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ABSTRACT

Factorial designs can have a large number of treatments due to the number of factors
and the number of levels of each factor. The number of experimental units required for
a researcher to conduct a k factorial experiment is at least the number of treatments.
For such an experiment, the total number of experimental units will also depend on
the number of replicates for each treatment. The more experimental units used in a
study the more the cost to the researcher. The minimum cost is associated with the
case in which there is one experimental unit per treatment. That is, an unreplicated
k factorial experiment would be the least costly. In an unreplicated experiment, the
researcher cannot use analysis of variance to analyze the data. We propose a method
that analyzes the data using normal probability plot of estimated contrast of the main
effects and interactions. This method is applied to data and compared with Tukey’s
method that test for non-additivity. Our method is also discussed for use when the

response is a multivariate set of measurements.
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CHAPTER 1
INTRODUCTION

Analyzing data from a designed experiment using ANalysis Of VAriance (ANOVA),
generally requires at least two replicates for at least one treatment. There are, how-
ever, researchers who need to use unreplicated (one observation per treatment) de-
signs. Under the independent normal model with common variance, these designs do
not provide enough data to independently estimate the overall mean, main effects,
interactions, and the common variance. Montgomery (1997) states concerning the
analysis of data from an unreplicated two factor fixed effects design that “there are
no tests on main effects unless the interaction effect is zero.” He also points out that
“even a moderate number of factors, the total number of treatment combinations in
a 2% factorial design is large.” This is even a large number of total treatments for
factorial designs in which the levels of one or more of the factors is greater than 2.
Three methods are discussed in the literature for analyzing the response data in
a two factor fixed effects model with one observation per treatment. The first of these
is to assume there is no interaction between the factors. This is the additive model.
The second method uses a regression model that elimates higher-order polynomials.
The third method is a test developed by Tukey (1949) for determining if there is an
interaction. He states that “the professional practitioner of the analysis of variance
will have no difficulty in extending the process to more complex designs.” These
methods are discussed in Alin and Kurt (2006) and Francka, Nielsenb, and Osbornec
(2013). We will examine an extension of Tukey’s method to a three factor design.
Various authors have examined method for evaluating the data from a 2* factorial
design with no replicates for a univariate response. One of these methods that is

commonly recommended is the use of a normal probability plot of the estimates of the



main effects and interactions. We plan to study the use of normal probability plots in
the analysis of unreplicated k factorial designs in which each of the factors has two or
more levels with at least one factor having three or more levels. This will include cases
in which there is a univariate response and there is a multivariate response. As we will
demonstrate, the estimators of the main effects and interactions in an unreplicated
fixed effects k factor design in which at least one factor has more than two levels
are correlated. We propose a transformation of these estimators to a collection of
independent random variables with common variance. Under the hypothesis of no
main effects or interactions, these estimators under the independent normal model
with common variance 0% (X for a multivariate response) will be a random sample
with common N (0, 0?) (N, (0, X) for a multivariate response) distributon. A normal
probability plot of the transformed estimates of the main effects and interactions will
be used to determine which linear combinations of the main effects and interactions
are significantly different from zero. An examimation of the associated parameters
will reveal which, if any, of the main effects and interactions are significantly different

from zero.



CHAPTER 2
TWO FACTOR DESIGN MODEL WITH A UNIVARIATE RESPONSE

2.1 Introduction

In a variety of studies, researchers are interested in studying the effect of two or more
factors on a response variable. As has been shown by a several authors, factorial
designs are the most efficient way to conduct such studies. A factor is a variable
whose values are selected by the researcher. The possible values of a factor are called
the levels of the factor. How the values of a factor are selected determines if the
study is a fixed effect or random effect factorial design. If the levels of a factor are
the only ones of interest to the researcher, then the study is a fixed effect factorial
design with respect this factor. If random selection is used to select from a collection
of possible values of a factor the levels of the factor to be studied, then the factorial
design is a random effects factorial design with respect to this factor. The treatments
in a factorial design are all the possible factor level combinatins. In our study, it will
be convenient to discuss first two-factor design with replications before examining

designs without replicates.

2.2 The Two Factor Design with Replicates

We begin our study of factorial designs by examining two (k = 2) factor designs.

Under the additive model, the response variable Y;;; can be expressed as
Yiji = pij + €iji

with

fij = p+ (11); + (7'2)3' + (7'12)2']'



fori=1,...,a,7=1,...;b,and [ = 1,...,n with n > 1. We have expressed the
mean /1;; of the response variable Y;j; as the sum of an overall mean p, the effect (1),
due to setting the first factor at level 7, the effect (73) ; of setting the second factor at
its jth level, and an effect (712), ; due to the interaction between the two factors when

the first is set at its 7th level and the second at its jth level. It is assumed that

a b
S =0 Y (), —o
Zi:l (T12);; =0for j=1,...,b; and
b .
24 (112);;, =0fori=1,...,a.
j=1 "
We also assume that the Y;j;’s are independent and €;;; ~ N (0, afj). We refer to these
assumptions as the independent normal model. The model is further simplified by
assuming a common variance, that is, 07, = o the common variance for i = 1,.. ., q,
j=1,...;b,and [ = 1,...,n. The design is an unreplicated one if n = 1. Using

matrix notation, we can write our additive model in the form
Y = X0 + e,

where Y is the abn x 1 vector of observations, X is the abn x ab design matrix, 6 is
the ab x 1 vector of model parameters, and € is the abn x 1 vector of error terms.
An analysis of variance (ANOVA) of the response data is based on the following

partition of the sum of squares total (SST).

SST =SSA+SSB+ SSAB + SSE,



where

SSE = Zz 12:] 1Zz 1 ”l

It can be shown that SSA, SSB, SSAB, and SSFE are stochastically independent
under our independent normal model. The degrees of freedom of these sums of squares

are

deST = abn — 1) deSA =a— ].7 deSB =b— 1,

dfssap = (a—1)(b—1); and dfssp = (n — 1) ab.

The mean squares associated with SSA, SSB, SSAB, and SSE are, respectively,

MSA=—— 554 , MSB = —— 558 MSAB_% and MSE = S5F

dfssa’ dfssp’ dfssap’ dfsse

Note that if n = 1, then dfssg = 0 and the MSFE is undefined.

The null (Hy) and alternative (H7) hypotheses of interest can be written in terms

of the following hypotheses.

HA,O . (7'1)1 =...= (Tl)a = 0 and HA,l .~ HA,O;
HB,O : (7'2)1 =...= (7'2)[) =0 and HB,l i~ HB,O; and
HAB,O : (7'12)11 =...= (Tlg)ab =0 and HAB,l Nad HAB,O

The alternative hypothesis in this study is

Hy :Hap1V [HapoN(Ha1V Hp;)



with the null hypothesis
HO Had Hl-

The statistical test has decision rule that rejects the null hypotheis in favor of the

alternative hypothesis if the observed value of

MSAB _  [MSAB _ MSA _  MSB _
MSE =BV [ TrsE <~ M rsE =Y WsE =

It can be shown that

SSA 9 SSB 9 SSAB 9 q SSE 9
o2 ~ Xa—1,621 o2 ~ Xo-1,62) T2 ~ X(a—1)(b-1),63 ;0 A 2 ~ X(n—1)ab>
where
52 — —nb Z?:1 (Tl)? f — na Z] 1 (T2>2 and é- Z Z (7-12>’L]
A ac? BT bo? AB o2[(a—=1)(b—1)+1]

If the null hypothesis is true, then we have {4 = ég = 4 = 0. The size of the test

« is given by

MSAB _ MSAB MSA _  MSB _
( MSE = { MSE ~ ™ (MSE =Y MSE = CB)D
b ( ~De-l )
e mb/ “na] =
X%a 1 (b— 1)/ 1) (b—1)] c Xo—1/(a—1) c
+P< vl = Da] g T T al] ~
X%a 1 (b— 1)/ 1) (b—1)] c X1/ (b—1) c
+P< S e Tl B)

FF<a 1)(b—1),(n—1)ab (caB)

e (n —1)abxcap\ = (n —1)abxcy

+ /0 FX%a—l)(b—l) ( (a—1)(b—-1) Fngl a—1 fx?n—l)ab () do
e (n—1)abxrcap | — (n —1)abxcp

+ /(; FX%afl)(bfl) ( (a — 1) (b — 1) FX%—I b —_ 1 fx%nfl)ab (l‘) dl"




where

Foo ((n— l)abch> 1_p, ((n— 1)abch) and

a—1 Xa-1 a—1
— (n — 1) abxcg (n — 1) abxcp
P (2T ) = - ra, (P27

The power of the test is determined by

power =1 — FF(afl)(bfl),mfab,gAB (CAB)

> (m — ab) xcap (m — ab) xcy

- /0 Bt vo-ean ((a —Ho-n) ' el T oo )| e s @
> (m — ab) xcap (m — ab) zcp

+ /0 FX?a—l)(b—msAB ((a - (b-1) 1= Fxﬁ—l,gB p—1 fe,_, (@)dz,

where at least one of the value &4, £g, and €45 is not equal to zero.

