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ABSTRACT
This study’s objective was to develop models of endurance time (ET), as a function of load level 
(LL), and of resumption time (RT) after loading as a function of both LL and loading time (LT) for 
repeated loadings. Ten male participants with experience in construction work each performed 
15 different one-handed repetaed pushing tasks at shoulder height with varied exerted force and 
duration. These data were used to create regression models predicting ET and RT. It is concluded 
that power law relationships are most appropriate to use when modelling ET and RT. While the 
data the equations are based on are limited regarding number of participants, gender, postures, 
magnitude and type of exerted force, the paper suggests how this kind of modelling can be used in 
job design and in further research.

Practitioner Summary: Adequate muscular recovery during work-shifts is important to create 
sustainable jobs. This paper describes mathematical modelling and presents models for endurance 
times and resumption times (an aspect of recovery need), based on data from an empirical study. 
The models can be used to help manage fatigue levels in job design.

1.  Introduction

Understanding how to design jobs that lead to high 
system performance, sustainable work conditions and 
well-being for the employees is becoming increasingly 
important for companies active in the global market. This 
is also in line with the two main objectives in ergonom-
ics (IEA 2014). Time aspects in loading and recovery play 
an important role in the development of musculoskele-
tal disorders (MSDs) and are thus important in creating 
sustainable jobs (Putz-Anderson 1988; Wells et al. 2007; 
El ahrache and Imbeau 2009). When jobs are designed, 
there is a need for predictive tools to design appropriate 
work-recovery job patterns. For this, models on how the 
recovery need varies with loading amplitude and duration 
conditions are needed.

Over the years several models for estimating time 
aspects, such as endurance time, ET, and recovery need, 
have been presented (e.g. Rohmert 1960a; El ahrache 
and Imbeau 2009; Frey Law and Avin 2010; Ma et al. 
2010; Sonne and Potvin 2015). Several models have been 
reported to have an inability to simulate the recovery 

process adequately, stimulating research on how the 
recovery process varies across different loading con-
ditions (e.g. Rashedi and Nussbaum 2015a; Sonne and 
Potvin 2015). Reported insufficiencies of existing endur-
ance and recovery models (e.g. El ahrache, Imbeau, and 
Farbos 2006; Perez et al. 2014; Rose et al. 2014; Rashedi and 
Nussbaum 2015b, 2017) include: (i) Models use the time to 
regain maximum force generating capacity in defining the 
recovery time (e.g. Frey Law and Avin 2010), although no 
tentative relationship between the maximum force gen-
erating capacity and MSDs has been supported by any 
study results. (ii) Models are based on and consider only 
one task repetition despite the repetitive nature of most 
work (e.g. Rose, Ericson, and Örtengren 2000). (iii) Some 
models suggest that at low load level (LL) no recovery is 
needed, expressed with an asymptote in the model which 
is not substantiated by more recent research (e.g. Rohmert 
1960b; Frey-Law, Looft, and Heitsman 2012). (iv) Models 
are based on static loads, despite the dynamic nature of 
many work tasks (e.g. Mathiassen and Åhsberg 1999). (v) 
Models are based on several other studies and models 
with inconsistent prerequisites in different studies (e.g. El 
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Research question 3: What model forms can describe the 
effect of multiple repetitions on endurance time and 
resumption time?

2.  Methods

ET and RT were mathematically modelled by regression 
analysis using Octave 3.6.2. Akaike’s Information Criterion 
corrected, AICC, was calculated, in order to compare mod-
els with different numbers of parameters, since in such 
cases AICC should be used rather than the sum of squared 
residuals, SSR (see Appendix 1).

For ET and the first research question, linear regressions 
were performed. The SSR were computed for deviations 
from log10(ET), since the variability in the ET was found to 
be logarithmically distributed (see Section 3.1).

For RT and the second research question, all equations 
with two parameters1 in the equations (A, B) in Table 1 
were linearised. The linear regressions and the SSR were 
computed for deviations from log10(RT) rather than RT, 
since the variability in RT was found to be logarithmically 
distributed (see Section 3.2.2). The equations for RT with 
three parameters2 (A, B and C) in Table 2 and the math-
ematical equations derived for RT (Equation 2) were fit-
ted by seeking the minimum SSR for log10(RT) using the 
Nelder–Mead method and the function ‘nelder_mead_
min’, part of the ‘optim’ package in Octave. Since this 
function does not report the standard deviation for the 
best-fit parameters and these can be difficult to compute, 
the standard deviation of parameters for these equations 
were omitted.

