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ABSTRACT
In this research, we match web-based activity diary data with daily
mobility information recorded by GPS trackers for a sample of 709
residents in a 7-day survey in Beijing in 2012 to investigate activity
satisfaction. Given the complications arising from the irregular
time intervals of GPS-integrated diary data and the associated
complex dependency structure, a direct application of standard
(spatial) panel data econometric approaches is inappropriate. This
study develops a multi-level temporal autoregressive modelling
approach to analyse such data, which conceptualises time as
continuous and examines sequential correlations via a time or
space-time weights matrix. Moreover, we manage to simulta-
neously model individual heterogeneity through the inclusion of
individual random effects, which can be treated flexibly either as
independent or dependent. Bayesian Markov chain Monte Carlo
(MCMC) algorithms are developed for model implementation.
Positive sequential correlations and individual heterogeneity
effects are both found to be statistically significant. Geographical
contextual characteristics of sites where activities take place are
significantly associated with daily activity satisfaction, controlling
for a range of situational characteristics and individual socio-
demographic attributes. Apart from the conceivable urban plan-
ning and development implications of our study, we demonstrate
a novel statistical methodology for analysing semantic GPS trajec-
tory data in general.
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1. Introduction

The study of human mobility has increasingly resorted to high spatio-temporal
resolution data such as GPS trajectories with the fast development of location
tracking technologies. Exploiting the fine granular representation of individual daily
mobility offered by such data, recent research has involved integrating trajectories
with additional contextual data – information beyond geo-coordinates and time
stamps of movement – to create semantic trajectories (Spaccapietra et al. 2008,
Yan et al. 2013, Kwan et al. 2014).
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A plethora of methods have been proposed for trajectory semantic enrichment
processes, usually depending on application contexts and data availability (Parent
et al. 2013). For instance, Grinberger and Shoval (2015) detailed a process to construct
semantic trajectories by coupling raw GPS traces with residents’ digital activity diaries,
whereby trajectory segments were characterised by activity information. They also
demonstrated the usefulness of such semantic trajectories in producing high-level
knowledge on urban dynamics and spatial structure. Siła-Nowicka et al. (2016) augmen-
ted GPS trajectories with urban point of interest (POI) data to identify residents’ daily
activities and travel modes, and to explore the effects of residential location on daily
travel mode choices. Whilst methodological advances revolve around new techniques of
annotating and segmenting GPS trajectories with external data (Grinberger and Shoval
2015), innovative spatio-temporal visualisation tools (eg Demšar and Virrantaus 2010),
and improved data mining approaches (eg Dodge et al. 2012, Yang and Gidófalvi 2017),
the development of generic statistical models to properly analyse semantic GPS trajec-
tories is rather under-researched. Nonetheless, the importance of statistical models in
discovering and drawing inferences on relationships between human activity and con-
textual factors is beyond doubt.

Treatment of time and scale has been well-recognised as great challenges in the
quantitative analysis of GPS trajectory or movement data (eg Long and Nelson 2013,
Kwan and Neutens 2014, Purves et al. 2014). From the statistical modelling perspective,
trajectory segments – homogeneous sub-trajectories defined by certain criteria such as
activities or travels in residents’ daily mobility (eg Grinberger and Shoval 2015, Siła-
Nowicka et al. 2016) – are irregularly spaced on the time axis with unequal time intervals,
and the number of segments per trajectory usually differ. In contrast, standard panel
data and spatial panel data techniques (eg Elhorst 2014, Hsiao 2014) are developed
based on data with structured, regularly-spaced and discrete time units, and thus it
would be problematic to use them to model sequential or temporal correlations
between trajectory segments. The scale issue refers to the choice of analysis units at
different levels of aggregation influencing data analysis results and statistical inferences
(eg Dungan et al. 2002, Haining 2003). For instance, semantic GPS trajectory data can be
analysed at scales of trajectories and trajectory segments. However, as well-established
in the statistics literature, a separate modelling of data with a multi-level (or multi-scale)
structure could lead to unreliable estimates of the relationships under interest and
incorrect inferences (Raudenbush and Bryk 2002, Goldstein 2011). Therefore, we need
a proper methodology to deal with the multiple-scale nature of trajectory data.

This study extends the statistical analysis tools for investigating semantic trajectories
by proposing a novel Bayesian multi-level temporal autoregressive model that deals
with the issues of time and scale. The methodology simultaneously investigates various
attributes of trajectory segments and trajectories under an extended multi-level model-
ling framework. In addition, time is conceptualised as continuous in our proposal,
respecting the fine temporal granularity of GPS trajectory data, and more importantly,
enabling a simple way to characterise the sequential correlations between trajectory
segments via a temporal weights matrix (detailed below). A continuous time statistical
modelling approach has been applied to longitudinal data analysis when measures of an
outcome variable are irregularly spaced over time and the number of measurement
varies between subjects or individuals (eg Taylor et al. 1994, Diggle 2002). Linear or

2190 G. DONG ET AL.



generalised linear mixed models are commonly adopted for such data, in which the
temporal or sequential correlation among measurements or outcomes is specified
through a structured residual correlation matrix (eg Diggle 2002, Goldstein 2011).
Correlations among residuals of each individual are formulated usually based on tem-
poral distances separating measurements and a time decay function such as an expo-
nential or Gaussian kernel (eg Steele 2008). Advanced stochastic process approaches,
such as an integrated Ornstein-Uhlenbeck process derived from a stochastic differential
equation, have also been devised to form the temporal correlation structure of model
residuals (Taylor et al. 1994, Diggle et al. 2014, Asar et al. 2016, Hughes et al. 2017).
Despite the flexibility and mathematical rigour offered by these approaches, a key
concern is that the temporal correlation among measurements or outcomes are cap-
tured through model residuals, which makes them inappropriate to explore substantive
interactions among outcomes, ie the impacts of precedent outcomes on the current
one. Such inquiries, however, appeal to social science researchers. The methodology
developed in this study treats temporal correlations among outcomes substantively and
produces estimates on the strength of how precedent outcomes affect the current one.
Moreover, it allows for potential interactions among individuals, which is not modelled
in the above studies. Lastly, space or spatial displacement can also be taken into account
when analysing temporal correlations in our methodology.