2.3 One Observation per Treatment No Interaction Assumed

For the case of one observation per treatment (n = 1), there is only enough data to
estimate independently the overall mean, the main effects, and the interactions but
not the common variance in our model. One approach to analyzing the data for main
effects is to assume there is no interaction between the two factors. In this case the
model becomes

fij = p+ (1), + (72); -

The null and alternative hypotheses are

Hy:(n);,=...=(n),=0and (), =...=(m), =0; and

H1 Nad Ho.

The total sum of squares (SST') can be partitioned into the sum of square due to the

first factor (SSA), the sum of squares due to the second factor (SSB), and the sum



of squares (SSFE) due to error. That is,
SST = SSA+SSB+ SSE.
There respective degrees of freedom are
dfsst =ab—1, dfssa =a—1, dfssg =b—1, and dfssp = (a— 1) (b—1).

Under this model, it can be shown that

SSA SsB SSE

~ Xa1gy oo~ Xomrgg A~ ~ Xpyab,

o2

where

nb Zlil:l (T1>’L2 and 5% — na 22:1 (7—2)5 )

2 _
& ao? bo?

The test based on the analysis of variances rejects Hy in favor of H; if the observed

value of
MSA> VMSB>
MSE =AY MSE = P
where
- T \2 b 3 \?
by (Y, =Y (Y. —-Y
drsa = i 0=V o 02 oV
a—1 b—1
MSE:SST—SSA—SSB

(@=1)(b—-1)

The size of the test is

_p(MSA N, p(MSB p(MSA_ Y\, (MSB _
G\ MsE = MSE =P MSE =4 MSE =P
=P (Foot(a—1)p-1) = €a) + P (Fy_1 (a-1yo-1) = B)

o 9 xca 9 xrcp
/0‘ <Xa—1 — b 1 ) <Xb—]. — a 1) fX(afl)(bfl) (x) dw

=1- FFa—l,(a—l)(b—l) <CA) +1- FFb—l,(afl)(bfl) (CB)

*_ ICA \ = ICp
_A FX271 (b— 1) FX§,1 (CL — 1) fX%a—l)(b—l) (.ZU) d.T?




where

— TChp TChp — Icp xrcp
in_l (b—l) :1_FX3_1 (b—l) and FX?)?l <a_1) = 1_FX§,1 <a_1).

For example in the case in which @ = 3 and b = 5, if the researcher selects the critical

values ¢4 and cp to be

ca = F3_1 3-1)(5-1),005 and cp = F5_1 (3-1)(5-1),0,05

then the actual size of the test is
o0 FI 1l—a;a—1 —1Hb-1
a = 2a-— / (1 — ChiSquareDist (x v (1= a ab ’1(& ) ) ca — 1))
0 _

FInv(l—a;b—1,(a—1)(b—1
X (1 — ChiSquareDist (x nv (1 —osb ,1(a )(b=1)) ja — 1)>
a/ J—

x ChiSquareDen (z; (a — 1) (b— 1)) dx

= 0.09622254863.

2.4 Tukey’s Method for One Observation per Treatment

Tukey (1949) developed a test for determining if there is an interaction between the

two factors which assumes the interactions are of the form

(T12)i5 = A (1), (72); -

In this model, the a + b + 2 parameters including the common variance can be esti-

mated. To determine these estimates using least squares we define the function

Q:Q(M?(T1)17"'7(T1>a7(7-2)17"'7(T2)b7)\)
=3 S (Y a— (- (), - A ), (7))

The least square estimates are the solutions to the following system of equations.

0Q _  0Q 0 0Q

e A} = 0; =0
op a (),

o), Van
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The least squares estimates of the parameters i, (71),, ..., (71),, (72);,---,(72),, and

A are given, respectively, by

ﬁ:?,g'\l)z:?i.—}/,(Tg) = J—Y,and
TS (V) (V- F Y

We can now express Y;; as

Y, = Y. + (Yi. —?..) + (7,]' -Y ) +A (?i. - ?..) (7.]' - ?..) + €j-

It follows that €; can be expressed as

G =Yy —Y - (Yi-Y)-(V,;-YV)-XAV.-Y)(V,-Y).

The total sum of squares SST can now be partitioned into
SST =SSA+ SSB+ SSAB*+ SSE”™,

where SST, SSA, and SSB are defined in the previous section with

. a b 2 (v v\ (v v \2

SSAB* =3 ijl N(Y,-Y) (Y,;-Y.) and
a b
* ~2
SSE* =) ijl e

The degrees of freedom of SSAB* and SSE* are, respectively, 1 and ab —a — b. It
can be shown that under Hy : A = 0, the random variables SSAB* and SSE* are

stochastically independent with

SSAB*

o2

SSE*

2
~ X1 and o2 ~ Xab—a—b-

The appropriate hypotheses in this case are

HO e H1 Wlth H1 . H)\J vV [HA,O N (HAJ vV HB71)],
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where

H,\voz)\:OandHA,l:)\#O.

The statistical test has decision rule that rejects the null hypotheis in favor of the

alternative hypothesis if the observed value of

MSAB* _  [MSAB" _ MSA _ - MSB _
MSEr =AY\ Tyspe S BN\ sEr =YY MSsEr =B |
where
Msaps — S9AB L wsE = _29E
ab—a—0>

The size of the test « is

00 TCARB — (a—1)zcy
w= =P[R () P () R @

0o TCAR
Fo| ——— —_ 2 dx.
+/o Xl(ab—a—b ab—a—b)fxabab(x) v

2.5 Using a Normal Probability Plot

N———
ol
=
N

The least squares estimate 0 of the vector of parameters # in the full model with no
replicates is

f=(X™X) " XTY.
It can be shown that if @ > 2, then the estimators (71),, ..., (71),_, of the parameters
(11);,.-.,(m),_, are not independent under our independent normal model. Like-
wise, if b > 2, the estimators (72), , ..., (72),_; of the parameters (72),, ..., (72),_, are
not stochastically independent as are the estimators (7i2),; of the parameters (712),;

when a > 2 and/or b > 2. This can be seen by first noting that

3.5 = cov (5) = (XTX)_1 o?
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and observing that (XTX)_1 is not the identity matrix. However, it can be shown

that (XTX)_1 has the form

w 0 0 0
(a—1)x (a—1)
(XTX)_l _ 0 W, 0 0 |
0 0 WX 0
0 0 0 W(a D)(b=1)x(a—1)(b—1)

)x(a—1)

where w corresponds to the overall mean, Wg’fl is associated with the main

effects due to factor A, Wg_l)x(b_l) is associated with the main effects due to factor
B, and ng DE=Dx@=D0=1) 45 associated with the interactions between factors A

and B. We can now see that, for example,
cov ((11)) = W(a Dx(a=d) 52
whereas
cov ((71,72)) =0,

where

~ ~ ~ T ~ ~ ~ T

= [(7-1)1 PRI (7'1)@_1} and T, = [(7—2>1 PRI (T2>b—1} :

Observe that (XTX)_1 is a real symmetric matrix. In particular, observe that

W4, Wpg, and W 45 are real symmetric matrices. It follows that there exist matrices

Py, Py, and P4 such that
W, =P,4PY, Wi = P3P}, and W3 = P,sPY,

We define P by
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It follows that the vector of transformed estimators 6* define by
- =P'4

are stochastically independent since

A

S5 = cov (P1) = P (X™X) 7 (P) T 0? = 12,

The vector estimator 0* is associated with the contrast given in W4, Wpg, and
W 45 of the vector of parameters . This suggest that under our null hypothesis of

no main effects or interactions that the estimators

~

9;7 SR 79?a71)(b71)

are stochastically independent and identically distributed N (0, 0?). A normal proba-
bility plot of the observed values of these estimators should reveal which if any of these
linear combinations of the estimators of the main effects and interactions are differ-
ent from zero. Exact plotting positions for a normal probability plot can be found in
Harter (1961) and Teichroew (1956) for selected values of the sample size. Often the
ith plotting position E (Z;.,,) for a normal probability plot is usually approximated
by

E(Ziy)=@7" (

where Z;., is the ith order statistics of a random sample of size n from a standard

7 —0.375
n+0.25)/"

normal distribution and ® (z) is the cumulative distribution function of a standard
normal distribution. This approximation was originally proposed by Blom (1958).
A discussion on the selection of plotting positions are discussed in Champ and Vora

(2005).

