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ABSTRACT
Global navigation satellite systems such as the Global Positioning
System (GPS) is one of the most important sensors for movement
analysis. GPS is widely used to record the trajectories of vehicles,
animals and human beings. However, all GPS movement data are
affected by both measurement and interpolation errors. In this
article we show that measurement error causes a systematic bias
in distances recorded with a GPS; the distance between two points
recorded with a GPS is – on average – bigger than the true
distance between these points. This systematic ‘overestimation
of distance’ becomes relevant if the influence of interpolation
error can be neglected, which in practice is the case for movement
sampled at high frequencies. We provide a mathematical explana-
tion of this phenomenon and illustrate that it functionally depends
on the autocorrelation of GPS measurement error (C). We argue
that C can be interpreted as a quality measure for movement data
recorded with a GPS. If there is a strong autocorrelation between
any two consecutive position estimates, they have very similar
error. This error cancels out when average speed, distance or
direction is calculated along the trajectory. Based on our theore-
tical findings we introduce a novel approach to determine C in
real-world GPS movement data sampled at high frequencies. We
apply our approach to pedestrian trajectories and car trajectories.
We found that the measurement error in the data was strongly
spatially and temporally autocorrelated and give a quality estimate
of the data. Most importantly, our findings are not limited to GPS
alone. The systematic bias and its implications are bound to occur
in any movement data collected with absolute positioning if inter-
polation error can be neglected.
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1. Introduction

Global navigation satellite systems, such as the Global Positioning System (GPS), have
become essential sensors for collecting the movement of objects in geographical space.
In movement ecology, GPS tracking is used to unveil the migratory paths of birds
(Higuchi and Pierre 2005), elephants (Douglas-Hamilton et al. 2005) and roe deer
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(Andrienko et al. 2011). In urban studies, GPS movement data help detecting traffic flows
(Zheng et al. 2011) and human activity patterns in cities (Van Der Spek et al. 2009). In
transportation research, GPS allows monitoring of intelligent vehicles (Zito et al. 1995)
and mapping of transportation networks (Mintsis et al. 2004), to name but a few
application examples.

Movement recorded with a GPS is commonly stored in the form of a trajectory. A
trajectory τ is an ordered sequence of spatio-temporal positions:
τ ¼ <ðP1; t1Þ; :::; ðPn; tnÞ >, with t1 < ::: < tn (Güting and Schneider 2005). The tuple
ðP; tÞ indicates that the moving object was at a position P at time t. In order to represent
the continuity of movement, consecutive positions ðPi; tiÞ and ðPj; tjÞ along the trajec-
tory are connected by an interpolation function (Macedo et al. 2008).

However, although satellite navigation provides global positioning at an unprece-
dented accuracy, GPS trajectories remain affected by errors. The two types of errors
inherent in any kind of movement data are measurement error and interpolation error
(Schneider 1999), and these errors inevitably also affect trajectories recorded with a GPS.

Measurement error refers to the impossibility of determining the actual position ðP; tÞ
of an object due to the limitations of the measurement system. In the case of satellite
navigation, it reflects the spatial uncertainty associated with each position estimate.

Interpolation error refers to the limitations on interpolation representing the actual
motion between consecutive positions ðPi; tiÞ and ðPj; tjÞ. This error is influenced by the
temporal sampling rate at which a GPS records positions.

Measurement and interpolation errors cause the movement recorded with a GPS to
differ from the actual movement of the object. This needs to be taken into account in
order to achieve meaningful results from GPS data.

In this article, we focus on GPS measurement error in movement data. We show that
measurement error causes a systematic overestimation of distance. Distances recorded
with a GPS are – on average – always bigger than the true distances travelled by a
moving object, if the influence of interpolation error can be neglected. In practice, this is
the case for movement recorded at high frequencies. We provide a rigorous mathema-
tical explanation of this phenomenon. Moreover, we show that the overestimation of
distance is functionally related to the spatio-temporal autocorrelation of GPS measure-
ment error. We build on this relationship and develop a novel methodology to assess
the quality of GPS movement data. Finally, we demonstrate our method on two types of
movement data namely the trajectories of pedestrians and cars.

Section 2 introduces relevant works from previously published literature. Section 3
provides a mathematical explanation of why GPS measurement error causes a systematic
overestimation of distance. Section 4 shows how this overestimation can be used to
reason about the spatio-temporal autocorrelation of measurement error. Section 5
describes the experiment and presents our experimental results, Section 6 discusses the
results.