The motivation of such methodological development lies in our research interest in
understanding residents’ subjectively experienced well-being associated with their daily
activities. Subjective well-being can be understood as the levels of pleasure individuals
experienced from their daily activities and measured by activity satisfaction
(eg Kahneman et al. 2004, Schwanen and Wang 2014). Characterising urban residents’
satisfaction trajectories associated with daily activities and understanding the role of
geographical contexts where activities are conducted in shaping experiences of activ-
ities has great potential for benefiting urban planning and management policies aiming
to improve individuals’ quality of life. We utilise a unique GPS-integrated activity diary
dataset, in which both GPS trajectories of each participant and detailed information on
each activity conducted were recorded for a period of seven days, to provide insight into
the nexus between activity participation, geographical context and well-being. Similar to
the trajectory enrichment process outlined in Grinberger and Shoval (2015), daily
trajectories of participants were annotated and segmented by using additional activity
diary data. The resulting trajectory segments represent different activities, and drawing
on the locational information of trajectory segments, a range of urban form character-
istics of the place or context where activities took place are extracted. To deal with the
scale issue discussed above, the data is analysed simultaneously at two scales or levels:
the individual scale (ie a participant’s whole activity sequences) and the activity scale (or
trajectory segments).

Three types of structural effects are highlighted specifically for our daily activity
satisfaction study. The first relates to the sequential correlations between activities.
The satisfaction level of the current activity might be influenced by that of the precedent
activities, with the intensity of influence attenuated by time and space. In other words,
satisfaction or pleasure experienced from an earlier activity might be carried over to
subsequent activities. Second, individual heterogeneity effects on activity satisfaction are
expected due to differences between individuals in terms of socio-demographic and
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biological characteristics. Third, there might be interaction effects on activity satisfaction
between family members, as the arrangement of certain activities (eg shopping) is often
implemented by members of a household together. The developed Bayesian multi-level
temporal autoregressive model allows for an examination of these effects simulta-
neously. Bayesian Markov chain Monte Carlo (MCMC) algorithms for implementing the
methodology are developed and the computer codes are made available for potential
users via the Supplementary online Materials of the paper.

The contributions of this paper lie in two aspects. Foremost, we offer a novel
statistical tool to model trajectory data (eg attributes of trajectory segments), taking
into account sequential correlations within a trajectory and heterogeneities between
trajectories simultaneously. It benefits studies that aim to explore and draw statistical
inferences on the influences of geographical contexts on human mobility behaviours or
outcomes. Second, we contribute to the substantive subjective well-being literature by
examining situational variabilities in daily activity satisfaction and providing insights into
how geographical context affects individuals’ experiences of daily activities. The remain-
der of this paper is organised as follows. Section 2 describes the proposed multi-level
temporal autoregressive model and the estimation strategy. In Section 3, data and
variables are described. Section 4 reports and interprets model estimation results.
Finally, we conclude with a summary of findings and discussions on potential limitations
of the paper as well as future development.

2. Methodology

2.1. Modelling sequential correlation and individual heterogeneity

We first propose a two-level autoregressive model with independent individual random
effects to capture the sequential correlation and individual heterogeneity effects on daily
activity satisfaction. Denote yki as the reported satisfaction level of k-th activity for indivi-
dual i, and tk as the time when k-th activity takes place. Time is treated as continuous, and
thus it is convenient to characterise temporal decay in the correlations between activities k
and k0 via an exponential function (eg Steele 2008, Browne and Goldstein 2010),

ck;k0 ¼ expð�Δtk;k0=t
oÞ; Δtk;k0 ¼ tstartk � tendk0 ; k0 ¼ 1; . . . ; k � 1: (1)

where tstartk and tendk0 represent the starting time of k-th activity and the ending time of
k0-th activity. to is a temporal threshold parameter, which will be discussed later.

Equation (1) is employed to form elements of a temporal weights matrix T specifying
how activities are correlated over time, which can be considered as a temporal analogue
of a spatial weights matrix. For individual i, Ti has the following form,

Ti ¼

0 0 0 . . . 0
c2;1 0 0 . . . 0
c3;1 c3;2 0 . . . 0

..

. ..
. ..

. . .
. ..

.

cNi;1 cNi;2 . . . cNi;Ni�1 0

0
BBBBB@

1
CCCCCA

(2)

which is a lower-triangular square matrix of order Ni where Ni is the number of activities
conducted by individual i and varies between individuals. In a general setting where the
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analysis units are trajectory segments that nest into individual trajectories, Ti measures
the temporal correlation structure among sequential segments. With a row-normalised
Ti and yi ¼ ½y1;i; . . . ; yNi;i�, the impacts on satisfaction of the current activity from pre-
ceding activities are measured by Tiyi, which can be understood as a continuous time
lag operator similar to the spatial lag operator in spatial econometrics models (Anselin
1988, LeSage and Pace 2009). A further concern rises when the temporal separation
(Δtk;k0 ) between activities k and k0 also results in a spatial displacement. This is the case
when activities take place in different locations, ie people might need to travel some
distances to conduct the next activity. It is not unreasonable to assume that the spatial
distance between two activity sites might attenuate the temporal correlation of the two
activities. To address this issue, the temporal correlation between activities k and k0 is
further weighted by the associated spatial distance. More specifically, an exponential
decay function is used to calculate influences of spatial distances on the temporal
correlations of activities: sk;k0 ¼ expð�dk;k0=dimaxÞ where dk;k0 is the spatial distance

