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Automation in visual inspection tasks: X-ray luggage screening supported
by a system of direct, indirect or adaptable cueing with low and high
system reliability

Alain Chavaillaza, Adrian Schwaningerb, Stefan Michelb and Juergen Sauera

aDepartment of Psychology, University of Fribourg, Fribourg, Switzerland; bInstitute Humans in Complex Systems, University of
Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland

ABSTRACT
The present study evaluated three automation modes for improving performance in an X-ray
luggage screening task. One hundred and forty participants were asked to detect the presence
of prohibited items in X-ray images of cabin luggage. Twenty participants conducted this task
without automatic support (control group), whereas the others worked with either indirect cues
(system indicated the target presence without specifying its location), or direct cues (system
pointed out the exact target location) or adaptable automation (participants could freely choose
between no cue, direct and indirect cues). Furthermore, automatic support reliability was manip-
ulated (low versus high). The results showed a clear advantage for direct cues regarding detec-
tion performance and response time. No benefits were observed for adaptable automation.
Finally, high automation reliability led to better performance and higher operator trust. The find-
ings overall confirmed that automatic support systems for luggage screening should be
designed such that they provide direct, highly reliable cues.

Practitioner summary: The present study confirmed previous findings showing better detection
performance in X-ray images of luggage when supported by automation providing direct, highly
reliable cues. Furthermore, participants used adaptable automation only to select their preferred
level of automation. This behaviour did not provide the benefits expected under adapt-
able automation.

Abbreviations: LOA: Level of automation; NC: No cue; IC: Indirect cue; DC: Direct cue; AC:
Adaptable cueing; HiRel: high reliability; LoRel: low reliability; CTPA: Checklist of Trust between
People and Automation; ARE: automation reliability estimates; TCM: Two-component model
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1. Introduction

Visual inspection represents an important task in dif-
ferent work domains, such as medical diagnosis, indus-
trial quality control, and security screening. It involves
a complex visual search and decision task in which,
for example, tumours, faulty devices, or weapons have
to be detected. The specific characteristics of the work
domain influence the way the task is carried out
(Drury 1992; Drury 2001; See 2012). In airport security
X-ray screening, this task is characterised by long peri-
ods of sustained vigilance resulting in high levels of
mental workload (Warm, Parasuraman, and Matthews
2008). Stressors such as time pressure, noise and high
task load contribute to the suboptimal working condi-
tions found in this task (McCarley et al. 2004; Michel

et al. 2014; Baeriswyl, Krause, and Schwaninger 2016).
Luggage inspection by airport security officers (screen-
ers) represent a challenge for their perceptual and
cognitive capacities (Harris 2002). For instance, recog-
nition of prohibited items becomes more difficult
when items are rotated, placed in visually complex
bags or other objects superimpose the prohibited
item (Schwaninger, Hardmeier, and Hofer 2005;
Schwaninger et al. 2008). Furthermore, low target
prevalence increases the risk of prohibited items being
missed by screeners (Wolfe et al. 2007, 2013). Recent
developments in airport security scanner technology
(X-ray machines) has allowed now the automatic
detection of explosives (Wells and Bradley 2012;
Sterchi and Schwaninger 2015) and guns (Roomi and
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Rajashankari 2012; Mery et al. 2013). Automation in
airport security systems is expected to become an
increasingly important issue in human factors.

In a visual inspection task, automatic support can
guide attention and enhance operator perception (Lee
and Sanquist 1996) through textual or pictorial cues,
which facilitates target identification. Previous work
investigated the impact of two types of cues: indirect
and direct ones (Goh, Wiegmann, and Madhavan
2005). Indirect cues indicate the general presence or
absence of a target, whereas direct cues additionally
show the exact target location on the display. There is
research evidence that target detection performance
can be improved by providing indirect cues (McCarley
et al. 2003; Rice and McCarley 2011) but even more so
by direct cues compared to systems without auto-
matic support (Goh, Wiegmann, and Madhavan 2005;
Wiegmann et al. 2006).

The degree of performance improvement largely
depends on the level of automation reliability. It was
demonstrated in different studies that low system reli-
ability brings about low performance in a range of
work domains such as process control (Bailey and
Scerbo 2007; Ma and Kaber 2007; Rovira, McGarry, and
Parasuraman 2007; Wickens and Dixon 2007;
Chavaillaz, Wastell, and Sauer 2016a) and visual
inspection (Goh, Wiegmann, and Madhavan 2005; Rice
and McCarley 2011). Such performance degradations
are usually accompanied by low ratings of trust
towards automation (Wiegmann, Rich, and Zhang
2001; Dzindolet et al. 2003; Bailey and Scerbo 2007;
Ma and Kaber 2007) and low compliance with auto-
mation recommendations (Rice and McCarley 2011).

Being sensitive to automation reliability does not
necessarily mean that operators are able to estimate it
accurately. Several studies reported a systematic
underestimation of reliability (Wiegmann, Rich, and
Zhang 2001; Wiegmann 2002; Sanchez, Fisk, and
Rogers 2004). Three factors were found to have an
influence on the magnitude of the estimate: actual
reliability, time-on-task, and rate of compliance with
automation recommendations. First, perceived reliabil-
ity ratings are closer to actual system reliability under
high-reliability automation than low-reliability automa-
tion (Sanchez, Fisk, and Rogers 2004). Second, increas-
ing experience with the same system improves the
accuracy of the estimate, though a sudden reliability
change can strongly reduce the accuracy score
(Wiegmann, Rich, and Zhang 2001). Finally, partici-
pants always agreeing with automation recommenda-
tions showed the most accurate reliability ratings
(Wiegmann 2002).

