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ABSTRACT

Recently a number of papers have been published in the area of regression change-

points but there is not much literature concerning confidence intervals for regression

changepoints. The purpose of this paper is to find a better bootstrap confidence in-

terval for a single regression changepoint. ("Better" confidence interval means having

a minimum length and coverage probability which is close to a chosen significance

level). Several methods will be used to find bootstrap confidence intervals. Among

those methods a better confidence interval will be presented.
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CHAPTER 1

LITERATURE REVIEW

1.1 Regression Analysis

Regression analysis is a statistical methodology that utilizes the relationship between

two or more quantitative variables so that a response or outcome variable can be pre-

dicted from the other or others. This method is widely used in Economics, Manage-

ment, Social and Behavioral Sciences, Biological Sciences, Political Sciences, Physical

and Chemical Sciences and many other disciplines.

There are several ways to categorize regression analysis. Here I will discuss the

category which is related my research.

One category of regression analysis is based on the number of explanatory vari-

ables in the analysis. If there is a single explanatory variable (also called a predictor

variable) the analysis is called simple regression. If there are several explanatory

variables it is called multiple regression.

My research is based on the simple linear regression model, a technique for ana-

lyzing bivariate data which can help us to understand the linear association between

the two variables, to see how a change in the predictor variable is associated with a

change in the response variable, and to estimate or predict the value of one of the

variables knowing the value of the other variable.

A simple linear regression model is given by the equation

yi = βo + β1xi + εi (1.1)

where xi is the value of the predictor variable and Yi is the value of the response

variable in the ith trial. εi is a random error. The simple linear regression model

relies on a number of assumptions being satisfied in order for it to provide a reliable
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approximation to a linear association between two variables. These assumptions

describe the probability distributions of the random errors in the model. According

to Iain Pardoe [4] there are four assumptions about these random errors, ε:

1. The probability distribution of ε at each x-value has a mean of zero (in other

words, the data points in a scatter plot balance along both sides of the regression

line so that the random errors average out to zero as we move across the plot

from right to left)(E {εi} = 0)

2. The probability distribution of ε at each x-value has constant variance, called

homoscedasticity (in other words, the data points in a scatter plot spread out

evenly around the regression line so that the variation of the random errors is

similar as we move across the plot from left to right) (var {εi} = σ2),

3. The probability distribution of ε at each x-value is normal (in other words,

the data points in a scatter plot are more likely to be closer to the regression

line than farther away and have a gradually decreasing chance of being farther

away).

4. The value of ε for one observation is independent of the value of ε for any

other observation.

By using the above assumptions,

E(yi) = E(βo + β1xi + εi) = βo + β1xi

V ar(yi) = V ar(βo + β1xi + εi) = V ar(εi) = σ2.

Therefore,

yi ∼ N(βo + β1xi, σ
2) (1.2)
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1.2 Least-square estimation of the parameter

Our simple linear regression model is

yi = βo + β1xi + εi.

The parameters βo and β1 are unknown and must be estimated using sample data, in

this case n pairs of (x,y) values. If we can estimate a "best fit" regression line going

through our sample (x,y) values, then we can use probability theory results to make

inferences about the corresponding regression line for the population.

To estimate the parameters we use least-squares estimation. The best fit in the

least-squares sense minimizes the sum of squared residuals (SSR):

SSR =
n

∑

i=1

e2i =
n

∑

i=1

(yi − ŷi)
2 =

n
∑

i=1

(yi − β̂o − β̂1xi)
2 (1.3)

a residual being the difference between an observed value and the fitted value provided

by a model (ei = yi − ŷi). According to Iain Pardoe [4] the following values of β̂o and

β̂1 make SSR minimum.

β̂1 =

∑

(yi − ȳ)(xi − x̄)
∑

(xi − x̄)2
, β̂o = ȳ − β̂1x̄

Using this β̂o and β̂1 we find the best-fitting line.

1.3 Changepoint Analysis

According to Dr. Duggins a changepoint is any point that marks off homogeneous

subsets of data from a heterogeneous whole. If data is no longer considered to be

homogeneous then a changepoint may have occurred in the data. Identifying these

changes at unknown times and estimating the location of changepoints is referred to

as changepoint analysis. Many applications of changepoint analysis are available in

different fields, such as quality control, statistical control theory, estimation of the
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current position of a time series, testing and estimation of change in the patterns

of a regression model, comparison and matching of DNA sequences in microarray

data analysis, and environmental threshold models. The changepoint problem also

occurs frequently in medical research. For example, cancer incidence rates remain

relatively stable for people at a younger age, but change drastically after a certain age.

Another example arises from a study of the risk of heart attacks, which showed a sharp

decrease in risk at low alcohol intakes and a dramatic increase after reaching a certain

amount of daily alcohol consumption. According to Khodadadi and Asgharian [5]

numerous methodologies have been implemented to examine changepoint models such

as maximum likelihood estimation, piecewise regression, nonparametric regression,

and grid searching.

The area of the changepoint analysis has been the subject of intensive research

in the past half century. Changepoint detection methods can be classified into two

categories: real-time detection (Adams and Mackay) [6] and retrospective detection

(Basseville and Nikiforov) [1]. Real-time change-point detection targets applications

that require immediate responses such as robot control. On the other hand, ac-

cording to Basseville and Nikiforov [1] retrospective change-point detection requires

longer reaction periods. Retrospective change-point detection accommodates various

applications that allow certain delays, for example: climate change detection, ge-

netic time-series analysis, signal segmentation, and intrusion detection in computer

networks.

Did a change occur? Did more than one change occur? When did the changes

occur? With what confidence did the changes occur? According to Taylor [2] all

these questions and more can be answered by performing a changepoint analysis. For

each change it provides detailed information including a confidence level indicating

the likelihood that a change occurred and a confidence interval indicating when the
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change occurred. The changepoint analysis procedure provided is extremely flexible.

It can be performed on all types of time ordered data including attribute data, data

from non-normal distributions, ill-behaved data such as particle counts and complaint

data, as well as data with outliers.

Taylor [2] introduced new software to detect changes by using CUSUM charts

and a bootstrap method. Taylor has proved that his method is more powerful than a

control chart when detecting smaller sustained changes. The major difference between

retrospective changepoint analysis and control charting is that control charts can be

updated following the collection of each data point while a retrospective changepoint

analysis can only be performed once all the data is collected. Control charts are gener-

ally better at detecting major change quickly (real-time detection) while retrospective

changepoint analysis can detect changes missed by control charts (retrospective detec-

tion). Lai [3] gives a review of problems in sequential analysis, including a discussion

about sequential changepoint detection in quality control. Bhattacharya [7] gives an

overview of changepoint analysis as it had developed into the mid-1990s. He presents

the asymptotic properties of the changepoint and regression coefficient estimators

using a local log-likelihood process approach. Through this approach he shows the

distinctive features of the asymptotic properties of the changepoint with and without

the continuity constraint at the point of change.