between activities k and k0 and dimax is the maximum distance among activities con-
ducted by individual i. Thus, the modified temporal correlation between activities k and
k0 is c�k;k0 ¼ ck;k0 � sk;k0 , which further forms elements of the updated T�i . Similar approach

has been employed to deal with correlations between observations from different
domains such as space, time, and geographical context (eg Huang et al. 2010, Harris
et al. 2013). Denoting Si as the spatial weights matrix based on sk;k0 , we have T�i ¼
Ti � Si where � represents an element-wise matrix multiplication operation (Searle and
Khuri 2017). For notational simplicity, Ti is used hereafter.

A multi-level temporal autoregressive model with independent individual heteroge-
neity effects is specified as,

yki ¼ ρTikyi þ xkiβþ ziγþ ui þ �ki; k ¼ 1; . . . ; ni; i ¼ 1; . . . ; n: (3)

In Equation (3), Tik is the k-th row of Ti; xki denotes activity-level independent variables
such as situational activity characteristics (eg duration and companionship); zi denotes
individual-level covariates. β and γ are two vectors of regression coefficients to estimate.
ρ measures the strength of sequential correlations between activities and is referred to
as a temporal autoregressive parameter for simplicity. Individual heterogeneity is mod-
elled via the term ui, which is assumed to follow a Normal distribution Nð0; σ2�Þ. It
captures effects on activity satisfaction from unobserved individual characteristics and
levels up (or down) the average satisfaction of individual i for positive (or negative) ui.
The independence assumption on ui might be restrictive and will be relaxed later.

Re-writing Equation (3) in a succinct matrix form gives,

yi ¼ ρTiyi þ xβþ zγþ iui þ �i; i ¼ 1; . . . ; n (4)

or

Y ¼ ρTYþ Xβþ Zγþ Δuþ �; (5)

where T is a block-diagonal matrix of order N ¼ Pn
i¼1 Ni with Ti forming each block; i is a

column vector of ones; Δ is a random effect matrix of order N� n, linking individual
random effects on activity satisfaction and bridging the two data scales. To illustrate
sequential correlation and individual heterogeneity effects on activity satisfaction
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implied by the model, we consider a hypothetical individual with four sequential
activities. Rearranging Equation (4) and replacing xβþ zγ with a linear predictor η (the
sum of effects of observed independent variables) give,

yi ¼ ðI4 � ρTiÞ�1ηi þ ðI4 � ρTiÞ�1�4ui þ ðI4 � ρTiÞ�1�i: (6)

Specifying Ti as in Equation (2), ðI4 � ρTiÞ�1 is obtained as,

1 0 0 0
ρc21 1 0 0

ρc31 þ ρ2c21c32 ρc32 1 0
ρc41 þ ρ2ðc31c43 þ c21c42Þ þ ρ3c21c32c43 ρc42 þ ρ2c32c43 ρc43 1

0
BB@

1
CCA: (7)

A few features implied by the model are worth mentioning. First, the satisfaction of the
current activity is linked to the satisfaction levels of the preceding activities via both
linear predictors and individual random effects. The linear predictors of the preceding
activities affect the current activity satisfaction in a way that decreases with increasing
powers of the temporal autoregressive parameter (ρ) and the time (or space and time)
gaps separating them. That said, ηi1 and ηi2 both directly affect yi3 weighted by ρ

respectively, while ηi1 also indirectly affects yi3 through its direct impact on yi2 and the
direct impact of ηi2 on yi3 weighted by ρ2. This correlation structure differs from the first-
order autoregressive model of (spatial) panel data where direct impacts of observations
separated by two or more temporal units are assumed to be zero (eg Parent and LeSage
2012, Elhorst 2014, Hsiao 2014). We note that direct impacts between activities sepa-
rated by a large time interval could approach zero, as indicated in Equation (1). Second,
Equation (7) also determines the interpretation of regression coefficients. Consider a
variable xp and its coefficient βp in Equation (6). The marginal effect of xp on yi is

ðI4 � ρTiÞ�1I4βp. From Equation (7), it is clear that the a one unit increase in xp for each

activity will lead to a different total effect (row-wise summing of ðI4 � ρTiÞ�1βp). If a

scalar summary on marginal total effects was desirable, one could calculate the average
of observation-wise marginal total effects (LeSage and Pace 2009, Elhorst 2010). The
diagonal entries of the matrix are all equal to βp, which can be thought of as the

marginal direct effect of a one unit change in xp.

2.2. Modelling the dependency of individual random effects

In the multi-level modelling literature, discussions on the dependency of higher-level
random effects are rather limited (eg Browne and Goldstein 2010, Dong and Harris
2015). An interesting feature of our data is the collection of all adults’ GPS trajectories
and daily activities for a proportion of the families that participated in the study, which
allows for exploring potential interaction or correlation effects between family members.
We treat random effects ui and uj of participants i and j as dependent if they are from a
family, and independent, otherwise. Dependencies in the individual random effects are
specified via an individual-scale n� n connection matrix W (wij ¼ 1 if individuals i and j
are from a family; wij ¼ 0, otherwise). Following the convention of the spatial econo-
metrics literature (Anselin 1988, LeSage and Pace 2009), individual random effects u are
postulated to be an autoregressive model,
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u ¼ ϕWuþ �; �,Nð0; Inσ2�Þ: (8)

The parameter ϕ measures the extent to which individual-level random effects are

correlated within a family. The resulting covariance matrix for u is σ2�ðA0AÞ�1 where

A ¼ In � ϕW. Re-arranging Equation (8) and inserting it into Equation (5) lead to our final
model,

Y ¼ ρTYþ Xβþ Zγþ ΔðIn � ϕWÞ�1� þ �: (9)

2.3. Model estimation

Bayesian Markov chain Monte Carlo (MCMC) method is employed for model estimation.
Quasi-maximum likelihood estimation (QML) approaches have often been used for
spatial and spatio-temporal econometric models (eg Lee and Yu 2010, Elhorst 2014).
However, the issue of local optima in maximising the concentrated log-likelihood func-
tion might seriously impact model parameter estimation, which could be avoided in the
MCMC approach by directly sampling from posterior distributions of parameters (LeSage
and Pace 2009, Parent and LeSage 2012).