2.6 Some Examples

Example 1:
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Montgomery (1997) gives an example of a two factor experiment in which n;; =1
fori =1,2,3 and j = 1,2,3,4,5. He states in his Example 6-2 that the “impurity
present in a chemical product is affected by two factors — presure and temperature.”

His data is presented in the following table.

Table 2.1: Montgomery’s Example 6-2

Temperature

25 30 35 40 45

00 5 4 6 3 5

Pressure 125 3 1 4 2 3
% 1 1 3 1 2

Using Tukey’s method, he conclude that there was no interaction effect but that

the main effects due to both temperature and pressure are significant.



The design matrix for this experiment is

- o o O

|
—

o o o o o o o O

0o 0 O
0O 0 O
0 0 O
0O 0 O
o 0 O
1 0 0
0O 1 O
0 0 1
0O 0 O
-1 -1 -1
-1 0 0
0 -1 0
0 0 -1
0O 0 O
1 1 1

15



It follows that

1 5 15
w = _—, ‘N]AVZZ
15 1 2
15 15
4 _1 _1 _1
15 15 15 15
1 4 _1 _1
15 15 15 15
Wpg = , and
1 1 4 1
15 15 15 15
1 _1 _1 4
| T 15 15 5 15
[ 8 _2 _2 _2 _4 1
15 15 15 15 15 15
2 8 _2 _2 1 _4
15 15 15 15 15 15
2 _2 8 _2 1 1
15 15 15 15 15 15
_2 _2 _2 8 1 1
15 15 15 15 15 15
Wiyup =
4 1 1 1 8 _2
15 15 15 15 15 15
1 _4 1 1 _2 8
15 15 15 15 15 15
11 _4 1 _2 _2
15 15 15 15 15 15
i1 1 _4 _2 _2
I 51 15 15 15 15 15

16
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Omitting the estimate for pu* = 44+/15 /15, we find the observed order statistics for
the remaining fourteen contrast estimates. From Teicherow (1956), we obtain the
plotting position for a normal probability plot for a sample size of fourteen. These
ordered pairs are given in the following 14 x 2 matrix with the plotting position in

the first column and the ordered data in the second.

~1.7033815541 —11v2
~1.2079022754 —0
—0.9011267039 —v1
—0.6617637035 —%
—0.4555660500 0
~0.2672970489 0
—0.0881592141 ¢
0.0881592141 %2
0.2672970489 :
0.4555660500 %
0.6617637035 0
0.9011267039 2
1.2079022754 /10
| 17033815541 2430
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Figure 2.1: Montgomery Example, Probability Plot
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This plots suggest that eleven of the points are plotting about a line whereas

three are not plotting about this line. These are the points
11 2/
( 1.7033815541, ——\/_> , (1.2079022754, V 10) , and (1 7033815541, —)
A simple fitting of a line to the eleven points, we have that

Oita_1)(b-1)-1 = 0.4007897323 + 1.1531953698 (0 1)(5_1)1

Plotting this line with our points, we obtain the graph in Figure 2.2.
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Figure 2.2: Montgomery Example, Probability Plot and Fitted Line 11 Points

4 —_
:;rl-.-
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The three points
11v/2 2/30
(—1.7033815541, —Tf) : (1.2079022754, \/E> , and (1.7033815541, T\/_> :

are associated with the contrast estimators (75),, (77),, and (77),, respectively. This
plot provides evidence that there is no interaction between the two factors but there
is effects due to the two factors.

Example 2:

Kutner, Nachtsheim, Neter, and Li (2005) on page 890 state in Exercise 20.8
that “A food Technologist, testing storage capabilities for a newly developed type
of imitation sausage made from soybeans, conducted an experiment to test the ef-
fects of humidity level (factor A) and temperature level (factor B) in the freezer

compartment on color change in the sausage. Three humidity levels and four tem-
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perature levels were considered. Five hundred sausages were stored at each of the 12
humidity-temperature combinations for 90 days. At the end of the storage period,
the researcher determined the proportion of sausages for each humidity-temperature
combination that exhibited color changes. The researcher transformed the data by

means of the arcsine transformation to stabilize the variances. The transformed data

Y’ = 2arcsin VY follow.”

Table 2.2: Kutner’s Exercise 20.8

Temperature level

Humidity level j=1 j=2 j=3 j=4
i=1 13.9 14.2 205 24.8

=2 15.7 16.3 21.7 23.6
=3 15.1 154 199 26.1
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We see that

v, - 13.9+14.2 1— 20.5 +24.8 — 18.350:
v, — 15.74+16.3 Z 21.7423.6 — 19.325:
v, — 15.1 + 15.41— 19.9 +26.1 —19.195:
v, — 13.9 + 153.7 +15.1 —14.9;

v, — 14.2 + 1(;.3 + 154 153

V.- 20.5 + 213.7 +19.9 — 207

v, - 24.8 + 2?;).6 +26.1 _ 9483,

Y =139+14.2+20.5+24.8+15.7+16.3

+21.7+236+151+154+19.9+26.1

= 227.2; and
— 227.2 _
Y =——=18.93
; 12

Assuming interaction between the two factors has the form

(T12);; = A (1), (12);,

then the least squares estimates of the parameters p, (71);, (71)5,(71)3, (72)1, (72)s,

(72)5, and (72), are



=Y. =1893;
(7)), =Y, — Y. =18.350 — 18.93 = —0.583;
(71), =Yy — Y. =19.325 — 18.93 = 0.3916;
(1) = Y3 — Y =19.125 — 18.93 = 0.1916;
(T2), =Y 1Y =149 —18.93 = —4.03;
(Ta)y =Y =Y. =153~ 1893 = —3.63;

(T2)y =Y 3—Y_ =20.7—18.93 = 1.76;

=
=
I
=~
=~
|
~I

- =24.83 —18.93 = 5.9.

Recall that the formula to be used to obtain an estimate of A is

SLEL (V=¥ ) (V=Y ) Yy
S (V) W, T

N =

23
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It follows that

~

N—
~—~

N~—

~—~

~—
~/

[ = X .

. . 7 > i N —~

—" N N~ =
N /N /N /N

— N N~ N~

/N /N /N /N

—" N N~ =
/N N N /N /N

~— — ~— ~— ~—

24.8
(—3.63) (16.3)

~—

0.3916

(15.7) + (

~

4.03

N—

0.3916) (—
0.3916) (1.76)

5.9) (23.6)

~—r

21.7) + (0.3916)

~—

(—3.63) (15.4)

~—

0.1916

(15.1) + (

~—

0.1916) (—4.03
0.1916) (1.76)

5.9 (26.1)

~—

19.9) 4 (0.1916)

~—

—" N~ N~

_l_
_l_

+

+

+

= —8.27099996

and
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Thus, we have
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It follows that the SST, SSA, SSB, and SSAB* are

SST=3"" 3 (Yy—Y.)" = (13.9-18.93)" + (14.2 - 18.93)"
i= j=

2

+ (205 — 18.93)° + (24.8 — 18.93)” + (15.7 — 18.93)

2

+
+(16.3 —18.93)° + (21.7 — 18.93)" + (23.6 — 18.93)°
+

(15.4 — 18.93)” + (19.9 — 18.93)

3)
+(15.1 — 18.93)
3)*

+(26.1 —18.9
= 210.9066667,
a — 5 \2 =)\ 2 =\ 2 =\ 2
SSA = Zizl (Y. —Y.)" = (-0.583)" + (0.3916)" + (0.1916)
= 0.5304166663,
b — — .2 — — _
SSB = ijl (V,;-Y.) = (-4.03)" + (-3.63)° + (1.76)” + (5.9)°
= 67.39999996, and
. a b N v\ (v v \2
SSAB* = Zizl ijl N, -Y)([Y,;-Y)
= (—0.2313561032)° (35.7500833)

= 1.913546321.

