the two methods. The main

disadvantage of employing numerical methods is the increase the number of function

calls. The bisection method is heavily dependent on the interval [ak, bk]. At each

iteration, the choice of step size is at most accurate to the decimal place of δ. This

presents two problems. The first is that accuracy of τ is limited. The second is that

the sequence of τk is, in a sense, bounded. Though there are some disadvantages,

these are insignificant in comparison to the benefits.
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A NEWLY PROPOSED PROBLEM

In each of the minimization problems, the primary focus is to minimize the total

variation of x, that is, the l1-norm of the gradient of x. The development of the weight

functions of the reweighted and generalized l1 greedy problems are based upon the

magnitudes of the components of gradient. Though these methods are effective, it is

important that we keep in mind that our ultimate goal in to minimize the sparsity of

the gradient rather than the sum of the magnitudes of its ”weighted” components.

It was mentioned earlier that (P0) is a nonconvex problem. Consider the gener-

ated sequence of approximations to the matrix representation x of a piecewise con-

stant image. As stated earlier, we are guaranteed that a unique solution exists.

However, the earlier approximations of this sequence are not as piecewisely constant

as the actual image. Therefore, the l0-minimization problem cannot be solved di-

rectly. However, if both the total variation and the sparsity level are considered, then

we improve the approximation xk at the kth step. Therefore consider the problem

min‖W1x‖TV + λ‖W2µ‖0 subject to Ax = b, (5.1)

where λ ∈ (0, 1
2
], and use this problem to determine an optimal step size. That is, we

solve the usual weighted problem and use a step size, τk, such that

τk = arg min
τ∈(0,1)

‖W1(xk + τdk)‖TV + λ‖W2µ‖0

where µ is the gradient corresponding to xk + τdk.

A CT scan will obtain a large amount of data from the given object. For this

reason, the earlier gradients usually have a very large sparsity level. It would be

unwise to use the full measure of ‖µ‖0 for reasons mentioned earlier. Therefore, only

a small percentage of the sparsity level of the gradient is considered.
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The l0 norm is implemented approximately. For sufficiently small ε > 0, ‖µ‖0 ≈∑
i,j

φi,j(τ)

φi,j(τ)+ε
. Therefore, we implement (5.1) by minimizing

f(τ) = φ(τ) + λ · ρ(τ) (5.2)

over the interval (0, 1), where ρ(τ) =
∑
i,j

φi,j(τ)

φi,j(τ)+ε
. It is obvious that the function f(τ)

is both continuous and differentiable so that numerical methods are still employed in

finding an optimal step size.

Determining a reasonable weight for λ can be somewhat difficult. After several

tests, λ = 0.1 is chosen to reconstruct the two 256 × 256 phantoms. It is important

to note that the choice of lambda is also dependent on the size of the image. A larger

image may require a different choice for λ. Though there may take some time to

choose a ”good” weight, the efficiency of the algorithm improves noticably.
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NUMERICAL RESULTS

We test the new minimization problem and reconstruct two phantoms: Shepp Logan

(sparsity level: 3736, total variation: 1905.6) and Cardiac Phantom (sparsity level:

14392, total variation: 2698.2). The Shepp Logan phantom has 5.7 percent sparsity

while the Cardiac phantom has 21.9 percent sparsity. (Please note that images that

are more piecewisely constant converge at a faster rate and the produce approxima-

tions that are more accurate.) The sparsity level is measured differently for the two

phantoms due to the extremely high sparsity of the Shepp Logan phantom. The

results are given.

In each of the tables below, GTV is used to reconstruct the given image. Newton’s

method is used to implement the new minimization problem, with a choice of λ = 0.1.

The initial guess x0 is generated via reweighted minimization. We use τ0 = 0.7 with

ratio r = 0.9 to produce the geometric sequence of step sizes. Each initial guess for

Newton’s method is generated by the bisection method.

GTV for Shepp Logan Phantom

Total Variation Sparsity Relative Error Iterations

Geometric 1820.58 3876 0.001092 72

Bisection 1908.36 3838 0.000998 57

Newton’s 2723.24 53662 0.261017 72

New Problem 1916.79 3831 0.000937 52

Table 6.1: System Size: 26002× 65536. The results shown are for W1 =WG and W2 = In.

Sparsity level is measured using ε = 0.001.
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It is obvious that our new problem most closely reflects the actual total variation

and sparsity level, and also has the smallest error and number of iterations.

GTV for Cardiac Phantom

Total Variation Sparsity Relative Error Iterations CPU Time

Geometric 2803.87 18226 0.024044 72 112.266 s

Bisection 2730.63 14691 0.012221 72 125.133 s

Newton’s 2836.08 23350 0.055021 72 135.539 s

New Problem 2726.15 14551 0.010687 72 155.233 s

Table 6.2: System Size: 39254× 65536. Sparsity level is measured using ε = 0.01.