Bayesian MCMC approach is based on the joint posterior distribution of all model
parameters, which is the product of data likelihood, denoted by fðYj:Þ, and prior
densities for model parameters, denoted by pð:Þ in Equation (10),

pðδ;u; ρ;ϕ; σ2� ; σ2e YÞ / fðYj jδ;u; ρ;ϕ; σ2� ; σ2eÞpðujϕ; σ2� Þ

pðδÞpðρÞpðϕÞpðσ2eÞpðσ2�Þ (10)

where δ ¼ ½β; γ� and the formed new model design matrix ~X ¼ ½X; Z�. The prior distribu-
tions for unknown parameters (δ; ρ;ϕ; σ2e ; σ

2
� ) are assumed to be independent. More

specifically, pðδÞ follows a multivariate Normal distribution with mean M0 and variance
matrix T0, NðM0; T0Þ. Uniform prior distributions are assigned for the two autoregressive
parameters ρ and ϕ over (−1, 1). Inverse gamma (IG) distributions are used for σ2e and σ2� :

pðσ2eÞ,IGðc0; d0Þ and pðσ2�Þ,IGða0; b0Þ. Following Gelman et al. (2014), the density

function of a non-normalised IG with the shape parameter a and scale parameter β

is pðxÞ / x�a�1expð�β=xÞ.
The likelihood function for the two models proposed (Equations (5) and (9)) is

expressed as,

LðYjδ; u; ρ;ϕ; σ2� ; σ2eÞ ¼ ð2πσ2eÞ�N=2exp ð�2σ2eÞ
�1ðBY� ~Xδ� ΔuÞ0ðBY� ~Xδ� ΔuÞ

n o
;

(11)

where B ¼ IN � ρT. We note that the determinant of B is equal to one because it is a
lower-triangular matrix with diagonal entries of ones. Based on the likelihood function
and prior distributions, we can derive the posterior distribution for each model para-
meter. The posterior distribution for regression coefficients pðδjY; u; ρ;ϕ; σ2� ; σ2eÞ is also a

multivariate Normal distribution, NðMδ;�δÞ with
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Mδ ¼ �δ½ðσ2eÞ�1~X 0ðBY� ΔuÞ þ T�1
0 M0�; �δ ¼ ½ðσ2eÞ�1~X 0~X þ T�1

0 ��1: (12)

The posterior distribution for individual random effects u is a multivariate Normal
distribution, NðMu;�uÞ with

Mu ¼ �u½ðσ2eÞ�1Δ0ðBY� ~XδÞ�; �u ¼ ½ðσ2eÞ�1Δ0Δþ ðσ2�Þ�1A0A��1: (13)

The posterior distributions for σ2� and σ2e are IGða�; b�Þ and IGðce; deÞ where
a� ¼ n=2þ a0; b� ¼ u0A0Au=2þ b0 (14)

and

ce ¼ N=2þ c0; de ¼ ðBY� ~Xδ� ΔuÞ0ðBY� ~Xδ� ΔuÞ=2þ d0: (15)

The posterior distribution for the temporal autoregressive parameter (ρ) is a Normal
distribution, NðMρ; σ2ρÞ with

Mρ ¼ ðY0T0TYÞ�1ðY� ~Xδ� ΔuÞ0ðY� ~Xδ� ΔuÞ; σ2ρ ¼ ðY0T0TYÞ�1σ2e : (16)

Unlike parameters ðδ; u; σ2� ; σ2e ; ρÞ, the conditional posterior distribution of ϕ is not a
standard density function, thus Gibbs samplers cannot be directly applied Gelman et al.
(2014). The posterior conditional distribution of ϕ is expressed as,

pðϕjY; δ; u; ρ; σ2� ; σ2eÞ / In � ϕWj jexp �ð2σ2�Þ
�1
u0A0Au

n o
: (17)

The Metropolis-Hastings (M-H) sampling method could be selected for updating ϕ.
However, the M-H algorithm might not be efficient as it requires a large number of
MCMC iterations and a careful choice of tuning parameters, especially in the
presence of large data sets. We, instead, use an inversion sampling algorithm to
update ϕ. The same approach has been widely used in Bayesian spatial econo-
metric models (eg LeSage and Pace 2009, Dong and Harris 2015, Dong et al. 2016).
In short, there are two steps involved in this sampling approach. In the first step,
the log-posterior density function of ϕ, logfðϕÞ, is empirically evaluated using

updated values of ðδðkÞ; uðkÞ; ρðkÞ; ðσ2eÞðkÞ; ðσ2�ÞðkÞÞ in the k-th MCMC iteration. logfðϕÞ
is expressed as,

logfðϕÞ ¼ log In � ϕWj j þ

ðu0ðkÞuðkÞ � 2ϕu0ðkÞWuðkÞ þ ϕ2u0ðkÞW 0WuðkÞÞ=2ðσ2�ÞðkÞ þ C: (18)

where C is a constant. In the second step, we numerically integrate logfðϕÞ on ϕ over

the range of (−1, 1), calculate the empirical cumulative distribution, and update ϕðkÞ.
Note, the updating of ϕ is not needed for the first type of multilevel temporal auto-
regressive model with independent individual random effects.