We then have

SSE*=SST —SSA—-SSB — SSAB”
= 210.9066667 — 0.5304166663 — 67.39999996 — 1.913546321

= 141.0627038.
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The associated mean squares are

0.5304166663

MSA = S 02652083332
67.39999996
MSB = SR = 92 46666665,
1.913546321
MSAB* — w — 1.913546321; and
141.0627038
MSE* — _ 98.21254076.
(3)(4) —3—4

The observed value of F' = MSAB*/MSE* is

1.913546321
Fo served — Ao ~o e o — 006782608973
bserved = 98 21254076

We see that if A = 0, then the probability of the random variable F} 5 is greater than

or equal to Flpserved 18

P <F1,5 > Fobser'ued) =1-P (F1,5 < Fobser'ued)
= 1 — FDist (0.06782608973; 1, 5)

= (0.8049139196.

These results suggest there is no two factor interaction.
Lets assume the reduced model of no interaction between Factors A and B. Our

model is

fij = p+ (1), + (72), -
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The design matrix is

11 0 1 0 0
11 0 0 1 0
1 1 0 0 0 1
11 0 -1 -1 -1

Our least squares estimates are

18.93333333
—0.5833333333
—1 0.391666 6667
—4.033 333333
—3.633333333

1.766 666667

Our total sum of squares, the sums of squares due to Factors A and B, and the
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sum of squares due to error are

SST = (12)(18.93333333) = 227.2;

SSA = (—0.5833333333)% + (0.3916666667)> + (0.19166666667)>
= 0.5304166667;

SSB = (—4.033333333)% + (—3.633333333)% + (1.766666667)° + (5.9)°
= 67.39999996: and

SSE = SST —SSA—SSB = 159.2695834.

We observe that

SSA/(a—1) B 0.5304166667/ (3 — 1)
SSE/((a—1)(b—1)) _ 159.2695834/ ((3 — 1) (4 — 1))
= 0.009990922103; and
SSB/ (b—1) B 67.39999996/ (4 — 1)
SSE/((a—1)(b—1)) 159.2695834/ ((3 — 1) (4 — 1))
= 0.8463637388.

The associated p-values are, respectively,

P (Fy6 > 0.009990922103) = 1 — FDist (0.009990922103;2,6)
= 0.9900752561; and
P (F36 > 0.8463637388) = 1 — FDist (0.8463637388;3,6)

0.5168608443.

These results suggest that there is no effect due to either of the two factors.

For the full model, the design matrix for the full model and our data in vector



form are

The matrix P associated with (XTX)f

—1

—1

1

18

o o o O

and y =

30

13.9
14.2
20.5
24.8
15.7
16.3
21.7
23.6
15.1
15.4
19.9

26.1
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e

—|©
o
N
—
S
aml

36

—0.583

—0.416

—0.516

0.3916

0.4083

0.6083

18.93
—4.03
—3.63

1.76
0.383
0.6083

(XTX) "' XTy =

The least squares estimates for the main effects and interaction is given by
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the contrasts of the main effects and interactions are

2v/30,
V6 (05 + 05)
V2 (6 — 65)
2 (05 + 05 + 65)
Y (04 — 65)
V2 (05 — 205 + 05)

0 =P'0 =
V2 (07 + 05 + 0y + 010 + 011 + 01)

P (07 + 65 + 6y — 610 — 11 — b1o)
2 (07 — B + 010 — 012)

L (07 — 205 + 09 + 019 — 2011 + O12)
167 — 09 — 010 + 012)

\/?g (07 — 203 + Oy — 010 + 2011 — 012)

The coordinates of the random vector 8 = P19 of estimators of the vector 8* of

the contrasts of the main effects and interactions are independent. The estimates for



these contrasts are

65.58699059
—0.4694855341
—1.378858223
—11.8
—7.103520254
3.535533906
1.520279580
—1.775880064
—0.8660254038
0.4
-0.3
0.3464101615

33

Removing the estimate 5}* = 65.58699059, we have the 11 x 1 vector of ordered

estimates of the given linear contrasts of the main effects and interactions along

with the plotting positions for the corresponding normal probability plot given in the



following 11 x 2 matrix.

—1.5864363519
—1.0619165201
—0.7288394047
—0.4619783072
—0.2248908792
0
0.2248908792
0.4619783072
0.7288394047
1.0619165201
1.5864363519

—-11.8
—7.103520254
—1.775880064
—1.378858223

—0.8660254038
—0.4694855341
-0.3
0.3464101615
0.4
1.520279580
3.535533906

A plot of these points is given in the following figure.

34



Figure 2.3: Kutner Example, Probability Plot
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All the points seem to be plotting about a line except for the points with coordi-

nates (—1.5864363519, —11.8) and (—1.0619165201, —7.103520254). Using the other

nine points, we estimate the line to be

y = —0.5107289617 + 2.117744632x.

A plot of this line along with our normal probability plot of the data is shown in the

following figure.



Figure 2.4: Kutner Example, Probability Plot and Fitted Line 9 Points

36

The point with coordinates (1.5864363519, 3.535533906) may also be an outlier.

To examine this possibility, we used the other eight points to estimate the line. This

line is

Y

—0.5451442881 + 1.730451299z.

A plot of this line along with the normal probability plot of the data is given in the

following figure.
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Figure 2.5: Kutner Example, Probability Plot and Fitted Line 8 Points

-12 —

The contrast associated with the three estimates

~ o~
*

* A*
-, and O
are, respectively,

6 2
2(94“‘05"’96)’ %(94—96), and §(04_295+96)
These contrast are all associated with Factor B: temperature. The plot shows no
evidence there is an effect due to Factor A (pressure) or interactions between Factors

A and B which is expected.
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2.7 Conclusion

A method for analyzing unreplicated two factor experiments using selected contrasts
has been presented. This method is based on a normal probability plot of the esti-
mates the main effect contrasts and the interaction contrasts. This method provides
the researcher a method of identifying the contrasts that are significantly different
from zero. As was illustrated, each contrast is a contrast of a particular main effect
or interaction. Hence, if a contrast is identified as being significantly different from
zero, then it follows that the associated main effect or interaction is different from

Zero.



CHAPTER 3
THREE FACTOR EXPERIMENTS

3.1 Introduction

The model for a three factor experiment (k = 3) under the additive model expresses

the response variable Y;;,5 as
Yijrs = Mijr + €ijrs
with
fijr =+ (T1); + (72); 4 (73), + (T12); + (T13);, + (723) 5, + (T123) 5,

and €5 14d N (0,0%) fori=1,...,a,7=1,...,b,r=1,...,c;and s =1,...,n. It

is assumed that main effects and interactions are such that

ij 7'1 —0 Z 7'2 —0 Zil T3
Zizl(ﬁz)“:()fori:l, Z (T12);; =0 for j =1,...,0;

Zi:1(7—13)ir20f0ri:1 , 3 Z (113);, =0forr=1,... ¢
2 |

’ (723)jT=0f0rj:1 ,b; Z 7'23 =0forr=1,...,¢

r=1
Zc_l(Tlgg)W Ofori=1,...,a,j=1,...,b;
b
Z. 1(7'123)”7«:0f0ri:1,...,@,rzl,...,c; and
]:

Zi:1(7123)ijr:0f0rj:17"'7b>T:1,...,C.

This is referred to as the full model. One can reduce the model by assuming some of
the interactions are zero. If this is done, we will refer to this model as the reduced
model. We also assume that the €;;,s’s are independent and €;;,s ~ N (0, 02). We refer

to these assumptions as the independent normal model. The design is an unreplicated
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one if n = 1. Using matrix notation, we can write our additive model in the form
Y = X0 + ¢,

where Y is the abcn x 1 vector of observations, X is the aben X abc design matrix, 6
is the abc x 1 vector of model parameters, and € is the aben x 1 vector of error terms.
We are interested in studying the case in which n = 1.

A study in which there is only one replicate per treatment does not allow one to
perform an analysis of variance if the full model is assumed. For these data, there
is not enough informations in the data to independently estimate the main effects
and interactions and the common variance. Two methods have been suggested in the
literature for analyzing the data from a design without replicates. The first of these
is an extention of Tukey’s method used to test for non-additivity. This is discussed in
the next section. The second of these analyzes the data under a reduced model. This
will be examined in Section 3. We present a third method in Section 4. In Section 5,

we discuss the analysis of 3* factorial designs. Some examples are given in Section 6.

3.2 Tukey’s Method for Three Factors

Tukey (1949) method can be extended to develop tests for non-additivity for three
factor experiments. In this case, one is to assume that the two and three factor
interactions can be expressed in terms of the main effects and the parameters Ais,

A13, A9z, and Ajg3. Under Tukey’s model, it is assumed that

(T12);; = M2(7m); (12);5 (713);, = Mz (10); (73),.;

(723);, = A3 (72);(73),; and (T123),5, = Mg (1), (72); (73),, -
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In this model, there are a+ b+ c+ 5 parameters including the common variance to be

estimated. To determine these estimates using least squares, we define the function

Q=Q (1 (1) (1) s (T2) 55 (T2)y s (73) 15 -+ -5 (T3) s A1z, Auz, Aos, Araa)
= Z; Zjl Zizl(Yz‘j — = (11); — (12); = (73), — A2 (1), (72)

— i3 (1), (73), — o (72), (73), — Mizs (11); (72); (73),)?