To determine whether the exponential or power law 
provided the best relationship between the ET and the 
LL, the goodness of the fits in terms of the SSR were com-
pared. These values were determined by performing a lin-
ear regression of log10(ET) versus either LL (exponential) or 
log10(LL) (power law). The two equations were liniarised as 
described in Appendix 2.

From the ± SD determined for the SSRs and AICCs, the 
p-value when comparing a pair of models was computed. 
First this measure was computed and reported in compar-
ing the exponential vs. power law expression for ET vs. LL 
in Table 1, then in comparing the power law in expression 
1 with a shared exponent for both trials to the one in Table 
1. In Table 2, the p-value provides the significance of the 
difference in AICC between the best model (lowest AICC) on 
the first row of Table 2 and each one of the other models. 
In Equations (2) and (3), the fixed-exponent expressions to 
the best-fit expression (first row) of Table 2 was compared.

Kernel density estimation (KDE) was used to estimate 
the unknown probability distribution of a variable by esti-
mating the probability density function of that variable, 
using a sample of data points from that distribution. KDE 

ahrache, Imbeau, and Farbos 2006), which can be ques-
tioned from theoretical and modelling perspectives. (vi) 
Models do not consider task dependency or initial con-
ditions which can affect fatigue recovery processes (e.g. 
Ma et al. 2011). The models presented in this paper try to 
meet the first three of these insufficiencies.

In this paper the same experience-based definition of ET 
and resumption time (RT) is used, as by Rose et al. (2014). The 
instructions to the participants were: ‘The endurance time is 
when you would stop working if this was your work task, given 
that you strongly want to continue the task to accomplish an 
amount of work over the day and get the job done, but when, 
due to very strong discomfort, pain or fatigue (almost max), 
you choose to take a pause.’ RT is operationally defined as the 
time until the participants were willing to resume work, if the 
task had been their job. This RT definition, also used by Rose 
et al. (1992a, 1992b, 2000, 2001), focuses on the participants’ 
subjectively determined recovery need, rather than objective 
phenomena such as force generating capacity (Frey Law et 
al. 2010), or mean power frequency of electromyographic 
signals (Glimskär, Höglund, and Örtengren 1987).

The overall objective of the work presented in this paper 
was to derive mathematical relationships for perceived RT 
based on an empirical data-set. While a detailed description 
of the data collection has been previously published (Rose 
et al. 2014), here brief summary follows. Ten male partici-
pants, who had professional construction work experience 
(average 5.7  years, SD 9  years), were an avegage age of 
23 years (SD 11), 181 (SD 6) cm height, and 80 (SD 11) kg 
weight, engaged in one-handed, individually normalised, 
pushing tasks at shoulder-height. After a training session, 
followed by a session to determine maximum voluntary 
contraction (MVC) levels, each participant carried out the 
series of 15 sessions. Each session consisted of two subse-
quent trials, with each trial consisting of a predetermined 
loading time, LT, during which a handle was pushed at a 
certain load level, LL, followed by a resting period of subjec-
tive duration which established the resumption time, RT. LL 
varied between 10, 30 and 50% of each participant’s MVC, 
denoted as LL10, LL30 and LL50, respectively. LT varied 
between 10, 30, 50, 70 and 100% of the subjectively deter-
mined ET in the first trial. The second trials in the sessions 
were included to capture effects of repeated loading, such 
as possible changes in the RT. In total, 300 trials were per-
formed and data from all trials were used in the modelling 
described in this paper.To meet the objective, the model-
ling work aimed to resolve three specific research questions:

Research question 1: What model form best describes the 
relationship between endurance time and load level for 
two repeated trials?

Research question 2: What model form best describes the 
relationship between resumption time, load level, and 
loading time for two repeated trials?
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was used to compute the fraction of participants willing 
to resume work right away, fRESUME.

where NRESUME is the number of participants that were will-
ing to resume work right away (i.e. RT = 0) and RTi is the 
theoretical, computed non-zero RT for the ith such par-
ticipant based on Equation (2), NTOTAL is the total number 
of sessions (150 for each trial) and RTj is the computed RT 
for the jth such session based on Equation (4). For σ in the 
above equation, the Gaussian approximation (Silverman 
1998), was used:

where NTOTAL is the total number of values (300) over both 
trials (150 sessions and 2 trials) and log10(RT) is the average 
of log10(RT) for all sessions and for both trials. Fitting of an 
exponential decay function, fRESUME(RT) = exp(−A(RT−B)), to 
the KDE of fRESUME(x) was done using the theoretical, non-
zero RT values of the NTOTAL = 150 for each trial as input 
data points for the KDE fRESUME(x), and using the octave 
function nelder_mead_min to minimise the SSR for fRESUME. 
This allows the two trials to share their value for the expo-
nential parameter B, but not for A.

