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The paper presents different periodical capacity setting methods for make-to-order, multi-machine production systems with
stochastic customer required lead times and stochastic processing times to improve service level and tardiness. These methods
are developed as decision support when capacity flexibility exists, such as, a certain range of possible working hours a week
for example. The methods differ in the amount of information used whereby all are based on the cumulated capacity demand
at each machine. In a simulation study the methods’ impact on service level and tardiness is compared to a constant provided
capacity for a single and a multi-machine setting. It is shown that the tested capacity setting methods can lead to an increase
in service level and a decrease in average tardiness in comparison to a constant provided capacity. The methods using
information on processing time and customer required lead time distribution perform best. The results found in this paper
can help practitioners to make efficient use of their flexible capacity.

Keywords: periodical capacity setting methods; demanded capacity; provided capacity; customer required lead time; service
level; tardiness

1. Introduction

High service level and low tardiness are two important objectives of production planning and control in make-to-order (MTO)
manufacturing systems. In a stochastic environment, practitioners deal with process- and customer uncertainties to set the
capacity and to fulfill these objectives.

For the design of capacity setting methods, one key aspect is the available information about the stochastic environment
of a production system. Even if information about stochastic customer required lead time and stochastic processing times is
available, practitioners can still decide how much information to use for the capacity setting decision. Such information can
be delivered by enterprise resource planning systems, production data acquisition systems and/or manufacturing execution
systems. However, information processing to ensure its applicability for decision models often leads to additional efforts or
costs.

When a company can forecast the demanded capacity, the provided capacity of the production system has to be set
based on the demanded capacity of the customer. Such capacity adjustment is enabled by flexible working contracts and
capacity accounts which become more and more applied in manufacturing companies. Upper and lower bounds for the
provided capacity are introduced because capacity is for companies not arbitrary changeable due to e.g. law for working
times, contract workers and investment/de-investment in machinery and equipment. These tools allow companies to deal with
customer demand uncertainty by adjusting their capacities. Furthermore, the capacity cannot be adjusted instantaneously but
a periodic capacity adjustment is allowed. This reflects the situation of a rolling horizon planning in real production systems
where capacity can, for example, be defined for the next week on a daily basis taking into account the currently known orders.

Based on the assumption that processing time distribution and customer required lead time distribution are known,
these two information sources are used to develop different capacity setting methods which are tested in a discrete event
simulation study. Since many manufacturing companies are dealing with bottlenecks in the production process, a single-
machine framework is considered in this paper, which is finally extended to a multi-machine setting.

In this paper a periodical decision support for short and medium term capacity setting to improve service level and
tardiness is developed. Stochastic customer behaviour (information uncertainty: not all information is available when the
decision is taken), the integration of stochastic processing process (process uncertainty: the processing time of orders is not
deterministic), and the rolling horizon effects of a planning system (re-evaluation effects: decisions taken in the past influence
the current decision space and not the full length of the decided plan is really implemented) are considered by the different
methods.
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The paper is organized as follows. In Section 2 the relevant literature and the contribution of the current paper is
presented. Section 3 outlines the model framework based on the single-machine setting. The model for periodical capacity
setting methods are presented in Section 4. In Section 5 the model is extended to a multi-machine production system. A
simulation study for illustrating the developed methods is given in Section 6, whereby the results are presented in Section 7.
The paper concludes with a short summary and further research.

2. Literature review

On the one hand the due dates of the customer can be negotiated to create a more smooth capacity demand (Corti, Pozzetti,
and Zorzini 2006; Hopp and Roof Sturgis 2000; Hegedus and Hopp 2001; Keskinocak and Tayur 2004). On the other hand the
capacity can be adjusted according to the fluctuations of the customer demand (Bradley and Glynn 2002; Buyukkaramikli,
Bertrand, and van Ooijen 2013; Kok 2000; Li, Hendry, and Teunter 2009; Mincsovics and Dellaert 2009; Van Mieghem and
Rudi 2002). The methods discussed in this paper are based on capacity adjustment literature whereby a flexible capacity with
upper and lower bounds is assumed. Therefore, the capacity adjustment literature stream is focused in this literature review.

Capacity expansion problems have firstly been studied in capacity investment literature (Chenery 1996; Kok 2000; Luss
1982; Manne 1961; Pibernik and Yadav 2009). Chenery (1996) and Manne (1961) assume deterministic increasing demand
and whenever demand reaches available capacity the capacity is expanded. Manne (1961) included probabilities instead of a
constant rate of growth in demand and backlogs to the model of Chenery (1996). Luss (1982) conducted an extensive literature
review about capacity expansion problems. They classified capacity investment problems in several categories emphasizing
modelling approaches and algorithmic solutions. Segerstedt (1996) developed a capacity constrained multi-stage inventory
and production control problem. Segerstedt (1996) minimizes the inventory costs and shortage cost, whereby the cumulated
capacity concept is applied as constraint. The cumulated demanded capacity is not allowed to exceed the cumulated provided
capacity. Kok (2000) compared two capacity allocation strategies. A fixed capacity is assumed and if the demand exceeds
the fixed capacity the orders are delayed. Moreover, an additional capacity is introduced by hiring personnel.