A similar pattern was found for trust. Operators
have difficulties in matching their trust to the current
reliability of the system (i.e. trust calibration), with a
perfect calibration being hardly observed (Wiegmann,
Rich, and Zhang 2001; Wiegmann 2002). A discrepancy
between trust and system reliability can result in an
inappropriate use of automation (Parasuraman, Molloy,
and Singh 1993). Trust ratings that are lower than the
corresponding system reliability may result in low
compliance with automation recommendations even if
they are correct. Conversely, trust levels that are
higher than the corresponding system reliability may
result in operators showing compliance with automa-
tion recommendations even if they are incorrect. The
examples demonstrate that joint human–machine per-
formance does not only depend on objective automa-
tion properties such as reliability but also on operator
perceptions.

Based on studies mentioned above one would
assume that automatic support in visual inspection
tasks can provide considerable benefits to operators.
However, an interesting question would be whether
these benefits could be further increased by making
use of modern concepts such as adaptable automa-
tion (Scerbo 2006). Adaptable automation allows levels
of automation (LOA) to be changed by the operator
(e.g. switching between indirect and direct cues) to
achieve a good match between operator needs and
the level of automatic support provided (Sauer, Kao,
and Wastell 2012). These operator needs may vary
over time (e.g. onset of fatigue) and between opera-
tors (e.g. differences in competence levels). Empirical
research in multitasking environments showed that
operators benefitted more from flexible designs such
as adaptable automation than static automation where
no switching between support levels was possible
(Parasuraman et al. 1993; Kaber and Riley 1999;
Inagaki 2003; Sauer, Kao, and Wastell 2012). These
results are encouraging and raise the question
whether adaptable automation would also be benefi-
cial in single-task environments such as airport secur-
ity X-ray screening. For instance, operators in
adaptable automation may decide to switch from dir-
ect cues to no cues to avoid being distracted by cues
pointing at irrelevant objects. This may result in faster
response time than with direct cues, particularly when
automation reliability is low.

1.1. Present study

The goal of the present study was to investigate how
different automation modes (indirect cues, direct cues
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or adaptable cueing) affect performance under low
and high system reliability.

Student participants were asked to detect prohib-
ited items (either a knife or a gun) in a series of X-ray
images of hand luggage during two testing phases. In
the first phase (pre-test), the screening task was com-
pleted to measure participant’s ability to detect pro-
hibited items. This was to control for possible
differences in ability and aptitude in the experimental
groups. In the second phase (main test), participants
worked with a support system offering one of the fol-
lowing levels of automatic support: direct cue (indicat-
ing the target location in the X-ray image), indirect
cue (indicating that a target was present without spec-
ifying its location in the X-ray image), or adaptable
cueing (operators could freely choose between indir-
ect cue, direct cue and no cue). Furthermore, automa-
tion reliability was manipulated at two levels: low
reliability (about 60%) or high reliability (about 80%).
A control group performed the main test without
automatic support. Several dependent variables were
obtained, including detection performance (d0),
response times, trust, compliance, and reliance
on automation.

Several predictions were made based on previous
automation studies. Some of these predictions were
based on research from other work domains to exam-
ine the transferability of the findings to airport secur-
ity X-ray screening. Better performance was expected
when direct cues rather than indirect cues were pro-
vided (Goh, Wiegmann, and Madhavan 2005). Based
on research in multitasking environments, we also pre-
dicted that performance under adaptable automation
would be at least as good as than under conditions of
static automation (Parasuraman et al. 1993; Sauer, Kao,
and Wastell 2012). Furthermore, performance (detec-
tion of prohibited items and response time) and trust
was expected to be higher for high-reliability automa-
tion than low-reliability automation or no cue
(Wiegmann, Rich, and Zhang 2001; Goh, Wiegmann,
and Madhavan 2005; Bailey and Scerbo 2007; Rovira,
McGarry, and Parasuraman 2007; Wickens and
Dixon 2007).

2. Methods

2.1. Participants

One hundred and forty student participants from the
University of Fribourg (99 females, 41 males), aged
from 18 to 40 years [mean (M)¼ 22.26, standard devi-
ation (SD)¼ 3.26], took part in this study. They
received course credits in return for their participation.

2.2. Ethical considerations

The Ethics Committee of the Department of
Psychology at the University of Fribourg (Switzerland)
gave their approval for this study.

2.3. Apparatus and stimuli

The X-ray luggage screening simulation was controlled
by a Matlab script using the Psychtoolbox (Brainard
1997; Pelli 1997; Kleiner et al. 2007). Stimuli were pre-
sented on a 1700 LCD flat screen at a resolution of
1280� 1024 pixels and a refresh rate of 60Hz driven
by a Dell PC on Microsoft Windows XP operating sys-
tem. Participants were seated in a dimly lit room at an
approximate distance of 0.60 m from the screen and
were free to move their head. The height and width
of displayed X-ray images of luggage covered about
12.18� 13.66� of visual angle.

Images from two different versions of the X-Ray
Object Recognition Test (X-Ray ORT; Hardmeier, Hofer,
and Schwaninger 2005; Schwaninger, Hardmeier, and
Hofer 2005) served as stimuli. Each version of the test
consists of 256 X-ray images of hand luggage. Each
piece of luggage was displayed twice, once with a
threat item (target) and once without. Guns and kni-
ves were used as threat items because novices are
generally more familiar with the shapes of these items
(compared to explosives, electronic shock devices,
etc.) from every-day life, or at least from every-day
multimedia entertainment. Since novices do not know
the meaning of colours in X-ray images, the images
were presented in grayscale (for more information on
the X-Ray ORT, see Schwaninger, Hardmeier, and
Hofer 2005). Images were counterbalanced for target
point of view (canonical or not), bag complexity (small
versus large number of items in the bag) and objects
overlap (little versus strong overlap).