The least square estimates are the solutions to the following system of equations.

00 a0 00 00
5 = 0 =0; =0; =0;
o 9 (11); 9 (12); 9(73);
oQ oQ oQ oQ
— = 0 =0; = 0; and = 0.
a)\12 a)\13 8>\23 8)\123

It follows that the estimators for the model parameters (71);, (72);, (73),, A1z, A,

Aog, and Ajo3 are

(f); = Yi. =Y ;
(a); = Y, =Y_;
(?3)7" = ? r 77
. S (Vi =Y. ) (Y, = Y.) Yy
2= a b~ — \2 /o  — \2
Czizl ijl (Yz -Y ) (Yj - Y)
’):13 _ E?:l Z]:l Zi:l (YZ - ?) (?r - ?) Ejr .
DY i (Ve = V.) (Vi =YL
/): o Z?:l Z?:l Zi:l (Y] - Y) (Yr - Y) Y;g'r
23 = - P — 5 — ————; and
)2 (Yo —Y.) (Y, = Y.)
/): - Z? 1 Z]:l Zi:l (YZ - Y) (Y] - Y) (Y T Y) }/:LJT
123 = 5

ﬂbﬂ@ I
M
Il
Ny
Il
g\l o
|
~|
5

|

~
~i

|
~
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We can now express Yj;, as

S
o<
|

~l
|
=
|
)~<
|
=
|
:h<|
|
~
|
)~<

>
=
|
~
=

=Y ) - s (Vi -Y.) (Y. -Y))

-J

A3 (V=Y )V o-Y.) A (Vi =Y. ) (Y, -YV.) (Y.,

— y)
The total sum of squares SST' can be partitioned into the follow sums of squares.

SSA = bey (Vi.—V.)" with dfssa=a—1;

SSB = acy_  (V;-Y )? with dfssp = b— 1;
SSC = by (V.,—Y.)" with dfssc = c—1;
SSABT = Y 3 R (Ve -V.) (T -T)
ssact = by N R (V. -V ) (V. -V
SSBCT = aY 3 R (Ve -V (V. -7
SSABCT = 3T ST S R (Ve V) (V- V) (- V)

SSE* = SST —-SSA—-SSB—-SSC —SSAB* — SSAC* — SSBC* — SSABC*,

where

dfssap = dfssac+ = dfsspe+ = dfssape = 1,

dfssg = abc—a—b—c—2, and

ST = Zj:l Zj’1 Z;l (}/ijr - ?)2 .



43

Following the derivations in Tukey (1949), one can shown that

SSAB* , SSAC* ,SSBC* , SSABC*

2
2 ~ X]_ 9 0_2 ~ X]_? 0_2 ~ Xl? 0_2 ~ Xl?and

SSE*

~ Xab—a—b—c—2-

o

The observed values of the significance levels (SLs)

SSABC*/1
L = P Flae—abco2> ;
S 123 (1,abcabc2_SSE*/(abC_a_b_C_2)),
SSAB*/1
Lis = P Fiape—a—bc2> ;
S 12 (1,abcach_SSE*/(abc_a_b_c_2>)>
SSAC*/1
Liz = P Flave—a—bc2 > ;
S 13 (1,abcabc2_SSE*/(abc_a_b_c_Q))aand

SLyzy = P (Fl,abc—a—b—c—2 > SSE" (aiffgi—/lb — 2)> :
are then examined. The observed significance levels (OSLs) OSLya3, OSLis, OS L3,
and OS5 Log can be used to judge if there is strong enough evidence in the data against
the null hypotheses Hy : Ajog = 0, Hy : Ao = 0, Hy : \i3 = 0, and Hy : Ay3 = 0,
respectively. Note that an observed significance level is commonly referred to as a
p-value.

The test for non-additivity has null and alternative hypotheses given by
H() . )\12 = /\13 = )\23 = )\123 and H1 i~ Ho.

The statistical test has decision rule that rejects the null hypotheis in favor of the

alternative hypothesis if the observed value of

MSAB* _  MSACT _  MSBC*_ | MSABC"
MSE- = BV NS =AY Tyspe = PO Tspe = AP

where

MSAB* = 55‘143 MsAct — 294C ,MSBC*:SSfC,

MSABC* = SSA—BO, and MSE* = S5E )
1 ab—a—b—c—2




44

The size of the test « is

0 P(MSAB ZCAB)+P(MSAC S )

MSE* MSE+ = ¢
L p(MSBC" L p(MsABC
MSE- = B¢ MSE+ = B¢ )

If each of the critical values are selected to be the 100 (1 — v)th percentile of the

appropriate F-distribution, then

a=4vyorvy=a/i

3.3 Analyzing a Reduced Model

For the case in which n = 1, a reduced model can be entertained by assuming some
of the parameters in the model associated with interactions are zero. Under this new
assumption there is information in the data that can be used to estimate the common
variance. For example, if there are no three factor interactions, our reduced model
becomes

fijr = pr+ (11); + (72); + (73), + (T12)5 + (T13),, + (723) 5, -

It follows that SSE under this reduced model is the SSABC under the full model.

The SST can be partitioned as

SST = SSA+SSB+SSC+ SSAB + SSAC + SSBC + SSE.

An ANOVA can then be used to analyze the data. There are many other possible
reduced models that assumes various parameters representing interactions are zero.

For example, suppose that a =5 and b = 7.
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3.4 Analysis of Contrasts

The analysis of contrast is the same for any factorial experiment. The matrix P is
determined such that

(X™X)™' = PPT.
The estimates 0 of the vector of parameters 6 for the full model are transformed into

the vector of contrast
0 =P,
Under the independent normal model,

0" ~ Ny (0° = P710,15?) .

We observe that the contrasts of the estimates in the vector § associated with a
main effect or an interaction are the corresponding components of 0*. Removing
the contrast associate with the overall mean in é\*, a normal probability plot of the
remaining components can be examined. Points on the plot that provide evidence
against the hypothesis #* = 0 are analyzed. These points suggest that the given

parameter contrast differs from zero.

3.5 Unreplicated 3" Factorial Designs

In the analysis of a 3* factorial experiment using contrasts, one needs the design

matrix X to estimate the parameters in the full model and the matrix P~! such that
(X™X)™' = PPT.

However, one may have software that can be used to determine the estimates 0 and
then one can find 6* = P~10. In what follows, we demonstrate that the matrix P~!

has a general form.
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Define the sequence of matrices, Boo, Bo1, ..., Bor as
1
BQO — ? [1] 5
1 2 -1 2By  —Bgo
B21 Y = ’ ’ 5
219 By 2By
4 -2 =2 1
11 -2 4 1 =2 2B,y —Bax
B22 - _k - ? ? )
Flo2 1 4 -2 ~By, 2By
1 -2 =2 4

1l 2 -4 -4 8 -1 2 2 -4 9B,: —By
B23 = _k = )
Bl 4 2 9 1 8 —4 —4 2 “B, 2By
2 4 -1 2 —4 8 2 —4
2 —1 —4 2 —4 2 8 —4
-1 2 2 -4 2 —4 -4 8
9Byii  —Bo
B2k _ 2k 2k 1

—Bor-1 2Bgk

The matrix (XTX)f1 can be expressed as block diagonal matrix with 2¥ matrices
on the block diagonal. The first block matrix is Bgo, the matrix Bg: is the next (]1“)
block matrices, the matrix Bg2 is the next (g) block matrices etc. It follows that P
is a block diagonal matrix of the same construct as (XTX)_1 with By replaced with
Py fori=1,...,k, where

B, = PP}
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for:=0,1,2,... k.

3.6 Example

Montgomery (1997) gives an example of a three factor experiment in which n = 1.
He states in his example 6-3 that “the process engineer can control three variables
during the filling process: the percent carbonation(A), the operating pressure in the
filler (B), and the bottles produced per minute or the line speed (C).” His data is

presented in the following table.