2. Related work

Since GPS data have become a common component of scientific analyses, its quality
parameters have received considerable attention. The parameters include the accuracy
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of the position estimate, the availability and the update rate of the GPS signal as well as
the continuity, integrity, reliability and coverage of the service (Hofmann-Wellenhof et al.
2003). The accuracy of the position estimate (i.e. the expected conformance of a position
provided with a GPS to the true position, or the anticipated measurement error) is
clearly of utmost importance. Measurement error and its causes, influencing factors, and
scale have been extensively discussed in published literature; measurement error has
been shown to vary over time (Olynik 2002) and to be location-dependent. Shadowing
effects, for example due to canopy cover, have a significant influence on its magnitude
(D’Eon et al. 2002). Measurement error is both random, caused by external influences,
and systematic, caused by the system’s limitations (Parent et al. 2013).

Measurement error is the result of several influencing factors. According to Langley
(1997), these include:

● Propagation delay: the density of free electrons in the ionosphere and the
temperature, pressure and humidity in the troposphere affect the speed of the
GPS signal and hence the time that it takes to reach the receiver (El-Rabbany
2002);

● Drift in the GPS clock: a drift in the on-board clocks of the different GPS satellites
causes them to run asynchronously with respect to each other and to a reference
clock;

● Ephemeris error: the calculation of the ephemeris, the orbital position of a GPS
satellite at a given time, is affected by uncertainties (Colombo 1986);

● Hardware error: the GPS receiver, being as fault-prone as any other measurement
instrument, produces an error when processing the GPS signal;

● Multipath propagation: terrestrial objects close to the receiver (such as tall build-
ings) can reflect the GPS signal and thus prolong its travel time from the satellite to
the receiver;

● Satellite geometry: an unfavourable geometric constellation of the satellites
reduces the accuracy of positioning results.

There are several quality measures to describe GPS measurement error, the most
common being the 95% radius (R95), which is defined as the radius of the smallest circle
that encompasses 95% of all position estimates (Chin 1987). The official GPS
Performance Analysis Report for the Federal Aviation Administration issued by the
William J. Hughes Technical Center (2013) states that the current set-up of the GPS
allows to measure a spatial position with an average R95 of slightly over three meters
using the Standard Positioning Service (SPS). The values in the report were, however,
obtained from reference stations that were equipped with high quality receivers and
had unobstructed views of the sky. It is reasonable to assume that the accuracy would
be reduced in other recording environments, as measurement error depends to a
considerable extent on the receiver as well as on the geographic location (Langley
1997, William J. Hughes Technical Center 2013). This assumption is supported by
published literature on GPS accuracy in forests (Sigrist et al.1999) and on urban road
networks (Modsching et al. 2006), as well as on the accuracies of different GPS receivers
(Wing et al. 2005, Zandbergen 2009). On the other hand, the accuracy of GPS can be
increased using differential global positioning systems (DGPS) such as the European
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Geostationary Navigation Overlay Service. DGPS corrects the propagation delay caused
by the ionosphere, the troposphere and the satellite orbit errors, thus yielding higher
position accuracies (Hofmann-Wellenhof et al. 2003).

A detailed overview of current GPS accuracy is provided in the quarterly GPS
Performance Analysis Report for the Federal Aviation Administration. A good introduc-
tion to the GPS in general, and to its error sources and quality parameters in particular,
has been provided by Hofmann-Wellenhof et al. (2003).

The above-mentioned research has mainly focused on describing and understanding
GPS measurement errors. In addition to this, filtering and smoothing approaches have
been proposed for recording movement data in order to reduce the influence of errors on
movement trajectories. A summary of these approaches can be found in Parent et al. (2013)
and Lee and Krumm (2011). Jun et al. (2006) tested smoothing methods that best preserve
travelled distance, speed, and acceleration. The authors found that Kalman filtering
resulted in the least difference between the true movement and its representation.

3. GPS measurement error causes a systematic overestimation of distance

A GPS record consists of a spatial component (i.e. latitude ϕ, longitude λ) and a temporal
component (i.e. a time stamp t). In this article we mainly focused on the spatial
component.

The GPS uses the World Geodetic System 1984 (WGS84) as a coordinate reference
system. For reasons of simplicity it is preferable to transform the GPS records to a
Cartesian map projection such as the Universal Transversal Mercator (UTM). A transfor-
mation from an ellipsoid (WGS84) to a Cartesian plane (UTM) leads to a distortion of the
original trajectories (Hofmann-Wellenhof et al. 2003). For vehicle, pedestrian, or animal
movements consecutive positions along a trajectory are usually sampled in intervals
ranging from seconds to minutes. Thus, these positions are very close together in space
so that the distortion is insignificant for most practical applications. According to
Seidelmann (1992) the distortion anywhere in a UTM zone is guaranteed to be below
1/1000. This means, for example, that the maximum distortion of a distance of 10 m is
±1 cm. Hence, for all the following considerations we can safely assume that the
movement is recorded in UTM.