2.4. Luggage inspection simulation

A purpose-built simulation environment, called lug-
gage inspection simulation (LIS), was used to simulate
the visual inspection task of screeners. Participants
had to visually search each X-ray image and decide as
accurately and as quickly as possible whether it con-
tained a target item or not (i.e. yes–no task in signal
detection theory, Macmillan and Creelman 2005). The
left and right mouse buttons were used to carry out
the task. The target-presence/target-absence button
mapping was counterbalanced across participants and
remained constant across the experiment. The target
item was either a gun or a knife. In each trial, at first a
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fixation cross was presented for 500ms in the middle
of the white screen, followed by an X-ray image of a
piece of hand luggage. In general, the image
(Figure 1) remained on the screen until the participant

provided an answer (no target localisation was
required). A blank screen was displayed for 500ms
between trials. If the participant did not answer within
20 s, the trial stopped, being scored as a target absent
response. During each trial, the remaining time was
indicated to participants by a bar countdown timer as
depicted Figure 1 (i.e. the number of vertical bars indi-
cated the number of seconds left to answer). The
experiment was divided into blocks of 64 trials (50%
target-present).

To support participants in their detection task, the
LIS provided an automatic support system with three
LOA. The design of the system was based on the work
of Goh, Wiegmann, and Madhavan (2005) and the
LOA corresponded to the lowest three LOA from
the model of Sheridan and Verplank (1978). At LOA-1,
the support system provided no cue that signifies the
presence (or absence) of a target (Figure 1(A)). At
LOA-2, the support system provided an indirect cue:
when the automation detected the presence of a tar-
get, the piece of luggage was surrounded by a red
frame and the word ‘Target’ was displayed in red
above the frame (Figure 1(B)). The absence of a target
was signalled by the absence of the frame and the
words ‘Target absent’ written in green. At LOA-3, the
support system provided a direct cue: it indicated the
exact location of the target by a red frame (the warn-
ing ‘Target’ was written above the X-ray image; Figure
1(C)). In the adaptable cueing mode, a control panel
appeared on the right side of the interface, which
allowed participants to select different LOAs (Figure
1(A)). No miscues were used (i.e. an object other than
the target is cued in a target-present trial) but partici-
pants were not informed about it. Objects cued in
false-alarm trials were selected for their visual similar-
ity with a potential target. Please note that the X-ray
images enjoyed a high-level of ecological validity (i.e.
they are based on real-life luggage inspection) even
though the weapon displayed in the figure is easy
to detect.

2.5. Design

The study used an incomplete 4� 2 design with seven
groups (Table 1). The first between-subjects factor was
automation mode. During the testing session, partici-
pants had to perform the visual inspection task either
without automatic support (no cue, NC) or with one
of the three automation modes. In the indirect cue
mode (IC), the support system was fixed at LOA-2,
whereas in the direct cue mode (DC), it was fixed at
LOA-3. In adaptable cueing mode (AC), participants

Figure 1. Interface of the luggage inspection simulation (LIS)
in adaptable cueing mode set at level of automation 1
(LOA-1, panel A). The control panel for LOA selection is
displayed to the right of the X-ray image and the bar
countdown timer in the top right corner of the interface. At
LOA-2, when a target is detected, the piece of luggage is
surrounded by a frame and the word “Target” is displayed
above the piece of luggage (panel B). At LOA-3, only the
object detected rather than the entire piece of luggage is
surrounded by a frame (panel C).
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could freely select one of the three LOAs and change
it at any time. The second between-subjects factor
was system reliability. In the high-reliability condition
(HiRel), the system had a detection performance of
d0=1.774 (hit rate¼ 81.25%, false-alarm rate¼ 18.75%,
see ‘Dependent variables’ section for the formula). In
the low-reliability condition (LoRel), the detection per-
formance of the system was d0 ¼ 0.637 (hit rate-
¼ 62.5%, false-alarm rate¼ 37.5%). The response bias
of the system (criterion c, see ‘Dependent variables’
section for the formula) was set to 0 in both reliability
conditions. Participants were randomly assigned to
one of the seven experimental conditions.

2.6. Dependent variables

Participant performance was assessed by three meas-
ures. Detection performance referred to participant abil-
ity to indicate the presence or absence of a target in
X-ray images and was measured by d 0= z(H)�z(FA),
where H refers to hit rate and FA to false-alarm rate of
participants. Response bias corresponded to participant
response behaviour, that is, the tendency to respond
‘yes’ or ‘no’. It was computed by the following for-
mula: c¼�0.5� [z(H)þz(FA)] using hits and false
alarms from participants. For more information on
these measures, see Green and Swets (1966) and
Macmillan and Creelman (2005). Response time in
milliseconds (ms) was measured as the time that
elapsed between the onset of the X-ray image and
the participant pressing the mouse button. Response
time was measured and analysed separately for
‘target-present’ and ‘target-absent’ trials.

Two measures were used to evaluate the partic-
ipants’ propensity to heed the advice of the automa-
tion (based on Meyer 2001). Compliance referred to
participants’ inclination to confirm that a target was
present when the automation had indicated one.
Reliance corresponded to participant’s propensity to
confirm that no target was present when the automa-
tion had indicated the absence of a target in the X-ray
image. Both measures are expressed as percentages

(corresponding to the methodological approach
adopted for instance by Rice and McCarley 2011).

For participants working under adaptable cueing,
two additional measures of automation use were
employed. Preferred LOA referred to the level of auto-
mation selected most of the time by a participant
(i.e. the LOA with the highest frequency across trials)1.
Frequency of LOA changes was determined by the
mean number of switches between automation levels
during a trial.