Table 3.1: Montgomery’s Example 6-3

Operating pressure 25psi 30psi

Line speed Line speed

Percent carbonation 200 250 200 250
10 -4 -1 -1 2
12 1 3 5 11
14 9 13 16 21
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We see that
v, - —4—1—1—#—2:_1;
4
v, — 1+3Z5+11 s
Y, — 9+13Zl6+21 1475,
v, - —4+1+9g1+5+16:4‘§;
v, — —1+3+13;—2+11+21 _ 8.1;
v, - —4+1+9g1+3+13:3‘5;
v, = —1+5+16g—2+11+21 _o.

Y =—44+149-14+5+16—-1+3+13+2+11+21

= T75; and
— 75
Y =-—=6.25.
12

Assuming interaction between the three factors has the form

(m2);; = A2 (11); (72);,
(ms)y; = s (71); (73),.,
<7-23)7jj = )\23 (Tg)j (7—3)7"’ and

(7'123)25T = A3 (7'1)i (7'2)j (73)7~

then the least squares estimates of the parameters p, (71), (71)y, (11)3, (72)1, (72)s,



(13);, and (73), are

(), =Y. -V, =—1-625=—7.25,
(F)y =Yy -V =5-625=—1.25,
(F)y =Y. — Y. =1475—6.25 = 85,
(), =Y. Y. =43-6.25=-1.916,
(T2), =Y o — Y. =816 —6.25 = 1.916,

(r3), =Y 1—Y_=35-6.25=—275 and

—~
&
S~—
)
Il
=<l
o
|

Y =9-6.25=275.

Recall that the formula to be used to obtain an estimate of A is

P S (Vi Y. (YY) Yy
LY (Vi =Y ) (V=YL
’/\\13 _ Z?:l E?’:l Zi:l (Yz - Y) (Y..r - Y) Y;jr
by Y (Ve -V ) (Y., V)
N — D et Z?:1 > e (Y.j. - Y) (Y.,r — Y) Yiir
23 = 5 T = — 5 — ————, and
@ijl Zr:l (Y] - Y) (Yr - Y)
s LSS (V=Y ) (V=Y ) (Ve =Y Y
123 — a b c X5 ~ 2 = j— 2 ,— — 5 -
Zi:l Zj:l Zrzl (Yz -Y ) (Y,j -Y ) (Y = Y)
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It follows that

=2 -Y )Y -Y.)Yimu+2(Y,. -V )Y -Y )V

+2(V -V )YV -V ) Vi +2{1.—-Y.) (Yo —Y.)Yie

+2(YVo Y )(V1 -V ) You+2 . -Y.) (Y1 —Y.)Yorr

+2(Y2. =Y ) (Y2 —-Y ) Yo +2(Y2 -V ) (Yo —Y. ) Yo

+2(YVs. =Y. ) (V=Y. ) Yo +2(Ys. =Y. ) (V. —Y.) Yap

+2(Vs. —Y. ) (Vo =Y )Y +2(Ys. =Y. ) (Vo —Y.) Vs
1 +2(—7.25) (—1.916) (—1)

= 88.16666676,

50



o1

S
X
I~ =
[
S
>~ s
—~ b
I~ =
s
S
7ol

N~~~ o~ o~

[~ PO SO SR
I e
N N S
)

T I SN e S S ) ~
I N N N e O
o N N e e
S S
222222\%0/\5/@@\
SO S S S S BN
= & & & F & L 7 L
e~ )
R S
T N e i =P E
e
E ek ekl E R R E
I S SR SN P S ===
_._____%%%%
e S SR T S B
S S S S N N
AN NN AN NN N NN
N+ + + + 4+ 0+ 4+ o+

+2(8.5) (—2.75) (9) + 2 (8.5) (2.75) (16)

+2(8.5) (—2.75) (13) + 2 (8.5) (2.75) (21)

379.5,



=33 S (VY (V- V)Y

=3(Y.-Y )Y .1-Y ) Yiu+3(Y1-Y.)
+3(Yo-Y )Y1-Y )Yin+3(Y2-Y.))
+3(Y 1. =Y )Y1-Y )You+3(Y1-Y.)
+3(Yo-Y )Y1-Y )Yeu+3(Ya2-Y.)
+3(Y 1. -Y )Y1-Y )Ysu+3(Y1-Y.)
+3(Yo-Y )Y1-Y )Ysn+3(Y2-Y.)

= 3(—1.916) (—2.75) (—4) + 3 (—1.916) (2.75) (-1

1.916) (—2.75) (—1) + 3 (1.916) (2.75) (2)

1.916) (—2.75) (1) + 3 (—1.916) (2.75) (5)

1.916) (—2.75) (9) + 3 (—1.916) (2.75) (16)

(-

+3(

+3 (=

+ 3 (1.916) (—2.75) (3) + 3 (1.916) (2.75) (11)
+3 (=

+ 3 (1.916) (—2.75) (13) + 3 (1.916) (2.75) (21)
9.



93

7 N ~—~ ~—~ ~— ~— ~—

~— ~— ~— ~— ~— ~—
7 o ~ — — — —

o
R S S SR SO N )
[~ _ _ | _ | =
CEE R R R 2
= o+ o+ o+ o+ o+ o+ L
2 & § & F &8 »
[~ ~ L N T T H
_ T T T T T T |
R e N T O O
~ 0 b

T N N N — ~—

+ (=7.25) (1.916) (—2.75) (—1) + (=7.25) (1.916) (2.75) (2)
18.44791667,

+ (=1.25) (—1.916) (—2.75) (1) + (—1.25) (—1.916) (2.75) (5)
+ (—1.25) (1.916) (—2.75) (3) + (—1.25) (1.916) (2.75) (11)

+ (8.5) (—1.916) (—2.75) (9) + (8.5) (—1.916) (2.75) (16)

+ (8.5) (1.916) (—2.75) (13) + (8.5) (1.916) (2.75) (21)
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— P —~ — — P

S S S S

R R e

_ _ _ _ _ —

2\!/ - = [ N ™ ™ _
B S S g
_Y [a] a a o] o] o] \uQW
U S S ST S S
S _v_i SR R N O H
: _ _ _ _ _ ~
_Y — ~ — 2 — ~ _\R.U/
N PR T T ST R P
T T N S S S
223 S
T e

I TR SR O O N _

223
=2
+2
+2
+2
+2
+2
=2

N—

[a\]

3714.020834,
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N A/~ N

_ | |
S S S S
PO S
N I I
O S S
| N N N N N AN
s+t o+ + + o+
P VY O U O O
_V,.“_ _ | | _ _
P T e O S
T T, T, R N I
M_vﬂ. PO N O
Z _ | | _ _
B S N SO N NN
2222222
~ o+ o+ o+ + o+

~—

+2

—1.25)% (—=2.75)" + 2 (—1.25)* (2.75)*

+2

a— Y N~ N~ " =

+2

~—

~—

+2

7645.6875,



o6

<

N )

\}.)))))

—" N N~ N~

> —_— P P P —

~— ~— ~— — ~— ~—

R T e N N T T

D e N N

\'./)))))

~— ~— — ~— ~— ~—

~1.916)* (2.75)°

~—

2.75)* 4+ 3

~—

1.916)” (—2.75)* + 3 (1.916)” (2.75)

—1.916)° (—2.75)* + 3 (~1.916)* (2.75)"

1.916)° (—2.75)* + 3 (1.916)° (2.75)°

—1.916)° (—2.75)* + 3 (~1.916)* (2.75)"

1.916)° (—2.75)* + 3 (1.916)° (2.75)°

N ~— ~—  ~—o  ~—

+3

+3

+3

+3

+3

= 1000.140625,
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DD DD DU G e R G W ol (e S

— (Vo - Y ) (Vi-YV )V Va-YV )+ -V ) (¥L-V)(V.-YV)
+ (Ve -V ) (VoY) Va-Y )+ -V.) (Vo -YV.)([T:2-7.)
+ (Vo -V ) (Ve -V ) (Va -V )+ (Vo - V) (V0 -V.)(TV2-7.)
+ (Vo =YV ) Vo=V ) (Va -V )+ (Vo -V.) (Vo -V.) (V2-7.)
+ (Ve -V ) ' (Ve -V ) (Va -V )+ (Vo - V) (Vo -V.) (V2-7.)
+ (Ve -V ) (Vo -V ) (Va -V )+ (Vo -V ) (Vo -V.) (V2-V.)
— (=7.25)% (—=1.916)" (—2.75)* + (~7.25)* (= 1.916)” (2.75)”

+(=7.25)% (1.916)% (=2.75)% + (=7.25)% (1.916)° (2.75)

+(—1.25)% (=1.916)” (=2.75)* + (—1.25)* (—1.916)° (2.75)*

+(—1.25)* (1.916)% (=2.75)% + (—1.25)* (1.916)° (2.75)
+(8.5)% (~1.916)* (—2.75)* + (8.5)* (—1.916)* (2.75)°
+(8.5)% (1.916)” (—2.75)% + (8.5)% (1.916) (2.75)*

= 14043.64128.

