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REGULAR PAPER

Physiological responses of Quercus oleoides (Schltdl & Cham) to soils
contaminated by diesel
Yudith Viridiana Castro-Mancillaa, Edilia de la Rosa-Manzanoa, Sergio Castro-Navab

and José Guadalupe Martínez-Avalosa

aInstituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ciudad Victoria, México; bFacultad de Ingeniería y Ciencias,
Universidad Autónoma de Tamaulipas, Ciudad Victoria, México

ABSTRACT
Oil pollution is a worldwide threat to the environment that affects the development of plants.
The effect of soil contaminated by diesel on the physiological responses of seedlings of Quercus
oleoides was investigated in two independent experiments. We proposed that physiological
performance will decrease when seedlings are exposed to higher concentration of contamina-
tion. At the first experiment, levels of pollution with diesel were of 0%, 5%, 10% and 15%, and
0%, 2% and 3.5% in the second one. In the first experiment, photosynthetic rate, stomatal
conductance, transpiration and total chlorophyll of Q. oleoides were higher in the control
seedling, and lower in treatments of pollution with 5%, 10% and 15% of diesel during 3 days
of treatment. Only, seedlings in soil polluted with 5% of diesel survived up to 16 days; they
showed a photosynthetic rate of 5 μmol m−2 s−1, which was lower than control seedlings
(9 μmol m−2 s−1). This pattern was observed in stomatal conductance, transpiration and relative
water content. Surprisingly, in the second experiment, seedlings showed a higher photosynthetic
rate and growth at 2% of diesel-contaminated soil than control seedlings, a phenomenon known
as hormesis. In both experiments, soil respiration was proportional to soils contaminated. We
concluded that Q. oleoides is highly vulnerable in soils contaminated with above 5% of diesel, but
it maintains its physiological activities in soils contaminated below 2%, suggesting that seedlings
can grow under low concentration of diesel contaminant, and may be used in phytoremediation
of soils with low concentrations of diesel contamination.
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1. Introduction

Oil pollution is a worldwide threat (Li et al., 1997; Peña-
Castro et al., 2006; Pérez-Hernández et al., 2013). Some
activities related to oil extraction, transportation and
processing, in many instances, contaminate both soil
and water, which affect all species including plants,
animals and microorganisms (García et al., 2004; Iturbe
et al., 2005). Soil pollution by hydrocarbons forms thick
layers on the surface affecting the porosity and redu-
cing air spaces. Once formed, this layer acts as water
repellent, i.e. highly hydrophobic reducing water hold
infiltration and retention causing water stress on plants
(Racine, 1994). Hydrocarbons in soil induce organic
matter accumulation and increase soil acidity; this
affects bases saturation and cationic exchange capacity
from soil to plants (Adam & Duncan, 2002).

Hydrocarbons have negative effects on plant tissues,
inducing necrosis of foliage, senescence and defoliation,
followed by general impaired growth and plant mortality
(Adam & Duncan, 2002; Zhang & Kirkhan, 1996). At the
structural level, hydrocarbons have a negative influence

on the development of the plant root system, and this
may induce a reduction in water transportation and
transpiration (Zhang & Kirkhan, 1996). Furthermore,
photosynthesis rate also be reduced when plants are
exposed to diesel, for example, plants experiment
reduce in CO2 uptake (Eberhard & Wollman, 2008).

Soil contaminant reduction can be carried out by
different techniques such as excavation, burning or
soil wash, but all are expensive. In counterpart, the
use of plants can be a non-expensive alternative
(Delgadillo-López et al., 2011), which is environmentally
friendly when soils are contaminated by hydrocarbons.
This process is known as phytoremediation.