Trust was assessed by the Checklist of Trust
between People and Automation questionnaire (CTPA;
Jian, Bisantz, and Drury 2000). Participants had to rate
12 items on a seven-point Likert scale (ranging from
‘not at all’ to ‘totally agree’). An item example was ‘I
am confident in the system’.

Perceived reliability of automation was measured by
one item (‘How reliable was the support system dur-
ing task completion (0–100%)?’). Since system reliabil-
ity varied across groups, a direct comparison for this
variable would be biased. Therefore, we computed the
index Accuracy of Reliability Estimate (ARE) that indi-
cated the difference between perceived and objective
reliability of automation. A score of zero indicates a
perfect calibration, whereas a negative score corre-
sponds to an underestimation of automation reliability
and a positive one to an overestimation.

Self-confidence was measured by a single item
adapted from Lee and Moray’s study (1992): ‘How con-
fident were you in your ability to detect dangerous
objects?’. This item was rated on a 10-point Likert
scale (ranging from ‘not at all’ to ‘completely’).

Subjective workload was measured by the NASA-TLX
(Hart and Staveland 1988). Six items reflecting specific
facets of workload (i.e. mental demands, physical
demands, temporal demand, performance, frustration,
and effort) were rated on a 20-point Likert scale (rang-
ing from ‘not at all’ to ‘extremely’).

2.7. Procedure

The experiment was divided into two phases (pre-test
and main test) using the LIS described above. The pur-
pose of the pre-test was to measure participant’s abil-
ity to detect threat objects in hand luggage without
automatic support. This was to control for possible dif-
ferences in ability and aptitude in the experimental
groups. The main test investigated the impact of auto-
mation mode and system reliability on depend-
ent variables.

During the pre-test, participant’s ability to detect
target objects in hand luggage was tested with

Table 1. Experimental design.
Automation mode Reliability

No cue –
Indirect cue High

Low
Direct cue High

Low
Adaptable cueing High

Low

n¼ 20.
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128 X-ray images from an older version of the X-Ray
ORT (Hardmeier, Hofer, and Schwaninger 2005;
Schwaninger, Hardmeier, and Hofer 2005) and not
used again in the main test of the experiment. At the
start of a session, the instructions about the task and
the response modalities were displayed on the screen.
The pre-test started with a practice block of eight tri-
als followed by two experimental blocks of 64 trials
each (50% target-present trials). In the practice block,
participants were informed whether their response
was correct or not. No feedback was given in the
experimental blocks. To become familiar with the tar-
get items (i.e. guns and knives), each of the two sets
of target items were presented for 10 s at the begin-
ning of the practice block and again before the first
experimental block. A break of 5min was scheduled
between experimental blocks. In each trial, a fixation
cross was presented for 500ms in the centre of the
white screen, followed by an X-ray image displayed
for 4 s and a blank white screen shown for 16 s. As
soon as a response was given, the trial stopped and
the next one started. If participants did not provide a
response within 20 s, the trial stopped and the next
one started. Giving no response was scored as a
‘target absent’ response.

At the beginning of the main test, participants
were informed about the automation mode by means
of on-screen instructions. No details were given about
automation reliability other than that automation
might sometimes fail. Participants were made familiar
with the automation mode during a practice block of
32 trials prior to completing four experimental blocks
of 64 trials (50% target-present). A 5-min forced break
was scheduled between experimental blocks. The
same trial sequence (i.e. fixation cross, X-ray image,
blank white screen) as in the pre-test was used, except
that the X-ray images stayed on screen for 20 s (rather
than 4 s) or until the participant made a response.
Again, if no response was given, it was considered as
a target-absent response. Furthermore, as in the pre-
test, each target set (i.e. guns and knives) was dis-
played for 10 s at the beginning of the practice block
and before the first experimental block. During the
practice block, participants were informed whether
they provided a correct response or not. Participants
in the AC condition started each phase of the experi-
ment at LOA-1. They could only change LOAs when
an X-ray image was on screen. The default LOA for
each new trial corresponded to the last LOA selected
in the previous one. After the completion of the last
experimental block, participants were asked to com-
plete a series of questionnaires (trust towards

automation, perceived automation reliability, self-con-
fidence in their ability to achieve the task, and sub-
jective workload). Participants took about 45min to
complete the experiment.

2.8. Data analysis

Data from the pre-test were analysed to examine
whether participants’ ability to detect a target object
(i.e. d0) was equivalent between main-test groups.
Levene’s test showed equal variances across main-test
groups, F(6,133)¼ 0.832, p¼ 0.547. We employed an
alpha level of 0.20 in the analysis of variance, follow-
ing a procedure of null hypothesis testing adopted by
Onnasch (2015). The one-way ANOVA showed no sig-
nificant difference between the seven groups,
F(6,133)¼ 1.054, p¼ 0.394, g2

partial¼ 0.045. The results
indicated that participants in each experimental condi-
tion had similar screening ability. Therefore, it was not
necessary to use screening ability as a covariate in the
subsequent analyses.

Due to the incomplete 4� 2 design, two separate
analyses of variance were carried out (following a pro-
cedure used by Rice and McCarley 2011). In a first
step, a one-way analysis of variance (ANOVA) (includ-
ing all seven experimental groups) was carried out to
evaluate the difference between no cue and the six
automation conditions. For this reason, only multiple
comparisons involving the control group (i.e. no cue)
are reported in the results section. In a second step,
the influence of automation mode (IC, DC, and AC)
and system reliability (LoRel, HiRel) was assessed by a
two-way ANOVA including all six experimental condi-
tions involving automation. If required, Keppel-modi-
fied Bonferroni corrections were used to adjust the
level of significance for multiple comparisons, follow-
ing an approach used by Rice and McCarley (2011). All
main effect and interactions are reported in Table 2.