Thus, we have

88.16666676

-~

= 0.02373887242,

127 3714.020834
~ 379.5
— =170 .04 2412
187 Term.0s7s 04003582412,
< 79.06249999
L  0.07905138339. and
27 1000.140625 > an
- 18.44791
1oy = 28 1667 _ ) 001313613493,

T 14043.64128
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It follows that the SST, SSA, SSB, and SSAB* are

SST=3 " S 3 (V- V) = (+4-625) + (<1 -6.25)°
+(=1-6.25)" + (2 - 6.25)> + (1 — 6.25)°
+(3—-16.25)" 4 (5 — 6.25)” + (11 — 6.25)
+(9—6.25)° + (13— 6.25)* 4 (16 — 6.25)
+ (21 — 6.25)°
— 656.25,
S9A = 42; (Vi = V.)" = 4((—=7.25) + (—1.25)° + (8.5)?)
— 505.5,
SSB = 62?1 (V,; —Y.)" =6((~1.916)* + (1.916)")
— 44.08333335,
SSC = 62; V., =Y. ) =6((—2.75)" + (2.75)?)
— 90.75,
SSAB =3 3 R (Ve -V.) (Vi -V
— (0.02373887242)” (3714.020834/2)
— 1.046488627,
ssact =3 3" B (V. -V ) (V.-V.)
— (0.04963582412)° (7645.68752)
— 0.418397627,
SSBC =3 3 R (Vi-V.) (V. -7
— (0.07905138339)* (1000.140625/3)
— 2.083333333,
SSABC" =3 3T ST R (Ve - V)

= (0.001313613493)* (14043.64128)

=
|
~|

=~
|
~|

= 0.02423343226.



We then have
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SSE*=SST —SSA—-SSB—-S5C —SSAB* — SSAC* — SSBC* — SSABC*

= 656.25 — 505.5 — 44.08333335 — 90.75 — 1.046488627

—9.418397627 — 2.083333333 — 0.02423343226

= 3.344213631.

The associated mean squares are

MSA =

MSB =

MSC =

MSAB* =

MSAC* =

MSBC* =

MSABC* =

MSE™ =

X5 _ 950,75,

3—1

44.

44.083333535 = 44.08333335;
90.75

—— = 90.75;

2-1 ’

1046488627 _ 6488627

A1 2
9418397627 = 9.418397627;

m — 2.083333333;

0.02423343226

1
3.344213631

= 0.02423343226; and

= 1.114737877.
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The observed value of F' is

252.75
Fy = —=0 99673491
A 114737877 22013491,
44.08333335
Fp = ——22%9 _ 39 54591861
B 1114737877 0004091861,
Fo o= — 20T gy 40027286,

1.114737877

1.046488627
Fug = — 220 ) 172
AB L11a737gry 93875172,

9.418397627
Ficr = 11737877 = 8.44897964,

2.083333333
BC L 11a737g7y 008899744, and

0.02423343226
o — 0.02173913057.
ABC T 11a737ary 02173913057

We see that if A = 0, then the probability of the random variable F} 3 is greater than

or equal to Fyp- is

P(Fi3> Fap-)=1—P(Fi13 < Fap~)
— 1 — FDist (0.9387755172; 1, 3) = 0.4040611181,
P(Fi3> Fac)=1—P(Fi3< Fac)
— 1 — FDist (8.44897964; 1, 3) = 0.0621622665,
P(Fi3> Fper) =1— P (Fi3 < Fpc+)
— 1 — FDist (1.868899744; 1,3) = 0.2650273957, and
P(Fy3> Fapc+) =1— P (Fi3 < Fapc+)

= 1 — FDist (0.02173913057; 1, 3) = 0.8921348612.

These results suggest there is no two or three factor interaction.

For the full model, the design matrix for the full model and our data in vector



form are

1 0 1 1 1 0 1 0 1 1 0 1
1 0 1 1 -1 0 1 0O -1 -1 0 -1
X = and y =
1 0 1 -1 1 0O —1 0 1 -1 0 -1
1 0 1 -1 -1 0 -1 0 -1 1 0 1

The matrix P associated with (XTX)f1 is
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The least squares estimates for the main effects and interaction is given by



IS N N

f=(XTX)  XTy=

the contrasts of the main effects and interactions are

2v/36,
V6 (05 + 05)
V2 (0 — 05)
2v/30,
2v/305
V6 (05 + 67
V2 (05 — 67
V6 (05 + 6y
V2 (05 — by
2v/3010
V6 (611 + 012)
V2 (011 — 012)

0 =P 10 =

)
)
)
)
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The coordinates of the random vector 8* = P~19 of estimators of the vector 6*
of the contrast of the main effects and interactions are independent. The estimates

for these contrasts are

65.58699058
—0.469485534
—1.378858223
—13.27905619

—3.92598183
—~ ~ 0.1020620726

—1.378858223

1.204332457
—0.7424621202
3.233161507
—1.326806944
0.9545941546

Removing the estimate 5? = 65.58699058, we have the 11 x 1 vector of ordered
estimates of the given linear contrasts of the main effects and interactions along
with the plotting positions for the corresponding normal probability plot given in the

following 11 x 2 matrix.



—1.5864363519
—1.0619165201
—0.7288394047
—0.4619783072
—0.2248908792
0
0.2248908792
0.4619783072
0.7288394047
1.0619165201
1.5864363519

—13.27905619
—3.92598183
—1.378858223
—1.378858223
—1.326806944
—0.7424621202
—0.469485534
0.1020620726
0.9545941546
1.204332457
3.233161507

A plot of these points is given in the following figure.

65
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Figure 3.1: Montgomery Example, Probability Plot

T Tttt y
16 -14 12 -10 08 06 04 02 02 04 06 08 10 12 14

101

1271

All the points seem to be plotting about a line except for the points with coor-
dinates (—1.5864363519, —13.27905619), (—1.0619165201, —3.92598183) and
(1.5864363519, 3.233161507). Using the other eight points, we estimate the line to be

y = —0.5988288457 + 1.652812036x

A plot of this line along with our normal probability plot of the data is shown in the

following figure.



Figure 3.2: Montgomery Example, Probability Plot and Fitted Line 8 Points

67

The contrast associated with the three estimates
0;. 0z, and 05,

are, respectively,

2\/594, 2\/505, and 2\/5910.

These contrast are associated with Factor B, Factor C and the interaction between

Factor B and C. The plot shows no evidence there is an effect due to Factor A or

interactions between Factors A and B, Factors A and C, and Factor A, B and C.
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3.7 Conclusion

The method presented by Tukey (1949) was extended to the case of three factors.
A method based on contrasts was also illustrated. This method can identify, as in
the analysis of the a two factor experiment, contrasts of the main effects and/or

interactions that are significantly different from zero.



CHAPTER 4
UNREPLICATED MULTIVARIATE FACTORIAL DESIGNS

4.1 Introduction

Multivariate analysis of variance (MANOVA) is commonly used in the analysis of
factorial designs in which the response is a multivariate observation and there is a
replicate for at least one treatment. For the case in which there is only one replicate
per treatment, few if any methods have been developed for analyzing the data for
one of these designs. The models for these designs are multivariate versions of the
univariate designs. The main effects and interaction are now represented by vectors
of parameters. In the next section, we will discuss these models. We follow this by
a section that extends the method of Tukey (1949) for the unreplicated two factor
experiment. This is followed by a section that discusses the use of multivariate con-
trasts to analysis the data from a factorial design. This is followed by a section which

gives an example.

4.2 Design and Data Models

The additive model for a two factor experiment with no replicates. The response is

a p x 1 vector Y;; of responses. Using an additive model, the response vector can be

expressed
Yij = pij + €
with
pij = p+ (1), + (T2)j + (7-12)1‘]'
fori = 1,...,a and j = 1,...,b. We have expressed the mean vector p;; of the

response variable Y;; as the sum of an overall mean vector p, the vector of effects
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(71); due to setting the first factor at level 7, the vector of effects (72); of setting the
second factor at its jth level, and a vector of effects (712);; due to the interaction
between the two factors when the first is set at its ith level and the second at its jth

level. It is assumed that

a b
Zi:l (11); = 0; Zj:l (12);, = 0;
Zizl (T12);; =0for j=1,...,b; and
b

ijl (T12);; =0fori=1,...,a.