Decision problems with capacity expansion and/or reduction are modelled in most cases as dynamic programs (Bradley
and Glynn 2002; Li, Hendry, and Teunter 2009; Van Mieghem and Rudi 2002). Bradley and Glynn (2002) developed an
analytic model for a single-machine and single product system which describes the optimal long term balance between
capacity and inventory. They show that optimal inventory policy varies with capacity investment and that higher capacity
invested allows less inventory. Moreover, the authors describe how inventory should be optimally substituted for capacity to
minimize costs when the capacity level varies. Van Mieghem and Rudi (2002) addressed this issue for a more general situation
and gained similar results. Obviously there is a trade off between capital invested in capacity and costs of the employed capital
in inventories. In Li, Hendry, and Teunter (2009), capacity allocation methods with mixed integer programming methods are
compared for supply chain optimization. The authors identified that an integrated planning approach achieves better results
than an approach where each sub problem is treated separately.

The MTO ability of production systems is evaluated in Jodlbauer (2008) depending on the provided capacity, the
customer required lead time distribution and the demand fluctuation. The result of this evaluation shows that applying a
capacity adjustment method, which enables the reaction on short term peaks, can decrease the demanded capacity for MTO
environment. In Jodlbauer and Altendorfer (2010) a concept for optimizing the overall provided capacity is presented which
again uses the customer required lead time distribution. The result of this paper indicates that flexible capacity on a short and
medium term basis can lead to a cost decrease.

The papers of Balakrishnan, Patterson, and Sridharan (1996) and Balakrishnan, Patterson, and Sridharan (1999) discuss
the capacity rationing problem for a two product production system whereby one product class leads to higher profits per
unit. A order rejection policy for the lower profit products to maximize company profit is illustrated. In Kok (2000), capacity
allocation is discussed where capacity has to be allocated to different product groups while minimizing a total cost function.
In this model, the production is triggered by an order-up-to policy for each product group.

In recent research queuing state dependent capacity adjustment models focusing on the transient behaviour of the queuing
system when switching between different capacity levels are studied (Buyukkaramikli, Bertrand, and van Ooijen 2013;
Mincsovics and Dellaert 2009). In Mincsovics and Dellaert (2009) a continuous setting is discussed in which an up-switching-
point and a down-switching-point are identified and each switch incurs costs. A periodic setting with two possible capacity
levels has been studied extensively in Buyukkaramikli, Bertrand, and van Ooijen (2013).

In this paper a cumulated capacity concept is applied, which is used by Segerstedt (1996). The M/M/1 queueing state
dependent capacity adjustment models of Mincsovics and Dellaert (2009), Buyukkaramikli, Bertrand, and van Ooijen (2013)
are extended by general distributions for the arrival process and processing times. Moreover, the capacity setting method is
extended to a multi-machine production system. Our framework also includes a distribution of the customer required lead
time. Therefore, Jodlbauer (2008) is extended by an rolling horizon and is implemented for calculating the provided capacity.
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A limitation of the presented approaches is that no analytical evaluation of their performance is possible and therefore
simulation is applied. After determining the provided capacity, in a next step, a scheduling approach could be considered
which is left for further research.

3. Model framework

Since information processing may lead to additional effort and costs, a set of methods with different information levels is
developed for approximating the demanded capacity as illustrated in Figure 1. The matrix indicates the two dimensions
processing time distribution (proc dist) and customer required lead time distribution (CRL dist). The decision maker can
include or not include information of the process uncertainty or customer required lead time uncertainty by using the
corresponding distribution. Quadrant a and b apply no additional information for processing time uncertainties whereby
quadrants c and d include the processing time distribution. Customer required lead time uncertainties are implemented in
methods b and d whereby quadrants a and c are using no information about the customer required lead time distribution.

Figure 2 shows the basic model where order i with the due date Di is stated by a customer. The customer required lead
time represents the time gap between the point of time where the order is stated and the due date of the customer order. The
production system can either fulfil the customer order on time or the customer order is delayed. If an order is satisfied earlier
then it is considered to be on time. This circumstance is measured by the two metrics service level and tardiness. No lost
sales are considered in the model. If the machine is idle the order is released into production, otherwise the order is waiting
in the buffer for processing. Only one order can be processed at a time. Customer required lead times and processing times
are assumed to be stochastic.

The production system is assumed to work on a MTO basis. This means production orders are created based on already
known demand and not based on forecast. Only the capacity demand is forecast in some of the following methods using the
distribution of customer required lead time.

4. Model

In Table 1 the variables and in Table 2 the parameters for the single-machine production system are presented.
To produce all orders on time, the demanded cumulated capacity ãx (t) has to be lower than or equal to the cumulated

provided capacity cyt at all points in time as illustrated in Figure 3.Acombination of (x, y) (see Table 2) is defined as periodical
capacity setting method, whereby x and y indicate the used methods for demanded and provided capacity respectively.

The capacity setting is performed each � periods for an evaluation time window of δ periods in the future as shown in
Figure 4. Compared to scheduling approaches or medium term production planning like MRP, δ corresponds to the planning
horizon.Hence, the capacity setting is based on the already stated customer orders. For � being one week and δ being two
weeks, for example, the capacity setting would be done weekly taking into account the known orders for the next 10 working
days. Without loss of generality, the current time of each periodical capacity setting cycle is set to zero.

Figure 1. Matrix of stochastic information for demanded capacity – four methods.
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Figure 2. Single-machine production system.

Table 1. Definition of variables for single-machine model.