3. Results

3.1. Performance

3.1.1. Detection performance

The one-way ANOVA using detection performance (d0)
of human–automation team as dependent variable
revealed an effect of automation mode (Table 2 and
Figure 2). Multiple comparisons for each of the six
automation modes compared to NC showed that
detection performance in DC mode under high reli-
ability was higher than in NC mode (HiRel),
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t(38)¼ 3.392, p¼ 0.003, r(38)¼ 0.482. All other compar-
isons were not significant, t’s< 1.500, p>0.10.

A two-way ANOVA was carried out, using detection
performance (d0) of human–automation team as
dependent variable with system reliability (LoRel,
HiRel) and automation mode (IC, DC, and AC) as
between-participant factors. It showed a main effect of
automation mode (Table 2). Post hoc analysis revealed
that participants in DC mode showed significantly bet-
ter detection performance than participants in AC,
t(78)¼ 2.587, p¼ 0.027, r(78)¼ 0.281, and marginally
better detection performance than participants in IC
mode, t(78)¼ 2.056, p¼ 0.063, r(78)¼ 0.227 (Table 3).

There was no difference between IC and AC,
t(78)¼ 0.531, p¼ 0.500, r(78)¼ 0.060. Furthermore, par-
ticipants were marginally better when system reliabil-
ity was high than when it was low (Tables 2 and 3).
Finally, the interaction between automation mode and
system reliability was significant. Simple effects
showed that there was no significant difference
between the three automation modes under low sys-
tem reliability, F(2,114)¼ 2.402, p¼ 0.095, g2

parti-

al¼ 0.040. However, a different pattern emerged under
high system reliability, F(2,114)¼ 5.623, p¼ 0.005,
g2

partial¼ 0.090. Detection performance for participants
in DC mode was significantly better than in the IC

Table 2. F-value, significance level and effect size for the main effect of the one-way (seven-level) ANOVA and for the main and
interaction effects for automation conditions and system reliability

One-way ANOVA Automation Reliability Automation� reliability

Variable Fa p g2
partial Fb p g2

partial Fc p g2
partial Fb p g2

partial

Performance
Detection ability 3.358 0.004 0.132 3.733 0.027 0.061 3.901 0.051 0.033 4.292 0.016 0.070
Response bias 1.969 0.74 0.082 1.271 0.284 0.022 3.078 0.082 0.026 0.029 0.972 0.001

Response time
Target present 11.000 <0.001 0.332 27.272 <.001 0.324 5.835 0.017 0.049 0.369 0.734 0.005
Target absent 4.968 <0.001 0.183 6.456 0.002 0.102 5.233 0.024 0.044 4.572 0.012 0.074

Use of automation
Compliance – – – 7.911 0.001 0.124 80.083 0.001 0.417 0.085 0.918 0.002
Reliance – – – 0.644 0.647 0.011 23.105 <.001 0.171 0.437 0.647 0.008

Subjective measures
Trust – – – 1.578 0.221 0.027 14.176 <.001 0.112 1.645 0.198 0.029
ARE – – – 4.566 0.012 0.076 21.875 <.001 0.165 1.306 0.275 0.023
Self-confidence 0.812 0.562 0.035 0.904 0.408 0.016 0.046 0.830 <0.001 1.666 0.194 0.028
Perceived workload 0.706 0.645 0.031 1.875 0.158 0.032 0.032 0.840 <0.001 0.174 0.840 0.003

Significant effects are in boldface.
ARE: automation reliability estimates.
adl¼(6,133).
bdl¼(2,114).
cdl¼ (1,114).

Figure 2. Mean detection performance (d0) of participants as a function of automation mode (NC: no cue, IC: indirect cue; DC:
direct cue, AC: adaptable cueing) and system reliability (LoRel: low reliability; HiRel: high reliability). ��p< 0.01. The dashed line
indicates detection performance (d0) of the automation in high-reliability conditions, whereas the dotted line indicates detection
performance of the automation in low-reliability conditions. The error bars denote standard errors.
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mode, t(38)¼ 3.332, p¼ 0.002, r(38)¼ 0.476, and mar-
ginally better than in AC mode, t(38)¼ 2.007,
p¼ 0.071, r(38)¼ 0.310 (Table 3). No significant differ-
ence was observed between IC and AC modes,
t(38)¼ 1.323, p¼ 0.282, r(38)¼ 0.210.

3.1.2. Response bias

Overall, participants were rather unbiased in their
answers (overall c ¼ 0.02, SD ¼ 0.33). The main
effect of automation mode was not significant (Tables
2 and 3), showing no difference between automation
modes and the no cue condition.

The two-way ANOVA with automation mode and
system reliability showed no main effect of automa-
tion mode. Moreover, there was no significant effect
of system reliability (Table 3). Finally, there was no
interaction between automation mode and system
reliability (Table 2 for F-values).

3.1.3. Target present response times

The one-way ANOVA revealed a main effect of auto-
mation mode on response time when the target was
present (Figure 3 and Table 3). Post hoc analyses
showed that response time to the presence of a target
was slower in NC than in both DC modes, tNC-
HiRel DC(38)¼ 4.261, p< 0.001, r(38)¼ 0.569 and, tNC-
LoRel DC(38)¼ 2.829, p¼ 0.019, r(38)¼ 0.417.
Furthermore, faster response times were observed for
participants in NC than for participants working under
the IC mode with low reliability, t(38)¼ �2.848,
p¼ 0.018, r ¼ 0.419. All other comparisons involv-
ing NC were not significant, all t’s< 1.140, p>0.10.

