
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ufaj20

Financial Analysts Journal

ISSN: 0015-198X (Print) 1938-3312 (Online) Journal homepage: https://www.tandfonline.com/loi/ufaj20

Long-Horizon Predictability: A Cautionary Tale

Jacob Boudoukh, Ronen Israel & Matthew Richardson

To cite this article: Jacob Boudoukh, Ronen Israel & Matthew Richardson (2019) Long-
Horizon Predictability: A Cautionary Tale, Financial Analysts Journal, 75:1, 17-30, DOI:
10.1080/0015198X.2018.1547056

To link to this article:  https://doi.org/10.1080/0015198X.2018.1547056

© 2019 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 24 Jan 2019.

Submit your article to this journal 

Article views: 4762

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ufaj20
https://www.tandfonline.com/loi/ufaj20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0015198X.2018.1547056
https://doi.org/10.1080/0015198X.2018.1547056
https://www.tandfonline.com/action/authorSubmission?journalCode=ufaj20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ufaj20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0015198X.2018.1547056
https://www.tandfonline.com/doi/mlt/10.1080/0015198X.2018.1547056
http://crossmark.crossref.org/dialog/?doi=10.1080/0015198X.2018.1547056&domain=pdf&date_stamp=2019-01-24
http://crossmark.crossref.org/dialog/?doi=10.1080/0015198X.2018.1547056&domain=pdf&date_stamp=2019-01-24


Financial Analysts Journal | A Publication of CFA Institute Perspectives

CE Credits: 0.5

Volume 75 Number 1	 © 2019 The Author(s). Published with license by Taylor & Francis Group, LLC.� 17

https://doi.org/10.1080/0015198X.2018.1547056

Long-Horizon  
Predictability:  
A Cautionary Tale
Jacob Boudoukh, Ronen Israel, and Matthew Richardson
Jacob Boudoukh is a professor of finance at the Arison School of Business, Interdisciplinary Center, Herzliya, Israel, and a consultant to 
AQR Capital Management. Ronen Israel is a principal at AQR Capital Management, Greenwich, Connecticut. Matthew Richardson is the 
Charles E. Simon Professor of Applied Economics in the Finance Department at the Leonard N. Stern School of Business at New York 
University, research associate at the NBER, and a consultant to AQR Capital Management.

Pronouncements in the media about how “cheap” or “rich” the 
stock market or aggregate factor portfolios have become are 
quite common. These views also creep into the practitioner/

academic finance literature:

�Evidence of bubbles has accelerated since the crisis. Valuations 
in the stock and bond markets have reached high levels. . . .  1/
CAPE (cyclically adjusted price–earnings) stands at 26, higher 
than ever before except for the times around 1929, 2000 and 
2007, all major market peaks. . . . Long-term investors would be 
well advised, individually, to lower their exposure to the stock 
market when it is high, other things equal, and get into the mar-
ket when it is low. (Shiller 2015, xi, xvi, 204)

Empirical support for these types of statements originates from seemingly 
“impressive” evidence of the long-horizon predictability of stock returns 
based on valuation measures. Furthermore, practitioners often document 
strong levels of statistical significance when analyzing overlapping long-
horizon returns based on standard errors that they believe to be correct 
for overlapping data. (See, among many others, Reichenstein and Rich 
1994; Campbell and Shiller 1998; Arnott and Bernstein 2002; Weigand 
and Irons 2007; Arnott, Beck, Kalesnik, and West 2016; and Siegel 2016.)

The issue is the few independent long-horizon periods in the short 
samples used to study markets. Using overlapping returns in the hope 
of increasing the sample size offers little help. Intuitively, no matter how 
the data are broken down, you can’t get around the issue of small sample 
sizes. Therefore, findings of long-horizon predictability are illusory and 
reported statistical significance levels are way off. A quarter-century of 
statistical theory and analysis of long-horizon return regressions strongly 
makes this case.1 The bottom line is that practitioners need to be aware 
of these issues when performing long-horizon return forecasts and need 
to appropriately adjust long-horizon statistical metrics.

Long-horizon return regressions 
effectively have small sample sizes. 
Using overlapping long-horizon 
returns provides only marginal 
benefit. Adjustments for overlap-
ping observations have greatly 
overstated t-statistics. The evi-
dence from regressions at multiple 
horizons is often misinterpreted. 
As a result, much less statistical 
evidence of long-horizon return 
predictability exists than is implied 
by research, which casts doubt on 
claims about forecasts based on 
stock market valuations and factor 
timing.
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We show theoretically and demonstrate via simula-
tions that overlapping data for the types of return-
forecasting problems faced in finance provide only 
a marginal benefit. For example, in using 50 years of 
data to forecast 5-year stock returns, the effective 
number of observations—from nonoverlapping (10 
periods) to monthly overlapping (600 overlapping 
periods)—increases from 10 to just 12. Statistical 
significance emerges only because reported standard 
errors (and t-statistics) are both noisy and severely 
biased. For example, at the 5-year return horizon 
with 50 years of data, the range of possible standard 
error estimates is so wide that inference is nonsensi-
cal. The expected t-statistics are effectively double 
their “true” value. Applying the appropriate statistics 
to data on long-horizon stock returns and valuation 
ratios drastically reduces the statistical significance 
of these tests.