1.4 Regression and changepoint analysis

Choosing an appropriate regression equation is the most important feature of the re-

gression analysis. In many applications a smooth regression equation cannot describe

the relationship between response and predictor variables and one has to fit differ-

ent models in different sub-regions. The points at which the regression equation are
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not smooth, often representing a change in the pattern of data, are called regression

changepoints. More precisely, regression changepoint analysis is a regression problem

in which the expected value of the response is assumed to have a different functional

form in several neighborhoods of the explanatory variable space. In general, change-

point models can be divided into two groups: models with a discontinuous change

at the changepoint (Figure 1.1) and models with a continuous change at the change-

point (Figure 1.2). Discontinuous changepoint models are models with no continuity

constraints at the changepoints. In my research the regression function is assumed to

Figure 1.1: Changepoint regression model with two discontinuous changepoints

be continuous at the point of change and we only consider a simple linear regression

model with one changepoint. The model of a linear regression with one continuous

changepoint can then be stated as

Yi =











α1 + β1xi + εi xi ≤ τ

α2 + β2xi + εi xi > τ
(1.4)
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with continuity constraint

α1 + β1τ = α2 + β2τ. (1.5)

The changepoint is denoted by τ .

Figure 1.2: Continuous regression changepoint model

The standard changepoint problem in regression models consists of testing the

null hypothesis that no change in regimes has taken place against the alternative that

observations were generated by two (or possibly more) distinct regression equations.

There has been a surge in research over the past several decades on locating and

making inferences about the changepoint, as well as the pattern of the data before

and after the changepoint. The problem of a changepoint in the coefficients of a

linear regression model has also been analyzed under the assumption of normality by

several authors. Sprent [8] was among the first to discuss the estimation of piecewise

linear models. His interest in this type of model is based on the observation that a

biologist would often postulate a two-phase linear model over some alternatives such

as the quadratic model largely on intuitive grounds. Feder [10] studied the model in
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a more general framework and proved the consistency of the least-squares estimators

of the regression coefficients and the changepoint. The estimators are asymptotically

normal for some special cases including models with all linear segments. Hinkley

[11] considered the same two-phase straight line model and derived the maximum

likelihood estimator (MLE) of the changepoint by its marginal likelihood function

and presented the asymptotic distribution of the estimator. Quandt [12] discussed

estimates and hypothesis tests for a regression model in two phases. Brown, Durbin

and Evans [13] used recursive residuals to detect a single changepoint in regression

models. Judith and Lesperance [14] used piecewise regression as a statistical technique

to model ecological thresholds. Two statistical methods are proposed by Qian, King

and Richardson [15] for the detection of environmental thresholds.

1.5 The Bootstrap

1.5.1 Introduction

Bootstrapping is a computer-based technique that can be used to infer the sampling

distribution of many statistics via repeated samples drawn from the sample itself. It is

a recently developed technique, introduced by Efron (1979). According to Efron and

Tibshirani [19], when using a bootstrap, the basic ideas of statistics haven’t changed,

but their implementation has. A great advantage of the bootstrap is its simplicity.

When making inferences, traditional parametric procedures are primarily based

on several major assumptions about the population(s) from which our data come. For

example, one may assume that the distribution of population values is truly normal,

with unknown mean and variance, and that data sets are generated by simple random

sampling. Applying these assumptions makes inference easier because we can easily

draw conclusions about the underlying population.
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Most of the time all these assumptions are violated. In the first place, it is not

hard to create reasonable data that violate a normality assumption and have "true"

answers that are quite different from the answer we would get by making a normality

assumption. Second, there are many situations where even with normality we don’t

know enough about the statistic we are using to draw the appropriate inferences.

For example, one of the first things students learn in statistics is that the estimated

standard error of a mean x̄ based on n independent data points x1, x2, x3...xn is given

by the formula
√

s2

n
(1.6)

where s2 =
∑n

i=1

(xi − x̄)2

n− 1
,but what is the standard error of the median, or the

standard error of the difference between medians? We need some other way to find

that standard error. The bootstrap was introduced in 1979 as a computer-based

method for estimating the standard error for any statistic.

The bootstrap algorithm from Efron and Tibshirani [19] for estimating stan-

dard error is given as follows. B bootstrap samples are generated from the original

data points x1, x2, ...., xn. Each bootstrap sample, x∗ = (x∗

1, x
∗

2, ...x
∗

n), has n elements

generated by sampling with replacement n times from the original data set. Corre-

sponding to each bootstrap sample there is a bootstrap replication of s, namely s(x∗),

the value of the statistic s evaluated for x∗. For instance, if s(x) is the sample median,

then s(x∗) is the median of the bootstrap sample. Finally the standard deviation of

the bootstrap replications (s(x∗1), s(x∗2), .....s(x∗B)) is our estimate of the standard

error of s(x).

ŝeboot =

{

B
∑

b=1

[s(x∗b)− s(·)]2/(B − 1)

}1/2

(1.7)

where s(·) =
∑B

b=1 s(x
∗b)/B and s(x∗b) is the value of the statistic s evaluated for

x∗bth bootstrap sample.
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According to Efron and Tibshirani, [19] Figure 1.3 clearly displays the bootstrap

process for estimating the standard error of a statistic s(x).

Figure 1.3: Bootstrap process for estimating the standard error of a statistic s (x)

The Empirical Distribution Function

The empirical distribution function (cdf), which we will call F̂ , is a simple estimate of

the population distribution F. According to Efron and Tibshirani [19], the empirical

distribution function F̂ is defined to be the discrete cumulative distribution function

(cdf) that puts probability 1
n

on each value xi, i = 1, 2, ....n when there are no ties. If

there are ties F̂ is defined to be the discrete cumulative distribution function that puts
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probability f(i)
n

on each value xi, i = 1, 2, ....n where f(i) is the frequency of xi. Many

statistical procedures depend on the performance of the cdf. In particular, bootstrap

methods rely heavily on the empirical distribution function. Let (x1, x2, ..., xn) be

independent and identically distributed real-valued random variables with common

cdf F (t). Then the empirical distribution function is defined as

F̂n(t) =
1

n

n
∑

i=1

I {xi ≤ t} (1.8)

Where I = 1 if xi ≤ t and 0 otherwise.

1.5.2 Bootstrap Confidence Interval

In statistics a confidence interval is a measurement of how good, or how accurate, an

estimate of a certain parameter is. Confidence intervals consist of a range of values

that act as good estimates of the unknown population parameter. The reason that

we need confidence intervals is that a point estimate, being a single value, cannot

express the statistical variation, or random error, that the estimate has. A definition

of a confidence interval is a range of values constructed from sample data so that the

population parameter is likely to occur within that range at a specified probability.

The specified probability before sampling is called the level of confidence.

Standard errors are often used to assign approximate confidence intervals to a

parameter θ of interest. Given an estimate θ̂ and an estimated standard error ŝe, the

100(1− α)% confidence interval for θ is often given as

θ̂ ± critical value ∗ ŝe (1.9)

In bootstrapping, the bootstrap distribution of a parameter estimate has been used

to calculate bootstrap confidence intervals for its population parameter. There is no

advantage to calculate normal-theory bootstrap confidence intervals for statistics like
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the mean, because in this case the ideal bootstrap standard deviation of the statistic

and the standard error based directly on the sample coincide. If we don’t know what

the sampling distribution of our estimate is then we can compute a confidence interval

nonparametrically. Here I will discuss some bootstrap confidence interval methods

that I will use in my research.

Percentile Method

The percentile method is the most obvious way to construct a confidence interval for a

bootstrap estimate. This method is based on percentiles of the bootstrap distribution

of the statistic. Suppose that θ̂∗i is the bootstrap estimate from the ith bootstrap

sample where each bootstrap sample is of size n. If we ordered the bootstrap estimates

from smallest to largest the central interval containing 90% of the θ̂∗i values would be

a 90% percentile confidence interval for θ. A bootstrap confidence interval generated

this way is called a percentile method confidence interval.