Some plant species can help to clean and stabilize
a soil contaminant if its concentration is not phyto-
toxic (Cunningham et al., 1996). Several studies have
demonstrated that degradation of hydrocarbons and
some of their components (e.g. aliphatic or polycyclic
hydrocarbons, phenols and others) may occur faster
in soils covered with vegetation than those with
microorganisms or sterile (Muratova et al., 2003;
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Rivera-Cruz et al., 2005; Siciliano et al., 2003). Plants
are considered to have an active role in transforma-
tion hydrocarbons fractions, similar to that occurring
in the rhizosphere, where soil microbial diversity is
increased and it propitiates a higher degradation
activity on contaminants due to the multiple enzy-
matic activities carried out by microorganisms (Mishra
et al., 2001; Muratova et al., 2003; Rivera-Cruz et al.,
2005). In fact, plants affected by contaminants may
change their exudation patterns in order to promote
growth of microorganisms that are able to degrade
contaminants (Siciliano & Germida, 1998).

Hydrocarbons are one of the main soil and water
contaminants as a result of the activities of the oil
industry with negative effects on ecosystem function-
ing, because it affects its structure and bioprocesses.

Among the pollutants in Mexican soils, diesel was
the most contributed after gasoline, with14.1% of the
environmental emergencies reported by PROFEPA
(Procuraduría Federal de Protección al Ambiente)
between 2008 and 2015 (PROFEPA, 2016). Particularly,
this contaminant has been detected in concentrations
of up to 5.272 mg/kg with average values of
437 ± 1.277 mg/kg in soils of southwestern in Mexico
(Iturbe et al., 2006), which represents a risk to human
health. This situation occurs in the communities sur-
rounding the zone of oil companies in the southern of
Tamaulipas state, Mexico, where tropical oak forests, i.e.
Quercus oleoides, are distributed forming disperse com-
munities close to the continental littoral (Pennington &
Sarukhán, 2005). The use of tree species in the phytor-
emediation of soils contaminated by organic sub-
stances is still very limited, being Pinus sylvestris, P.
deltoides, Picea abies and Casuarina equisetifolia the
most used for these purposes (Palmroth et al., 2002;
Schoenmuth & Pestemer, 2004; Sun et al., 2004), while
herbaceous species such as Lolium perenne and
Trifolium repens have been extensively used (Kaimi et
al., 2006; Palmroth et al., 2002; Tang et al., 2010). The
ability of plants to establish and grow on hydrocarbons
polluted soils is one of the characteristics sought after
in order to determine their use in phytoremediation.
The most of publications report the dynamics of micro-
organisms for growth on polluted soils (Castro-Mancilla
et al., 2013; Labud et al., 2007; Méndez-Cabrera et al.,
2005; Salazar-Sosa et al., 2003), but few have focused in
the physiological responses of plants to diesel-contami-
nated soils. In this context, we address the question,
how does diesel-polluted soil affect the gas exchange,
water relations and growth of Q. oleoides seedlings
under greenhouse conditions? We expected that gas
exchange, water relations and growth will decrease

when Q. oleoides are exposed to higher concentration
of diesel in the soil.

2. Materials and methods

2.1. Plant material

One-year old seedlings of Q. oleoides obtained from the
greenhouse at the ‘Instituto Potosino de Investigación
Científica y Tecnológica de San Luis Potosí’ were used.
These seedlings were obtained from seeds collected at
the community El Salto (22°27′48.7″ N and 100°42′5.2″
W), in the north of San Luis Potosí, Mexico. Seedlings
were transported to the greenhouse at the ‘Instituto de
Ecología Aplicada’ from the ‘Universidad Autónoma de
Tamaulipas’, where they were acclimated for 20 days in
a common garden at a temperature of 28 ± 4°C and
relative humidity of 71 ± 14%. Soil obtained from the
municipality of Ocampo, Tamaulipas, which is similar to
soil from El Salto was used. Soil was extracted from the
first 20 cm depth from the surface, air dried and sieved
(2 mm); for its characterization, see Table 1.

Tolerance of Q. oleoides seedlings to diesel-polluted
soil was investigated in two independent experiments.
In the first, contamination levels were of 5%, 10% and
15% weight/weight considering as reference the studies
reported by Castro-Mancilla et al. (2013) and Maldonado
(2013). The second one was carried out after the first
experiment, here minimal tolerance levels of Q. oleoides
seedlings were studied (0%, 2% and 3.5% weight/weight).
Prior to the experiment, plants were watered in order to
keep 40% humidity level, after that, plants were kept
watering until to reach field capacity. We have four repli-
cates for each polluted soil and non-polluted soil.