Why Long-Horizon Return 
Regressions Are Unreliable
To gain intuition and for illustrative purposes, we 
provide in Figure 1 the scatterplot of the inverse of the 
cyclically adjusted price-to-earnings ratio (1/CAPE) and 

subsequent 5-year stock returns post-1968 (nonover-
lapping in Panel A) and 10-year stock returns post-1883 
(nonoverlapping in Panel C). Note that the numbers of 
nonoverlapping observations are 8 and 12, respec-
tively. The point estimates of the correlations are 
quite large and positive, 0.26 and 0.38. Very few data, 
however, back up these estimates. For example, 
suppose one were to take away the farthest outlier 
point in the plot; then, the correlations become, 
respectively, 0.04 and 0.28. Of course, this finding 
should not be a surprise. Under the null of no predict-
ability, and putting aside any bias adjustment, the 
standard error of the correlation coefficient is 1 T , 
which is 0.35 for 8 observations and 0.29 for 12 
observations. In other words, the true correlation may 
quite possibly be zero or negative, especially for 
5-year stock returns used in the late subsample.

In an attempt to combat this issue, practitioners, 
believing they are increasing their sample sizes 
significantly, often sample long-horizon stock returns 
more frequently by using overlapping observations. 
For example, in referring to 1/CAPE’s ability to fore-
cast 10-year returns relative to his previous work, 
Shiller (2015) wrote in the latest edition of his book 
Irrational Exuberance,

Figure 1. Forecasting Stock Returns Using 1/CAPE
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B. Five-Year Return on 1/CAPE 1968
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C. Ten-Year Return on 1/CAPE 1883
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D. Ten-Year Return on 1/CAPE 1883
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Note: NOL = nonoverlapping; OLP = overlapping; Corr = correlation.
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We now have data from 17 more years, 1987 
through 2003 (end-points 1997 through 2013), 
and so 17 new points have been added to the 
106 (from 1883). (204)

Consistent with this observation, the overlapping scat-
terplots on the right-hand side of Figure 1 are in stark 
contrast to those on the left-hand side and appear to 
show overwhelming evidence of a strong positive rela-
tionship. As such, in describing this estimated positive 
relationship between 1/CAPE and future long-term 
returns, Shiller (2015) wrote “the swarm of points in 
the scatter shows a definite tilt” (204).

This appearance is fallacy.2 In Shiller’s example, 
because 1/CAPE (measured as a 10-year moving 
average of earnings) is highly persistent, only 2—not 
17—nonoverlapping observations have been truly 
added. To see this fact, note that standing in January 
2003 and in January 2004 and looking ahead 10 
years in both cases, the future 10-year returns have 9 
years in common. So, even if stock returns are serially 
independent through time, the 10-year returns in 
adjacent years will be 0.90 correlated by construction. 
Moreover, 1/CAPE itself has barely changed because 
of its 10-year moving average of earnings and the fun-
damental persistence of stock prices during the period 
between January 2003 and January 2004. It is these 
facts that create, by construction, Shiller’s “swarm” 
effect visible in Panels B and D of Figure 1. In real-
ity, we have simply a smattering of independent data 
points—12, to be precise. How much, if at all, do over-
lapping observations really benefit the practitioner?

Formally, a typical long-horizon regression involves 
regressing J-period horizon returns of an asset, 
Rt t J: + , on some lagged predictive variable, Xt ,  using 
T periods of data:

R Xt t J J J t t t J: : .+ += + +α β ε  	  (1)

In the context of this article, Xt  is usually some 
price-based measure of valuation of the underlying 
asset or factor, such as Shiller’s market 1/CAPE, the 
current dividend yield of the market, the value 
spread of a factor, or a contrarian view on the asset 
(e.g., the asset’s past J-period return horizon). 

If the practitioner does not use overlapping return 
data and samples the data every J periods, the number 
of observations is T/J and standard textbook ordinary 
least squares (OLS) regression applies. If J is large 
relative to T, then the practitioner has only a few 
observations and the standard errors will be generally 
too large to infer the true βJ . This outcome is espe-

cially true for stock returns because the expected-
return component has a relatively small variation 
relative to realized returns (see, e.g., Elton 1999).

As a potential solution to T/J being small, practitioners 
can sample more frequently. On one level, this 
technique makes sense: Using all the data will improve 
efficiency. For using persistent regressors to forecast 
stock returns, however, the efficiency gains will be 
minor. To understand this claim, suppose we want to 
forecast five-year return horizons from 1968 to 2016. 
We could choose 8 nonoverlapping five-year-long 
observations or 44 annually sampled five-year returns 
or, perhaps better, 528 monthly, 2,288 weekly, or 
11,440 trading day–sampled five-year returns. At first 
glance, this increase seems to hold the promise of 
adding a lot of information, allowing us to move from, 
say, a sample size of 8 to one of 11,440. The problem 
is that five-year returns from one day to the next have 
1,249/1,250 (i.e., 99.92%) of the data in common. If 
the Xt  variable also does not change from one day to 
the next, as is common when using such valuation 
ratios as 1/CAPE or long-lookback contrarian strate-
gies, then both the left-hand and right-hand sides of 
regression Equation 1 are the same over contiguous 
time periods.

To illustrate this point, we report in Figure 2 the 
simulated distribution of the coefficient estimators 
for the J-period return regression in Equation 1 with 
data matched to 1/CAPE under the model assump-
tion of no predictability.3 Figure 2 shows box plots of 
the 5%, 25%, 50%, 75%, and 95% values of the 
simulated distribution of the coefficient estimators 
for the J-period return regression in Equation 1. The 
predictive variable, Xt , is assumed to follow an AR(1) 
with autocorrelation parameter 0.991 to match the 
persistence of monthly observed 1/CAPE. 