According to Efron and Tibshirani [19], let Ĝ be the cumulative distribution

function of θ̂∗i . The 1− 2α percentile interval defined by the α and 1− α percentiles

of Ĝ is given by

[θ̂%,lo, θ̂%,up] = [Ĝ−1(α), Ĝ−1(1− α)]. (1.10)

This is a percentile interval when number of bootstrap replications is infinite.

In practice we use some finite number of bootstrap replications to approximate the

percentile method. If the number of bootstrap replications B is large, then the 100αth

or lower limit of the empirical percentile interval is the (B · α)th value in the ordered

list of the B replications. Likewise the upper limit is given by (B(1 − α))th value in

the ordered list of the B replications. If the value of (B · α) is not an integer then
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we consider the floor value and if (B(1 − α)) is not an integer then we consider the

celling value. We must choose a finite number of bootstrap samples, therefore it is an

approximation to the percentile interval. To increase the accuracy we need to choose

a wider interval if those values are not an integer. So that is why we choose floor and

ceiling values.

According to Efron and Tibshirani [19] if the bootstrap distribution of θ̂∗ is

approximately normal, then the standard normal and percentile intervals will nearly

agree. In general the central limit theorem tells us that as n → ∞ where n is

the sample size, the bootstrap histogram (histogram of B bootstrap replications) will

become normal shaped, but for small samples it may look very non-normal. According

to Efron and Tibshirani [19] the percentile interval is better than standard normal

interval for small samples.

The Jackknife

The jackknife is a technique for estimating the bias and standard error of an esti-

mate. It is done by deleting one data point each time from the original data set and

recalculating the estimator based on the rest of the data.

According to Efron and Tibshirani [19] the jackknife estimate of bias is defined

by

ˆbiasjack = (n− 1)(θ̂(·) − θ̂) (1.11)

where θ̂(·) =
∑n

i=1 θ̂i/n and θ̂i is the ith jackknife replication of estimator.The jackknife

estimate of standard error is defined by

ŝejack = [(n− 1)/n
∑

(θ̂i − θ̂(·))
2]1/2 (1.12)

The jackknife often provides a simple and good approximation to the bootstrap

for estimation of standard errors and bias. However, according to Efron and Tibshi-
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rani [19], the jackknife can fail miserably if the statistic θ̂ is not "smooth." Intuitively,

the idea of smoothness is that small changes in the data set cause only small changes

in the statistic. A simple example of a non-smooth statistic is the median. To see

why the median is not smooth, consider following nine ordered values.

10, 27, 31, 40, 46, 50, 52, 104, 146

The median of these values is 46. Now suppose we start increasing the value of

the 4th largest value x(4) = 40. The median does not change at all until x(4) becomes

larger than 46, and then after that the median equal to x(4), until x(4) exceeds 50.

This implies that the median is not a differentiable (or smooth) function of x.

1.6 Better bootstrap confidence intervals

One of the principal goals of bootstrap theory is to produce good confidence inter-

vals automatically. According to Efron and Tibshirani [19] "good" means that the

bootstrap intervals should closely match exact confidence intervals in those special

situations where statistical theory yields an exact answer and should give dependably

accurate coverage probabilities in all situations.

Bias-corrected method

Efron and Tibshirani [19] described a bias-corrected method for a constructing ap-

proximate confidence intervals for a parameter θ. This method is an adjustment to

percentile intervals that improves their accuracy. According to them a bias corrected

interval is given by

(θ̂lo, θ̂up) = (θ̂∗(α1), θ̂∗(α2)) (1.13)

where θ̂∗(α1) indicates the 100αth
1 percentile of B bootstrap replications and θ̂∗(α2)

indicates the 100αth
2 percentile of B bootstrap replications, and α1 = φ

(

2ẑ0 + z(α)
)
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and α2 = φ
(

2ẑ0 + z(1−α)
)

.

Here φ(·) is the standard normal cumulative distribution function and z(α) is

the 100αth percentile point of a standard normal distribution. ẑ0 is called the bias

correction. The value of the bias correction ẑ0 is obtained directly from the proportion

of bootstrap replications less than the original estimate, θ̂.

ẑ0 = φ−1





#
{

θ̂∗(b) < θ̂
}

B





φ−1(·) is the inverse function of a standard normal cumulative distribution function.

Roughly speaking, ẑ0 measures the median bias of θ̂∗, that is the discrepancy between

the median of θ̂∗ and θ̂. If the bootstrap sampling distribution is symmetric, and if θ̂

is unbiased, then this proportion will be close to .5, and the correction factor will be

close to zero.

Acceleration method

This is another way to improve the accuracy of percentile intervals. According to

Efron and Tibshirani [19] the acceleration interval is given by,

(θ̂lo, θ̂up) = (θ̂∗(α1), θ̂∗(α2))

where

α1 = φ

(

zα

1− â ∗ z(α)

)

α2 = φ

(

zα

1− â ∗ z(1−α)

)

φ(·) is the standard normal cumulative distribution function and z(α) is the

100αth percentile point of a standard normal distribution. â is called the acceleration

constant. To compute the acceleration constant Efron and Tibshirani used jackknife

values of a statistic. According to Efron and Tibshirani [19] a simple expression for

the acceleration is given as
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â=

∑n
i=1(θ̂(·) − θ̂(i))

3

6
{

∑n
i=1(θ̂(·) − θ̂(i))2

}3/2

where

θ̂(·) =
∑n

i=1 θ̂(i)/n

is called the average jackknife estimate and θ̂(i) is called the jackknife estimate with

the ith point deleted. The quantity â is called the acceleration because it measures

the skewness of original estimate.

Bias corrected and Accelerated method (BCa)

In this method Efron and Tibshirani used both acceleration and bias correction for

defining α1 and α2. According to Efron and Tibshirani [19] the BCa interval of

coverage 1− 2α is given by

(θ̂lo, θ̂up) = (θ̂∗(α1), θ̂∗(α2))

where

α1 = φ

(

ẑ0 +
ẑ0 + z(α)

1− â(ẑ0 + z(α))

)

α2 = φ

(

ẑ0 +
ẑ0 + z(1−α)

1− â(ẑ0 + z(1−α)

)

If â and ẑ0 equal zero , then α1 = φ
(

z(α)
)

= α and α2 = φ
(

z(1−α)
)

= 1 − α so the

BCa interval is the same as the percentile interval.

1.7 Bootstrap Regression

Since my research is based on simple linear regression, I only pay attention to boot-

strap analysis for a simple linear regression model in this section. In Section 1.1
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and Section 1.2, I discussed the least-square estimation and four assumptions related

to the residuals. Under the assumptions I discussed in Section 1.1, the least-square

procedure provides the best linear unbiased estimates of the regression parameters.

However, if these assumptions are violated then inferential prediction done by least-

square estimation may not be suitable. This where the bootstrap can help us.

The basic idea behind bootstrapping regression is to construct bootstrap stan-

dard errors and confidence intervals for the regression coefficients. Efron and Tib-

shirani [19] discussed bootstrapping regression in detail in their book. Here is the

procedure to construct bootstrap standard errors and confidence intervals for the re-

gression coefficients for a simple linear regression model. This procedure is called

bootstrapping the residuals.