The two-way ANOVA revealed a significant effect of
automation mode for response time when a target
was present (Table 2). Detailed analyses revealed that
participants detected the target in the DC mode faster

than in the AC and IC modes, t(78)¼ 3.484, p<0.001,
r(78)¼ 0.367 and t(78)¼ 7.382, p< 0.001, r(78)¼ 0.641
(Table 3 and Figure 3). Furthermore, participants were
faster to detect the target presence under high than
low system reliability (Tables 2 and 3). No interaction
was observed.

3.1.4. Target absent response times

The one-way ANOVA for the response time when
the target was absent was also significant,
F(6,133)¼ 4.968, p< 0.001, g2

partial¼ 0.183 (Figure 3
and Table 3). The pairwise comparisons including the
NC mode showed that participants in NC were signifi-
cantly faster to indicate the absence of a target than
participant working under IC mode with low reliability,
t(38)¼ 3.280, p¼ 0.005, r(38)¼ 0.470. All other compar-
isons did not reach the significance level, all
t’s< 1.500, p> 0.10.

The two-way ANOVA showed a main effect of auto-
mation on response time when no target was in the
luggage (Table 2). Multiple comparisons revealed that
only participants in IC condition were significantly
slower to respond than participants in DC mode,
t(78)¼ 3.589, p¼ 0.001, r(78)¼ 0.376, and marginally
slower than in AC mode, t(78)¼ 1.956, p¼ 0.079,
r(78)¼ 0.216 (Table 3). No significant difference was
found between participants of DC and AC modes,
t(78)¼ 1.633, p¼ 0.158, r(78)¼ 0.182. Moreover, partici-
pants were faster to answer when the system reliabil-
ity was high than low (Tables 2 and 3). Finally, the
interaction between automation design and system
reliability was significant (Table 2). Further analyses
revealed that high system reliability was only benefi-
cial in IC mode, where participants were faster to
answer under high than low system reliability,
t(38)¼ 3.755, p< 0.001, r(38)¼ 0.520 (Table 3

Table 3. Mean scores (and standard deviations) for participants’ performance, subjective measures and use of automation of the
experimental groups.

Low reliability High reliability

Score NC IC DC AC IC DC AC

Performance
Detection (d0) 1.62 (0.55) 1.81 (0.45) 1.76 (0.34) 1.55 (0.40) 1.65 (0.41) 2.08 (0.40) 1.82 (0.44)
Response bias (c) 0.18 (0.36) 0.09 (0.29) 0.03 (0.34) �0.01 (0.28) 0.01 (0.25) 0.03 (0.34) �0.11 (0.38)

Response time (s)
Target present 2.22 (0.46) 2.75 (0.44) 1.69 (0.53) 2.17 (0.95) 2.37 (0.45) 1.43 (0.39) 2.01 (0.69)
Target absent 4.28 (1.04) 5.89 (1.73) 3.56 (1.75) 4.33 (2.20) 3.96 (0.93) 3.69 (1.49) 4.10 (1.35)

Use of automation
Compliance (%) – 59.77 (11.19) 65.47 (8.09) 66.43 (7.83) 73.59 (9.25) 79.84 (7.00) 81.89 (8.97)
Reliance (%) – 64.18 (6.57) 66.80 (10.32) 61.76 (13.18) 73.34 (11.76) 74.53 (8.84) 74.06 (13.90)

Subjective measures
Trust – 2.77 (0.83) 3.47 (0.96) 3.27 (0.74) 3.79 (1.04) 3.76 (0.75) 3.85 (1.07)
ARE (%) – –11.25 (14.22) –0.39 (9.62) –9.35 (14.32) –17.40 (14.22) –15.00 (14.50) –24.43 (5.14)
Self-confidence 5.60 (2.09) 6.30 (1.98) 5.15 (1.79) 5.70 (1.38) 5.65 (1.63) 5.85 (1.69) 5.45 (1.67)
Subjective workload 9.65 (2.48) 9.98 (2.09) 8.75 (2.08) 9.63 (1.60) 9.83 (2.76) 9.02 (2.69) 9.29 (2.73)

NC: no cue; IC: indirect cue; DC: direct cue; AC: adaptable cueing; ARE: accuracy of reliability estimate.
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and Figure 3). However, no such difference was
observed in the two other modes, all t’s< 1.

3.2. Use of automation

3.2.1. Compliance

Compliance was affected by automation mode (Table
2). Multiple comparisons showed that participants in
IC mode were less compliant than participants in DC
and AC modes, t(78)¼ 3.738, p< 0.001, r(78)¼ 0.390
and t(78)¼ 3.027, p¼ 0.005, r(78)¼ 0.324, respectively
(Table 3). Participants in AC and DC modes did not dif-
fer significantly, t(78)¼ 0.751, p¼ 0.500, r(78)¼ 0.085.
As expected, participants were more compliant when
system reliability was high than when it was low
(Tables 2 and 3). However, no interaction was
observed, F(2,114)¼ 0.085, p¼ 0.918, g2

partial¼ 0.002.

3.2.2. Reliance

Automation mode did not influence participants’ reli-
ance on automation (Table 2). As expected, high sys-
tem reliability induced more reliance than low system
reliability, F(1,114)¼ 23.105, p< 0.001, g2

partial¼ 0.171
(Table 3). No interaction was observed,
F(2,114)¼ 0.437, p¼ 0.647, g2

partial¼ 0.008.

3.2.3. Preferred LOA

In AC modes, most participants mainly opted for
LOA-3 (Figure 4). There was no significant
difference between system reliability levels,
v2(2)¼ 2.939, p¼ 0.230.

3.2.4. Frequency of LOA changes

LOA stability was very high. Participants overall
switched LOAs about 0.09 times (SD ¼ 0.22) during
the testing session. No difference was observed
between system reliability conditions, t(38)¼ 0.806,
p¼ .874, r(38)¼ 0.130.