The distribution of the coefficient estimator for the 
nonoverlapping regression (in black) widens greatly 
as the horizon increases from J = 1 to J = 60. That 
is, as the return horizon lengthens, the chance of 
observing betas far from the true value of 0.0 greatly 
increases. This result is not at all surprising because 
the number of observations decreases from 600 to 
10. Consistent with this intuition, however, Figure 2 
shows that the distribution of the estimators using 
overlapping observations (in green) is not much 
tighter than the nonoverlapping case; that is, the 
distributions are basically the same. This fact poses a 
significant inference problem for practitioners trying 
to forecast large J-period return horizons because 
they have effectively few observations. In other 
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words, using overlapping observations for persistent 
regressors provides little benefit.

Figure 2 plots the distribution of the regression 
coefficients under the null hypothesis of no predict-
ability (with persistent regressors) and demonstrates 
that lack of benefit from overlapping observations. A 
practitioner might have a prior belief, however, that 
stock returns are predictable. How would this prior 
belief change the practitioner’s view of the observed 
coefficient estimators? 

Figure 3 compares the simulated distribution of 
the predictability coefficient from 60-month return 
regressions and nonoverlapping and overlapping data 
under the assumption of no predictability (as in Figure 
2) with the distribution of predictability under the 
assumption that the true coefficient value equals the 
ex post in-sample value.

Note first that shifting from no predictability to 
predictability does not change the message that 
overlapping observations provide little benefit. 
The distributions of the coefficient estimators are 
still on top of each other (black on dashed black, 
green on dashed green). Equally important is that 
the no-predictability distribution is quite similar to 
the alternative predictability-assumed distribution, 
with only a slight shift to the right (the black versus 
green lines). For example, the 5% and 95% tails of the 
null and alternative distributions are, respectively, 
–0.43 versus –0.27 and 0.45 versus 0.61. That said, 

a practitioner with strong convictions might find 
some comfort in the fact that the distribution of the 
regression coefficient under predictability does sug-
gest, albeit weakly, a higher probability of observing 
predictability than no predictability.

Why Long-Horizon Return 
Regressions Are Unreliable: Theory
The preceding intuition can be couched in terms of 
formal statistical theory. In estimating Equation 1, 
the practitioner can use nonoverlapping data and use 
the OLS standard errors (denoted as “nol”). 
Alternatively, the practitioner can use overlapping 
data and estimate regression Equation 1 but, in this 
case, adjust the asymptotic variance of the βJ  
estimator for serial dependence in the OLS errors 
resulting from the overlap (the overlapping estimator 
denoted as “ol”). Under the maintained hypothesis of 
no predictability (i.e., βJ = 0 ), the practitioner can 
directly compare the variances of the estimators for 
nonoverlapping versus overlapping data:4

var var , ,β β 

J
ol

J
nol

JJ
J






 =







 + ( )





1
θ ρ  	 (2)

where θ ρ ρJ J j JJ j
J

j, /( ) = −( )



=

−∑2 2
1
1  and ρ j  is the 

jth-order autocorrelation of Xt .

Figure 2. Simulated 
Distribution of Long-
Horizon Coefficient 
Estimators
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Notes: The estimators are compared by using overlapping observations versus nonoverlapping obser-
vations and assuming 50 years (600 months) of data and monthly sampling. The black box plots (right) 
represent the nonoverlapping cases; the green box plots (left) represent the overlapping cases.
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Equation 2 is intuitively appealing. In comparing the 
variance of the estimators, the first term in the brackets 
in Equation 2, 1/J, reflects the fact that the ol estimator 
has J times the observations of the nol estimator and, 
on the surface, 1/Jth the variance. This observation is 
the reason so many practitioners use regression 
methodologies based on overlapping data. The second 
term in the bracket in Equation 2, however, θ ρJ J,( ) , 
represents the upward adjustment that needs to be 
made to the ol estimator’s variance because of the 
length of the overlap, J, and persistence of predictive 
variable Xt ,  ρ ρ1 J . Unfortunately, if Xt  is highly 
persistent (say, ρ j  is close to 1), then the variance of 

the ol estimator is the same as that of the nol estimator 
and no efficiency is gained.5

The problem is that in most practical applications, 
the predictor exhibits high persistence (e.g., current 
valuation ratios such as 1/CAPE and the dividend-to-
price ratio, or five-year lagged stock returns). All of 
these do not change much from month to month. For 
instance, consider 1/CAPE’s value from month to 
month. The variable 1/CAPE represents a 10-year 
moving average of earnings over a highly persistent 
price series, both of which show little variation from 
month to month. Thus, 1/CAPE’s autocorrelation is 

Figure 3. Simulated 
Distribution of Long-
Horizon Coefficient 
Estimator: No 
Predictability (right) vs. 
Predictability of Returns 
(left)
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0.500 0.005 0.172
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Notes: The predictive variable Xt  is assumed to follow an AR(1) with autocorrelation 
parameter 0.991 to match the persistence of monthly observed 1/CAPE, and the 
alternative distribution uses the in-sample regression coefficient estimate as the true 
value. The 50 years (600 months) of nonoverlapping (overlapping) 5-year return data 
were used. Note that the black lines represent the predictability case and the green lines 
represent the no-predictability case.
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close to 1.0 and zero efficiency gain comes from 
increasing the sampling frequency. To pin down this 
point, Equation 2 can be translated into an equivalent 
number of observations that would provide the same 
asymptotic standard errors when comparing overlap-
ping versus nonoverlapping regressions. Specifically, 
we can calculate Equation 2 by assuming Xt  follows 
an AR(1) process with autoregressive parameter ρX  
and then ask how many more nonoverlapping 
observations we would need to equate the ol and nol 
cases. Table 1 provides the results.