Notation Description

Di Random variable for due date of order i
D̂i Random variable for pushed up due date of order i
Ai Random variable for demanded capacity of order i; A0 is the current backlog
Ã(t) Random variable for cumulated demanded capacity until time t
Â(t) Random variable for pushed up cumulated demanded capacity until time t
L Random variable for capacity weighted customer required lead time of all orders
E[.]; V ar [.] Expected value and variance of a random variable
FG(.) CDF (cumulated distribution function) of random variable G

F−1
G Inverse of the CDF of random variable G

ãx (t) Variable for approximating cumulated demanded capacity at the machine at time t based on method x
cy Variable of bounded provided capacity after each capacity setting cycle based on method y
c̃y Variable of unbounded provided capacity after each capacity setting cycle based on method y
c(l) Variable for capacity provided in past period l
ĉ Variable for capacity account

The periodical capacity setting methods follow three steps:

(1) Approximate the cumulated demanded capacity ãx (t) required by the customers; four methods are presented.
(2) Calculate unbounded provided capacity based on the demanded capacity; 3 methods are presented.
(3) Set capacity based on the capacity account.

4.1 Approximation of demanded capacity (Step 1)

In the following section the first step of the periodical capacity setting methods is detailed. Four methods for approximating
the cumulated demanded capacity are formally defined and illustrated in Figure 5.

4.1.1 Deterministic processing times, no CRL distribution: x = 1

Each order i requires a capacity Ai at due date Di . In this case Ai is approximated with its expected value E[Ai ] without
any additional information. This means the decision maker has no information about the process- and demand uncertainty
or does not want to invest additional effort for information processing. Equation 1 cumulates the demanded capacity up to
time t which is illustrated in Figure 5(a):

ã1(t) =
∑

{i |Di ≤t}
E[Ai ] (1)
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Table 2. Definition of parameters for single-machine model.

Notation Description

x Method parameter of cumulated demanded capacity:
x = 1: Deterministic processing times; no CRL distribution
x = 2: Processing time distribution; no CRL distribution
x = 3: Deterministic processing times; CRL distribution
x = 4: Processing time and CRL distributions

y Method parameter of provided capacity:
y = 1: Full utilization
y = 2: Maximum safety
y = 3: Service level target

κmin, κmax Parameters for lower/upper bound for provided capacity cy
� Parameter for period of time for which cy is set
−ψ Parameter for time where the system has (re)started
κavg Parameter for average provided capacity per period
θ Service level parameter for capacity setting method c3
β Capacity feasibility parameter for capacity setting methods a2 and a4
OC(t) Operations characteristic of the machine
δ Parameter for evaluation time window

cumulated demanded capacity
cumulated provided capacity
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Figure 3. Basic idea of capacity setting.

Figure 4. Timeline.

4.1.2 Processing time distribution, no CRL distribution: x = 2

Method x = 2 includes the information of the processing time distribution but uses no information about the customer
required lead time distribution to approximate a cumulated capacity demand. A higher amount of demanded capacity results
from this approximation in comparison to method x = 1 as indicated in Figure 5(b) (ã1(t) ≤ ã2(t)) due to a safety capacity
for the processing time distribution.
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(c)(a)

(d)(b)

Figure 5. Cumulated demanded capacity – four methods.

The random variable of the cumulated demanded capacity is defined in Equation (2):

Ã(t) =
∑

{i |Di ≤t}
Ai (2)

Note that Equation (2) includes A0 since D0 = 0. In Equation (3), the demanded capacity to fulfil a set of orders (until
time t) with probability β (FÃ(t)(ã2(t)) � β) is calculated.

ã2(t) = F−1
Ã(t)
(β) (3)

Processing times may not be deterministic due to products requiring different amount of machine capacity, stochastic
processing speed, set up time or down times. In this case, the realization of the demanded capacity will exceed the expected
value E[Ai ] with a certain probability. If, for the example, β is set to 0.9, then method x = 2 includes safety capacity to
fulfil the stochastic capacity demand with 90% probability. This method works for all distributions of the demanded capacity
where a quantile function exits.

The safety capacity of method x = 2 in comparison to method x = 1 is F−1
Ã(t)
(β) − ∑

{i |Di ≤t} E[Ai ], which is the
difference between the dashed and solid line in Figure 5(b).

4.1.3 Deterministic processing times, CRL distribution: x = 3

The customer required lead time distribution is used for evaluating method x = 3, which results in an earlier allocation of
the demanded capacity compared to method x = 1 to forecast short term orders which are not yet known. Method x = 3
still assumes deterministic processing times as x = 1.
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Figure 6. Operations characteristics.

The customer required lead time is defined as the time between the due date of an order i and the point in time when this
order is stated. At a certain point in time, the demanded capacity is defined by the already stated customer orders. However,
according to the customer required lead time distribution, additional demand – defined as anticipated demand – can be
requested by customers. To include the anticipated demand, the concept of the operations characteristic (OC) is applied,
whereby this OC defines the relationship between the customer required lead time and the demanded capacity at a machine
(Jodlbauer 2008). For a single-stage model, the OC shows how much of the customer required capacity is known how many
periods in advance. Figure 6 shows an example of an OC where 50% of demanded capacity is known 20 periods in advance.

In Jodlbauer (2008), the OC concept encompasses the concept of a constant remaining processing time. This remaining
processing time can be the transportation time to the customer in a single-stage production system or the remaining processing
and handling time in a multi-stage production system. Since this time is assumed to be constant in Jodlbauer (2008), which
does especially for job shop production systems not hold, the OC concept is slightly adapted in this paper.