The above MCMC samplers are coded by using the R language and available in the
Supplementary online Materials of the paper. Two computational aspects are worth
mentioning. First, as ðIN � ρTÞ and ðIn � ϕWÞ are sparse matrices with majority entries
of zero, the use of sparse matrix operation routines offered in the R Matrix package
(Bates and Maechler, 2017) greatly reduces computational cost. Second, pre-calculating
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the log-determinant of ðIn � ϕWÞ for ϕ over the feasible range of (−1, 1) before starting
the MCMC iterations is also important for saving computing time.

3. Data and variables

Our main data sources consist of daily GPS trajectories and activity diaries of urban
residents living or working in the Shangdi-Qinghe area (Jiedao) of Beijing. As shown in
Figure 1, the study area is located adjacent to the fifth ring road of Beijing in the north,
about 16 km away from the city centre. Using a stratified random sampling approach,
709 respondents living or working in 23 neighbourhoods located in the study area were
selected to participate in a seven-day survey from October to December in 2012 via
eight waves (Ta et al. 2016). GPS tracking devices with a positional accuracy of about
15 m were used to record participants’ movement every 30 s for seven consecutive days.
An interactive survey website consisting of two main components was developed: an
activity diary component to collect detailed information on participants’ daily activities,
and a questionnaire to collect socio-demographic and economic characteristics of
participants.

In this study, we work with complete daily trajectories, which is defined by using
the criterion that the time gaps between any two sequential location records are all
less than or equal to 10 min unless a participant is at home (information available
from the diary data). Missing locations in a time period less than 10 min are assumed
to be equally spaced between the start and end points of that period for simplicity.
Based on a spatial threshold of 50 m and a temporal threshold of 10 min (time to
conduct a meaningful activity), each participant’s daily movement trajectory was
characterised as a sequence of consecutive stop and movement episodes, similar to
the concept of syntactic trajectories in Grinberger and Shoval (2015). These trajectory
episodes were then displayed on the website when a participant was filling in the
activity diary at the end of each day to reduce recall bias (Kahneman et al. 2004).
Both trajectory and activity diary data were passed on to a server and stored. As a
quality control measure, we checked the completeness of the filled activity diary of

Figure 1. The study area and key road networks in Beijing.
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each participant on the following day, and if an activity diary was incomplete, a text
message would be sent to notify the participant of the issue. The stop episodes of
trajectories were then matched with the reported activities and annotated with the
attributes of matched activities and the socio-demographics of the corresponding
participant. A match is achieved if the discrepancies in the start and end times
between a stop episode and a reported activity period are both less than five
minutes. In some cases when more than one activities are conducted in the same
place (eg most often at home), a stop episode is further divided into a few episodes
based on reported activity periods and annotated accordingly. Only matched activity
episodes with complete information on key socio-demographic variables are included
in the analysis. We further exclude respondents who are full-time students or unem-
ployed as their daily activity arrangement could differ substantively from that of other
groups of people (Shen et al. 2013). The final data includes 19,358 activities con-
ducted by 494 participants in two to seven consecutive days (with a mode of five
days). About 36% of the participants are dual earners of a family.

Our dependent variable is activity satisfaction, which is measured on a five-point
Likert scale from being very dissatisfied (1) to being very satisfied (5). The mean activity
satisfaction level is 3.77 with a standard deviation of 1.09 in our data (Table 1). The
independent variables are broadly divided into several categories: situational activity
characteristics, geographical context or activity space attributes, and individual-level
socio-demographics. Although the impacts on general life satisfaction of individual
socio-demographics have been extensively discussed (eg Diener et al. 1999, Kahneman
et al. 2004, Ma et al. 2017), few studies have examined the potential link between activity
satisfaction and characteristics of real-time geographical contexts where activities take
place (Schwanen and Wang 2014).

To address this gap in the subjective well-being literature, the focus of our empirical
investigation is on extending understandings of how situational urban environment,
measured by fine spatial resolution urban form characteristics, affects activity satisfac-
tion. More specifically, urban form was measured in three dimensions: land-use mix,
density, and dominant function (Cervero and Kockelman 1997). These land-use charac-
teristics were measured at the land parcel scale (an average size of about 0.03), which is
the finest resolution land-use data publicly available in Beijing. Geographical extents of
land parcels were delineated based on road networks by Beijing Institute of City
Planning. Land-use mix and function are extracted based on points of interest (POI)
data. In short, the function of a land parcel is inferred based on the dominant POI
category in that parcel while land-use mix represents the diversity of POI categories,
calculated by an entropy measure. Density is measured by the total floor areas in each
land parcel. We refer to Liu and Long (2016) for a detailed description of the develop-
ment of land-use characteristic variables. A standard GIS overlay operation was applied
to the annotated trajectory episodes data and the spatial polygon land-use data to
extract real-time urban environment characteristics of residents’ daily activities. Based on
the upper and lower quantiles of land-use density and mix variables, a set of binary
variables were generated to represent high, medium and low levels of density and mix.
This is useful to explore potential non-linear land-use density and mix impacts on
activity satisfaction, and to alleviate potential correlations between the two variables if
treated as continuous. Our activity-scale measurement of urban environment takes into
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account participants’ daily mobility and thus tackling the uncertain geographic context
problem (Kwan 2012) in the estimates of geographical contextual effects on subjective
well-being.