1. Estimate the regression coefficients (β̂o, β̂1) for the original sample, and calculate

the fitted value and residual for each observation. Ŷi =β̂o+β̂1xi and εi = Yi− Ŷi,

i = 1, 2, 3, .......n

2. Keeping these residuals as the original sample, generate B bootstrap samples.

Then calculate bootstrap Y ∗

b,i values for each observation in the bootstrap sam-

ple. (Y ∗

b,i =Ŷi+εb,i) where b = 1, 2, 3, ......., B

3. Regress the bootstrapped Y ∗

b,i values on the fixed x values to obtain estimated

bootstrap regression coefficients. Estimates are calculated by least-square re-

gression.These estimators can be used to construct the bootstrap standard error

and confidence intervals for the regression coefficients.

This is one way to do bootstrapping regression. There is another way called

bootstrap by pairs. In this method, bootstrap (x, y) pairs similarly to individual

observation and generate B bootstrap samples. Since we have bootstrap (x, y) pairs,
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we can find estimated regression coefficients for each bootstrap sample by using least-

square method.

My research is based on bootstrapping residuals. I am finding a better bootstrap

confidence interval for a regression changepoint based on a previously developed test

statistic. So only the bootstrapping residuals method guaranteed my underlying

structure is there. I will explain why the bootstrap pairs method does not work by

an example. Suppose a bootstrap sample (x∗) is obtained by randomly sampling n

times, with replacement, from the original pairs (x1, y1), (x2, y2), ......, (xn, yn). For

instance, with n = 5 we might obtain x∗ = (x2, y2), (x2, y2), (x2, y2), (x2, y2), (x2, y2).

So in this case this bootstrap sample has one original pair (x2, y2) which is repeated

5 times. If this happened then it didn’t give us our underlying structure because it

has only one data point, but if we used bootstrapping residuals method even though

it has repeated residuals for each bootstrap sample we can generate bootstrap Y ∗

b,i

values on the fixed x values to obtain estimated bootstrap regression coefficients.

The most important thing in bootstrapping regression is not depending on error

assumptions, which are discussed in Section 1.1. Normally we construct standard

errors and confidence intervals for the regression coefficients by using these assump-

tions. In many scenarios one or more of these assumptions may be violated. For

example, in some cases such as the error distribution is not particularly close to a

normal distribution. Therefore bootstrapping regression is a very good method to

construct standard errors and confidence intervals for the regression coefficients.
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METHODS

2.1 Narrowing the Field

Recently a number of papers have been published in the area of bootstrapping re-

gression changepoint analysis. Most of these papers are concerned with estimating

or detecting a changepoint in regression model. In 2000 Julious [20] proposed a test

procedure to test whether the two-line model has a statistically better fit compared

to a one line model when the changepoint is known. This leads to the following test

statistic.

F =
RSS1 −RSS2

RSS2/(n− 3)
(2.1)

Here the RSS1 and RSS2 are the sum of squared residuals for the one- and two-line

models respectively and n is the number of observations. The statistic has an F

distribution with 1 and n− 3 degrees of freedom. When the location of changepoint

is not known then this method does’t work. According to Julious [20] test statistic

for unknown changepoint is given by the following equation.

F =
(RSS1 −RSS2)/2

RSS2/(n− 4)
(2.2)

This test statistic no longer has an exact F distribution. Therefore the only way to

estimate a parameter is through numerical optimization. In my research an unknown

changepoint was estimated by using following method.

1. Fit overall one line model for points x1, x2....., xk, .....xn

2. Compute RSS1

3. Fit a two line model for points x1, x2....., xk and xk+1, .....xn

4. Compute RSS2
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5. Compute all possible two line models

6. Compute F for each two line model

7. The two line model with largest F gives the best changepoint model.

To test whether the two line model has a statistically better fit compared to a

one line model we need to know the distribution of our test statistic. According to

the Julious paper [20] Efron and Gong proposed nonparametric bootstrap method to

estimate distribution of test statistic (bootstrap distribution for the F -test).

The methodology in applying bootstrap methods to the changepoint problem is

given by

1. For a given set of data obtain the best fitting two-line and one-line models and

calculate the F statistic.

2. Calculate the residuals for the two-line case.

3. Using the original xvalues, recalculate the new y values, by using the values

from the best fitting one line model and adding an error term, sampled with

replacement from the set of residuals from the best fitting two-line model.

4. To this new set of data, fit a two line and one line model and calculate F statistic.

5. Repeat steps 3 and 4 a large number of times, each time using the one line

parameters and two line residuals from the original data.

A bootstrap distribution for the F test can be derived and a P -value can thus

be calculated.

Another important issue in changepoint analysis is how to obtain a confidence

interval for the changepoint. Huskova and Kirch(2008) [21] considered bootstrap
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confidence intervals for the changepoint of the mean in a time series context. Dum-

bgen(1991) [22] proposed an asymptotically valid confidence interval for the change-

point by inverting bootstrap tests in a one-sample problem.

There is not much literature concerning confidence intervals for the regression

changepoint. Seijo and Sen (2011)[23] used bootstrap procedures to construct con-

fidence intervals for the unique jump discontinuity. Toms, Judith and Lesperance

[24] have calculated three types of confidence intervals for the regression changepoint

estimate: an interval based on the computed standard error of the estimate from

the fitting procedure, an empirical bootstrap confidence interval, and a confidence

interval derived from an inverted F test.

2.2 Extensions

In this research I focus on obtaining a better confidence interval for a regression

changepoint among a set of bootstrap confidence interval methods compared to the

standard percentile methods. I used confidence intervals based on bootstrap per-

centiles which are clearly described in Efron and Tibshirani [19]. The methods I used

include the percentile method and its adjustments such as bias-corrected method, ac-

celeration method and bias-corrected and acceleration method. By keeping these four

methods as a base I constructed three more different bootstrap confidence intervals.

1. Bias-corrected and acceleration method with average jackknife estimator

2. Bias-corrected and acceleration method with adjustment for ties

3. Bias-corrected and acceleration method with average jackknife estimator and

adjustment for ties
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Including these three and the four basic methods we have seven bootstrap confi-

dence intervals. Among these seven bootstrap confidence intervals a better confidence

interval which gives coverage probability close to 95% and minimum length will be

selected. The four main methods were described in Sections 1.6 and 1.7.

Bias-corrected and acceleration method with average jackknife estimator

As I discussed in Section 1.7, Efron and Tibshirani [19] used both acceleration and

bias correction for defining α1 and α2. According to them, bias correction is defined

as

ẑ0 = φ−1





#
{

θ̂∗(b) < θ̂
}

B





In this case the value of the bias correction ẑ0 is obtained directly from the proportion

of bootstrap replications less than the original estimate θ̂. In our new method we used

the average jackknife estimator (θ̂(·) =
∑n

i=1 θ̂(i)/n) instead of the original estimator

to calculate bias correction.

The new formula for bias correction is given by

ẑ0 = φ−1





#
{

θ̂∗(b) < θ̂(·)

}

B



.