The way to read the table is as follows. For the 
ρX = 0 991.  column, relevant for 1/CAPE, the 
effective increase in observations (going from 
nonoverlapping to overlapping) for the 12-month 
forecasting horizon is from 50 nonoverlapping 
observations to an equivalent of monthly overlap of 
52 observations; for 24 months, from 25 to 27 
observations; for 36 months, from 17 to 18 observa-
tions; for 48 months, from 13 to 14 observations; for 
60 months, from 10 to 12 observations; and for the 
120-month forecasting horizon, from 5 independent 
observations to an equivalent in statistical terms of 7 
observations. That is, although using overlapping 
observations at longer horizons provides increasing 
efficiency gains, longer horizons also unfortunately 
substantially reduce the number of nonoverlapping 
observations. In other words, the effective increase in 
the number of observations when using overlapping 
data is too small to have any real impact on one’s 
ability to predict long-horizon returns.

Why Standard Error Procedures for 
Long-Horizon Return Regressions 
Are Inaccurate
The preceding results are bad news for practi-
tioners relying on long-horizon predictability to 
distinguish between no predictability and a mar-
ket-timing view of the world. With long-horizon 
returns and persistent regressors, the type used 
commonly in return forecasts, almost no benefit 
comes from using overlapping observations. Note 
that one cannot sidestep the small sample size—
that is, Figure 2 does not lie.

This conclusion may come as a surprise to practitio-
ners, who commonly estimate long-horizon returns 
and document so-called predictability. When 
performing these long-horizon tests, however, 
practitioners invariably are provided false comfort 
by estimating standard errors in the presence of 
overlapping observations common in statistical 
packages.6 In this section, we consider the method 
most used by practitioners for correcting for over-
lapping observations—namely, the method of Newey 
and West (1987). The popularity of the Newey–
West approach results from the fact that it offers 
a feasible standard error estimate in small samples 
and yet is theoretically justified in asymptotic terms. 
The problem is that the Newey–West procedure 
was never meant to be used for large J relative to T.

Table 1. �Equivalent Number of Observations for Overlapping vs. Nonoverlapping Data

Effective Number of Nonoverlapping Observations  
for Overlapping Data

T J
Nonoverlapping 

Observations ρx  = 0.0 ρx  = 0.971 ρx  = 0.991 Contrarian

600 1 600 600 600 600 600

600 12 50 600 56 52 75

600 24 25 600 31 27 37

600 36 17 600 23 18 25

600 48 13 600 19 14 19

600 60 10 600 17 12 15

600 120 5 600 12 7 8

Notes: J = 12-, 24-, 36-, 48-, 60-, and 120-period return forecasts with 50 years of data, monthly sampling. Values of ρX  coincide 
with typical levels of persistence observed empirically—namely, 0.991 = 0.901/12 for monthly 1/CAPE and 0.971 = 0.701/12 for 
VALUE (the value spread of the value factor).
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The reason is multifold. First, the assumed weighting 
scheme for the Newey–West approach is inconsistent 
with the theoretical lag structure implied by Equation 
2 and underestimates the true standard error. Second, 
Newey–West standard errors require estimates of the 
autocovariance of the residuals from the OLS normal 

equations ε εt t J t t J tX, ,+ +( )  and  across multiple lags in 

Equation 1. A well-known negative bias is associated 
with autocorrelation estimators, however (e.g., see 
Kendall 1954), and this bias increases dramatically for 
small sample sizes.7 Third, the Newey–West standard 
errors are themselves noisy estimators for large J 
relative to T for the reasons given previously. In other 
words, estimation bias aside, the standard error 
estimates are unreliable.

To illustrate these points, Figure 4 reports simula-
tions of Newey–West standard errors (box plots in 
green) and, for comparison purposes, Hansen–
Hodrick standard errors (box plots in black) under 
assumptions underlying returns and regressors 
chosen to match the persistence properties of Xt  
discussed earlier.8

In Figure 4, the underestimate of Newey–West 
standard errors relative to the analytical ones can be 

seen clearly in the plot, which also shows that this bias 
increases with horizon J. Specifically, for J = 12, 24, 
36, 48, and 60, the ratio of the average Newey–West 
standard error to the true analytical value declines to, 
respectively, 0.718, 0.671, 0.626, 0.588, and 0.553. 
The increasing bias seen in Figure 4 partially explains 
why practitioners so often find evidence of predict-
ability only at long horizons. The true analytical stan-
dard errors increase with the horizon. Because of the 
various biases, however, the Newey–West standard 
errors level off more quickly. In fact, for J = 60, the 
t-statistics are inflated by 81% (1/0.553).