3.3. Subjective measures

3.3.1. Trust

Since there was no automation involved in the NC
mode, trust was not measured in this condition. The
two-way ANOVA revealed no main effect of automa-
tion mode on trust. As expected, higher trust ratings
were observed under high- than low-reliability condi-
tion (Table 3). Finally, there was no interaction
between automation mode and system reliability. All
F-values are displayed in Table 2.

Figure 3. Mean response time as a function of automation mode (NC: no cue; IC: indirect cue; DC: direct cue; AC: adaptable cue-
ing) and system reliability (LoRel: low reliability; HiRel: high reliability) for both target present and target absent trials. The error
bars denote standard errors. LOA: level of automation.

Figure 4. Preferred LOA of participants working under adapt-
able cueing condition (%) as a function of system reliability
(LoRel: low reliability; HiRel: high reliability). Preferred LOA cor-
responds to the automation level used most of the time dur-
ing the task.
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3.3.2. Accuracy of reliability estimate

Since participants in the NC condition did not experi-
ence automation, no reliability estimate was computed
in this condition. Overall, participants tended to
underestimate system reliability by about 13%. The
two-way ANOVA showed a main effect of automation
mode. Participants in AC mode underestimated system
reliability more strongly than participants in DC mode,
t(78)¼ 2.92, p¼ 0.006, r(78)¼ 0.314 (Table 3).
Participants in IC mode did not differ from the two
other groups, t’s< 2.14, p> 0.05. Furthermore, partici-
pants underestimated system reliability more strongly
when it was low than when it was high (Table 3).
There was no significant interaction. All F-values are
reported in Table 2.

3.3.3. Self-confidence

Overall, ratings were made in about the middle of the
scale (M ¼ 5.67, SD ¼ 1.75). The one-way
ANOVA revealed that the main effect of automation
mode was not significant (Tables 2 and 3). Non-signifi-
cant results were also observed for the two-way
ANOVA (Table 2).

3.3.4. Subjective workload

The overall workload level was at mid-scale
(M ¼ 9.45, SD ¼ 2.37). The one-way ANOVA
showed no significant effect of automation condition
was observed (Tables 2 and 3). Non-significant results
were also observed for the two-way ANOVA (Table 2).

4. Discussion

The goal of the present study was to investigate the
effects of different automation modes (indirect cues,
direct cues or adaptable cueing) under different reli-
ability levels (low versus high) in an X-ray luggage
screening task. With direct cues under high system reli-
ability, participants showed higher detection perform-
ance compared to all other automation modes.
Moreover, participants detected targets faster when
direct cues were available compared to all other auto-
mation modes. Adaptable automation did not provide
additional benefits compared to static automation. As
expected, under high automation reliability, partici-
pants achieved higher detection performance and
faster response times. Participants were also more
inclined to follow automation recommendations
(higher compliance and reliance), and expressed higher
levels of trust. Finally, participants systematically under-
estimated the actual reliability of automation.

These findings confirm previous research that
showed a larger benefit for direct cues than for indir-
ect ones (Goh, Wiegmann, and Madhavan 2005) but
these benefits only seem to take effect under high
system reliability. This interaction between automation
mode and system reliability is an important result
since it confirmed the limited utility of low-reliability
automation. Generally, our findings can be interpreted
in the framework of Drury’s two-component inspec-
tion model (TCM), which proposes that an inspection
task contains both search and decision components
(Drury 1975). Studies on the applicability of TCM for X-
ray image inspection have provided converging evi-
dence for a search and decision component (Koller,
Drury, and Schwaninger, 2009; Wales, Anderson, Jones,
Schwaninger, and Horne, 2009). Within this framework,
the benefit of direct cues for detection performance
and target present response times observed in this
study can be interpreted as direct cues guiding atten-
tion to target items (and hence reduce search time).
This may have facilitated participants’ compliance with
automation recommendations when it indicated the
presence of a target. In contrast, when automation
indicated the absence of a target, there was no such
restriction of the search area, which may explain simi-
lar levels of reliance in DC and IC modes.

The lack of precise information provided by the cue
in IC mode is aggravated by low system reliability,
especially in target-absent trials. In the current study,
participants in the IC mode working with a low-reli-
ability system needed more time to report the
absence of a target than in all other conditions. This is
an interesting finding, which may be related to the
general difficulty of IC to provide adequate support. In
target-absent trials, this is particularly difficult because
of the long target search times associated with IC. In
the framework of the TCM, the combination of low
reliability and rather imprecise indications of target
locations offered by IC may have raised the stopping
threshold for the search component, resulting in lon-
ger search times, but it did not influence the decision
process. As trust ratings were lower in low-reliability
conditions, this may have also influenced response
times. For example, Yeh and Wickens (2001) have
argued that trust levels determine when operators fin-
ish searching the display for a target. Overall, this
observation provides further evidence for higher effi-
ciency of DC mode over IC mode in visual inspection.

An important research question refers to the poten-
tial of adaptable automation in luggage screening,
with this study being the first to address this question.
Surprisingly, a clear benefit of adaptable automation
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compared to static automation modes was not found.
At first sight, this seems to contradict findings from
multitasking environments, which demonstrated bene-
fits of adaptable automation for performance
(Parasuraman et al. 1993; Sauer, Kao, and Wastell
2012). However, considering that with high system
reliability, direct cues (DC mode) are much more bene-
ficial than indirect cues (IC mode), participants would
have benefited most from adaptable automation (AC)
only if they had primarily chosen the DC mode. In the
present study, this was not the case. About a third of
participants in the AC condition did not predomin-
antly use the DC mode (i.e. DC was used more than
50% of the time by 67.5% of participants while no cue
and IC were predominantly used by 15 and 17.5% of
the participants, respectively). The reduced usage fre-
quency of the most powerful LOA in adaptable cueing
may be related to general difficulties of estimating lev-
els of system reliability accurately. Furthermore, in
some instances operators may have opted for manual
control (i.e. no cue) due to a general need for
increased latitude in system operation, which is also
advocated by models in work psychology (Karasek
and Theorell 1990). Generally, our results indicate that
it might be wrong to assume a general benefit of
adaptable automation over static automation observed
in multitasking environments without considering the
benefits of certain static automation modes in a spe-
cific single-task environment (like DC for luggage
screening in our study).