Very generally, a spatial position in UTM is a two-dimensional coordinate

P ¼ x
y

� �
; (1)

where x is the metric distance of the position from a reference point in eastern direction
and y in northern direction. If a moving object is recorded at position P with a GPS, the
position estimate Pm ¼ ðxm; ymÞ is affected by measurement error. The relationship
between the true position and its estimate is trivial

Pm ¼ P þ εP; (2)

where εP is the horizontal measurement error expressed as a vector in the horizontal
plane. εP is drawn from EP, the distribution of measurement error at P. We adopted the
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convention used by Codling et al. (2008) to denote random variables with upper case
letters and their numerical values with lower case letters.

We now provide a detailed mathematical explanation of why measurement error causes a
systematic overestimation of distance in trajectories, if interpolation error can be neglected.
Figure 1 illustrates the problem statement in a simplified form. Consider a moving object
equippedwith a GPS device. Themoving object travels between two arbitrary positions P and
Q. Let d0 ¼ dðP;QÞ denote the Euclidean distance between these positions, henceforth
referred to as reference distance. The object always moves along a straight line, consequently
interpolation error can be neglected. The movement of the object can be described by the
following five steps which correspond to the subplots in Figure 1.

(1) The moving object starts at P. The GPS obtains the position estimate Pm with
measurement error εP, which is drawn from EP.

(2) The moving object travels to Q. The GPS obtains the position estimate Qm with
measurement error εQ, which is drawn from EQ. The distance between the two
position estimates is calculated: dm ¼ dðPm;QmÞ.

(3) The moving object returns to P. The GPS obtains a position estimate and a new
dm is calculated.

(4) Steps 2 and 3 are repeated n times, where n is an infinitely large number.
(5) After n repetitions, the position estimates scatter around P and Q with measure-

ment error EP and EQ.

We claim that measurement error propagates to the expected measured distance
EðdmÞ and to the expected squared measured distance Eðdm2 Þ between the position
estimates. More specifically, measurement error yields EðdmÞ > d0 as well as Eðdm2 Þ > d20.

Figure 1. A moving object equipped with a GPS travels between two arbitrary positions.
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We are now going to rigorously prove this claim. To do so, we simplify notation,
write EP ¼ ðX1; Y1Þ as well as EQ ¼ ðX2; Y2Þ, and assume that there is no systematic bias,
i.e. we have EðX1Þ ¼ EðX2Þ ¼ EðY1Þ ¼ EðY2Þ ¼ 0. Since neither translations nor rotations
affect distances between points we may, without loss of generality, consider P ¼ ð0; 0Þ
and Q ¼ ðd0; 0Þ. Since linear transformations (like rotations) preserve expectation, rotat-
ing errors with expectation zero results in errors having expectation zero too. Having
this we can now formulate the following first result for the expected squared distance
E ðd2ðPm;QmÞÞ. For mathematical background we referred to Klenke (2013). Notice that
no assumptions (like absolute continuity or normality) about the underlying error
distributions are needed, i.e. the result holds in full generality.

Theorem 3.1: Suppose that d0 > 0, P ¼ ð0; 0Þ, and Q ¼ ðd0; 0Þ. Let X1; X2 both have
distribution function F and variance σ2X , and Y1; Y2 both have distribution function G and
variance σ2Y . Furthermore, assume that EðX1Þ ¼ EðX2Þ ¼ EðY1Þ ¼ EðY2Þ ¼ 0, then the
following two conditions are equivalent:

(1) E ðdm2 Þ ¼ Eðd2ðPm;QmÞÞ > d20
(2) minfCovðX1; X2Þ; CovðY1; Y2Þg < 1

In other words, the expected squared distance Eðdm2 Þ is strictly greater than d20 unless
the errors fulfil X1 ¼ X2 and Y1 ¼ Y2 with probability one (which describes the situation of
always having identical errors in P and Q).