3.  Results

The main results of this study are the presented models 
for RT. In this section, results are presented in the order 
of the research questions. The results of the modelling of 
RT are presented in three different settings: (i) equations 
fitted to empirical data where participants stated a need 
for rest before resuming work (Section 3.2.2), (ii) equations 
fitted to empirical data for all cases, both when partici-
pants stated a need for a rest and when they were will-
ing to resume work immediately (Section 3.2.3), and (iii) 
based on data for all cases with two repetitions, presenting 
a prediction model for more than two repetitive loadings 
(Section 3.3).

3.1.  Modelling ET for two repeated loadings

In order to answer the first research question and deter-
mine how best to represent the relationship between ET 

fresume(x) =

Nresume
∑

i=1
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and LL, the data of ET versus LL were plotted. This was 
done since visual inspection often provides important 
information about the nature of the relationship between 
two variables. In Figure 1, ET versus LL has been plotted 
using different axis scales.

In contrast to when plotting ET on a linear scale (Figure 
1(a)), where a wider range of ET values is seen for lower 
LLs, when plotting ET on a logarithmic scale (Figure 1(b) 
and (c)) the range is rather the same for all three LLs. This 
suggests that the variability of ET is distributed logarith-
mically. Further, visual inspection reveals a linear relation-
ship when plotting log10(ET) versus log10(LL) (Figure 1(c)), 
which suggests a power law relationship between ET and 
LL (whereas a linear relationship when plotting log10(ET) 
versus LL (Figure 1(b)) would suggest an exponential 
relationship instead, see Appendix 2). In addition, Table 
1 shows the comparison of the fits of the exponential 
and power law relationships with data from trials 1 and 
2. The power law offers a better fit with the data (lower 
SSR) than the exponential function. Hence, based on the 
data used in this study, ET is best described by a power 
law relationship.

The power law equations for the two trials are similar in 
their exponent parameter (∆B = 0.08 ± 0.13), but differ in 
their coefficient parameter (∆A = 8.4 ± 5.4 s). By repeating 
the fit of the data, holding the exponent parameter, B, fixed 
for both trials, allowing only the coefficient parameter, A, 
to vary between the trials, resulted in the simpler equation 
for ET:

 

In Figure 2, Equation (1) is plotted alongside the experi-
mental data.

There is good agreement between Equation (1) for ET 
as a function of LL and the data from trial 1 (Figure 2(a)) 
and trial 2 (Figure 2(b)). Further, the decrease in the ETs for 
trials 1 and 2 is clearly visible.

(1)

Trial 1: ET = 32 s (LL)−10∕9
[

SSR = 1.24; p-value = 1
]

Trial 2: ET = 23 s (LL)−10∕9

Table 1. Comparison of the relationships for ET vs. LL for trials 1 
and 2.†

†ET: Endurance time. LL: Load level. A: coefficient parameter. B: exponent 
parameter. SD: Standard deviation. SSR: sum of squared residuals. p-value: 
statistical significance of the SSR difference between the exponential and 
power relationships.

ET= Trial A ± SD (s) B ± SD SSR ± SD p-value
Ae(B•LL) 1 568 ± 80 −4.43 ± 0.41 1.53 ± 0.24 0.2

2 418 ± 59 −4.54 ± 0.41
A(LL)B 1 31.1 ± 4.4 −1.13 ± 0.09 1.24 ± 0.23 1

2 22.7 ± 3.2 −1.11 ± 0.09
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which makes fitting and plotting these measures impossible. 
Table 2 presents different possible relationships for RT, as 
power law and exponential functions of ET, LL and LT.

Since some of the models differ in the number of param-
eters, the SSR alone is not sufficient to determine the most 
appropriate model. A model with more parameters typi-
cally agrees better with the data. However, the deviation of 
the data from the relationship curve might be due to noise 
(inaccuracies) in the data, and if this is the case, allowing 
the data to deviate from the curve is more appropriate 
than to seek a perfect fit. It is important to weigh goodness 
of fit against the risk of over-parametrizing.