By using this new formula for bias correction we can compute α1 and α2

α1 = φ

(

ẑ0 +
ẑ0 + z(α)

1− â(ẑ0 + z(α))

)

α2 = φ

(

ẑ0 +
ẑ0 + z(1−α)

1− â(ẑ0 + z(1−α)

)

Bias-corrected and acceleration method with adjustment for ties

In this method we calculate bias correction and acceleration with an adjustment for

ties. If we have ties in our original sample then P (X < x∗) 6= P (X ≤ x∗). So we need
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an adjustment for ties otherwise we cannot calculate correct acceleration and bias

correction for our original sample. Let x∗ be a point where ties occurred in original

sample. To make the adjustment for ties we take the number of cases where X = x∗

and divide them in half. We pool half of them with X < x∗ and other half with

X > x∗.

The new formula for bias correction is given by

ẑ0 = φ−1





#
{

θ̂∗(b) < θ̂
}

+ 1
2
#{θ̂∗(b) = θ̂}

B





By using this new formula for bias correction we can compute α1 and α2.

Bias-corrected and acceleration method with average jackknife estimator

and adjustment for ties

As the name suggests we apply both the average jackknife estimator and adjustment

for ties to calculate bias correction and acceleration in this method.

A summary of all bootstrap confidence intervals and notations that I used are

given by Table 2.1.
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Name Notation

Bias-corrected method BC

Acceleration method a

Bias-corrected and acceleration method BCa

Percentile method Pct

Bias-corrected and acceleration method with average jackknife

estimator BCajk

Bias-corrected and acceleration method with adjustment

for ties BCaat

Bias-corrected and acceleration method with average jackknife

estimator and adjustment for ties BCajkat

Table 2.1: Summary of all bootstrap confidence intervals and notations that I used

2.3 Design Procedure

Bootstrap confidence intervals for the regression changepoint were constructed by the

following procedure.

1. Generate random sample data (sample size is n) with a given changepoint ac-

cording to

Yi =











α1 + β1xi + εi xi ≤ τ

α2 + β2xi + εi xi > τ
(2.3)

with continuity constraint

α1 + β1τ = α2 + β2τ. (2.4)

The changepoint is denoted by τ .
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To make our data denser, we only consider the x values within the interval

[0,10]. Then subdivide this interval into n subintervals with equal length. Then

we can say how many data points are less than the changepoint and how many

data points are greater than the changepoint. For example let n = 20; the

length of subinterval is 10/20 = 0.5. So now we have a data point for each 0.5 x

value. Normally distributed residuals are generated with mean 0 and variance

1 and added to the underlying model.

2. Estimate the changepoint (τ̂) from that original sample data, using SAS 9.3

code which was co-developed by Dr. Jonathan Duggins and Dr. James Blum

(University of North Carolina Wilmington) and which is included in Appendix

A.

3. Select 1000 independent bootstrap samples from that original sample data.

Each bootstrap sample consists of n residuals drawn with replacement from

original data.

4. Estimate the changepoint in each bootstrap sample. After ordering the boot-

strap replicates from smallest to largest then compute the percentile confidence

interval.

5. Create jackknife estimates for our original data by deleting one data point each

time from the original data set. Then find the average jackknife estimate.

6. By using average jackknife estimate and jackknife estimates for our original data

we can compute the acceleration constant and acceleration confidence interval.

7. Compute bias correction. Because of our method, we will have enough data to

compute all seven confidence intervals.
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So in this case we calculate all confidence intervals for a regression changepoint

by generating only one sample data set. The entire process (steps 1-7) were repeated

10,000 times for each scenario to more effectively compare the resulting confidence

intervals for estimated coverage probability and overall average length.

2.4 Comparisons of Methods

Simulations were conducted using SAS 9.3 to compare the different confidence interval

methods shown in Table 2.1. In all cases without loss of generality the standard

deviation of residuals was taken as one and slope of the null model (β1) was assumed

to have a common slope of one. The Y intercept of the first line model was taken

as 0 and the Y intercept of the second line model was calculated according to the

following equation to have a continuous change point model.

Y intercept of second line model =τ*(β1-β2)

where τ is the changepoint and β1 is the slope of the first line model and β2 is the slope

of the second line model. According to the SAS code we can run different simulations

by changing sample size, simulation size, bootstrap samples, β2, and nominal coverage

probability. The resulting simulation designs are shown below in Table 2.2.

According to this simulation design I considered three different sample sizes

(n=20, 40, 60). For each sample size three different changepoints (3, 4, 5) were

considered. Finally for every changepoint I considered four different β2 levels (1.5,

2, 2.5 ,3). Therefore for each sample size we can consider 12 different cases. For

each case 10,000 simulations were performed and each simulation has 1,000 bootstrap

samples.
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Table 2.2: Simulation designs for sample sizes 20,40, and 60



CHAPTER 3

ANALYSIS

3.1 Simulation Results

In the previous chapter I have explained how simulations were conducted using SAS

9.3 to compare the different confidence interval methods shown in Table 2.1. In this

chapter results of those simulations will be discussed.

The main purpose of this research is to choose a better confidence interval for a

regression changepoint among a set of bootstrap confidence interval methods discussed

in Table 2.1. I will choose a confidence interval method which gives a coverage

probability close to 95% and the minimum length as a better confidence interval for

the regression changepoint among seven confidence interval methods.

The estimated coverage probability was calculated over all simulations for each

bootstrap confidence interval method. Then it was used to compare estimated cover-

age probabilities in all seven bootstrap confidence intervals for different β2 levels to

choose a better one. By setting the nominal coverage probability as 95% for our sim-

ulated data, I checked the estimated coverage probabilities of each confidence interval

methods for different β2 values.

The mean length was calculated over all simulations for each bootstrap confidence

interval method. Then it was used to compare all other mean lengths in all seven

bootstrap confidence intervals for different β2 values to choose a better one. It is not

clear to compare all seven bootstrap confidence intervals in one graph. Therefore,

I split them into two categories to find a better bootstrap confidence interval for

a regression changepoint. In the first category BCa, a, BC and Pct intervals are

considered.

To make the results section more readable, I only present the graphs for sample
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sizes (n) 20, 60 and changepoints (τ) 3, 5. The graphs of n = 40 and three other

changepoints will not be discussed here because their estimated coverage probabilities

and mean lengths are in between n = 20 and 60. Also, graphs of n = 40 follow the

same pattern as graphs of n = 60. I am not going to discuss the graphs of changepoint

4 for different sample sizes here because their estimated coverage probabilities and

mean lengths are in between changepoint 3 and 5 for different sample sizes. Graphs

related to sample size 40 and changepoint 4 are in Appendix B.

Figure 3.1 displays estimated coverage probabilities of BCa, a, Bc, and Pct

intervals for n = 20 and τ = 3 for different β2 (Slope2) values. According to this figure

Pct and a intervals show good coverage probabilities close to 95%. Their coverage

probabilities vary from 98% to 93% when the slope increases from 1.5 to 3. BCa and

BC coverage probabilities are increased when β2 increases. The estimated coverage

probabilities of BCa and BC are considerably less than Pct and a estimated coverage

probabilities, but BC interval always has a higher coverage probability compare to

BCa .

The mean lengths related to BCa, a, Bc, and Pct intervals for n = 20 and τ = 3

are shown in Figure 3.2. The mean length of all four methods decreases when β2

increases. Comparing all four bootstrap confidence intervals, the mean length of BCa

shows the lowest values when β2 changes from 1.5 to 3. Its mean length decreases

from 3.4 to 2.1 but mean length of BC interval is very close to BCa interval for large

β2 values.