The second set of independent variables is about activity situational characteristics
such as type, duration and companionship. Respondents’ daily activities were originally
coded into 19 specific categories in the web diary. To achieve a concise model specifica-
tion, daily activities are divided into four broad categories: working or subsistence,
maintenance, social and leisure, and others (eg Krizek 2003), as shown in Table 1. For
instance, maintenance activities include sleeping, preparing food, eating, grocery shop-
ping, and family obligation activities such as child care and shopping; social and leisure
activities include socialising, social networking, exercising, while others include posting,
banking, hospital visits and so on. Activity duration is the time that an activity lasts,

Table 1. Variable description and summary statistics.

Variable names Description
Mean or

proportions

Dependent variable
Satisfaction Activity satisfaction scores 3.77 (1.09)

Activity situational characteristics
Activity type
Maintenance Maintenance activity 62.8%
Working Working or subsistence activity 5.15%
Social and leisure Social and leisure activities 17.5%
Others Other activities 14.6%
Duration Log of the lasting time of current activity (minutes) 148.1 (153.2)
Companion An activity conducted with companions 53.3%
Travel time Log of travel time from the preceding activity to the current

activity (minutes)
43.9 (42.2)

Travel mode Travel mode choices
Walking or cycling Travel by walking or cycling 29.1%
Car Travel by private car or taxi 29.7%
Public transport Travel by bus or subway 31.3%
Other modes Other travel modes used as baseline category 9.9%

Activity space characteristics
Density Total floor areas in each land parcel
High High land-use density 21.8%
Medium Baseline category
Low Low land-use density 34.3%
Land-use mix The extent of land-use mix in each land parcel
High High land-use mix 21.8%
Medium Baseline category
Low Low land-use mix 34.4%
Urban function Dominating urban function of each land parcel
Green space Green space function 9.0%
Residential Residential function 29.4%
Commercial Commercial function 4.8%
Other functions Other urban functions used as baseline category

Individual-scale socio-demographic variables
Age Age of the participant 33.6(8.22)

Monthly income (RMBa)
< 2,000 10.9%
2,000–3,999 42.9%
4,000–5,999 24.3%
6,000–9,999 15.8%
10,000 + 6.1%

Migrants Without local household registration 32.6%
Child presence Household with child or children under six years old 12.3%

aRMB = renminbi, official Chinese currency.
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which is treated as a continuous variable and differs greatly between activities (Table 1).
Activity companionship is defined as a binary variable – whether an activity is conducted
alone or with companions. To explore potential travel impacts on activity satisfaction,
travel time from a preceding activity to the current activity and mode choices for the
journey are included in the model.

The final set of independent variables are key individual socio-demographics. The
linear and quadratic terms of age are included in the model to capture possible non-
linear age impacts on activity satisfaction. Income was added to the model via a series of
dummy variables (Table 1). Migrants (residents without Beijing hukou status) have been
shown to be associated with lower global life satisfaction than local residents of Beijing
(Dong et al. 2016, Ma et al. 2017). It is interesting to test whether migrants also tend to
report lower satisfaction with daily activities. Family structure, represented by the
variable child presence, was also incorporated in our model following previous studies
(eg Ma et al. 2018). Descriptive statistics of each variable included in our analysis are
provided in Table 1. The dependent variable was transformed to a standard Normal
distribution while the independent variables including activity duration and travel time
were log-transformed.

4. Model estimation results

As discussed above, the time threshold (or bandwidth) parameter to is required when
forming the temporal weights matrix Ti or the spatially adjusted weights matrix T�i (a
space-time weights matrix for simplicity). Usually it was specified a priori or, in few cases,
estimated along with other model parameters. Appealing as it sounds to calibrate to

from data, issues exist including additional computational cost and, more critically, great
difficulties in distinguishing the estimation of to and the temporal autoregressive para-
meter ρ (eg Banerjee et al. 2014). The study adopts an alternative approach: selecting
the value of to that yields the best model fit from a finite set of possible values. Deviance
information criterion (DIC, Spiegelhalter et al. 2002), the common model fit index in
Bayesian inference that penalises model complexity, was used for model comparison
and selection of to. Smaller values of DIC indicate better model fits.

Twelve discrete values of to over a range of ½0:5; 6� were selected. Four models,
treating individual random effects either as independent or dependent and with a
time weights matrix Ti or a space-time weights matrix T�i , were estimated using the
above MCMC samplers for each value of to. Statistical inferences were based on two
MCMC chains, each of which consisted of 10,000 iterations with a burn-in period of
5,000. Convergence of samplers was checked by visual inspection of trace plots of
parameters and the Brooks-Gelman-Rubin scale reduction statistics (Brooks and
Gelman 1998). The relationship between DIC and to is illustrated in Figure 2. A clear
result is the superior model fit offered by the model treating individual random effects
as dependent (ie family interaction or correlation effects considered) and with a space-
time weights matrix. For this preferred model specification, the optimal to is 2.5 h. It is
also noticeable that optimal values of to are slightly different between model specifica-
tions. Moreover, it appears that models with a space-time weights matrix perform better
than do models with a pure time weights matrix. This highlights the importance of
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taking into account both temporal and spatial distances between daily activities when
exploring residents’ subjective experiences of activities.