The results shown are for W1 = WG and W2 =


1

µ2+ε
, if µ < 0.7k‖µ‖0

0.001, otherwise.

. This

choice of W2 is motivated by the idea the components that are closest to 0 are the ones

that will likely influence the sparsity level. Therefore, the optimal step size should be

chosen so that these components are minimized.

The improvements of the new minimization problem are clear. There is a slight

disadvantage of an increase in computational time. The idea, however, is new and

may surely be modified so that it is more efficient. The results provided are from

implementation via MATLAB with a processing speed of 2.2 GHz.
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FUTURE WORK

Future work includes improving the choice of λ for the newly proposed problem,

developing a better weight function for the total variation problem, determining the

best order of scan directions, testing more phantoms and of course improving the

algorithms used to implement each numerical method. Since the total variation graph

appears to be roughly symmetric within a small neighboorhood centered at τ ∗, it may

also be beneficial to prove that this is approximately the case so that we may obtain a

more accurate optimal step size without necessarily having to use numerical methods.

Choosing a good scan direction is very important in the implementation of each

algorithm. The numerical methods mentioned only select a step size τ at the first

block. Since the system of equations obtained at the first block are directly related to

the scan direction, it is important that this system yields a step size that is suitable in

updating x for the remaining directions. Aside from choosing a ”good” first direction,

the order of the scan directions is equally important. We seek to optimize the efficiency

of the algorithm at each step. It is well know that each pair of directions should be

orthogonal to one another. However, we should determine how each of these pairs

should be coupled so that more components of x are determined, and at a faster rate.
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Appendix A

APPENDIX

Appendix includes definitions, lemmas, and theorems used to support statements and

ideas proposed in this paper.

A.1 Definitions

Definition A.1.1. (Isometry and Sparsity) For each s ∈ Z+, define the isometry

constant δs of a matrix A as the smallest number such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22

holds for all s-sparse vectors.

A.2 Lemmas and Theorems

Theorem A.2.1. (Noiseless Recovery) Assume that δ2s <
√

2− 1. The the solution

x∗ to (P1) satisfies

‖x∗ − x‖1 ≤ C0‖x− xs‖1 (A.1)

and

‖x∗ − x‖2 ≤ C0
‖x− xs‖1√

s
(A.2)

where C0 = 2(1+ρ)
1−ρ with ρ =

√
2δ2s

1−δ2s .

Theorem A.2.2. (Noisy Recovery) Assume that A satisfies RIP and δ2s <
√

2 − 1

and ‖n‖2 ≤ ε, where n represents noise. The the solution x∗ to (P1) satisfies

‖x∗ − x‖2 ≤ C0
‖x− xs‖1√

s
+ C1ε (A.3)

where C0 is defined as before and C1 = 2α
1−ρ with α = 2

√
1+δ2s√
1−δ2s

and ρ defined as before.
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Theorem A.2.3. (Sparse Recovery) Assume that A satisfies RIP and δ2s <
√

2− 1.

Let x∗ be an s-sparse vector with noisy measurements u = Ax∗ + e, where noise n

satisfies ‖n‖2 ≤ ε. Assume that the smallest nonzero coordinate xi satisfies xi ≥ 4αε
1−ρ .

Then the solution x∗ from reweighted l1 minimization satisfies

‖x∗ − x‖2 ≤ C2ε (A.4)

where C2 = 2α
1+ρ

and ρ and α are defined as before.

Theorem A.2.4. (Extension of CS Results) Let m � n, Ω ⊂ Rn, and A ∈ Rn be

standard normal or any rank-m matrix such that BAT = 0 where B ∈ R(n−m)×n is

standard normal. Then with probability greater than 1−e−c0(n−m), then (P0) and (P1)

have the same solution at x ∈ Ω if the sparsity of x satisfies

‖x‖0 ≤
c21
4
· m

log( n
m

)
(A.5)

where c0, c1 > 0 are some absolute constants independent of the dimensions m and n.



Appendix B

SECOND APPENDIX

Appendix includes figures, graphs and tables to support numerical results.

B.1 Figures

Figure B.1: TV graph at (k + 1)th iteration with τk ∈ N(τ∗k , ε)
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Figure B.2: Images and their gradients. Top - Shepp Logan Phantom, Bottom - Cardiac

Phantom



Appendix C

MATLAB CODING

Appendix includes the MATLAB coding used to achieve the results in this paper.