When adaptable cueing was available, it was inter-
esting to note that participants did not make frequent
changes between LOAs and mainly worked in their
preferred LOA. This suggests that the main advantage
of adaptable automation is that it allows each partici-
pant to select the LOA he or she is most comfortable
with. In contrast, the second potential advantage of
adaptable automation was not much made use of.
This is to adapt LOA according to changing oper-
ational needs during the course of a working session
(e.g. to cope with increasing fatigue). These observa-
tions are consistent with the findings of previous
research from domains such as process control, in
which a strong preference of one LOA was also found
(Chavaillaz, Wastell, and Sauer 2016b; Sauer,
Chavaillaz, and Wastell 2017). This suggests that oper-
ators’ preference to keep working with the same LOA
may be found in more than one work domain.

The present study also allows us to examine the
question of the consequences of using three principal
options of work design, which are fundamentally dif-
ferent from each other: human alone (here: no cue),

machine alone (here represented by performance lines
in Figure 2) and combined human–machine team
(here: three automation modes). They can be com-
pared to each other with regard to their detection
performance. The data in Figure 2 indicate that human
alone and human–machine team outperformed
machine alone on the detection task in the low-reli-
ability condition. Furthermore, Figure 2 shows that
under high system reliability, performance of the
human–automation team is better than machine alone
and human alone in the DC mode. This confirms the
advantages of direct cues for verifying the validity of
automation suggestions but also shows that it is not a
simple matter to achieve benefits of combined
human–automation team performance compared to
alternative work designs (i.e. machine alone or human
alone). This may also raise questions about further
alternatives in work design in the luggage screening
environment which could be examined in future stud-
ies. For example, this may involve a loosely coupled
human–automation team, in which the automation
decision is only shown to the human after he or she
has taken a first decision. However, it would still allow
the human to revise this first decision in the light of
the automation’s decision before the ultimate decision
is taken by the human.

Perceived reliability (as a factor determining the
way automation is used) showed overall that partici-
pants underestimated system reliability by about 13%.
Previous research also found that operators tended to
underestimate system reliability (Wiegmann, Rich, and
Zhang 2001; van Dongen and van Maanen 2013). It is
interesting to note that automation mode seems to
have influenced the magnitude of the underestima-
tion. Participants assessed automation reliability more
accurately in DC (deviation of about 8%) than in the
two other automation modes (about 16%). This obser-
vation suggests that the quality of feedback on the
validity of automation recommendations influences
the magnitude of the underestimation of system reli-
ability. In DC mode, participants can assess more easily
whether the automation recommendation is correct
(i.e. is the cued object really prohibited?) than in IC
(where the whole piece of luggage is cued). In line
with Wiegmann, Rich, and Zhang (2001), we observed
a better estimate of system reliability under low than
high reliability. This might be explained by the fre-
quency of automation failures. Under low reliability,
participants are often confronted with automation fail-
ures, which may have made them less salient. In con-
trast, under high reliability the fewer occurrences of
automation failures made them more conspicuous.
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This might have biased the ratings of system
reliability. Overall, the findings suggest that perceived
reliability is not only affected by actual system
reliability but also by the capabilities of an auto-
matic system.

There are several implications of the present study
for the design of automatic support systems at airport
security checkpoints. First, pointing out the exact tar-
get location (DC mode) appears to be the most
powerful form of support (see also Goh, Wiegmann,
and Madhavan 2005) because it guides attention to
the target location and therefore accelerates the
search process (i.e. DC supports searching under time
pressure). This provides some backing for the current
design of automatic target detection devices, which
only makes use of direct cues (Wells and Bradley
2012). Second, despite the benefits of adaptable auto-
mation observed in multitasking environments
(Kidwell et al. 2012; Sauer, Kao, and Wastell 2012;
Sauer and Chavaillaz 2017), the present work did not
show evidence for similar advantages over powerful
static automation in the form of direct cueing. This
may be due to the ease with which automation sug-
gestions can be verified. In luggage inspection tasks,
automation suggestions can be directly checked with
the cued object. In contrast, verifying automation rec-
ommendations in more complex tasks (e.g. in process
control; Sauer, Kao, and Wastell 2012) usually requires
several checks to be made. However, this advantage
may decrease, or even disappear, if miscues occur (i.e.
a non-target object is cued in a target-present image).
In such a case, the cued location remains the first
location on the image to attract attention but loses its
delimiting function of the search area. This may result
in an increase in search time compared to NC and IC
modes. More research is needed to determine whether
miscues can effectively remove the delimiting function
of the cue and, if this was possible, how many mis-
cues are required to produce such an effect.
Furthermore, since operators might not always use the
most suitable LOA to complete their tasks (a third of
the participants in the current study did not do so),
further research should be conducted before the use
of adaptable automation in target detection tasks
and devices can be recommended. Given the consid-
erable differences between work domains due to dif-
fering task requirements (e.g. process control and
luggage screening), there is a need to carry out
domain-specific research so that the resulting domain-
specific findings will allow us to determine to what
extent they are transferable across different
work domains.

Note

1. In the adaptable automation condition, participants
could change between LOA1-3 anytime. For each trial,
the LOA selected last was used to determine the
preferred LOA.
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