Akaike’s Information Criterion AIC (see Appendix 1), was 
used with the model with the lowest AIC or AICC provid-
ing the best description of the relationship based on the 
available data. In Table 2, of the relationships explored, the 
one which offers the lowest AICC is RT = A(LT)B·(LL)C. Here 
the coefficient parameter A varies most between the two 
trials, whereas the exponent parameters, B and C, respec-
tively, are more similar between the two trials. Thus, it was 
decided that the two trials could share the parameters B 
and C in the modelling. Since LT is expressed in units of sec-
onds, the coefficient parameter A in this equation in Table 2 
has an awkward unit. By dividing LT by a constant with the 
unit of time, A can be expressed in units of seconds. These 
steps led to the simpler expression for RT:

3.2.  Modelling RT for two repeated loadings

3.2.1.  Immediate work resumption or non-zero RTs
The second research question aims at modelling resump-
tion times. This was complicated by the fact that, in some 
cases participants were willing to resume work immedi-
ately (RT = 0), whereas in other cases participants required 
a resting period, RT before resuming their task (RT > 0). 
Figure 3 illustrates the percentage of participants willing 
to resume work immediately as both a function of the LL, 
and as a function of a relative loading time, RLT. The main 
reason to choose to express the LT relative to the ET (i.e. LT/
ET) rather than simply using the LT alone is because while 
the LT and ET differ for different participants, their ratio 
differs less, providing a more predictive, and less individual, 
unitless quantity. Figure 3 shows that participants were less 
willing to resume work immediately in trial 2 than in trial 1.

3.2.2.  Modelling RT for cases with non-zero RTs
Results in this section are based on data where participants 
stated the need for a rest period and reported an RT > 0, 
before resuming the task. In order to determine how the RT 
relates to the effort, LL and LT of the activity, possible relation-
ships between RT and various combinations of absolute and 
relative factors were explored. The variability in RT was found 
to be distributed logarithmically. Therefore, only RTs which 
are non-zero were considered, because log10(RT = 0) = −∞, 

Figure 1. Relationship between endurance time, ET, and load level, LL, on a (a) linear-linear, (b) log-linear, and (c) log–log plot.
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In other models where recovery time, not RT, has been 
modelled (e.g. Rohmert 1960b), the relative recovery time, 
i.e. the recovery time relative to LT, is considered. While 
this has been explored here (SSR = 12.5, p-value = 0.4), a 
somewhat better fit is found instead by expressing the RT 
relative to the ET time

 

where the time coefficient parameter, A = 80 s, is the same 
in both trials. Equation (2) predicts that RT increases with 
increased LL as well as with increased LT.

(2)
Trial 1: RT = 80 s (LT∕32 s)3∕4 (LL)5∕9

[

SSR = 12.5; p-value = 0.4
]

Trial 2: RT = 80 s (LT∕23 s)3∕4 (LL)5∕9

Figure 2. Model for endurance time, ET, as a function of load level, LL, for (a) trial 1 data and trial 1 model, and (b) trial 2 data, trial 2 model 
and trial 1 model. (Measured values, calculated lines).

Table 2. Comparison of relationships for RT for trial 1 and trial 2. Based on RT ≠ 0 cases only.†

†RT: Resumption time. ET1: Endurance time in trial 1. LL: Load level. LT: Loading time. A: coefficient parameter. B and C: exponent parameters. SD: Standard devia-
tion. SSR: sum of squared residuals. AICC: Akaike’s Information Criteria corrected. The p-value indicates the statistical significance of AICC differences between the 
model on the first row and each of the other models.

RT= Trial A ± SD B ± SD C ± SD SSR AICC p-value
A(LT)B•(LL)C 12.3 ± 1 −702 ± 21 1

1 6.84 ± 1.7 0.729 ± 0.07 0.595 ± 0.099
2 10.4 ± 2.4 0.67 ± 0.07 0.525 ± 0.097

A(LT•LL)B 12.8 ± 1.1 −698 ± 21 0.4
1 8.28 ± 1.9 0.73 ± 0.071
2 12.8 ± 2.7 0.67 ± 0.071

A(LT/ET1)B•(ET)C 12.7 ± 1.1 −696 ± 22 0.4
1 38.2 ± 13 0.747 ± 0.073 0.227 ± 0.061
2 64.2 ± 19 0.666 ± 0.073 0.174 ± 0.057

A(LT/ET1)B•(LL)C 12.9 ± 1.1 −691 ± 22 0.4
1 89.0 ± 11 0.729 ± 0.073 −0.211 ± 0.072
2 108 ± 13 0.666 ± 0.073 −0.216 ± 0.069