Proof: Calculating E ðd2ðPm;QmÞÞ and using the fact that CovðX1; X2Þ � σ2X and
CovðY1; Y2Þ � σ2Y directly yields

E ðd2ðPm;QmÞÞ ¼ E ðd0 þ X2 � X1Þ2 þ E ðY2 � Y1Þ2
¼ d20 þ EðX2 � X1Þ2 þ EðY2 � Y1Þ2
¼ d20 þ VarðX2 � X1Þ þ VarðY2 � Y1Þ
¼ d20 þ 2σ2X þ 2σ2Y � 2CovðX1; X2Þ � 2CovðY1; Y2Þ � d20: (3)

Having this it follows immediately that E ðd2ðPm;QmÞÞ ¼ d20 if and only if CovðX1; X2Þ ¼
σ2X and CovðY1; Y2Þ ¼ σ2Y which in turn is equivalent to the fact that X1 ¼ X2 and Y1 ¼ Y2
holds with probability one.▄

In general one is, however, interested in the expected distance E ðdmÞ :¼
E ðdðPm;QmÞÞ and not in the expected squared distance. Since, in general, EðZ2Þ > d20
need not imply EðjZjÞ > d0 for arbitrary random variables Z, a different method is used
to prove the following main result

Theorem 3.2 Suppose that the assumptions of Theorem 3.1 hold, then the following two
conditions are equivalent:

(1) E ðdmÞ ¼ E ðdðPm;QmÞÞ > d0
(2) maxfPðY1 6¼ Y2Þ;PðX2 � X1<� d0Þg > 0
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In other words, the expected distance EðdmÞ is strictly greater than the true distance d0
unless the errors fulfil Y1 ¼ Y2 with probability one and PðX2 � X1<� d0Þ ¼ 0 holds.

Proof: Obviously we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd0 þ X2 � X1Þ2 þ ðY2 � Y1Þ2

q
� jd0 þ X2 � X1j (4)

Setting Z :¼ X2 � X1 implies EðZÞ ¼ 0. Assume now that PðZ<� d0Þ > 0 holds, then
the desired inequality follows immediately from

E jZ þ d0j ¼
ð
R

jz þ d0jdPZ ¼
ð
½�d0;1�

ðz þ d0ÞdPZ þ
ð
ð�1;�d0Þ

� ðz þ d0Þ dPZ

¼
ð
R

ðz þ d0ÞdPZ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼d0

þð�2Þ
ð
ð�1;�d0Þ

ðz þ d0ÞdPZ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
>0

> d0:

(5)

In case we have PðZ<� d0Þ ¼ 0 but PðY1 6¼ Y2Þ > 0 holds, then Inequality 4 is strict
with probability greater than zero so we get

EðdmÞ ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd0 þ X2 � X1Þ2 þ ðY2 � Y1Þ2

q� �
> Eðjd0 þ X2 � X1jÞ ¼ EðjZ þ d0jÞ ¼ d0:

Altogether this shows that the second condition of Theorem 3.2 implies the first one.
To prove the reverse implication, assume thatmaxfPðY1 6¼ Y2Þ;PðX2 � X1 <� d0Þg ¼ 0.

Then, firstly, the left and the right hand-sides of Inequality 4 coincide with probability one, so

EðdmÞ ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd0 þ X2 � X1Þ2 þ ðY2 � Y1Þ2

q
Þ ¼ Eðjd0 þ X2 � X1j

� �
holds. And secondly,

directly applying Equality 5 yields EðjZ þ d0jÞ ¼ d0, which finally shows EðdmÞ ¼ d0. ▄

Remark 3.3: It is worth mentioning that Theorem 3.2 has several interesting (and
partially surprising) consequences: Whenever the errors in x-direction are unbounded (like
in the case of normal distributions) the expected distance is always strictly greater than the
true distance d0. The same holds whenever the errors Y1 and Y2 in y-direction do not always
coincide – a very realistic assumption for GPS trajectories.

We want to underline that Theorem 3.1 and 3.2 hold in full generality for arbitrary
distributions of GPS measurement error. Although GPS measurement error is often
assumed to have a bivariate normal distribution and to be independent in both the
x- and y-directions (Jerde and Visscher 2005, Boset al. 2008), Chin (1987) puts forward
convincing arguments why this is very likely not the case. Hence, the general validity of
our findings is relevant.

For reasons of simplicity, we assumed that EP and EQ follow the same distribution
function and that there is no systematic bias, i.e. EP is centred around P and EQ around
Q. This assumption is generally acknowledged for in the literature. It builds, for example,
the basis for algorithms to extract road maps from GPS tracking data (e.g. Wang et al.
2015). Roads are assumed to be located where the density of the GPS position estimates
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is the highest. Also Figure 4 shows that this assumption is indeed realistic for real-world
GPS data. However, even a systematic bias does not necessary restrict the validity of our
argument. Let us assume that EðX1Þ ¼ EðX2Þ� 0 and EðY1Þ ¼ EðY2Þ� 0, i.e. the mean of
the error distribution has shifted away from P and Q respectively. As the shift is the same
for EP and EQ, the influence on distance calculations cancels out, Theorem 3.1 and 3.2
still hold. The validity of our proof is restricted only if EðX1Þ�EðX2Þ or EðY1Þ�EðY2Þ.
This implies that the mean of the error distribution changes abruptly between P and Q.
As – in practice – P and Q are very close in space, this scenario is not realistic for GPS
measurement error.