Regression coefficient estimates and the associated 95% credible intervals from the
multi-level temporal autoregressive models with dependent individual random effects
and a space-time weights matrix are reported in Table 2. As a comparison, estimation
results from a multi-level temporal autoregressive models with a time weights matrix are
also reported. Before proceeding to interpreting covariate effects on activity satisfaction,
we discuss the estimates on structural model parameters. First, positive sequential or
temporal correlations between activity satisfactions were found, indicated by the statis-
tical significance of the temporal autoregressive parameter ρ in both models. Putting the
magnitude of temporal autocorrelation in perspective, for two activities separated by
one hour, about 10.4% (0:256� exp �1=2:5f g � exp �0:5f g) of the satisfaction level of
an activity would be carried over to the following activity, on average. Second, family
correlation effects on activity satisfaction were identified, as indicated by the statistical
significance of the autoregressive parameter ϕ at the 95% credible interval. A plausible
explanation of the within-family correlations of daily activity satisfactions is the interact-
ing decision process between family members in terms of daily activity arrangement.
Third, σ2� is related to the magnitude of unobservable individual heterogeneity effect on

activity satisfaction. In a standard multi-level model, the importance of individual
heterogeneity effects can be quantified by the variance partitioning coefficient
(σ2�=ðσ2� þ σ2eÞ, Goldstein 2011). This is not valid any more in our models with sequential

correlations and dependent individual random effects, a similar issue found in the multi-
level spatial econometric models (Dong and Harris 2015, Dong et al. 2015, Ma et al.
2017). To approximate the variance partitioning coefficient, we calculated marginal

Figure 2. Exploring the optimal time threshold parameter to.
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variances of the posterior residuals at the activity and individual scales. This yields an
estimate on the variance partitioning coefficient of 0.44, indicating that about 44% of
unexplained variances of activity satisfaction is due to unobservable individual hetero-
geneity effects. Overall, estimates on model structure parameters demonstrate complex
dependencies in residents’ daily activity satisfaction, arising from both sequential corre-
lations and individual heterogeneity effects.

Turning to the estimates on regression coefficients, we note that they represent the
direct effects of independent variables on activity satisfaction. If a scalar summary of the
total marginal effect of a variable Xk was desired, one could calculate the average of

row-sums of the matrix ðIN � ρTÞ�1INδk by plugging in respective parameter estimates.
Table 2 shows that most situational activity characteristics and geographical contextual
variables are statistically significantly associated with activity satisfaction. In terms of

Table 2. Model estimation results.
Model with space-time weights Model with time weights

Variables Estimates Estimates

Median 2.5% 97.5% Median 2.5% 97.5%
Activity situational characteristics
Maintenance 0.128* 0.095 0.161 0.129* 0.096 0.164
Social and leisure 0.151* 0.118 0.184 0.152* 0.119 0.187
Others 0.151* 0.111 0.19 0.152* 0.113 0.192
Duration 0.022 −0.016 0.058 0.023 −0.014 0.06
Duration squared −0.056* −0.098 −0.018 −0.058* −0.097 −0.019
Companion 0.057* 0.04 0.075 0.057* 0.039 0.074
Travel time −0.005* −0.01 −0.001 −0.005* −0.01 −0.001
Travel mode
Walking or cycling 0.02 −0.015 0.054 0.021 −0.014 0.054
Car 0.006 −0.033 0.045 0.006 −0.034 0.045
Public transport 0.032 −0.009 0.074 0.032 −0.009 0.073

Activity space characteristics
Land-use density
High −0.021 −0.062 0.02 −0.021 −0.06 0.019
Low 0.005 −0.033 0.043 0.005 −0.032 0.043
Land-use mix
High 0.029 −0.013 0.071 0.03 −0.012 0.071
Low −0.038* −0.07 −0.005 −0.038* −0.071 −0.005
Urban function
Green space 0.141* 0.083 0.198 0.142* 0.085 0.197
Residential 0.075* 0.036 0.115 0.075* 0.035 0.115
Commercial −0.04 −0.105 0.024 −0.041 −0.104 0.027

Individual-scale socio-demographic variable
Age −0.13* −0.214 −0.032 −0.132* −0.218 −0.039
Age squared −0.082 −0.26 0.103 −0.071 −0.244 0.112
Monthly income (RMB)
< 2,000 −0.049 −0.157 0.067 −0.047 −0.174 0.064
2,000–3,999 0.022 −0.051 0.109 0.029 −0.061 0.111
6,000–9,999 0.005 −0.088 0.105 0.01 −0.099 0.121
10,000 + 0.033 −0.125 0.189 0.028 −0.132 0.192
Migrants −0.121* −0.198 −0.04 −0.12* −0.194 −0.037
Child presence −0.036 −0.142 0.057 −0.041 −0.157 0.067
ρ 0.256* 0.237 0.276 0.253* 0.233 0.273
ϕ 0.385* 0.29 0.475 0.382* 0.286 0.47
σ2e 0.175 0.171 0.179 0.175 0.171 0.179
σ2� 0.119 0.103 0.138 0.121 0.104 0.14
DIC 15,250 15,265
N 19,358 19,358

Note: The symbol * indicates statistical significance at the 95% credible interval. .
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activity type, working is the least enjoyable activity comparing to other three activity
types, ceteris paribus, which corroborates previous findings (Kahneman et al. 2004).
Activity duration appears to be associated with satisfaction in a non-linear way as the
coefficient of the quadratic duration term is statistically significant at the 5% significance
level. Activity companionship makes a difference on satisfaction – activities conducted
with companions tend to be more enjoyable than those conducted alone, holding other
variables constant.

In terms of geographical contextual or activity space characteristics, land-use mix
and urban function are statistically significantly associated with activity satisfaction.
More specifically, conducting daily activities in places with low land-use mix tends to
lower activity satisfaction, ceteris paribus. The difference in experiences of activities
conducted in places with high or medium levels of land-use mix is, however, insig-
nificant controlling for other variables. Urban functions of places where residents
arrange activities also matter. Activities taking place in green space or residential
areas are associated with higher levels of satisfaction comparing to those conducted
in places with other urban functions, everything else being equal. Overall, these
results suggest that characteristics of geographical contexts where activities take
place are associated with residents’ subjective well-being of activities. This is in
contrast with the findings in Schwanen and Wang (2014) that show no statistically
significant relationships between activity space characteristics and satisfaction. A
plausible explanation is that the relatively coarse-scale measurement of activity
space attributes in Schwanen and Wang (2014) might not be able to characterise
sites of activities accurately. In addition, the temporal autocorrelation in subjective
well-being and individual heterogeneity effects are not properly captured in their
model. Longer time spent on travel to conduct an activity is associated with lower
activity satisfaction, holding other variables constant. However, travel mode choices
do not appear to be correlated with activity satisfaction. Implications on urban
planning would involve the promotion of mixed land uses to reduce travelling efforts
in residents’ daily lives.