Table 1. Physical–chemical characterization of soil used in
experiments I and II.
Parameter Result Analytical method

Texture Franc Bouyucos (Fernández et al., 2006).
Clay 24.70%
Silt 33.24%
Sand 42.40%
pH 7.25 Potentiometer in relation 2:1

(water–soil).
Electric
conductivity

114 mS
cm−1

Conductimeter in soil extract (Fernández
et al., 2006).

Organic material 8.57% Walkley and Black (Galantini, Rossel &
Iglesias, 1994).

Organic carbon 4.97% Walkley and Black (Galantini et al., 1994).
Total nitrogen 0.49% Walkley and Black (Galantini et al., 1994).
Extractable
phosphorus

0.25 mg
kg−1

Olsen (Muñoz, Mendoza, López, Soler &
Hernández, 2003).

Exchangeable
potassium

5.1 meq
100−1g

Bray y Kurtz No. 1 modified (Fernández
et al., 2006).

Apparent
density

1.83 g cm3 AS 03 (NOM 021 SEMARNAT).

Field capacity 30% Fernández et al., 2006.

SEMARNAT: Secretaria de Medio Ambiente y Recursos Naturales.
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2.2. Experiment I

Soil samples were polluted with 5%, 10% and 15%
weight/weight diesel and non-polluted soil was used
as control. Plastic bags with 4 kg capacity were used for
the experiments, soil was mixed and the corresponding
treatment was applied. The experiment lasted for
16 days and the following variables were measured.

2.3. Physiological traits

Transpiration (E, mmol H2O m−2 s−1), stomatal conduc-
tance (gs, mmol H2O m−2 s−1) and photosynthetic rate (A,
µmol CO2 m−2 s−1) were measured on healthy, fully
expanded leaves of Q. oleoides using a portable gas
exchange system LI-6400 (LI-COR, Inc., Lincoln, NE, USA).

For this procedure, the second leaf from each seedling
was used. CO2 to 400 ppm values were calibrated on the
portable system using CO2 cartridges (cylinders LI-COR of
12 g). Light was adjusted using the LI-6400 (red + blue light
source) as a light source, modifying intensity to 200, 300,
600, 800, 1000, 1200 and 1800 μmol m−2 s−1 of photosyn-
thetic photon flux density (PPFD). Light was applied in a
decreasing order, with 2 min intervals between each read-
ing. Use of decreasing light rather than increasing light
reduces the equilibrium time required for stomatal opening
and photosynthetic induction (Kubiske & Pregitzer, 1996).
The relative humidity was of 50%. Leaf temperature during
measurements was maintained at 34.2 ± 1.9°C in the first
experiment and 28.6 ± 0.45°C in the second one. Mean
vapor pressure deficit (VPD) at the different irradiances
ranged from 1.4 to 2.7 kPa for the first experiment and 1.2
to 1.9 kPa for the secondone,with a flow rate of 400µmol s-
−1 in both experiments. Measurements were made
between 9:00 and 11:00 h at 3, 9 and 16 days from the
beginning of treatment.

Total chlorophyll was measured using the Minolta®
SPAD 502 chlorophyll meter measuring transmitted
light through the leaf by two bands differing in opti-
cal density: 650 and 940 nm. Measurements were
made on healthy leaves for seedlings in the morning,
around 10:00 h at 3, 9, 11 and 16 days from the
beginning of the treatment. The leaf used for gas
exchange variables was also used for chlorophyll
measurements.

Relative water content (RWC) was measured in a piece
of healthy leaf sample (1 cm2) at predawn. Samples were
placed in a plastic bag with moist filter paper, placed
within an insulated box with ice, transported to the
laboratory to measure their fresh weight, placed in dis-
tilled water to obtain saturated weight, and then dried at
65°C during 24 h before measuring dry weight. The RWC
was calculated as (fresh weight − dry weight)/(saturated

weight − dry weight) × 100. Measurements were taken at
3 and 16 days from the beginning of the treatment.