The customer required lead time is weighted by its capacity consumption so that the capacity weighted customer required
lead time L results (Jodlbauer 2008; Jodlbauer and Altendorfer 2010). Finally, the OC is calculated in Equation (4):

OC(t) = 1 − FL(t) (4)

Based on the OC, it is necessary to produce the already stated orders earlier to have enough safety capacity left for the
anticipated future demand. Therefore, the pushed up due date D̂i is used instead of the customer required due date Di . The
following Equation (5) for approximating the cumulated demanded capacity can be stated:

ã3(t) =
∑

{i |D̂i ≤t}
E[Ai ] (5)

Equation (6) shows how the due date of each order based on the OC is pushed up to ensure some safety capacity for the
anticipated demand (therefore D̂i ≤ Di holds).

D̂i =
∫ Di

0
OC(τ )dτ (6)

In this method not a typical forecasting approach is conducted where the customer demand of a certain product or a certain
product group is forecast, but only the capacity demand still to occur on the short and medium time range is anticipated for
a certain machine based on past data.

4.1.4 Processing time and CRL distributions: x = 4

In method x = 4, the concepts of methods x = 2 and x = 3 are combined. Therefore, method x = 4 uses the information
of the customer required lead time distribution and the processing time distribution. Again, a certain probability β is used to
calculate the cumulated demanded capacity based on the processing time distribution.
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Figure 7. Provided capacity.

ã4(t) = F−1
Â(t)
(β) (7)

However, the random variable of pushed up cumulated demanded capacity until time t is defined in Equation (8), because
method x = 4 also includes the anticipated demand, where the due date of each order is pushed up according to Equation
(6).

Â(t) =
∑

{i |D̂i ≤t}
Ai (8)

Method x = 4 pushes up the demanded capacity (based on the customer required lead time distribution) and increases it
according to the processing time distribution in comparison to method x = 1 (see Figure 5(d)).

4.2 Setting the unbounded provided capacity (Step 2)

Based on the cumulated demanded capacity, calculated with one of the methods x = 1 . . . 4, the unbounded provided capacity
is set. Three methods for calculating the provided capacity are presented in this section and illustrated in Figure 7. A0 – the
current capacity backlog of the system – is in Figure 7 set to zero.

The provided capacity for method y = 1 is set to the cumulated demanded capacity at the end of the evaluation time
window δ. Method y = 2 is based on the maximum increase of the cumulated demanded capacity ãx (t). Finally, method
y = 3 uses a kind of service level θ to relax the constraint of method y = 2, so that not each order has to be ready on time.

4.2.1 Full utilization: y = 1

For this capacity setting method the provided capacity is set to the average demanded capacity within an evaluation time
window δ. Therefore, the cumulated demanded capacity at the end of the evaluation time window is divided by the time where
the last customer order reaches its due date. Assuming the approximated demanded capacity occurs, this method ensures full
utilization for the machine, because the provided capacity is set to the cumulated demanded capacity for observed evaluation
time window δ. Note that methods x = 2 to x = 4 lead to a safety capacity which will often not be utilized and therefore the
method y = 1 will in these cases not lead to 100% utilization.

c̃1 =
ãx (max

i
{Di |Di < δ})

max
i

{Di |Di < δ} (9)

The maximum over all i is responsible for searching the due date of the last order within the evaluation time window
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4.2.2 Maximum safety: y = 2

Method y = 2 works as follows: a straight line starting at zero with minimum slope being greater or equal than the cumulated
demanded capacity is constructed. The fraction in Equation (10) can be interpreted as the slope of cumulated capacity demand
at due date Di . The max operator identifies the maximum slope over all due dates Di leading to a maximum safety in capacity
provided. As an assumption at least one order has to be in the system. Note that capacity backlogs are ignored since they
would lead to an infinite increase, however, they are included in ãx (Di ) when the first due date is evaluated.

c̃2 = max{i |Di>0}

(
ãx (Di )

Di

)
(10)

4.2.3 Service level target: y = 3

Since it could be too ambitious to set the provided capacity to the maximum increase as calculated in Equations (10) and (11)
presents a smoothed version of this approach, where not the whole capacity demand has to be finished on time. The lowest
c̃3 which still satisfies a service level θ for the evaluation time window δ is searched in the following optimization problem:

c̃3→ min
c̃3

(11)

∑
{Di |Di ≤δ}

f (Di , c̃3)

∑
{Di |Di ≤δ}

1
≥ θ

The function f (.) defined in Equation (12) delivers one if a due date (one or more orders can have the same due date) is
on time and zero if a certain due date does not hold. c̃3

δ
is the slope of the provided capacity.

f (Di , c̃3) = 1 for ãx (Di ) ≤ c̃3

δ
Di (on time) (12)

f (Di , c̃3) = 0 for ãx (Di ) >
c̃3

δ
Di (late)

If y = 3 is applied in combination with methods x = 3 and x = 4, Di has to be substituted by D̃i for Equations (11)–(12),
because the customer required lead time distribution is included in the approximations.

4.3 Capacity account (Step 3)

The bounded provided capacity cy is introduced for the developed capacity setting methods. If the unbounded provided
capacity c̃y is below κmin then the provided capacity is set to κmin and if the candidate exceeds κmax then the provided
capacity is set to κmax . Equation (13) corresponds to the flexible capacity range that can be provided in the production
system.