With respect to individual-scale variables, the linear term of age is statistically
associated with activity satisfaction while the quadratic term is not. This, to some
extent, departs from previous findings that age tends to be correlated with global
life satisfaction non-linearly (eg Diener et al. 1999, Ma et al. 2017). The association
between income and activity satisfaction was not statistically significant after con-
trolling for the activity-level covariate effects on satisfaction. The lack of associations
between the two key individual socio-demographic variables and daily activity satis-
faction corroborates the argument that momentary satisfaction or affection relies
more on situational circumstances and individual biological characteristics (part of
the unobservable individual-scale effects) than life circumstance variables (Kahneman
and Deaton 2010). Migrants, residents living in the city but without Beijing house-
hold registration (hukou), tend to report lower daily activity satisfaction than local
residents. This might reflect the relatively limited space-time accessibility to quality
opportunities for migrants due to them being subject to institutional constraints on
access to affordable housing and social welfare systems such as education (eg Kwan
1999, Ma et al. 2017).
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5. Conclusions

GPS trajectory or movement data have been increasingly explored to understand human
mobility at fine spatio-temporal granularity. Integrating trajectory data with external
data sources such as urban built environment and activity diaries to form semantic
trajectories has been demonstrated to be of great value to promote knowledge on
human activity and environment interactions (Grinberger and Shoval 2015, Siła-Nowicka
et al. 2016). Nonetheless, dealing with the issues of time and scale for (semantic) GPS
trajectory or movement data in a unified statistical model poses great challenges. This
paper has proposed a novel multi-level temporal autoregressive model that deals with
the two issues. In the model, time was conceptualised as continuous, allowing for a
simple and intuitive way (ie a temporal weights matrix) to model sequential or temporal
correlations between trajectory segments (daily activities in this study). Space is also
introduced into the model, adjusting the temporal weights matrix on the basis of spatial
distances between locations of activities. The scale issue is tackled by a simultaneous
analysis of GPS trajectory data at different scales via a multi-level modelling approach.

The developed methodology is demonstrated by an empirical examination of residents’
daily activity satisfaction in Beijing, with a particular focus on how geographical contexts
affect experiences of daily activities. Daily GPS trajectories of residents are annotated by
using reported diary data, enabling rich characteristics to be extracted for trajectory
episodes (activities in the study) and insights into relationships between activity satisfac-
tion and situational urban environment at fine spatial resolution to be generated. A few key
findings and the associated implications are worth highlighting. First, significant temporal
or sequential correlations in daily activity satisfaction are found in models with a time or
space-time weights matrix. It implies that treating activities or trajectory segments as
independent in statistical models will be inappropriate. Individual heterogeneity effects
account for a relatively large proportion of the variability in residents’ daily activity
satisfaction, signifying the importance of individual heterogeneity in subjective well-
being studies. Second, geographical contextual characteristics of sites where activities
take place make a difference in experiences of activities – activities conducted in places
with the higher land-use mix, lower density, and in green space tend to be associated with
higher satisfaction levels. This, however, does not indicates that causal geographical
contextual effects on activity satisfaction can be drawn due to the possible selection effect,
ie people might intentionally choose sites with desirable characteristics for certain activities
to pursue high levels of satisfaction. A pursuit of causal geographical contextual effect
identification would require a simultaneous modelling of residents’ activity site choices and
activity satisfaction (eg Steele 2008, Goldstein 2011), which is left for future research. Third,
activity situational characteristics including types, duration and companionship are statis-
tically significantly associated with satisfaction levels. Lastly, most of individual life circum-
stance variables are not significant correlates of daily activity satisfaction, with the
exception of the migrant status.

Despite illustrated by examining residents’ activity satisfaction, the developed multi-
level temporal autoregressive model is suitable to explore other characteristics of activities
or trajectory segments. It also supplements the spatio-temporal statistics or econometrics
literature (eg Elhorst 2014) by offering a useful tool to deal with data with irregular time
intervals. Nevertheless, there are some limitations associated with the methodology. The
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first concerns the assumption that the temporal autoregressive parameter (ρ) is equal
among individuals. This equal constraint is made for practical computational concerns, but
it might be violated as it is possible that the strength of sequential correlations in daily
activity satisfaction varies between individuals with distinct characteristics such as person-
alities. The second limitation regards the treatment of activity satisfaction as a continuous
outcome variable. Activity satisfaction is, however, measured on a Likert scale, thus being
an ordinal variable in nature (eg Dong et al. 2018). Ideally, it would be modelled as an
ordinal response variable. These two extensions to the developed methodology are our
next step of research. Thirdly, socio-demographic characteristics of activity space were not
directly captured in our empirical satisfaction models due to the lack of data at fine-
resolution spatial scale in the study area. However, as suggested in the spatial econo-
metrics literature (LeSage and Pace 2009), the inclusion of a lagged dependent variable in
our equation might capture the effect of these variables. Lastly, the formalisation of spatio-
temporal relationships is based on distances between activities, but it would be extended
to also consider movement speed in our future development such that the potential effect
of travel congestion can be captured.
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