To dig a little deeper into the accuracy of Newey–
West t-statistics, Panel A in Table 2 provides the 
simulated Newey–West t-statistics together with 
theoretical t-statistic values at p-values ranging from 
1% to 99%.9 Consistent with Figure 4, the most 
notable finding is that the t-statistics are upward 
biased (in absolute magnitude) and become progres-
sively worse with a lengthening horizon. For example, 
consider the 2.5% p-value’s standard t-statistic of 
–1.96. The corresponding Newey–West t-statistics 
are –2.67, –2.94, –3.19, –3.67, and –3.98, respectively, 
at horizon lengths of 12, 24, 36, 48, and 60 months. 
Thus, at long horizons (i.e., J = 60), the t-statistics 
are effectively double. Panel B in Table 2 provides 

Figure 4. Simulated 
Distribution of Newey–
West and Hansen–
Hodrick Standard Errors

Standard Error
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Notes: The distributions of the standard errors are provided at the 5%, 25%, 50%, 75%, and 
95% levels for horizons 1, 12, 24, 36, 48, and 60 with T = 600 (i.e., J-period return horizon 
and 50 years of data) and AR(1) parameter to match the monthly 1/CAPE series, ρX = 0 991. . 
For each horizon, the theoretical analytical asymptotic standard error is denoted by a dot, 
and the green and black box plots represent, respectively, Newey–West and Hansen–
Hodrick standard errors. 
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a related perspective. It reports the p-values at the 
standard t-statistic levels. The second row corre-
sponds to the theoretical p-value ranges, whereas 
the actual simulated p-values using Newey–West 
are reported in the other rows for different horizons. 
These rows show that the practitioner believes he is 
making a mistake only 2.5% of the time but is actually 
making an error much more frequently. For example, 
using the t-statistic value of –1.96 at an assumed 2.5% 
p-value rate of rejection leads to excess rejection 
rates of 6.6%, 7.3%, 9.5%, 10.6%, and 12.1% at horizon 
lengths of 12, 24, 36, 48, and 60 months.

As problematic as these results are for using Newey–
West standard errors, they only partially tell the 
story. An equally important observation from Figure 
4 is how noisy the standard error estimates are and 
how this condition worsens with the lengthening of 
the horizon. For example, consider calculating the 
standard deviation of the range of standard errors 
at each J-period horizon in Figure 4. Relative to the 
simulated mean standard errors of 0.063, 0.120, 
0.176, 0.228, and 0.275 at, respectively, J = 12, 24, 

36, 48, and 60, the corresponding standard devia-
tions of the Newey–West standard error distribution 
are 0.019, 0.038, 0.056, 0.071, and 0.083. Note that 
the standard deviation increases with the horizon at 
basically the same rate as the level of the standard 
errors themselves. We should have little faith, there-
fore, in the accuracy of Newey–West standard errors 
for large J relative to the T seen in practice.

Empirical Application
Empirical evidence of stock market return predict-
ability at short horizons is weak (e.g., see Welch and 
Goyal 2008).10 This weakness is one of the reasons 
practitioners focus on long-horizon predictability. In 
this section, we consider forecasts of long-horizon 
stock market returns using 1/CAPE and factor returns— 
HML (high book to market minus low book to market) 
for value and MOM for momentum. We use the value 
spreads of these factors. Value-spread timing provides 
a potentially interesting contrast to 1/CAPE because 
value spreads are less persistent. Note that we consider 

Table 2. �The Distribution of Newey–West t-Statistics

A. Simulated Newey–West t-statistics

Percentile 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

Normal –2.32 –1.96 –1.65 –1.28 1.28 1.65 1.96 2.33

Horizon (months)

1 –2.41 –2.08 –1.71 –1.28 1.32 1.66 1.93 2.27

12 –3.36 –2.67 –2.15 –1.64 1.80 2.42 2.68 3.15

24 –3.63 –2.94 –2.35 –1.73 1.94 2.65 3.23 3.72

36 –4.02 –3.19 –2.64 –1.91 2.04 2.87 3.41 4.02

48 –4.70 –3.67 –2.89 –2.01 2.15 2.93 3.63 4.24

60 –4.76 –3.98 –3.05 –2.21 2.25 3.02 3.73 4.75

B. Simulated Newey–West p-values based on standard t-statistic levels

Statistic –2.32 –1.96 –1.65 –1.28 1.28 1.65 1.96 2.33

Normal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

Horizon (months)

1 1.4 3.2 5.4 9.8 89.1 94.8 97.5 99.0

12 3.7 6.6 9.8 14.1 83.1 87.9 91.6 94.7

24 5.0 7.3 10.8 16.3 82.3 87.1 90.3 93.1

36 6.2 9.5 12.7 17.8 81.2 86.0 89.3 92.0

48 8.2 10.6 14.0 19.7 79.4 84.8 88.3 91.3

60 8.5 12.1 15.0 20.4 77.5 83.7 87.6 90.5
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return data for 1968–2016 to coincide with popular 
sample sizes found in the practitioner literature, but we 
also consider the longer sample of 1/CAPE going back 
to 1883.

Table 3 reports the coefficient estimate and R2 of the 
J-period return regression given in Equation 1 starting 
from 1968 and using monthly overlapping data (and 
from 1883 for the long-sample 1/CAPE regression). 

We report the typical Newey–West standard errors, 
the derived theoretical standard errors, and the simu-
lated p-value (under the null hypothesis of no predict-
ability with AR[1] regressor to match the data). These 
p-values represent the location of the estimated βJ 
coefficient in the range of the simulated distribution.11 
Joint tests across the horizons are also provided (e.g., 
see Boudoukh, Richardson, and Whitelaw 2008).