Figure 3.3 displays estimated coverage probabilities of BCa, a, Bc, and Pct

intervals for n = 60 and τ = 3 for different β2 values. When sample size increases,

both BCa and BC intervals show an increase in their estimated coverage probabilities.

Pct confidence interval shows the highest coverage probability compared to the other

three intervals when β2 changes from 1.5 to 3, but BC estimated coverage probability
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Figure 3.1: Estimated coverage probabilities of BCa,a,BC,and Pct for n=20 and τ = 3

Figure 3.2: Mean length of BCa,a,BC,and Pct for n=20 and τ = 3



31

is very close to Pct estimated coverage probability when β2 = 2.5 and 3.

Figure 3.4 shows the mean length of BCa, a, Bc, and Pct for n = 60 and τ = 3

for different β2 values. The graph indicates that mean length of each interval declines

when β2 increases. When β2 is 1.5 Pct interval shows the highest mean length, but

when β2 increases it is close to BC mean length. For higher β2 values Pct and BC

intervals have minimum mean lengths compared to the other two.

The results of comparison in estimated coverage probabilities of BCa, a, Bc, and

Pct intervals for n = 20 and τ = 5 are presented in Figure 3.5. Initially, the graph

of BC interval has estimated coverage probability close to 82% and Pct interval has

estimated coverage probability close to 99%. When β2 = 3, the estimated coverage

probabilities of both Pct and BC intervals are approximately 90%. On the other hand,

the estimated coverage probability of a interval is close to 97% and BCa interval is

close to 79%. When β2 = 3, both estimated coverage probabilities are close to 87%.

According to Figure 3.6, the mean length of BCa, a, Bc, and Pct (n = 20 and

τ = 5) intervals decline when β2 increases. At the beginning the mean length of

BC and BCa intervals show low values compared to the other two intervals, but at

the end BC and Pct intervals show low mean lengths compared to the other two

intervals.

Figure 3.7 indicates estimated coverage probabilities of BCa, a, Bc, and Pct

intervals for n = 60 and τ = 5. When β2 = 1.5 the estimated coverage probabilities

of a interval is close to 95% and Pct interval is close to 96%. Both of them decline

when β2 changes from 1.5 to 2 and remain constant after that. Both BCa and BC

intervals show a small increase from β2 = 1.5 to β2 = 2 and remain constant after that.

The estimated coverage probability of BC interval is close to 93% at the beginning

and it is close 94% at the end.

Figure 3.8 shows the mean length of BCa, a, Bc, and Pct intervals for n = 60
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Figure 3.3: Estimated coverage probabilities of BCa, a, BC, and Pct for n=60 and

τ = 3

Figure 3.4: Mean length of BCa, a, BC, and Pct for n=60 and τ = 3
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Figure 3.5: Estimated coverage probabilities of BCa, a, BC, and Pct for n=20 and

τ = 5

Figure 3.6: Mean length of BCa, a, BC, and Pct for n=20 and τ = 5
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and τ = 5. According to the graph the mean length of four methods lies between 6

and 7 when β2 = 1.5. Among all four methods, the BCa interval shows the lowest

mean length. The mean length of intervals declines when β2 increases. The mean

length of both BC and Pct intervals are close to 1.3 and the other two are close to

1.4 when β2 = 3.

Figures from 3.1 to 3.8 belong to the first category which is BCa, a, BC and

Pct bootstrap confidence intervals. Next I will discuss graphs of the second category

which is BCaat, BCajk, BCajkat bootstrap confidence intervals.

Figure 3.9 indicates estimated coverage probabilities of BCaat, BCajk, and BCa-

jkat intervals for n = 20 and τ = 3. BCajkat shows the highest estimated coverage

probability and it remains constant for all β2 values. BCajkat value lies between 89%

and 90%. The estimated coverage probability of BCajk interval is close to 87% when

β2 =1.5 and then it slowly increase. When β2 = 3 both BCajkat interval and BCajk

interval follow the same pattern. BCaat interval has the lowest estimated coverage

probability and it shows a considerable difference compared to other two.

Figure 3.10 shows the mean length of BCaat, BCajk,and BCajkat intervals for

n = 20 and τ = 3. In this graph, the mean length of all three intervals decline

when β2 increases. BCaat interval shows the lowest mean length and both BCajk

and BCajkat mean lengths are very close for all β2 values.

Figure 3.11 indicates estimated coverage probabilities of BCaat, BCajk and BCa-

jkat intervals for n = 60 and τ = 3. Both BCajk, and BCajkat intervals have same

estimated coverage probabilities and they stay the same for all β2 values. According to

the graph BCaat interval shows the lowest estimated coverage probability and BCajk,

and BCajkat intervals show approximately 93% estimated coverage probability.

Figure 3.12 shows the mean length of BCaat, BCajk and BCajkat intervals for

n = 60 and τ = 3. Both BCajk, and BCajkat intervals have same mean lengths for
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Figure 3.7: Estimated coverage probabilities of BCa, a, BC, and Pct for n=60 and

τ = 5

Figure 3.8: Mean length of BCa, a, BC, and Pct for n=60 and τ = 5
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all β2 values. When β2= 1.5 BCaat shows the lowest mean length and when β2= 2

all three intervals have the same mean length. When β2 > 2 both BCajk, BCajkat

intervals show low mean length.

Figure 3.13 displays estimated coverage probabilities of BCaat, BCajk, and BCa-

jkat intervals for n = 20 and τ = 5. When β2 = 1.5 the estimated coverage probabil-

ities of the BCajk and BCajkat intervals are very close and both intervals show the

highest estimated coverage probability. Both BCajk and BCajkat intervals have the

same estimated coverage probabilities and remain constant when β2 increases.

Figure 3.14 shows the mean length of BCaat, BCajk, and BCajkat intervals for

n = 20 and τ = 5. In this graph, it is hard to see the coordinates of BCajk interval

because it is completely overlapping with BCajkat interval. When β2 = 1.5 BCaat

shows the lowest mean length and it is approximately close to 3.9. The mean length

of both the BCajk and BCajkat intervals is approximately equal to 4.5 when β2 =

1.5 and they show the lowest mean length when β2 = 3.

The estimated coverage probabilities of BCaat, BCajk, and BCajkat intervals for

n = 60 and τ = 5 are shown in the Figure 3.15. The estimated coverage probabilities

of BCajk, and BCajkat intervals are close to 94% when β2 = 1.5. Similar to the Figure

3.13, the estimated values of both intervals are very close for all β2 values. When

β2 increases, the estimated coverage probabilities of above two intervals show a small

decline. BCaat interval shows the lowest coverage probability compared to other two

intervals.

The mean length of BCaat, BCajk, and BCajkat intervals for n = 60 and τ = 5

are shown in Figure 3.16. BCaat interval shows the minimum length when β2 = 1.5.

Both BCajk and BCajkat intervals show the minimum mean length for β2 ≥ 2.

In this chapter I discussed results of our simulations. In the next chapter I will

present the conclusion and discussion based on these results.