C.1 Bisection Method

Bisection Method

function tau = bisection(f,d,t,w,k,flag, lambda)

a = 0; b = t;

tau = t;

m = ceil(k/17);

i=0;

if m > 5

m = 5;

end

eps = 10^(-m);

p = ceil(k/20); tol2 = 10^(p);

if tol2 > 10000

tol2 = 10000;

end

tt = der(f,d,1,w,flag,lambda); as = der(f,d,0,w,flag,lambda);

if tt < 0

disp(’completely decreasing on (0,1)’);

eps = 1; tau = 0.9;

elseif as > 0

disp(’Error: TV has no descent.’);
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eps = 1;

end

while b-a > eps

aa = der(f,d,a,w,flag,lambda);

bb = der(f,d,b,w,flag,lambda);

sa = sign(aa);

sb = sign(bb);

if sa == sb

if sb < 0

a = b; b = b + 0.1;

else

disp(’Error: TV is constant.’);

break;

end

elseif abs(aa)<= tol2 || abs(bb) <= tol2

if abs(bb) < abs(aa)

tau = b;

disp(’tau: choose b.’);

else

tau = a;

disp(’tau: choose a.’);

end

break;

else

c = (a+b)/2;

cc = der(f,d,c,w,flag,lambda);

sc = sign(cc);
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if abs(cc) <= tol2

tau = c;

disp(’tau: choose c.’);

break;

end

if sc == sb

b = c;

else

a = c;

end

if a~=0

tau = a;

else

tau = b;

end

end

if i > 20

break;

end

i=i+1;

end

end

derivative function (used in bisection method)

function value = der(f,d,c,w,flag,lambda)

[m, n] = size(f);
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f = f-c*d;

eps=0.001;

% Add edging to F

F= [f(1,1) f(1,:) f(1,n); f(:,1) f f(:,n); f(m,1) f(m,:) f(m,n)];

% Add edging to D

D= [d(1,1) d(1,:) d(1,n); d(:,1) d d(:,n); d(m,1) d(m,:) d(m,n)];

% Calculate Forward and Backward Differences for F

Dxhf = F(2:m+1,3:n+2) - F(2:m+1,2:n+1);

Dxhb = F(2:m+1,1:n) - F(2:m+1,2:n+1);

Dxvf = F(3:m+2,2:n+1) - F(2:m+1,2:n+1);

Dxvb = F(1:m,2:n+1) - F(2:m+1,2:n+1);

% Calculate Forward and Backward Differences for D

Dhf = D(2:m+1,2:n+1) - D(2:m+1,3:n+2);

Dhb = D(2:m+1,2:n+1) - D(2:m+1,1:n);

Dvf = D(2:m+1,2:n+1) - D(3:m+2,2:n+1);

Dvb = D(2:m+1,2:n+1) - D(1:m,2:n+1);

% Perform Newton’s Step (Calculate Derivatives)

num = Dxhf .* Dhf + Dxhb .* Dhb + Dxvf .* Dvf + Dxvb .* Dvb;

s = Dxhf.^2 + Dxhb.^2 + Dxvf.^2 + Dxvb.^2;

s1=sqrt(0.5.*s);

w(s==0) = 0;

s(s==0) = 1;
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c = sqrt(2*s);

deriv =(num./c);

if flag == 0

spars=zeros(n);

else

a=lambda*eps.*deriv; E=eps.*ones(n);

b=(s1 + E).^2;

spars=a./b;

end

dtv = w.*(num./c) + spars;

value = sum(sum(dtv));

end

C.2 Newton’s Method

Newton’s Method

function tau = mintv(tau,f,d,w,k,flag,lambda)

t1 = tau; tau_k = tau;

[m,n]=size(f);

m=floor(k/17);

if m > 5

m=5;

end

eps = 10^(-(5+m)); W=ones(n);
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tau = bisection(f,d,tau,W,k,flag,lambda);

t = tau; % Store step size from bisection

F = f-tau*d; % Previous image

tol1 = 0.001;

p = floor(k/20); tol2 = 10^(p);

i = 0; l=0; j=0; t3 = 0;

tt = der(f,d,1,W,flag,lambda); as = der(f,d,0,w,flag,lambda);

if tt < 0

disp(’completely decreasing on (0,1)’);

i = 5; % tau = 0.9;

elseif as > 0

disp(’Error: TV has no descent.’);

i = 5;

end

while i < 5

temp = TVD(F,d,W,2,k,flag,lambda);

t2=tau;

while temp - j >= tau || temp + j <= (tau - 1) % Negative Fix

if temp >= tau

flg=1;

else

flg=2;

end

if l > 3

disp(’broken’);

break;
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end

tau=bisection(f,d,t2,W,k,flag,lambda);

if flg == 1

t2=0.8*t2;

else

t2=1.2*t2;

end

F=f-tau*d;

temp=TVD(F,d,W,2,k,flag,lambda);

if (temp < tau && flg==1) || (temp > tau-1 && flg == 2)

j = 1;

break;

end

l=l+1;

end

tau = tau-temp;