We also assume that the Y,;’s are independent and €;; ~ N, (0,X) with X a positive
definite matrix. Further, we assume that ab > p. We can express our model in matrix
form as

Y = X0O +¢,

where X is the design matrix used when p = 1,

erIi ,LLT 911 0912 6’11‘1
YT T T 921 922 ET
Y = 2 , 0= (T, = ,and € = 2 ,
YT T 9 (9 T
L ab | L (TlZ)m i L m,2 | | €ab i

where m = (a — 1) (b —1).
The additive model for a three factor experiment with no replicates express the

p x 1 response vector Y;;, as

Yijr = p+ (1), + (12); + (73), + (T12);; + (T13),, + (T23) 5, + (T123),5, + €ijrs

where g is the overall mean vector, (1), main effect vector due to factor 1 set to
level 4, (72); main effect vector due to factor 2 set to level j, (73), main effect vector

due to factor 3 set to level 7, (T12);;, (T13);., (723);, are the vectors associated with
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the two factor interactions, and (7i23),;,’s are the vectors associated with the three
factor interactions. It is assumed that €;;,.’s are independent with a common N, (0, X)

distribution. Further, it is assumed that

S =0 Y (), =0 Y (), =0

le (7'12)1‘]‘ =0fori=1,...,a; ijl (Tlg)ij =0forj=1,...,0b;
2;1 (T13), =0 fori=1,...,a; Zj:1 (113);,, =0 forr=1,...,¢
ZC 1(723)],T:0f0rj: 1,....0b; Zj’:l (723)jr:0f0r7": 1,...,¢
(7123)ijT:Of0ri:1,...,a,j:1,...7b;

(T123);5, =0 fori=1,....a,7=1,...,¢ and
a .
E . 1(7’123)ijrzoforj:1,...,13,7’:1,...,0.
1=
We can express our model in matrix form as

Y = XO + e,

where X is the design matrix used when p =1,

T T T
Y iz 011 O €111
T T T
Yi (7'1)1 021 02 €112
Y = , 0= = ,and € = ,
T T T
| Yabe | | (M23)y, | [ Oma O | €abe |

where m = (a—1)(b—1) (c—1). It is easy now to see that these models can be
extended for more than three factors. However, the number of parameters in the

model dramatically increase as the number of factors increases.
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4.3 Parameter Estimation and Contrasts

The method of least squares can be used to estimate the parameters of the model.
We have

© = (XTX) ' XTY.
Independent estimators ©* = P~1@ of the vector contrast ©®* = P~1@© can be

obtained using the P such that
(X™X)"' = PPT.

This is the same P in the corresponding design in which the response is a univariate.

Separate normal probability plots of each column o omitting the estimate cor-
responding to the overall mean can be constructed. One could then make a judgement
about not only which of the main effects contrasts and interaction contrasts are sig-

nificant but also which of these vectors are different from zero.

4.4 Example

Johnson and Wichern (2007) give on page 340 the following data for a two factor

design without replicates.

Table 4.1: Johnson s Example

Factor 2

Level 1 Level 2 Level 3 Level 4

Levell [68 [46] [812] [26]

Factor 1 Level2 [38]" [-32) [43] [43]
Level 3 [33] [-45] [3-3] [-4-6]




The design and data matrices are given, respectively, by

_ 11 0 1
1 1 0 0
11 0 0
1 1 0 -1
1 0 1 1

X 1 0 1 0
1 0 1 0
1 0 1 -1
1 -1 -1 1
1 -1 -1 0
1 -1 -1 0
1 -1 -1 -1

—1

—1

o o o O

and Y =

[ I =]

73

This is the same design matrix for a two factor experiment for the full additive model

in which ¢ = 3 and b = 4.




The least squares estimates for the parameters of the model are

® = (X™X) ' XTY =

Recall that the matrix P! associated with (XTX)_1

18
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2V/3

ﬁT ﬁT i lzﬁﬂﬂ
o T oo g
o e T
G A e
oo T oo 5

oo Qi mien Yo

P~1© that are to be estimated by

The jth column of the matrix of contrasts ®*



O =P 'O is
2v/30,
V6 (025 + 035)
V2(025 — 035)
2(04; +65;+066,)
L (045 — 0o 5)
2 (015 — 265 + 05,)

V2 (074 0s; + 0y + 010, + 0115 + O127)
A8 (6r 5+ O3 + o5 — b10, — 115 — Oh2)
2 (05 — 003 + 0105 — b12,)

2 (075 — 205 + 09 + 010 — 2611 + O125)
3 (075 — B9 — 0105 + O125)

B (05 — 205 5+ 0y — O105 + 20115 — O12;)

where the jth column of © is




7

fory=1,...,p.

_ 2v/3  6V3 1 3.464101615  10.39230485 _
3v6 66 7.348469228  14.69693846
5vV2 42 7.071067812  5.656854249

6 4 6.0 4.0
-3v6 V6 —3.674234614  2.449489743
& {[9} i ] _ W2 42 _ 6.363961031  5.656854249
V2 =2 1.414213562  —1.414213562
-1v6 V6 —0.8164965809  0.8164965809
3V3  —3V3 2.598076211  —2.598076211
: -1 0.5 —0.5
—1 —2 —0.5 —4.5
—-IV3 L3 —2.020725942  0.2886751346

The coordinates of the random vector ©*of estimators of the vector ®* of the contrast

of the main effects and interactions are independent. The ordered estimates for these
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contrasts and the associated contrasts are given in the following table.

—3.674234614 S (041 — 06.1)
—2.020725942 3 (07, — 2031 + g1 — 101 + 20111 — O1a.1)
—0.8164965809 8 (071 + g1 + 0y — 0101 — 0111 — O12,1)

—0.5 2 (071 — 091 — b101 + O121)

0.5 % (071 — 2051 + 091 + 0101 — 20111 + 0121)
1.414213562 /2 (071 + 01 + 01 + 0101 + 0111 + O12.1)
2.598076211 B (071 — 091 + 0101 — b12.1)

6.0 2(041+ 051+ 061)
6.363961031 Y2 (@41 — 2051 + 06,1)
7.071067812 V2 (021 — 651)

7.348469228 V6 (02,1 + 031)

Normal probability plots of the estimated contrasts of the main effects and in-

teractions are given in the Figure 4.1.
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Figure 4.1: Johnson Example, Probability Plot 1

y

It appears that there are two outliers whose coordinates are (0.4619783,6.0) and
(0.7288394,6.363961). The second coordinates of these two points are estimates of

the respective contrasts
V2
2(041 + 651 +061) and 5 (041 — 2051 4 06,1) -

Thus, we would conclude that relative to the first response variable, the only effect is
due to the second factor.

A normal probability plot of the estimates of the contrasts associate with the
main effects and interactions associated with the second response variable is given in

the following figure.
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Figure 4.2: Johnson Example, Probability Plot 2

Yt

12 1

It appears that the point with coordinates (1.5864363519, 14.69693846) is the
only point associated with a contrast that is not zero. This contrast is the parameter
V6 (622 + 032) which is associated with the first factor. We conclude that there are

effects due to both the factors but there is no interaction between the factors.

4.5 Conclusion

We have shown that our contrast method can be used with unreplicated factorial
designs in which the response variable is a multivariate set of measurements. Some

illustrative examples were given.



CHAPTER 5
CONCLUSION

5.1 General Conclusions

In this paper, we consider factorical design models with univariate and multivariate
responses. Under univariate case, methods for analyszing data from two factor and
three factor unreplicated designs were examined. For the two factor design model, we
first looked at the method for analyzing a full model with replicates and a reduced
model without replicates. For the full model without replicates we considered Tukey’s
method to test for non-additivity for a two factor experiment. We extended Tukey’s
method for non-additivity to the case of three factors. Some examples were given. Our
method was extended to k factor experiments in which the response is a multivariate

set of measurements.

5.2 Areas for Further Research

We are interested in investigating the following topic areas for k factorial designs

without replicates.

(1) The method of Tukey (1949) extended for more than two factors for a uni-
variate response.

(2) The method of Tukey (1949) extended for two or more factors for a multi-
variate response.

(3) Examining methods for analyzing the data from an unreplicated two level
factor designs with a multivariate response. These methods include separate normal
probability plots for the estimated main effects and interactions for each component

of the response variable. Also, we are interested in examining various orderings of
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the vectors of statistics that are used to estimate the vector valued main effects and
interactions.
(4) To make the use of our results more readily available to the research, we plan

to develop software to implement these methods.



1]
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