37

Figure 3.9: Estimated coverage probabilities of BCaat, BCajk, BCajkat for n=20 and

τ = 3

Figure 3.10: Mean length of BCaat, BCajk, BCajkat for n=20 and τ = 3
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Figure 3.11: Estimated coverage probabilities of BCaat, BCajk, BCajkat for n=60

and τ = 3

Figure 3.12: Mean length of BCaat, BCajk, BCajkat for n=60 and τ = 3
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Figure 3.13: Estimated coverage probabilities of BCaat, BCajk, BCajkat for n=20

and τ = 5

Figure 3.14: Mean length of BCaat, BCajk, BCajkat for n=20 and τ = 5
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Figure 3.15: Estimated coverage probabilities of BCaat, BCajk, BCajkat for n=60

and τ = 5

Figure 3.16: Mean length of BCaat, BCajk, BCajkat for n=60 and τ = 5



CHAPTER 4

DISCUSSION AND CONCLUSION

4.1 Summary of Previous Chapters

As I mentioned in Chapters 2 and 3, the main purpose of this research is to choose

a "better" (having minimum length and close to 95% expected coverage probabil-

ity) confidence interval for a regression changepoint among seven different bootstrap

confidence interval methods.

The model of a simple linear regression with one continuous changepoint can be

stated as

Yi =











α1 + β1xi + εi xi ≤ τ

α2 + β2xi + εi xi > τ
(4.1)

with continuity constraint

α1 + β1τ = α2 + β2τ. (4.2)

The changepoint is denoted by τ .

Seven different methods based on bootstrap samples were used to find a confi-

dence interval for the above regression changepoint. The methods to construct seven

different bootstrap confidence intervals and the way of doing my research were dis-

cussed in Chapter 2. Analysis of these methods was discussed in Chapter 3.

4.2 Summary of Findings

As I mentioned in the Chapter 3, I only considered n=20 and n=60 with τ=3 and

τ=5 for detailed discussion. The estimated coverage probabilities and mean lengths

of each bootstrap confidence intervals for n = 40 and different changepoints are in

between corresponding results of n = 20 and n = 60. As an example, the estimated



42

coverage probability of BCaat, BCajk, BCajkat intervals when β2 =1.5 for n = 20

and τ = 3 is 89.5%, n = 40 and τ = 3 is 90%, and n = 60 and τ = 3 is 93.5% .

It is not clear to compare all seven bootstrap confidence intervals in one graph.

Therefore, I split them into two categories. In the first category (Figures 3.1-3.8)

BCa, a, BC and Pct intervals are considered and in the second category (Figures

3.9-3.16) BCaat, BCajk, and BCajkat intervals are considered.

It is not necessary to consider estimated coverage probabilities for the BCa and

BC intervals in Figure 3.1 because they are considerably less than 95%. The estimated

coverage probability of a interval is close to 95% when β2 = 1.5. For other β2 values

Pct interval is close to 95%. BCa interval shows the minimum mean length for all β2

values in Figure 3.2. So it can be concluded that Pct interval has a better estimated

coverage probability and BCa has the minimum length for n = 20 and τ = 3.

The estimated coverage probabilities of Pct and BC intervals are close to 95%

when β2 ≥ 2 and a interval is close to 95% when β2 =1.5 for n = 60 and τ = 3.

Both Pct and BC intervals have the minimum length when β2 ≥ 2 and BCa interval

has the minimum length when β2=1.5 for n = 60 and τ = 3. So it can be concluded

that both Pct and BC intervals have a better estimated coverage probability and

minimum length when β2 ≥ 2 for n = 60 and τ = 3.

According to Figure 3.5, it is clear that Pct interval shows a better estimated

coverage probability and BCa interval shows the minimum mean length for n = 20

and τ = 5. The estimated coverage probability of BC interval is close to 95% for

all β2 values and both Pct and BC intervals show minimum length when β2 ≥ 2 for

n = 60 and τ = 5.

The estimated coverage probability of BCaat, BCajk, and BCajkat intervals for

n = 20 and τ = 3 are shown in Figure 3.9. There is no interval which has estimated

coverage probability close to 95%. BCajkat interval gives the highest estimated cov-
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erage probability which is close to 89% for all β2 values. The minimum mean length is

given by BCaat interval for all β2 values for n = 20 and τ = 3. So it can be concluded

that BCajkat interval has a better estimated coverage probability and BCaat interval

shows minimum length for n = 20 and τ = 3.

Both BCajk, and BCajkat intervals show a better estimated coverage probability

for all β2 values and minimum mean length when β2 ≥ 2 for n = 60 and τ = 3.

According to Figures 3.13 and 3.14 both BCajk, and BCajkat intervals have a better

estimated coverage probability, but BCaat interval shows minimum mean length for

all β2 values for n = 20 and τ = 5.

In Figure 3.15 both BCajk, and BCajkat intervals show a better estimated cover-

age probability. Its value is close to 95% when β2=1.5 and slightly decrease when β2

is increase. In Figure 3.16 both BCajk, and BCajkat intervals show minimum mean

length when β2 ≥ 2. So it can be concluded that both BCajk, and BCajkat intervals

have a better estimated coverage probability and minimum length for n = 60 and

τ = 5.

4.3 Discussion

In the previous section, I summarized confidence intervals which gives better esti-

mated coverage probabilities and minimum lengths of each sample size and each

changepoint. In this section I will summarize all these estimated coverage probabili-

ties and mean lengths to find the a better bootstrap confidence interval for regression

changepoint. I have summarized the results of first category which is BCa, a, Bc,

and Pct intervals in Table 4.1. The results of second category which is BCajk, BCaat,

and BCajkat intervals are summarized in Table 4.2.

According to Table 4.1, Pct interval shows a better estimated coverage proba-
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n τ Better estimated Coverage Probability Minimum Mean Length

20 3 Pct interval BCa interval

60 3 Pct and BC intervals Pct and BC intervals (β2 ≥ 2)

20 5 Pct interval BCa interval

60 5 BC interval Pct and BC intervals (β2 ≥ 2)

Table 4.1: First Category Best Results

n τ Better estimated Coverage Probability Minimum Mean Length

20 3 BCajkat interval BCaat interval

60 3 BCajkat and BCajk intervals BCajkat and BCajk intervals (β2 ≥ 2)

20 5 BCajkat and BCajk intervals BCaat interval

60 5 BCajkat and BCajk intervals BCajkat and BCajk intervals (β2 ≥ 2)

Table 4.2: Second Category Best Results

bility and BCa interval gives the minimum mean length for n = 20 and τ = 3 and

5. We can’t make a conclusion on a better confidence interval for n = 20, because

no interval gives a better estimated coverage probability with the minimum mean

length. BC interval shows a better estimated coverage probability and the minimum

mean length when β2 ≥ 2 for n = 20 and τ = 3 and 5.

According to Table 4.2, a better estimated coverage probability (close to 95%)

for n = 20 and τ = 3 is given by BCajkat and the minimum length is given by BCaat.

A better estimated coverage probability for other sample sizes and changepoints are

given by BCajkat and BCajk intervals. For the n = 60 and τ = 3 and 5, BCajkat

and BCajk intervals give the minimum mean length when β2 ≥ 2, but for n = 20 and

τ = 5 BCaat interval gives the minimum length.
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From Table 4.1, BC interval can be chosen as a better confidence interval (better

estimated coverage probability and minimum mean length) when β2 ≥ 2 and n = 60.

From Table 4.2, we can choose both BCajkat and BCajk intervals, which gives a

better mean coverage probability and the minimum mean length when β2 ≥ 2 and

n = 60.