A(LT/ET1)B 13.9 ± 1.2 −678 ± 22 0.2
1 119 ± 8.7 0.708 ± 0.075
2 144 ± 11 0.641 ± 0.075

Ae (B•LT/ET1) 14.3 ± 1.3 −671 ± 23 0.1
1 27.6 ± 3.3 1.62 ± 0.18
2 36.3 ± 4.3 1.64 ± 0.2

A(LT)B 15.7 ± 1.4 −648 ± 21 0.03
1 10.7 ± 2.8 0.434 ± 0.056
2 15.7 ± 3.9 0.396 ± 0.054

Ae(B•LT) 17.6 ± 1.8 −620 ± 25 0.005
1 51.2 ± 4.2 0.00266 ± 0.00042
2 61.2 ± 4.8 0.00299 ± 0.0005

A(LT/ET1•LL)B 20.7 ± 2 −581 ± 23 <10−4

1 126 ± 19 0.254 ± 0.062
2 134 ± 20 0.201 ± 0.06

A(LT/ET1)B(LL – 0.15)C 8.29 ± 0.9 −423 ± 17 <10−24

1 116 ± 29 0.761 ± 0.099  0.042 ± 0.15
2 157 ± 39 0.671 ± 0.099 0.131 ± 0.14

A(LT)B(LL – 0.15)C 8.4 ± 0.86 −421 ± 16 <10−25

1 7.1 ± 3 0.752 ± 1 0.476 ± 0.17
2 12.1 ± 4.7 0.690 ± 1 0.503 ± 0.16
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as RT increases since the number of participants willing to 
resume work right away will decrease as the theoretical, 
non-zero, RT increases.

It is possible to compute a theoretical, non-zero RT 
value for each participant in the study, even those who 
did not require rest, by using Equation (2). KDE was used 
to compute the fraction of participants willing to resume 
work right away, fRESUME and to construct a function for  
fRESUME(RT). The function fRESUME(RT) is well estimated by an 
exponential decay function Equation (5):

 

Combining Equation (5) with the equation for the RTAVG 
introduced in Equation (4), the following equation for RTAVG is 
obtained, which also answers the second research question:
 

where the theoretical RT is computed using Equation (2). 
Equation (6) incorporates all participants, both those who 
did and those who did not require a rest period.

(5)

Trial 1:fRESUME(RT) = 1 (or 100%) for RT ≤ 9.5 s

= exp
(

−
RT − 9.5 s

32 s

)

for RT > 9.5 s

[

SSR = 0.900, R2 = 0.971
]

Trial 2:fRESUME(RT) = 1 (or 100%) for RT ≤ 9.5 s

= exp
(

−
RT − 9.5 s

23 s

)

for RT > 9.5 s

(6)

Trial 1:RTAVG = 0 (no resumption time) for RT ≤ 9.5 s

=
[

1 − exp
(

−
RT − 9.5 s

32 s

)]

⋅ RT for RT > 9.5 s

Trial 2:RTAVG = 0 (no resumption time) for RT ≤ 9.5 s

=
[

1 − exp
(

−
RT − 9.5 s

23 s

)]

⋅ RT for RT > 9.5 s

 

In Equation (3), LL has been replaced by ET at that LL in trial 
1 (ET1) by using Equation (1). This transformation improves 
the SSR.

3.2.3.  Modelling RT for all cases – immediate work 
resumption and non-zero RTs
The RT equations derived in 3.2.2 for a given LT and LL are 
based on data where participants needed a rest period. 
As Figure 3 illustrates, for some values of LT and LL, some 
participants did not require a rest period. Therefore, using 

Equation (2) will result in the computed RT being longer 
than the average RT observed. A more accurate average 
RT, RTAVG, can be expressed as:
 

where fRESUME is the fraction of participants willing to 
resume work right away and RT is derived from Equation 
(2). In Equation (4), both fRESUME and RT depend on LL and LT. 
While we have a theoretical equation for RT that depends 
on these two variables, we have no such equation for  
fRESUME. We assumed that fRESUME will decrease monotonically 

(3)
Trial 1: RT∕ET

1
= 80∕32

[

32 s LT ∕ ET2
1

]3∕4

[

SSR = 12.4; p-value = 0.5
]

Trial 2: RT∕ET
1
= 80∕32

[

(32 s)2∕(23 s) LT ∕ ET2
1

]3∕4

(4)RTAVG =
(

1 − fRESUME

)

RT + fRESUME0 =
(

1 − fRESUME

)

RT

Figure 3. Percentage of participants willing to resume work immediately after completing their task (a) in trial 1 and (b) in trial 2.
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where n is the trial number, with n = 1 corresponding to 
trial 1. Equations (7)–(9) answer the third research question.