κmin ≤ cy ≤ κmax (13)

Since most flexible working time contracts have a defined average working time κavg , a capacity account ĉ is introduced
and Equation (14) is added to ensure that the provided capacity is on average lower or equal than the allowed average working
time. When the capacity account ĉ is positive (e.g. 16 h), the production system has some capacity which can be provided
above the average working time (e.g. 2 shifts with 8 h each on Saturday). All periods since the system has (re)started are
taken into consideration which leads to Equation (14) with c(l) being the capacity provided in past period l. If the production
system has collected a positive capacity account by setting the capacity less then κavg then the capacity can be set to a level
exceeding κavg if necessary.

cy − κavg ≤ ĉ (14)

ĉ =
−1∑

l=−ψ
(κavg − c(l))
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The candidate for provided capacity c̃y from methods y = 1 . . . 3 is constrained by Equations (13) and (14) in the
following Equation (15).

κmin ≤ cy ≤ min

[
κmax , κavg +

−1∑
l=−ψ

(κavg − c(l)

]
(15)

According to the procedure of periodical capacity setting methods, steps 1 to 3 are repeated each� periods to implement
the rolling horizon planning effect.

5. Multi-machine concept

In this section the basic single-machine production system is extended to a multi-machine production system. The methods
can be applied for any arbitrary production system structure according to the respective routing file. Order i with the due
date Di is stated by a customer. On each machine j a demanded capacity Ai, j is requested by the order i .

To implement the methods developed for the single machine case also for a multi-machine setting, an order due date for
each machine Di, j has to be identified. This order due date is based on the customer order due date applying a backward
scheduling similar to the MRP (material requirements planning) algorithm (Hopp and Spearman 1996). The difference to
MRP is that for the capacity setting methods no production plan is generated but only the capacity demand has to be identified
and therefore no or only little safety time is included in this backward scheduling.

Based on these Di, j values, also the customer required lead times have to be adapted, and therefore in the multi-machine
concept Di, j , D̂i, j , L j and OC j (t) replace Di , D̂i , L and OC(t) respectively in Equations (1)–(15) as indicated in Table
3. Moreover, the demanded capacity for a machine within the multi-machine production system needs machine index j to
be added and therefore Ai is replaced by Ai, j . Also the lower and upper bound for the provided capacity κmin and κmax are
defined for each machine j .

This backward scheduling is introduced in Equation (16):

Di, j = Di − E[Ri, j ] (16)

In Equation (17) the remaining capacity demand for order i Ri, j is defined, whereby only the demanded capacity at
the remaining machines indicated by Ni, j for finishing an order are considered. The parameter Ni, j represents the set of
machines for remaining processing steps of order i after machine j known from the respective routing file. Assuming for the
multi-machine example presented in Section 6, that the current machine is machine three, Ni, j consists of machine four and
five since these processing steps have to be finished after processing at machine three.

Ri, j =
∑

{k∈Ni, j }
Ai,k (17)

For methods x = 2 and x = 4 two alternatives x = 2b and x = 4b including the stochastic behaviour of remaining
capacity demand are developed. Hence, the existing methods x = 2 and x = 4 are defined in the multi-machine production
system as x = 2a and x = 4a.

In Equation (18) the CDF of Ri, j is used to calculate R̃i, j based on the distribution of the remaining capacity demand.
Thus, E[Ri, j ] is replaced in Equation (17) by R̃i, j .

R̃i, j = F−1
Ri, j
(β) (18)

Table 3. Definition of additional variables for multi-machine model.

Variable Description

Di, j Random variable for machine depended due date of order i at machine j .
Di, j on the last machine is equal to Di stated by the customer

D̂i, j Random variable for pushed up due date of order i at machine j
Ri, j Random variable of remaining capacity demand for order i after machine j
Ni, j Set of machines for remaining processing steps of order i after machine j
Ai, j Random Variable for demanded capacity of order i at machine j
L j Random variable for capacity weighted customer required lead time at machine j
OC j (t) OC of machine j
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Comparing the sum over the means of the provided capacity in Equation (17) with the inverse of the CDF of the processing
time distribution for the remaining processing steps of an order in Equation (18) leads to a difference which is equivalent to
the safety time concept also applied in MRP. This safety time accounts for the possibility that a certain order has a higher
processing time than planned at a certain machine. However, the approach presented in Equation (18) does not consider the
queue length as discussed for example in the Workload Control (Bechte 1988) literature where also the queuing between
the processing steps is considered. Compared to the safety time concept in MRP, which also includes some safety time for
queuing, this safety time only includes the processing instabilities. This is assumed since only the workloads and their latest
possible date Di, j for each single machine are needed but no production plan with start dates is generated.

L j is calculated in Equation (19) based on L . For simplification reasons in the calculation of L j , all Ai, j are assumed to
have a common stochastic distribution and therefore E[R j ] = E[Ri, j ] holds.

L j = L − E[R j ] (19)

Note that this assumption only influences the OC j (t) applied in the methods x = 3, x = 4a and x = 4b.

6. Simulation study

The simulation study is conducted for comparing the behaviour of the presented methods to analyse which information
improves the capacity setting methods. In this simulation study 19,500 simulation runs for the single machine production
system and 28,500 simulations runs for multi-machine production system have been conducted as shown in Table 4.