4. How big is the overestimation of distance and why is this relevant?

In the previous section we proved that distances recorded with a GPS are on average
bigger than the distances travelled by a moving object, if interpolation error can be
neglected. In this section we provide an equation for OED, the expected overestimation
of distance. Moreover, we identify three parameters that influence the magnitude of
OED. First, let us define OED with the help of Equation (3):

OED ¼ Eðdm2 Þ
1
2 � d0 ¼ ðd20 þ 2σ2X þ 2σ2Y � 2CovðX1; X2Þ � 2CovðY1; Y2ÞÞ

1
2 � d0:

From this follows that OED is a function of three parameters:

(1) d0, the reference distance between P and Q
(2) Vargps ¼ 2σ2X þ 2σ2Y , a term for the variance of GPS measurement error
(3) C ¼ 2CovðX1; X2Þ � 2CovðY1; Y2Þ, a term for the spatiotemporal auto-correlation of

GPS measurement error. C expresses the similarity of any two consecutive posi-
tion estimates. If C is big, consecutive position estimates have similar GPS mea-
surement error (see also Figure 2).

Figure 2. Overestimation of distance (OED) and its influencing parameters.
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We can now simplify notation and write

OED ¼ ðd20 þ Vargps � CÞ12 � d0: (6)

The influence of the three parameters on OED is further illustrated in Figure 2. OED is
small if the reference distance is big, the variance of GPS measurement error is small and
the error has high positive spatio-temporal autocorrelation. OED is big if the reference
distance is small, the variance of GPS measurement error is big and the error has high
negative autocorrelation.

To understand the magnitude of OED in real-world GPS data, let us assume for a
moment that there is no spatio-temporal autocorrelation of GPS measurement error, i.e.
C ¼ 0. Moreover, let us assume that the variance of error is the same in x- and y-directions,
i.e. σ2 ¼ σ2X ¼ σ2Y and Vargps ¼ 4σ2. We can now visualise the relationship between OED,
d0 and σ. Figure 3a shows that OED increases as the spread of GPS measurement error (σ)
increases; d0 is assumed to be constant. For a constant d0 f 5 m, for example, and σ ¼ 2 m,
the overestimation of distance roughly equals 2 m (yellow line). When σ increases to 4m,
the overestimation of distance increases to 4 m. Figure 3b shows that OED decreases as d0
increases, σ is assumed to be constant. For a constant σ of 3 m, for example, and
d0 ¼ 5 m, the overestimation of distance equals around 3 m (black line). When d0
increases to 10 m, the overestimation of distance decreases to 2 m.

Remember that Figure 3 shows the influence of Vargps if there is no autocorrelation of
GPS measurement error. This is not very realistic for real world GPS data. In fact, El-Rabbany
and Kleusberg (2003), Wang et al. (2002) and Howind et al. (1999) show that GPS measure-
ment error is temporally and spatially autocorrelated. This means that position estimates
taken close in space and in time tend to have similar error.

How big is the autocorrelation of GPS measurement error? Let us reformulate
Equation (6) and solve for C:

C ¼ d20 � ðOEDþ d0Þ2
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Eðdm2 Þ

þVargps: (7)

(a) (b)10 6

5

4

3

2

1

0

8

6

4

2

0

0 1 2 3

σ [m]

4 5 0 5 10 15 20

Figure 3. The overestimation of distance ðOED) increases as the spread of GPS measurement error
(σ) increases, the reference distance (d0) is constant (a); OED decreases as d0 increases and σ is
constant (b).
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This implies that we can calculate the autocorrelation of GPS measurement error if
OED, Vargps and d0 are known. Things become interesting if we consider what auto-
correlation really means in the context of GPS positioning. In Figure 2, in the bottom left
cell, the position estimates Pm and Qm are highly autocorrelated and, hence, very similar.
This leads to the effect that dm is very similar to d0. In fact, this applies not only to
distance, but also to other movement parameters as well. Direction, speed, acceleration
or turning angle must all be similar to the ‘true’ movement of the object if they are
derived from highly autocorrelated GPS position estimates. Consequently, C describes
how well a GPS captures the movement of an object, if interpolation error can be
neglected. Or in other words, C is a quality measure for GPS movement data.