So we can choose one method from the first category (BC interval) and two

methods from the second category (BCajkat and BCajk intervals) as better boot-

strap confidence intervals when β2 ≥ 2 and n = 60. Next we have to choose a

better method among these three intervals which gives approximately 95% estimated

coverage probability and minimum mean length. Therfore we need to compare the

estimated coverage probabilities and mean lengths of above three methods.

Figure 4.1 displays the estimated coverage probability of BC, BCajk, and BCajkat

intervals for n = 60 and τ = 3. According to Figure 4.1, the estimated coverage

probability of BC interval is close to 95% compare to BCajkat and BCajk intervals

when β2 ≥ 2 for n = 60 and τ = 3. Figure 4.2 displays the mean lengths of BC,

BCajk, and BCajkat intervals for n = 60 and τ = 3. BC interval shows the minimum

mean length for all β2 values.

According to Figure 4.3 the estimated coverage probability of BC interval is close

to 95% compared to BCajkat and BCajk when β2 ≥ 2 for n = 60 and τ = 5. Figure

4.4 displays, the mean lengths of BC, BCajk and BCajkat intervals for n = 60 and τ

= 5. Among these three methods BC interval shows the minimum mean length for

all β2 values.
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Figure 4.1: Estimated coverage probabilities of BC, BCajk, BCajkat for n=60 and

τ=3

Figure 4.2: Mean length of BC , BCajk , BCajkat for n=60 and τ=3
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Figure 4.3: Estimated coverage probabilities of BC , BCajk , BCajkat for n=60 and

τ=5

Figure 4.4: Mean length of BC , BCajk , BCajkat for n=60 and τ=5
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4.4 Conclusion and Remarks

By comparing these four figures, it can be concluded that BC interval gives a better

estimated coverage probability which is close to 95% when β2 ≥ 2 and n = 60. Also

BC interval gives minimum length for all β2 values for n = 60. Since we couldn’t find

one bootstrap confidence interval which gives a better estimated coverage probability

and minimum mean length, we cannot make a conclusion about β2 = 1.5 for n = 60.

If we look at graphs of BC interval for n = 60 (Figures 3.3, 3.4, 3.7, 3.8) it is clear

that when β2 increases estimated coverage probability of BC interval increases and

mean length decreases. So we can conclude that for large β2 values BC interval gives

more accurate results. Also it can be concluded that when sample size increases BC

interval clearly shows a better estimated coverage probability with minimum mean

length.

Finally we can conclude that among all seven bootstrap confidence interval meth-

ods BC interval gives a better estimated coverage probability and minimum mean

length for n = 60 when β2 ≥ 2 for our simulated data. This can be explained using

the error distribution of the data and definition of bias correction. Bias correction is

obtained directly from the proportion of bootstrap replications less than the original

estimate. In my research errors are normally distributed with mean zero and vari-

ance one. That implies half of the bootstrap replicates values are less than or equal

to original estimate. This means the bias correction is close to zero.

I have made conclusions based on my simulated data for a given changepoint

and given nominal coverage probability. In practice one can come up with different

scenarios and can ask which bootstrap confidence interval method gives a better

confidence interval for each scenario. Based on my findings in general I can conclude

that for large sample sizes (n ≥ 40) BC interval gives a better coverage probability
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and minimum mean length out of seven methods for higher β2 values. No method

works well for small sample sizes. Since errors are normally distributed with mean

zero and variance one errors have no bias or skewness to correct for, so that may be

a reason why those methods didn’t perform well.

In my research the regression function is assumed to be continuous at the point

of change and we only consider a simple linear regression model with one changepoint.

Since there are some limitation in my research we cannot make a conclusion about

discontinuous changepoint models and multiple linear regression models.

4.5 Future Work

In this research I used only three new bootstrap confidence interval methods, which

are constructed from our four basic bootstrap confidence interval methods. In addi-

tion to these three, we can construct four more methods which are listed in below. To

construct these methods, I could use a jackknife estimator and adjustment for ties.

1. Bias-corrected method with average jackknife estimator

2. Bias-corrected method with adjustment for ties

3. Bias-corrected method with average jackknife estimator and adjustment for ties

4. Acceleration method with adjustment for ties

In future we can develop our SAS code to run the above four methods. Then it can

be used to check if there is any method which gives estimated coverage probability

close to 95% and minimum length.
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Appendix A

SAS CODE

This SAS (version 9.3) code was co-developed by Dr. Jonathan Duggins and Dr.James

Blum (University of North Carolina Wilmington). As I mentioned in Section 2.3, I

used this SAS code to construct seven different confidence intervals for a regression

changepoint.

1. Generate random sample data (sample size is n) with a given changepoint.

2. Estimate the changepoint (τ̂) from that original sample data

3. Select 1000 independent bootstrap samples from that original sample data.

4. Estimate the changepoint in each bootstrp sample.

5. Create jackknife estimates for our original data by deleting one data point each

time from the original data set. Then find the average jackknife estimate.

6. Compute all seven confidence intervals.

7. Finally this code is used to run 10,000 simulations to effectively compare the

confidence intervals.
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Appendix B

GRAPHS NOT DISCUSSED IN ANALYSIS SECTION

Here I will show all graphs related to n = 40 with τ = 3 and τ = 5. Also τ = 4 with

n = 20 and n = 60.
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Figure B.1: Estimated coverage probabilities of BCa, a, BC, and Pct for n=20 and

τ=4

Figure B.2: Mean length of BCa, a, BC, and Pct for n=20 and τ=4
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Figure B.3: Estimated coverage probabilities of BCa, a, BC, and Pct for n=60 and

τ=4

Figure B.4: Mean length of BCa, a, BC, and Pct for n=60 and τ=4
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Figure B.5: Estimated coverage probabilities of BCa, a, BC, and Pct for n=40 and

τ=3

Figure B.6: Mean length of BCa, a, BC, and Pct for n=40 and τ=3
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Figure B.7: Estimated coverage probabilities of BCa, a, BC, and Pct for n=40 and

τ=4

Figure B.8: Mean length of BCa, a, BC, and Pct for n=40 and τ=4
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Figure B.9: Estimated coverage probabilities of BCa, a, BC, and Pct for n=40 and

τ=5

Figure B.10: Mean length of BCa, a, BC, and Pct for n=40 and τ=5
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Figure B.11: Estimated coverage probabilities of BCaat, BCajk, and BCajkat for

n=20 and τ=4

Figure B.12: Mean length of BCaat, BCajk, and BCajkat for n=20 and τ=4
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Figure B.13: Estimated coverage probabilities of BCaat, BCajk, and BCajkat for

n=60 and τ=4

Figure B.14: Mean length of BCaat, BCajk, and BCajkat for n=60 and τ=4
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Figure B.15: Estimated coverage probabilities of BCaat, BCajk, and BCajkat for

n=40 and τ=3

Figure B.16: Mean length of BCaat, BCajk, and BCajkat for n=40 and τ=3
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Figure B.17: Estimated coverage probabilities of BCaat, BCajk, and BCajkat for

n=40 and τ=4

Figure B.18: Mean length of BCaat, BCajk, and BCajkat for n=40 and τ=4
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Figure B.19: Estimated coverage probabilities of BCaat, BCajk, and BCajkat for

n=40 and τ=5

Figure B.20: Mean length of BCaat, BCajk, and BCajkat for n=40 and τ=5
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