Table 3. �Empirical Results for Long-Horizon Predictability

Horizon

1 12 24 36 48 60
Joint Test 

Simulated p-Value

HML on value spread, N = 525, ρX = 0.972

β 0.003 0.047 0.091 0.126 0.153 0.168  

N–W t-stat. 1.159 2.718 5.477 4.272 4.142 4.476  

AR(1) t-stat. 2.125 2.992 3.062 2.950 2.831 2.588 0.074

Simulated p-value 0.082 0.020 0.010 0.007 0.009 0.009 0.110

R2 0.860 14.450 26.382 34.191 38.521 38.789  

MOM on value spread, N = 525, ρX = 0.917

β 0.013 0.141 0.125 0.151 0.215 0.204  

N–W t-stat. 1.839 2.498 2.116 1.962 2.199 2.123  

AR(1) t-stat. 1.957 2.109 1.070 0.968 1.136 0.938 0.107

Simulated p-value 0.037 0.026 0.170 0.190 0.138 0.181 0.131

R2 0.730 7.519 4.366 5.376 8.513 6.878  

1 24 48 72 96 120

Market on 1/CAPE 1883, N = 1,510, ρX = 0.990

β 0.091 2.458 4.590 5.841 7.083 7.569  

N–W t-stat. 1.729 2.504 2.576 3.745 4.884 3.541  

AR(1) t-stat. 2.192 2.562 2.482 2.181 2.053 1.813 0.090

Simulated p-value 0.116 0.061 0.054 0.063 0.061 0.091 0.117

R2 0.318 7.876 15.089 18.957 22.392 20.094  

1 12 24 36 48 60

Market on 1/CAPE 1968, N = 528, ρX = 0.993

β 0.065 0.909 1.452 1.628 2.045 2.850  

N–W t-stat. 0.896 1.279 1.154 0.980 1.107 1.526  

AR(1) t-stat. 0.940 1.107 0.896 0.678 0.647 0.731 0.222

Simulated p-value 0.569 0.517 0.576 0.656 0.662 0.639 0.364

R2 0.167 2.292 2.986 2.766 3.411 5.269  

Note: Joint statistical tests across the horizons (using theoretical analytical calculations and simulated p-values) are provided in the 
last column.
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Consider the 1/CAPE regression from 1883. As 
reported elsewhere, the coefficients and R2s (e.g., 
22.4% and 20.1% at 5 years and 10 years) are large 
and generally increase with the return horizon. The 
t-statistics when Newey–West standard errors are 
used range between 3.5 and 4.9 at longer horizons. 
As we argued earlier, these results can be deceiving. 
Indeed, even though the 1/CAPE regression is argu-
ably the best-known example of predictability, the 
t-statistics for the analytical standard errors are much 
smaller, hovering around 2, and the simulated p-values 
are around 10% across the horizons. In other words, 
more positive coefficient estimates are observed 
approximately 10% of the time when simulated data 
are used with no predictability. This finding borders on 
statistical significance but is far away from the huge 
t-statistics (and associated p-values) found when using 
Newey–West. In addition, when applying a joint test 
across horizons (e.g., Boudoukh et al. 2008), the evi-
dence weakens. In other words, the fact that predict-
ability “shows up” at many horizons is more consistent 
with the high correlation across the estimators than 
any proof of statistical significance. 

Many of the Newey–West-inspired t-statistics 
are greater than 2 for long horizons for both 1/
CAPE post-1968 and factor-timing variables, but 
the evidence is considerably weaker for theoretical 
t-statistics or simulated p-values. An exception is 
HML spread, which is significant at standard levels 
irrespective of the standard error methodology. Note 
that greater benefit comes from using overlapping 
data because HML is less persistent (i.e., AR[1] of 
0.972 versus 0.993 for 1/CAPE). That said, this result 
also disappears with a joint test across horizons.12 
In any event, aside from this predictive variable, less 
evidence exists for long-horizon return predictability 
than is implied by existing research.

Practical Suggestions
What choices does the practitioner have when 
performing long-horizon forecasts facing this long-
horizon, small-sample issue?

First and foremost, the practitioner should not use 
the type of standard error adjustments implied by 
Newey and West (1987), among others, because of 
the adjustments’ severe downward bias. Instead, 
Equation 2 of this article provides the appropriate 
analytical standard error, which is simply a function 
of the nonoverlapping standard error and the 
autocorrelogram of the predictive variable. 
Importantly, Figure 4 shows that the Newey–West 

and Hansen–Hodrick standard errors are highly 
variable because of the many parameters required in 
estimation. The advantage of the analytical approach 
is that many fewer parameters need to be estimated. 
In fact, if the practitioner is willing to specify an 
autoregressive process for the predictive variable, 
the autocorrelogram will be a function of only a few 
parameters (see note 4). For different justifications, 
Valkanov (2003) and Hjalmarsson (2011) suggested 
simply calculating the usual t-statistic but then 
scaling it down by J . Note that this approach is 
quite conservative; it is equivalent to Equation 2 with 
all the autocorrelation parameters, ρ j j J=( )1, , , set 
equal to 1.0. Nevertheless, multiplying the OLS 
standard error by 1 J  is at least preferable to 
current uses of Newey–West standard errors.

Second, in the empirical application (see Table 3), 
we performed joint tests across the horizons. For a 
given horizon, similar joint tests can be performed 
for various assets (e.g., see Richardson 1993). These 
joint tests potentially increase the power to detect 
long-horizon predictability, effectively increasing the 
sample size. This effective increase depends on how 
the pattern in coefficient estimates for the assets 
relates to the contemporaneous correlation across 
the asset returns. In addition, to the extent that 
the long-horizon forecasts behave similarly among 
assets, the researcher can pool the asset return 
regressions to effectively increase the sample size. 
Indeed, although the studies of Hjalmarsson (2010) 
and Lawrenz and Zorn (2017) were not focused on 
long horizons, both documented similar patterns 
across assets for using valuation ratios to predict 
stock returns. They documented stronger statistical 
evidence when pooling the regression equations to 
estimate the coefficient. Note that there is an ana-
lytical standard error analogous to that of Equation 2 
for pooled regressions, although it also includes the 
correlation matrix across asset returns.