Five sequential machines are investigated for the multi-machine production system as illustrated in Figure (8). The used
simulation framework is explained in more detail in Hübl et al. (2011). The simulation model has been validated as proposed
in Kleijnen (1995) by checking the model behaviour of the single-machine case with constant capacity compared to developed
analytic results.

The planned utilization is set to the same level for all machines. The following values for planned utilization are tested:
0.7, 0.75, 0.8, 0.85, 0.875, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99.

Table 4. Simulation runs.

Description Multi-machine Single-machine

Planned utilization values 15 15
Scenarios 10 10
Methods for demanded capacity 6a 4b

Methods for provided capacity 3c 3c

Replications 10 10
Constant capacity 1 1
Simulation runs 28,500 19,500

ax = 1, 2a, 2b, 3, 4a, 4b.
bx = 1 . . . 4.
c y = 1 . . . 3.

machine 1

buffer

customer

service level

tardiness

machine 2

buffer

machine 3

buffer

machine 4

buffer

machine 5

buffer

due date order i, Di

demanded capacity Ai,1 demanded capacity Ai,2 demanded capacity Ai,3

demanded capacity Ai,4 demanded capacity Ai,5

Figure 8. Multi-machine production system.
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Table 5. Scenarios.

Description V ar(Ai )/E(Ai ) E[L] c j,min, c j,max �

Basic 1 20/100 0.8, 1.2 10
High proc-time variation 1.5 20/100 0.8, 1.2 10
Low proc-time variation 0.5 20/100 0.8, 1.2 10
High cust. req. leadtime 1 50/250 0.8, 1.2 10
Low customer req. leadtime 1 10/50 0.8, 1.2 10
High flexibility 1 20/100 0.5, 1.5 10
Low flexibility 1 20/100 0.95, 1.05 10
Indefinite flexibility 1 20/100 0, ∞ 10
Long capacity setting period 1 20/100 0.8, 1.2 50
Short capacity setting period 1 20/100 0.8, 1.2 5

Ten different scenarios for single and multi-machine setting are tested where parameters for processing time, customer
required lead time, upper and lower bound for provided capacity and period for setting the provided capacity are predefined as
shown in Table 5. A basic scenario is defined as the basis for all other scenarios with a variation coefficient for the processing
time distribution of 1, mean customer required lead time of 20 time periods for the single-machine production system and
100 time units for the multi-machine production system. The upper and lower bound for the provided capacity is given by
+/− 20% and � is set to 10 periods.

The periodical capacity setting methods are compared to a scenario where the production system provides constant
capacity. The average of the provided capacity is for all tested scenarios equal, also for the constant provided capacity
scenario. In the single-machine production system, the four methods x = 1 . . . 4 for identifying the demanded capacity
are compared. For the multi-machine production system, the additional two methods for calculating the demanded capacity
due to the machine depended due date are included (x = 2b and x = 4b). Therefore, six methods are compared in the
multi-machine production system as shown in Table 4. Ten replications are produced for each parameter combination.

The following values are set: κavg = 1 , δ = 40 for single-machine production system, δ = 200 for multi-machine
production system, θ = 0.9 and β = 0.9. The parameters δ, β and θ have been identified in preliminary studies to perform
well with respect to service level and tardiness for the basic scenario at 80% utilization. The simulation runs for 500,000
time periods, a warm up period of 100,000 time units is excluded from the measured results and the system is restarted every
100,000 time units for data generation reasons.

Processing times are log-normal distributed and the distribution of the customer required lead time is implemented as
exponential distribution for the simulation experiment. The distributions are chosen for non negativity. For simplicity reasons,
the distribution of Â(t) is assumed to be log-normal as well. The mean customer required lead time is differently assigned
for the single-machine and the sequential production system. In the third column of Table 5, the first number is dedicated to
the single-machine system and the second number to the sequential production system. The mean processing time per order
is one period.

The interarrival time of the customer orders, which is used to influence the planned utilization, is also exponentially
distributed. No set-up times and no transportation times are included in the simulation. The capacity setting methods for the
provided capacity are implemented in the simulation model by changing the machine speed. Whenever the average machine
speed (which is equivalent to the capacity account) is below or equal to one, the provided capacity can be set – if necessary
– higher than one. The average machine speed is cleared at each system restart. Relating the simulation periods to one shift
of a working day and assuming that two shifts per day is the working time for five days a week, then the capacity is set every
week ( � = 10 shifts). The capacity account in the beginning is zero. The simulation is conducted in AnyLogic 6.4.1.

7. Results

In the first step, the best capacity setting method (x, y) for the basic scenario is evaluated. Based on this evaluation, the results
of the best method (x, y) are compared to the situation with constant provided capacity for the two production systems. This
is followed by an analysis over all defined scenarios. For all investigations, the performance measures service level increase
and tardiness decrease in comparison to average capacity provided are used.
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Table 6. Service level increase and tardiness decrease potential in basic scenario.