5. Assessing the quality of GPS movement data

Real world GPS data are temporally and spatially autocorrelated (Howind et al. 1999,
Wang et al. 2002, El-Rabbany and Kleusberg 2003). Spatial autocorrelation implies that
GPS measurement error is not independent of space. Position estimates obtained at
similar locations will have similar error. Temporal autocorrelation implies that GPS
measurement error is not independent of time. Position estimates obtained at similar
times will have a similar error due to similar atmospheric conditions and a similar
satellite constellation (Bos et al. 2008). We carried out a simple experiment to visualise
temporal autocorrelation in real-world GPS data. We placed a GPS logger at a known
position P and recorded about 720 position estimates over a period of about six hours at
a sampling rate of 1=30Hz. The resulting distribution is centred around P with an R95 of
about 3 m (Figure 4a). If only those position estimates are displayed that were recorded
within a certain time interval, GPS measurement error reveals itself to be highly auto-
correlated. Figure 4b, for example, shows only those position estimates that were
obtained within periods covering 5 minutes before and after t1; t2; t3.

In this section we build on the relationship described in Equation (7) and show the
spatial and temporal autocorrelation in two sets of real-world GPS movement data. In
the first experiment we identified to what degree a set of pedestrian movement data
was temporally and spatially autocorrelated. In the second experiment we derived the

(a) (b) (c)

Figure 4. The distribution of GPS measurement error at position P (a). Revealing the temporal
autocorrelation of GPS measurement error (b). The movement of a pedestrian around a reference
course (c).
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spatial autocorrelation in a set of car movement data. Based on this we tried to assess
how well the GPS captured the movement of the car.

5.1. Experiment 1: pedestrian trajectories

5.1.1. Experimental setup
For the first experiment, we equipped a pedestrian with a GPS. The pedestrian walked
along a reference course with a well-established reference distances d0. The movement
of the pedestrian was recorded with a QSTARZ:BT-Q1000X GPS logger1 with ‘Assisted
GPS’ activated.

Rather than using a high-quality GPS we collected all data with a low-budget GPS, a
type of GPS common for recording movement data. We deliberately treated the GPS as a
‘black box’. This implies that the algorithm to calculate the position estimates from the
raw GPS signal was not known. Moreover, we considered that it was sufficient to use
only a single GPS logger, as the aim of the experiment was not to investigate the quality
of the particular GPS, but to show the usefulness of our approach.

The reference course was located in an empty parking lot to avoid shadowing and
multi-path effects. We staked out a square with sides that were 10m long. We placed
markers along the sides of the square at one meter intervals using a measuring tape. The
square allowed us to collect distance measurements approximately in all four cardinal
directions. The distance between the markers was used as a reference distance d0.

The GPS position estimates were obtained by walking to the reference markers in
turn and recording the position, moving around the square until all positions of the
markers had been recorded. Position estimates were only taken at the reference mar-
kers, and only when the recording button was pushed manually. Two consecutive
position estimates were taken within three to five seconds. A full circuit around the
square took approximately between two and three minutes and resulted in 40 positions
being recorded. A total of 25 circuits around the square were completed without any
breaks. This resulted in 1000 GPS positions being collected in approximately one hour. A
first extra circuit around the square was not considered for analysis to account for
possible large errors after the cold start of the GPS device.

In pre-processing, distance measurements dm were calculated between the position
estimates and later compared with d0 the reference distance between the markers. Then

the average measured distance �dm was calculated and from this OÊD ¼ �dm � d0 and Ĉ ¼
d20 � �dm2 þ Vargps were derived. OÊD and Ĉ are estimators for OED and C.

We set σX ¼ σY ¼ 3m. These values were not directly calculated from empirical
measurements, but rather based on our experience with the particular GPS device.
Hence, Vargps is not the observed variance of GPS measurement error, but a reference
value to which OED is later compared with. Consequently, our results do not show the
exact value of C, but provide an estimate of C with respect to Vargps.

We increased the spatial separation between two position estimates of the pedestrian
to illustrate the influence of spatial autocorrelation. Then we increased the temporal
separation between two position estimates to illustrate the influence of temporal
autocorrelation.
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5.1.2. Results
In contrast to the theoretical findings in Figure 3, overestimation of distance tended to
increase as the reference distance d0 increased. This was due to a decrease in the spatial
autocorrelation of GPS measurement error. With increasing spatial separation of the posi-
tion estimates, measurement error became less autocorrelated. Figure 5 shows the relation-

ship between the reference distance d0 and OÊD (black dots) as well as Ĉ (black crosses).
We wanted to illustrate that the overestimation of distance was not caused by a small

number of extreme outliers. Figure 6 shows the histogram of dm � d0 for d0 ¼ 1m (a),
and for d0 ¼ 5m (b) and their fit to a Gaussian distribution. Both histograms follow a
Gaussian distribution N ðμd; σ2dÞ rather well and outliers are almost non-existent. Note

that μd and σ2d in Figure 6 refer to the values of the fitted Gaussian distribution and not
to the empirically derived frequency.