Third, the message of this article is bad news for con-
trarians and market timers who rely on long-horizon 
evidence to make their case. Apparent predictability 
is illusory or, at least, consistent with the null hypoth-
esis of no market timing. Of course, a researcher may 
have a prior belief that low-frequency persistence in 
factors leads to slow mean reversion in stock prices 
(either risk based or behavior based), generating large 
amounts of predictability only at long horizons (see 
Cochrane 2008). The data will likely confirm this 
belief. The point here is that this evidence does not 
really help differentiate between the null hypothesis 
of no predictability and this alternative prior belief 
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(see Figure 3). An interesting paper by Lamoureux 
and Zhou (1996) effectively confirmed this point by 
applying a formal Bayesian analysis to random walk 
tests of long-horizon returns. That said, rethinking 
long-horizon predictability in a Bayesian setting may 
provide a more even-handed view of the evidence.

Fourth, when a researcher lacks the effective sample 
size to generate efficient estimates, the typical solu-
tion is for the researcher to build more structure into 
the estimation problem. Examples in the literature of 
such an approach are Lewellen (2004); Campbell and 
Yogo (2006); Campbell and Thompson (2008); and 
Cochrane (2008)—all of whom took into account the 
joint distribution of asset returns and valuation ratios in 
some economic or statistical model. As an illustration, 
consider Cochrane. Using the dividend discount model, 
Cochrane pointed out that dividend yield predictability 
must be related to either dividend growth or return 
predictability, and he used the lack of dividend growth 
predictability to generate tight estimates of stock 
return predictability (see also Leroy and Sinhania 2018). 
This approach shows promise and provides a viable way 
of generating long-horizon return forecasts. Of course, 
the success or failure depends greatly on the assumed 
underlying model and estimation.13

Finally, given the existence of short-horizon predictabil-
ity (as documented in, e.g., Lewellen 2004; Campbell 
and Yogo 2006; and Campbell and Thompson 2008), a 
potentially efficient methodology would be to model 
the short-horizon structure of the predictive variable 
and infer long-horizon forecasts from this imposed 
structure. In the case of long-horizon return regres-
sions, this strategy suggests joint estimation of a 
short-horizon return process and autoregressive 
process for the predictive variable. Given such joint 
estimation of R Xt t t, ,+( )1  based on X Xt t m− −( )1, , , 
where m is small relative to J, the researcher can infer a 
long-horizon J-period return forecast. (See, e.g., Kandel 
and Stambaugh 1989; Campbell 1991; Hodrick 1992; 
Boudoukh and Richardson 1994; Campbell, Lo, and 
MacKinlay 1997.)

To see how this approach works, consider the 
estimation problem at one-period horizons with the 
assumption that the predictive variable, Xt , follows 
an AR(1) with parameter ρX . For illustrative pur-
poses, this model is the same example covered in the 
preceding sections. Specifically,

R Xt t t t t: : ,+ += + +1 1 1 1α β ε  

X Xt X t t+ += + +1 1µ ρ η . 	 (3)

Now, suppose we estimate Equation 3 jointly and use 
the estimates to generate a forecast for Rt t j, + ; that 
is, we estimate βJ  (in Equation 1) from β1  and ρX . 
Boudoukh and Richardson (1994) showed that a 
consistent estimator is 

β β ρ ρJ
imp

X
J

X= −( ) −( )



1 1 1/ ,  where imp refers to 

the J-period estimator implied from the nonlinear 
function of β1  and ρX . No issue of overlapping error 

interferes here, and the variance of β J
imp

 is simply 
the OLS estimator, 

var / var ( ) / ( )R Xt t X
J

X( ) ( )  − −( )







1 1

2
ρ ρ . This 

variance is magnitudes lower than the overlapping 
and nonoverlapping multiperiod estimators derived 
in Equation 2. The intuition is that we estimate 
monthly βs well and use up only one degree of 
freedom when we estimate ρX .

Of course, there is no free lunch. Two problems, in 
particular, stand out. The first problem is that the 
estimator will be inconsistent if the model is wrong. 
To improve the consistency, we need to build a 
more complex model, but a more complex model 
introduces more and more estimation error. The 
second problem is that any biases that exist in 
estimation—and we know from Kendall (1954) and 
Stambaugh (1993, 1999) that biases exist for our 
forecasting problem—will be amplified because the 
inferred βJ  is a nonlinear function of β1  and ρX . 
Indeed, although the potential benefits in efficiency 
gains are large and represent a solution to the 
long-horizon predictability problem, the evidence is 
somewhat mixed. For example, see the conclusions 
reached by Bekaert and Hodrick (1992) versus 
those of Neely and Weller (2000).

Conclusion
By construction, long-horizon return regressions 
have effectively small sample sizes. As a remedy, 
practitioners use more frequent sampling of the 
long-horizon returns to perform these regressions. 
We showed that the benefit of using overlapping 
observations is marginal because the predictive 
variable tends to be highly persistent. Standard 
statistical packages that calculate t-statistics based 
on adjustments for overlapping observations do 
not help; in fact, they tend to inflate the t-statistics. 
Researchers should be aware of these issues to avoid 
drawing incorrect inferences. 
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We offered an analytical approach to account for 
these known biases, and we suggested that some 
promise may be found in running joint tests for dif-
ferent assets, having economic priors and updating 
them in a Bayesian setting, and adding structure to 
the estimation problem.