Utilization Single-machine case Multi-machine case

Service level Tardiness Service level Tardiness

Increase Method Decrease Method Increase Method Decrease Method
[%] [%] (x, y) [%] (x, y) [%] (x, y) [%] (x, y)

70.0 1.0 (2, 3) 18.0 (2, 3) 0.0 (2a, 3) 9.0 (4b, 3)
75.0 1.0 (2, 3) 23.0 (2, 3) 0.0 (2b, 3) 11.0 (4b, 2)
80.0 1.0 (2, 3) 28.0 (4, 3) 1.0 (2a, 3) 13.0 (4b, 2)
85.0 3.0 (4, 3) 58.0 (4, 3) 1.0 (4b, 2) 15.0 (4b, 2)
87.5 6.0 (4, 3) 72.0 (4, 3) 2.0 (3, 2) 16.0 (3, 2)
90.0 10.0 (4, 3) 82.0 (4, 3) 3.0 (4b, 2) 17.0 (4b, 2)
91.0 12.0 (4, 3) 85.0 (4, 3) 3.0 (4b, 2) 17.0 (3, 3)
92.0 15.0 (4, 3) 88.0 (4, 3) 4.0 (4a, 2) 19.0 (4a, 2)
93.0 18.0 (4, 3) 90.0 (4, 3) 4.0 (4a, 3) 20.0 (4a, 3)
94.0 23.0 (4, 3) 91.0 (3, 3) 4.0 (4b, 2) 19.0 (4b, 2)
95.0 27.0 (4, 3) 94.0 (4, 2) 5.0 (3, 3) 19.0 (4a, 2)
96.0 32.0 (4, 2) 93.0 (3, 3) 4.0 (4a, 2) 17.0 (4a, 2)
97.0 37.0 (3, 3) 95.0 (4, 1) 5.0 (3, 3) 20.0 (3, 3)
98.0 43.0 (4, 1) 94.0 (4, 1) 2.0 (1, 3) 14.0 (1, 3)
99.0 44.0 (4, 1) 85.0 (3, 1) 0.0 (1, 3) 16.0 (1, 3)

Notes: x = 1: det proc times, no CRL dist; x = 2: proc time dist, CRL dist; x = 3: det proc times, CRL dist; x = 4: proc time dist, CRL
dist; y = 1: full utilization; y = 2: maximum safety; y = 3: service level target.

Table 7. Comparison of methods over all scenarios.

Single-machine case Multi-machine case

Service level Tardiness Service level Tardiness

Method % of cases % of cases Method % of cases % of cases

Constant 9.3 8.0 Constant 14.0 9.3
x = 1 0.0 2.0 x = 1 14.7 17.3
x = 2 16.7 14.7 x = 2a 8.7 4.7
x = 3 8.0 16.0 x = 2b 12.0 7.3
x = 4 66.0 59.3 x = 3 14.0 15.3
y = 1 24.7 31.3 x = 4a 16.7 20.0
y = 2 14.0 14.0 x = 4b 20.0 26.0
y = 3 52.0 46.7 y = 1 0.7 2.7

y = 2 50.7 58.0
y = 3 34.7 30.0

Notes: x = 1: det proc times, no CRL dist; x = 2: proc time dist, CRL dist; x = 3: det proc times, CRL dist; x = 4: proc time dist, CRL
dist; y = 1: full utilization; y = 2: maximum safety; y = 3: service level target.

7.1 Evaluation of best method combination

Table 6 shows the best method combination (x, y) compared to constant provided capacity for 15 different planned utilization
values. Tardiness and service level are treated separately for identifying the best method combination.

For the single-machine case the results for the planned utilization of 94% indicates an increase of 23% in the service
level by the use of method (4, 3). At the same planned utilization value, a decrease of 91% in average tardiness by the use
of method (3, 3) occurs. The results for the single-machine production system show that for most of the planned utilization
values tested, the method (4, 3) leads to the best results. For the multi-machine case the result from Table 6 shows a balance
between methods (4b, 2) and (4b, 3).

As a measure for evaluating which method is the best for the two production systems, the percentage of simulation
experiments dominated by a certain method is used, whereby only the average of a replication set is considered. Therefore,
Table 7 summarizes the percentage of cases where the tested methods lead to the best results in service level increase and
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average tardiness decrease when all 10 scenarios are taken into account. In the multi-machine production system in 20% of
all parameter combinations method x = 4b leads to the best result concerning service level increase.

The first result found in this study is that the same methods perform well concerning service level increase and average
tardiness decrease. In the single-machine case the method x = 4 for demanded capacity, which uses both customer required
lead time and processing time distribution, leads in about 60% of cases to better results for service level and tardiness.
Only in about 8% of the cases does the constant provided capacity scenario lead to better results, which are discussed in
the next subsection. The best method for provided capacity calculation is in the single-machine case y = 3, which leads in
approximately 50% of cases to the best result over all scenarios.

For the multi-machine production system, the best result for calculating the demanded capacity is again found with both
version of method x = 4, whereby a slight advantage for alternative x = 4b is identified. This means the best method again
uses all the provided information about customer required lead time distribution and processing time distribution. Due to the
small difference in the result between method x = 4a and x = 4b it is not possible to clearly specify whether it is better to
have the machine dependent due date calculation based on expected values for processing times or based on the processing
time distribution. In the multi-machine production system y = 2 is the best method for defining the provided capacity.

7.2 Result comparison best method with constant provided capacity scenario

Figure 9 shows a comparison of the results gained with constant capacity scenario and method (4, 3) for single-machine
production system and (4b, 2) for multi-machine production system. For both situations presented in the following graphs,
the basic scenario is compared.

In the single-machine production system, the service level is on average 14% higher and the tardiness on average 60.1%
lower when method (4, 3) is compared to the constant provided capacity scenario. For the multi-machine production system

Figure 9. Comparison best capacity setting method with average capacity.
Notes: x = 4: proc time dist, CRL dist; y = 2: maximum safety; y = 3: service level target.
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a service level increase of 2.2% and a tardiness decrease of 13.7% is found in the simulation study. This result shows that
flexible capacities, which are provided for medium term capacity setting, can lead to significant improvements in service
level and tardiness when the developed capacity setting methods are applied.