4.  Discussion

The main contribution of this study is that it expands the 
available pool of empirically based endurance and recov-
ery models. Uniquely, this study included two repetitions 
of the loading trial, providing some insight into the impacts 
of repetition on endurance and resumption response, also 
for low LLs. Methodologically, we demonstrate how these 
kind of data can be adequately analysed and modelled. 
The models here avoid the need to use the time to regain 
maximum force generating capacity for defining the recov-
ery time and includes attention to recovery needs at low 
LL – problems noted with other models.

4.1.  Discussion of study results

4.1.1.  On modelling ET for two repeated loadings
As described in 3.1, the analysis of the ET data showed 
that it is most appropriate to use log10(ET) or ln(ET) rather 
than ET when performing a regression with ET. Further, 
the analysis (visual inspection as well as comparing SSR 
between possible mathematical relationships) showed 
that the power law offers a better fit to the experimental 
data used in this study than the exponential function. 
The analysis approach used here, with visual inspection 
of the variables in linear and logarithmic scales, and dis-
tribution shape analysis exploring power and exponential 
functions is rarely, if ever, presented in modelling papers. 
Such analysis may reveal that it would be appropriate to 
redevelop some of the existing models. This paper con-
tributes, with descriptions, on how such analysis can be 
performed.

3.3.  Modelling ET and RTs for repeated loadings

In this section the third research question is addressed. 
A visual presentaion of the shape of the relationships 
obtained above is of interest, as is what they might imply 
for additional trials. Figure 4(a) illustrates the predicted 
decrease in ET for increasing numbers of trials, where the 
curves for the first two trials are based on Equation (1) 
and the curves for the predicted trials 3–5 are based on 
Equation (7), produced by assuming that the coefficient 
in the equation for ET changes by the same percentage 
with each subsequent trial. ET for repetitve loadings can 
be expressed as:
 

where n is the trial number such that at the maximum 
LL (LL = 1) and ET would be 32 s for the first trial (n = 1), 23 s 
for the second trial, 17 s for the third, 12 s for the fourth, 
8.5 s for the fifth, et cetera.

Figure 4(b) illustrates the predicted increase in the 
RTAVG after successive trials, where the curves for the first 
two trials are based on Equation (6) and the curves for 
the predicted trials 3–5 are based on Equations (8) and 
(9), produced by assuming that the divider for LT and the 
exponential decay in fRESUME change by the same percent-
age with each subsequent trial:

 

where
 

(7)ET = (23∕32)n−1
[

32 s(LL)−10∕9
]

(8)
RTAVG = 0 (no resumption time) for RT ≤ 9.5 s

=

[

1 − exp

(

−
RT(n) − 9.5 s

32 s
⋅

{

32

23

}n−1
)]

⋅ RT(n) for RT > 9.5 s

(9)RT(n) =
[

32

23

]

3

4
(n−1)

⋅ 80 s ⋅
(

LT

32 s

)

3

4

⋅ (LL)
5

9

Figure 4. (a) Predicted endurance time, ET, and (b) predicted average resumption time, RTAVG, where the curves for the first two trials 
are based on Equation (1) and (6), respectively, and the curves for trials 3–5 are based on Equation (7) and Equations (8–9), respectively.
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not allowed sufficient time to ‘fully recover’. This is a novel 
finding regarding RT, that could not be observed in studies 
with a single repletion (e.g. Rose, Ericson, and Örtengren 
2000). While it is well known that different variables used 
to describe different fatigue aspects recover at different 
rates (e.g. Jonsson 1984), further research is needed to 
understand this tendency in repetitive loading scenarios.

4.1.3.  On modelling ET and RT for repeated loadings
The modelling of ET and RT for repeated loadings, when 
n > 2, was based only on two repeated loadings. In Section 
3.3 the assumptions used in this modelling are described. 
However, alternatives to the above assumptions could also 
have been chosen, e.g. that the coefficient in the equation 
for ET changes with different percentages with increased 
repetitions, or different LLs. Gaining data from more than 
two repetitions is necessary to be able to form more ade-
quate assumptions for the predictive models when n > 2.

4.2.  Discussion of methods

The models demonstrated here have several limitations. 
One weakness of the study is the limited data-set with a 
small sample size of only 10 participants. Only data from 
male participants could be used, despite the ambitions 
to also include female participants, mainly because there 
are very few females among construction workers and its 
subgroup plumbers. Further, the task specificity is also a 
limitation as different motor tasks, with different postures 
and angles of force, may affect the response of ET and RT. 
The study design was adapted to the resources, given the 
time-intensive methodological approach used.