Editor’s Note
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Notes
1.	 The history in finance of studying the statistics of long-

horizon regressions is extensive. For general applications, 
see Hansen and Hodrick (1980); Newey and West (1987); 
Richardson and Smith (1991); Andrews (1991). For applica-
tions to return predictability, see Richardson and Stock 
(1989); Hodrick (1992); Richardson (1993); Nelson and 
Kim (1993); Goetzmann and Jorion (1993); Boudoukh and 
Richardson (1994); Valkanov (2003); Boudoukh, Richardson, 
and Whitelaw (2008); Hjalmarsson (2011); Britten-Jones, 
Neuberger, and Nolte (2011); Kostakis, Magdalinos, and 
Stamatogiannis (2015). All of these methods provide ways 
to correct for the inference problem in a framework of 
overlapping errors.

2.	 Asness, Ilmanen, and Maloney (2017) discussed the issues 
related to valuation-based long-horizon regressions from 
a more practical perspective. They contrasted the visually 
appealing relationship between starting valuations and 
next-decade realized market returns against the disap-
pointing economic gains achieved by market-timing trading 
rules based on time-varying valuations. They further 
explained mechanically why, given the apparent statistical 
evidence of predictability, such contrarian market-timing 
strategies have not outperformed the buy-and-hold 
portfolio over the past half-century.

3.	 For illustrative purposes, in the simulations to follow, we 
assumed that the predictive variable, Xt, follows a first-order 
autoregressive process [AR(1)] with parameters correspond-
ing to those of 1/CAPE. We know that the innovations in 
AR processes for such valuation ratios as 1/CAPE and stock 
returns are contemporaneously correlated, which leads to a 
bias toward predictability (see, e.g., Stambaugh 1993, 1999). 
So as not to conflate the overlapping versus nonoverlapping 
focus of this article, we assumed in our simulations that this 
correlation is zero. That said, for robustness, we confirmed 
similar findings for Figure 2 under different contempora-
neous correlation assumptions matched to the data. Of 
particular importance is that all the results and implications 
followed similarly. An interesting finding (not pursued here) 
is that the predictability bias worsened as the horizon 
increased (see also Nelson and Kim 1993; Torous, Valkanov, 
and Yan 2004). Note that the simulated p-values for the 
actual empirical applications in a later table do incorporate 
the nonzero contemporaneous correlation.

4.	 See Boudoukh and Richardson (1994) and Boudoukh et al. 
(2008). For particular assumptions about the autoregres-
sive process for Xt , Equation 2 can be written analytically. 
For example, assuming Xt  follows an AR(1) process with 
autoregressive parameter ρX , one can show that 
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5.	 One can show that as ρ j → 1, then θ ρJ J JJ,( ) → −( )1  
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6.	 A plethora of empirical methodologies focus on imple-
mentation issues in small samples; examples are Hansen 
and Hodrick (1980); Newey and West (1987); Andrews 
(1991); Robinson (1998); and Kiefer and Vogelsang (2005). 
Exceptions are Richardson and Smith (1991); Hodrick 
(1992); Boudoukh and Richardson (1994); and Boudoukh et 
al. (2008), who imposed the null hypothesis of no predict-
ability and calculated the standard errors analytically, 
thus avoiding the implementation issue. Recent papers by 
Hjalmarsson (2011) and Britten-Jones et al. (2011) used 
empirical methodologies to address some of these issues.

7.	 A large body of literature shows the poor small-sample 
properties of Newey–West estimators when a large 
number of lags are used in estimation. See, for example, 
Richardson and Stock (1989); Andrews (1991); Nelson 
and Kim (1993); Goetzmann and Jorion (1993); Newey 
and West (1994); Bekaert, Hodrick, and Marshall (1997); 
Valkanov (2003); Hjalmarsson (2011); Britten-Jones et al. 
(2011); Chen and Tsang (2013).

8.	 Following the discussion in note 3, Figure 4 is also virtually 
identical over a range of contemporaneous correlation 
assumptions for returns and the predictive variable.

9.	 Recall that the p-value here represents the probability of 
rejecting the null hypothesis of no predictability when it is 
true. In other words, the p-value represents the probability 
of a mistake. Standard two-sided 5% tests might suggest 
p-values of 2.5% and 97.5% with corresponding t-statistics 
of –1.96 and +1.96, the so-called two-standard-error rule 
of thumb.

10.	Not all researchers agree with this view; see, for example, 
Lewellen (2004); Campbell and Yogo (2006); Ang and 
Bekaert (2007); Campbell and Thompson (2008); Cochrane 
(2008).

11.	Note that the simulated p-values are generated under joint 
distributional assumptions of returns, R, and predictive 
variable X. Thus, these p-values appropriately reflect any 
biases arising from lagged regressors (see Kendall 1954; 
Stambaugh 1993, 1999).

12.	This finding is consistent with Asness, Chandra, Ilmanen, 
and Israel (2017), who found some weak evidence for 
value-spread timing on a standalone basis, but when applied 
in a multifactor context that already had exposure to the 
value factor, little evidence was found of improvement from 
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value-spread timing because it only increased the exposure 
to the value factor beyond the optimal point.

13.	To this point, a growing literature suggests that 
dividend (and, more broadly, cash flow) growth is, in 

fact, predictable (e.g., see Chen, Da, and Zhao 2013; 
Golez 2014; Møller and Sander 2017; Asimakopoulos, 
Asimakopoulos, Kourogenis, and Tsiritakis 2017).
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