For the single and multi-machine production system, the highest improvement potential is found between the planned
utilization of 0.85 and 0.97, which is also the range in which a lot of production systems are operating. For low planned
utilization values, that the developed methods do not improve the service level and tardiness performance. Hence, in these
situations the methods can still be used to decrease the overall provided capacity in the production system. The detailed
simulation results (not provided in this paper but available on request) for such low utilization values show that with the best
methods – (4, 3) and (4b, 2) – the provided capacity on average is below one. In this case the developed methods probably
lead to lower capacity costs.

Another finding is that the potential to improve service level and tardiness is lower for the multi-machine production system
than for the single-machine production system. This effect may result from the higher complexity and higher uncertainty of
the multi-machine production system.

7.3 Scenario discussion of the best methods

Table 8 gives an overview of the average service level increase and tardiness decrease in the different scenarios for the
best identified methods. In the single-machine basic scenario, for example, the average service level increases by 14%
when applying method (4, 3) instead of constant provided capacity scenario. The best method for estimating the demanded
capacity uses both, information about processing time stochastics and customer demand. This allows the production system
to introduce some safety capacity due to process and demand uncertainties. Also, for calculating the provided capacity, the
methods providing safety capacity are preferred. Therefore, maximum safety and service level target both perform well.

An interesting finding is that the best methods as found in this study lead in some of the scenarios to a worse overall
performance in comparison to constant provided capacity. For the ‘long capacity setting period’ scenario (see Table 5), the
reason for the low performance in the multi-machine production system is conjectured to be an increasing demand uncertainty
with long periods �, for which capacity has to be set. Taking the above introduced example into consideration, production
system with �1 wastes capacity of area one if no additional orders arrive until the next capacity setting. The production
system with �2, however, wastes capacity of area one and two if no orders arrive until the next capacity setting. Since it is
necessary to fulfil Equation (10), too much wasted capacity in some periods leads to a reduced speed of the equipment in
later periods.

Figure 10 illustrates an example of two production systems at a certain point in time of the timeline (see also Figure 4).
The production system is in both cases capable to satisfy cy . Hence, they differ from capacity setting period�, whereby�1
is assuming a short capacity setting period and �2 a long capacity setting period.

A further result based on Table 8 is that for any change in capacity flexibility the performance on both scenario types is
worse than in the basic scenario. A too high range of capacity flexibility can lead to overreactions in many situations (see high
and indefinite flexibility scenarios). If a backlog exists or the customer requests a high amount of capacity as demonstrated

Table 8. Comparison of scenarios.

Scenario Single-machine case (4, 3) Multi-machine case (4b, 2)
Avg. service level Avg. tardiness Avg. service level Avg. tardiness

Increase Decrease Increase Decrease
[%] [%] [%] [%]

Basic 14.0 60.1 2.2 13.7
High proc-time variation 13.9 56.4 2.5 13.2
Low proc-time variation 12.0 50.9 0.5 4.3
High cust. req. leadtime 8.2 43.4 1.7 12.4
Low customer req. leadtime 7.3 33.6 1.8 10.5
High flexibility 7.8 36.1 0.9 6.3
Low flexibility 5.9 36.9 1.2 8.1
Indefinite flexibility −7.6 −62.6 −6.9 −57.0
Long capacity setting period 3.4 17.8 −0.5 −2.7
Short capacity setting period 16.3 65.8 2.6 16.7

Notes: x = 4: proc time dist, CRL dist; y = 2: maximum safety; y = 3: service level target.
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Figure 10. Long capacity setting period and capacity flexibility.

in Figure 10 then the provided capacity it set to the upper bound κmax . Again, if in some periods the capacity is set to its
maximum amount then in later periods it is only possible to use the lower bound κmin according to Equation 14. However, a
too low capacity flexibility gives the developed methods only a narrow range to react on the customer demand. For practical
application of these methods, the capacity flexibility used has to be evaluated to determine whether it is still increasing
performance or if it is already leading to unnecessary overreactions on single demand peaks.

8. Conclusion

In this paper, capacity setting methods are developed to improve service level and tardiness. Information about process
uncertainty and/or customer behaviour including the rolling horizon effects of a planning system are implemented in different
methods. The results from a simulation study show that the methods (4, 3) and (4b, 2) which use information about both
the processing time distribution and the customer required lead time distribution lead to the best result. In the single-
machine production system an average service level increase (over all experiments for the basic scenario) of 14% and
a tardiness reduction of 60.1% have been reached in comparison to a constant provided capacity. For the multi-machine
production system the average service level increase is still 2.2% and the average tardiness decrease is 13.7%. Especially in
the utilization range of 85% to 97% the developed methods lead to good results. The same methods perform well concerning
the two metrics service level and tardiness. The scenarios tested show that too much flexibility in provided capacity leads to
overreactions and for this reason to an overall lower performance increase or even to a performance decrease in comparison
to the constant provided capacity. Based on the equations developed in this paper the best method can directly be used for
practical application to improve logistical performance. Decision makers can decide on which method to apply based on the
available data, production system complexity and the available software.

An extensive parameter optimization search for the best method to give some guidelines about optimal parameter sets is
postponed to further research.
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