The experimental data that the models are based on 
are in the range between 10 and 50% MVC levels. It is sug-
gested that the models initially are used for assessment 
of tasks up to 50% MVC. While 50% MVC is very high, it is 
not outside of the range of possible operational range of 
workloads, which was the range in focus for the modelling 
work. Not having data for higher MVC levels likely affects 
the accuracy of the models for very high load tasks. From 
a modelling perspective, gathering data for higher LLs and 
sampling ET at high LL values in future would be prefer-
rable. Since different fatigue processess and mechanisms 
are considered to be at play at different types of loading 
patterns (e.g. Liu, Brown, and Yue 2002) it is conceivable 
that different curve forms might apply at different parts 
of the force-fatigue relationship. However, we suggest a 
single form here across the force range examined for the 
sake of parsimony in future applications. Further research 
is needed to gain better resolution, in both load level and 
time domains, in order to improve the accuracy of these 
kinds of models.

The suggested Equation (1) for ET (with SSR = 1.24) mod-
els how participants could exert maximum force (LL = 1) for 
32 s in the first trial, and for 23 s in the second trail. At LL = 1 
the ET for the first trial is somewhat longer than in some 
other models (e.g. Sato et al.1984; Frey Law and Avin 2010). 
At low LLs ET is similar to the Sato et al. model (1984), 
but shorter than the Rohmert model (1960a). It should be 
noted that ET in this study is subjectively determined by 
participants with professional experience of work which 
was simulated in the study – not based on force generating 
capacity as used in other studies.

4.1.2.  On modelling RT for two repeated loadings
The experimental data show that, in some cases, some 
participants were willing to resume the task immediately 
after completing their task (see Figure 3), which made the 
modelling of RT more complicated. However, the results do 
not indicate an LL asymptote, at which no fatigue would 
occur, for example as the model by Rohmert (1960b) sug-
gests. The willingness to resume the task decreases as a 
function of the RLT. The percentage was lower in trial 2 
than in trial 1 for all points, except at LL30 (30% MVC) for 
10% RLT, where it was equal to the percentage in trial 1. 
The percentage did not decrease monotonically as the LL 
decreased. Participants were least likely to want to resume 
work at LL10, and were more likely to want to resume work 
at LL30 than at LL50. One explanation may be that the 
absolute LT was considerably longer for LL10 than for the 
other two LLs (the mean values of ET1 was 448 s for LL10, 
114 s for LL30 and 75.2 s for LL50), which may have resulted 
in the onset of other fatigue mechanisms, such as central 
fatigue (e.g. Bigland-Ritchie 1981; Boyas and Guével 2011), 
in the cases with long LTs at LL10 compared to the other 
cases. These results suggest the possible existance of an 
optimal LL between 10 and 50% of MVC where partici-
pants are most willing to resume work immediately, indi-
cating less fatigue. To our knowledge, this has not been 
reported in the fatigue research literature previously and 
further investigation is warranted.

Equation (5) states that for activities with a critical the-
oretical RT of less than 9.5 s, all participants will be willing 
to resume work immediately. The theoretical RT at a given 
LL and LT (see Equation 3) is 28% longer in trial 2 than 
in trial 1. Fewer participants are willing to resume work 
right away in trial 2 than in trial 1. The larger exponential 
decay rate in trial 2 compared to trial 1also means that the 
fraction of participants willing to resume work right away 
drops off even faster in trial 2 than in trial 1 on any given 
loading condition. The decreases observed in RT and ET 
in the second repetition suggests that, although partici-
pants were allowed to set their own RT and decide how 
much rest they required before resuming work, they have 
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limitations discussed here, we believe this study provides 
interesting and potentially useful data on the relationship 
between load amplitude, load duration, and recovery.

5.  Conclusions

This study adds to knowledge in the ergonomics domain 
in two ways: by describing how certain characteristics of 
empirical data can be accounted for in mathematical mod-
elling, and by presenting models for ET and RT derived 
from a mathematical methodology which is unusual in the 
ergonomics literature.

The variability for ET and RT was found to be logarith-
mically distributed. Thus it is concluded that when per-
forming regression for these two variables, logarithmic 
presentation of ET and RT should be used rather than a 
linear presentation, based on the current data-set. It is also 
concluded that power law relationships are most appropri-
ate to use when modelling ET and RT with data distributed 
as in the experimental study, with two subsequent loading 
trials. Among the presented equations, Equations (7)–(9) 
are suggested for use for repeated loadings, although 
evaluation of the models’ validity is recommended before 
implementation in industry. An unexpected inverse ‘U’ 
relationship between load level and recovery times was 
observed – a phenomenon worthy of further investigation.