F = f-tau*d;

if tau > 0 && tau < 1

st = der(f,d,tau,W,flag,lambda);

if st <=0

if abs(tau-t1) <= eps || i == 4

break;

end

elseif abs(st)<=tol1 || (abs(st)<=tol2 && i == 4)

break;

elseif i == 4

if abs(der(f,d,t1,W,flag,lambda)) <= tol2
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tau=t1;

else

tau=t;

end

end

else

if tau < 0

disp(’tau is negative’);

else

disp(’tau too big’);

end

if abs(der(f,d,t1,W,flag,lambda)) <= tol2

disp(’newton’);

tau=t1;

else

disp(’bisection’);

tau=t;

end

break;

end

if tau < tau_k

t3 = tau;

end

t1 = tau;

i = i + 1;

end

end
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newton step (used in Newton’s Method)

function [deriv, fstdrv, scnddrv] = TVD(f,d,w,flag,k,flag1,lambda)

[m,n] = size(f);

eps = 0.0001;

% Add edging to F

F= [f(1,1) f(1,:) f(1,n); f(:,1) f f(:,n); f(m,1) f(m,:) f(m,n)];

% Add edging to D

D= [d(1,1) d(1,:) d(1,n); d(:,1) d d(:,n); d(m,1) d(m,:) d(m,n)];

% Calculate Gradient and Corresponding Weights

if flag == 0

Mu = (F(3:m+2,2:n+1) - F(2:m+1,2:n+1)).^2 +...

(F(1:m,2:n+1) - F(2:m+1,2:n+1)).^2 +...

(F(2:m+1,3:n+2) - F(2:m+1,2:n+1)).^2 +...

(F(2:m+1,1:n) - F(2:m+1,2:n+1)).^2;

Mu = sqrt(Mu/2); mx = 0.7^k*max(max(Mu)); Mu(Mu==0) = 10000;

W = w./Mu; W(Mu > mx) = eps;

elseif flag == 1

W=w;

else

W=ones(m,n);

end
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% Calculate Forward and Backward Differences for F

Dxhf = F(2:m+1,3:n+2) - F(2:m+1,2:n+1);

Dxhb = F(2:m+1,1:n) - F(2:m+1,2:n+1);

Dxvf = F(3:m+2,2:n+1) - F(2:m+1,2:n+1);

Dxvb = F(1:m,2:n+1) - F(2:m+1,2:n+1);

% Calculate Forward and Backward Differences for D

Dhf = D(2:m+1,2:n+1) - D(2:m+1,3:n+2);

Dhb = D(2:m+1,2:n+1) - D(2:m+1,1:n);

Dvf = D(2:m+1,2:n+1) - D(3:m+2,2:n+1);

Dvb = D(2:m+1,2:n+1) - D(1:m,2:n+1);

% display(sum(sum(Dhf))); stop

% Perform Newton’s Step (Calculate Derivatives)

s = Dxhf.^2 + Dxhb.^2 + Dxvf.^2 + Dxvb.^2; s1=sqrt(0.5.*s);

W(s==0) = 0;

s(s==0) = 1;

num = Dxhf .* Dhf + Dxhb .* Dhb + Dxvf .* Dvf + Dxvb .* Dvb;

num1 = s.*(Dhf.^2 + Dhb.^2 + Dvf.^2 + Dvb.^2) - num.^2;

c = sqrt(2*s);

deriv =(num./c);

deriv2 = sqrt(1/2).*W.*num1./(s.^(3/2));

if flag1 == 0

spars=zeros(n); spars2=zeros(n);

else

E=eps.*ones(n); nmr = s1 + E;
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a=lambda*eps.*deriv; b=nmr.^2;

a1=lambda*(eps.*b.*deriv2-2*eps.*(deriv.^2).*nmr);

b1=nmr.^4;

spars=a./b;

spars2 = a1./b1;

end

dtv = W.*deriv + spars;

dtv2 = W.*deriv2 + spars2;

fstdrv = sum(sum(dtv));

scnddrv = sum(sum(deriv2));

if scnddrv > 0

deriv = fstdrv/scnddrv;

elseif scnddrv < 0

deriv = fstdrv/scnddrv;

j=1;

else

if scnddrv == 0

j = 2;

end

deriv = 0;

return;

end

end
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