Figure 5. Overestimation of distance (OÊD) and spatial autocorrelation of GPS measurement error (Ĉ)
in the pedestrian movement data.

(a) (b)

Figure 6. Histogram of the difference between measured and reference distance (dm � d0) for
d0 ¼ 1m (a) and d0 ¼ 5m (b).
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In order to illustrate the temporal autocorrelation in GPS measurement error, we
calculated the distance between non-consecutive position estimates around the square.
One example is the distance between two position estimates, where the second one was
obtained one circuit after the first. The reference distance between the markers
remained the same, e.g. d0 ¼ 1m, but the position estimates were recorded within a

longer time interval Δt. Figure 7 shows the relationship between Δt and OÊD (black dots)

as well as Ĉ (black crosses) for a reference distance d0 ¼ 1m. OÊD increases with longer
time intervals. The sharpest increase occurs between position estimates that were taken
promptly and those taken after about 2 1

2 minutes. After 40 minutes the curve levels out.

This increase of OÊD was caused by the temporal autocorrelation of measurement error.
For position estimates taken within several seconds, measurement error appears to be
strongly autocorrelated. However, autocorrelation falls sharply for position estimates

taken within 2 1
2 minutes. From then on Ĉ gradually decreases as Δt increases; again the

curve levels out at about 40 minutes.
The data for the above experiment were calculated with a GPS for which the algorithm

to calculate the position estimates from the raw GPS signal was not known. This raises the
legitimate question whether the results were produced by a smoothing algorithm rather
than the behaviour of the GPS. Let us assume that the GPS used a smoothing algorithm. In
simplified form, the current position estimate is then calculated from the last position
estimate, the current GPS measurement and a movement model. For movement with
constant speed and direction, smoothing yields trajectories that represent the true move-
ment very accurately. However, sudden changes in movement, i.e. a sharp turn, are not
followed by the trajectory. The current measurement implies a sharp turn, however, the
movement model does not. Thus, the sharp turn becomes more elongated, the over-
estimation of distance increases. However, we did not find any support for an increase in
the overestimation of distance after a sharp turn. This can also be seen in Figure 4b.

Figure 7. Overestimation of distance OÊD and temporal autocorrelation of GPS measurement error
(Ĉ) in the pedestrian movement data.

328 P. RANACHER ET AL.



5.2. Experiment 2: car trajectories

In the first experiment the reference distance d0 was staked out along a reference
course. For obvious reasons this is not possible for recording the movement of a car.
Hence we derived d0 from speed measurements recorded with a car’s controller area
network bus (CAN bus).

5.2.1. Experimental setup
We equipped a car with a GPS logger and tracked its movement for about 6 days. The
car moved mostly in an urban road network at rather low speeds (average: 25 km=h).
The temporal sampling rate of recording was 1Hz. For the CAN bus measurements, a
sensor recorded the rotation of the car’s drive axle, from which d0 was inferred. Thus d0
is the distance travelled by the car according to the CAN bus. For the same phases of
movement we compared d0 with dm, the distance travelled by the car according to the
GPS position estimates. As in the first experiment, we set σX ¼ σY ¼ 3 m and calcu-
lated Vargps.

The data were first pre-processed and cleaned. Parts were removed where the data
suggested that the car had considerably exceeded the Austrian speed limit (above
140 km=h) or that it had moved at a physically not realistic acceleration (above
5 m=s2). Although the data consisted mostly of the car’s forward movements, there
were also periods when it was either stationary or reversing in a parking lot. The data
may also have included some periods during which shadowing caused a loss of the GPS
signal (for example when driving in a tunnel). We therefore applied a simple mode
detection algorithm to remove any such periods. The algorithm evaluates speed and
acceleration along the trajectory and distinguishes segments that most probably reflect
driving behaviour from those that are likely to reflect non-driving behaviour (Zheng
et al. 2010). Using the algorithm we were able to include only long phases of continuous
driving, sampled at a continuous sampling frequency of 1Hz. Following this pre-proces-
sing a total of about 195km of car trajectories remained for analysis.