Notes

1. � A and B are parameters for the first and second terms, 
respectively, in the equations.

2. � A, B and C are parameters for the first, second and third 
terms (if a third exists), respectively, in the equations.
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4.3.  General discussion

There are differences between existing endurance and 
recovery need models. While one of the older models uses 
a polynomic relationship between ET and LL, (Rohmert 
1960a) most of the others use either power law, (e.g. Sato 
et al. 1984; Sjøgaard 1986; Frey Law and Avin 2010), or 
exponential relationships (e.g. Manenica 1986; Rose et 
al. 1992a, 1992b, 2000; Mathiassen and Åhsberg 1999). 
Differences between existing models can be explained 
by differences in the mathematical forms applied, differ-
ent definitions of the included variables (Rose et al. 2014), 
different study designs (El ahrache, Imbeau, and Farbos 
2006), different tasks, and whether the models are general 
or based on loading of specific muscle groups or body 
parts (Frey Law and Avin 2010) or on individual specific 
(Ma et al. 2015). Possible explanations of the differences in 
existing models also include whether an endurance limit 
(a % MVC below which force is considered to be possible 
to exert with ‘infinite duration’ without fatigue) is used or 
not, (El ahrache, Imbeau, and Farbos 2006).

Recovery need expressed as RT, which is based on data 
from experienced, healthy workers, in studies where they 
have carried out tasks similar to their normal work tasks 
and where they subjectively have determined when they 
would resume the task has been modelled in several studies 
(e.g. Rose et al. 1992b, 2014; Rose, Örtengren, and Ericson 
2001). It is hypothesised that this may be more adequate 
than determining the recovery need as the time needed 
to recover maximum force generating capacity in healthy, 
but in the experimental task setting, untrained participants. 
These two variables, RT and recovery time, reflect two dif-
ferent aspects of the fatigue and recovery processes at 
play. The experience of the RT model approach in industry 
(Combs, personal communication, 2016), indicates that this 
approach may be at least as adequate for industrial applica-
tions as the more traditional recovery time model approach.

In this study static loading tasks were studied. However, 
many jobs have both static and dynamic components. 
Bakke et al. (1996) found that signs of fatigue in dynamic 
work appear much later than in static work and Perez et al. 
(2014) found the best fit with a correction factor of 1/6 in 
recovery time to cover dynamic work with static models. 
It would be of interest to evaluate how valid the equations 
presented here are for dynamic work, and to investigate 
what kind of correction factors might be needed to eval-
uate more repetitive, dynamic work (cf. Perez et al. 2014).

Applicability of any new model is always a concern and 
becomes increasingly problematic as the context of appli-
cation moves further away from the context of the model 
creation. We recommend caution when making infer-
ences based on these models in different working circum-
stances without evaluating the models’ validity. Despite the 
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Appendix 1. Akaike’s Information Criterion 
corrected

The AIC corrected for small samples, AICC, is computed as

where Npars is the total number of parameters (the 
sum of those in the equations for trials 1 and 2), and the 
other symbols are as defined in Section 2 (Burnham and 
Anderson 2002).

Appendix 2. Linear regression of log10(ET)

If the relationship between ET and LL is exponential, then 
log10(ET) versus LL yields

log10(ET) = log10(A) + (B/ln(10)) . LL

y y-intercept  slope x

AICC = (n1 + n2) ln

(

SSR1 + SSR2

n1 + n2

)

+
2(Npars + 1)(n1 + n2)

n1 + n2 − Npars − 2

ET = A eBLL

Once the slope (m ± Δm) and y-intercept (b ± Δb) are obtained 
from the linear regression, the value of A, B, and their standard 
deviation (ΔA and ΔB) is simply given by

If the relationship between ET and LL is a power law, 
then log10(ET) versus log10(LL) yields

log10(ET) = log10(A) + B log10 (LL)

y y-intercept slope x

such that the value of A, B, and their standard deviation is now 
given by

A ± ΔA = 10b ± [10b ⋅ ln(10) ⋅ Δb]

B ± ΔB = ln(10) ⋅ [m ± Δm]

ET = A(LL)B

A ± ΔA = 10b ± [10b ⋅ ln(10) ⋅ Δb]

B ± ΔB = m ± Δm
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