5.2.2. Results
Figure 8 shows that the autocorrelation of GPS measurement error decreased as the
spatial separation between two consecutive position estimates increased. Nevertheless,

Ĉ in Figure 8 is always positive. This can be interpreted as a quality measure for the
movement data. Consecutive position estimates have less variance than initially sug-
gested by Vargps.

Although the results in Figure 8 are similar to those obtained from the pedestrian
movement data (see Figure 5), they contain outliers. We believe that these outliers occur
due to two reasons. First, the data comprise relatively few distance measurements for
big d0 because of the generally low speed of the car. Second, we could not guarantee a
full temporal synchronisation of both measurement systems (GPS and CAN bus). In other
words, d0 and dm might relate to slightly different time intervals. We found this lag to be
around one second. We believe that this insight is important for the practical application
of Equation (7). In order to provide valid results it requires both a significant number of
distance measurements as well as a proper synchronisation of reference and measured
distance.
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6. Discussion and outlook

In this article we identified a systematic bias in GPS movement data. If interpolation error
can be neglected GPS trajectories systematically overestimate distances travelled by a
moving object. This overestimation of distance has previously been noted in the
trajectories of fishing vessels (Palmer 2008). For high sampling rates the distance
travelled by the vessel was overestimated due to measurement error, while for lower
sampling rates it was underestimated due to the influence of interpolation error. We
provided a mathematical explanation for this phenomenon and showed that it func-
tionally depends on three parameters, of which one is C, the spatio-temporal autocorre-
lation of GPS measurement error. We built on this relationship and introduced a novel
approach to estimate C in real-world GPS movement data. In this section we want to
discuss our findings and show their implications for movement analysis and beyond.

In the era of big data, more and more movement data are recorded at finer and finer
intervals. For movement recorded at very high frequencies (e.g. 1Hz) interpolation error
can usually be neglected. Hence OED is bound to occur in these data. However, this does
not mean that high frequency movement data are of low quality, quite the opposite is
true. Using the relationship between C and OED we showed experimentally that GPS
measurement error in real world trajectories is temporally and spatially autocorrelated.
In other words, if the data were recorded close in space and time they captured the
movement of the object better than if they were further apart.

Autocorrelation is important for movement analysis in many aspects. An appro-
priate sampling strategy for recording movement data, for example, should consider
the influence of measurement error and address spatial and temporal autocorrelation.
Since autocorrelation can be interpreted as a quality measure, it allows to reveal the
performance of different GPS receivers in different recording environments. Moreover,
autocorrelation has implications for simulation. Laube and Purves (2011) performed
a simulation to reveal the complex interaction between measurement error and

Figure 8. Overestimation of distance (OÊD) and spatial autocorrelation of GPS measurement error (Ĉ)
in the car movement data.
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interpolation error and their effects on recording speed, turning angle and sinuosity.
Their Monte Carlo simulation assumed GPS errors to scatter entirely randomly
between each two consecutive positions. Our approach allows to verify whether this
assumption is realistic.

One might also view at the mathematical relationship discussed in the article from a
different perspective. If the variance and the spatio-temporal autocorrelation of a GPS
device in a particular recording environment are known, one is able to calculate the
expected overestimation of distance in the trajectory data. This information can be used
to give a more realistic estimate of the distance that a moving object has travelled.

6.1. Where to find a reference distance?

For practical applications the biggest limitation of our experiments is their dependency
on a valid reference distance. The moving object must traverse the reference distance
along a straight line and without interpolation error, and at a precisely known time.
Moreover, a large number of position estimates has to be collected, since C is derived
from the expectation value of a random variable.

This limitation leads to a possibly interesting application of our findings, where the
reference distance is derived from the GPS point speed measurements. Point speed
measurements are calculated from the instantaneous derivative of the GPS signal using
the Doppler effect. Point speed is very accurate (Brutonet al. 1999) and usually part of a
GPS position estimate. Hence, for high sampling rates (e.g. 1 Hz) point speed measure-
ments can be used to infer the distance that a moving object has travelled between two
position estimates. This distance is not affected by the overestimation of distance effect
and could serve as a reference distance. Thus, GPS could be compared with itself to
reveal the spatio-temporal autocorrelation of the position estimates. This approach
would not require any other ground truth data, however, its feasibility and usefulness
are yet to be tested.

Our findings are not only relevant for GPS. The overestimation of distance is bound
to occur in any type of movement data where distances are deduced from imprecise
position estimates, of course only if interpolation error can be neglected.

Note

1. For specifications, please refer to: http://www.qstarz.com/Products/GPS/20Products/BT-Q1000.
html.
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