2.4. Experiment II

Becausemost seedlings ofQ. oleoides died at 11 days from
the beginning of the experiment I, we established the
second experiment, where diesel pollution levels below
5% were evaluated. Pollution treatments used were 2%
and 3.5% weight/weight diesel, and a non-polluted soil
was used as control. They were set up pretending to
surpass the maximum allowed levels established by the
Mexican Official Norm (NOM-138-2012, Norma Oficial
Mexicana, 2012). Physiological variables as in experiment
I were evaluated, and measurements were made at 15, 30
and 50 days from the beginning of the experiment.

2.5. Soil respiration

We have soil with and without seedlings of Q. oleoides
of each treatment of diesel pollution to evaluate CO2

production using a PBI (Dansensor Check Mate II,
Spain). Diesel-polluted soil samples (30 g) for each
treatment with and without seedling at 28°C for 24 h
were used (García et al., 2003) and CO2 production was
determined. Measurements were made in four repli-
cates of each diesel-polluted soil level at 15 days for
experiment I and at 50 days for experiment II.

Plant height and number of leaves were measured at
the beginning and end of experiment II, with four
replicates per treatment were taken.

2.6. Data analysis

Photosynthesis rate, stomatal conductance and tran-
spiration of seedlings were compared using a one-way
analysis of variance (ANOVA), among pollution levels
(0%, 5%, 10% and 15% for experiment I and 0%, 2%
and 3.5% for experiment II). PPFD values were non-
significant within treatment; therefore, we considered
one mean for each treatment to following comparisons.
A one-way ANOVA was also used to compare total
chlorophyll, RWC and seedlings growth among soil pol-
lution levels in each experiment. Homogeneity of var-
iances and normality was checked before to use
ANOVA, and continuous data were log transformed.
We used a Kruskal–Wallis test when variables were not
normally distributed. A two-way ANOVA was used to
evaluate the soil respiration in experiments I and II,
considering the presence of seedlings in pots and the
soil pollution levels as factors. Values of P ≤ 0.05 were
accepted as significant. Statistical tests were performed
with STATISTICA 9.0 (StatSoft Inc., Tulsa, OK, USA).
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3. Results

3.1. Experiment I

Photosynthesis rate (A), stomatal conductance (gs) and
transpiration (E) of seedlings of Q. oleoides were nega-
tively affected by diesel pollution at 3, 9 and 16 days of
treatment (Figure 1). Low values of these physiological
variables were directly related to soil pollution levels.

After 3 days, control seedlings showed higher photo-
synthesis rate (A) compared to seedlings growing under
5%, 10% and 15% of soil polluted at 300, 600, 1000 and
1200 μmol m−2 s−1 of PPFD (F3, 12 = 6.83, P < 0.05 for all
levels of PPFD; Figure 1(a)). Control seedlings had an A
of 8.55 ± 0.79 μmol CO2 m−2 s−1 at 1200 μmol m−2 s−1

of PPFD, while in polluted seedlings (5%, 10% and 15%)
it was lower than 6.40 μmol CO2 m

−2 s−1.
Also, control seedlings had higher values of gs and E

than seedlings in soil polluted (Figure 1(b,c)). Thus, control
seedlings had a gs of 78 ± 7.24 mmol m−2 s−1, and seed-
lings in soil polluted had values lower than 20mmolm−2 s-
−1 (H = 53.24, df = 3, P < 0.01; Figure 1(b)). Moreover,
control seedlings had an E of 0.98 ± 0.42 mmol m−2 s−1,
which decreased by 60% under the 5%, 10% and 15%
polluted soil (H = 55.19, df = 3, P < 0.01; Figure 1(c)).

After 9 days from establishment, seedlings under 15%
soil pollution showed wilting leaves and measurements
were stopped. We observed a clear difference in A, gs and
E between control seedlings and those in the 5% and 10%

treatments. Control seedlings showed an A maximum of
10.7 μmol CO2m

−2 s−1 at 300 μmolm−2 s−1 of PPFD, which
was significantly higher than those in the 5% and 10%
treatments (F2, 9 = 6.28, P < 0.05; Figure 1(d)). The max-
imum values for gswere 88 ± 2.92mmolm−2 s−1 in control
seedlings, and it was 80% lower in seedlings in the 5%
treatment; and values were close to 0 in those under the
10% treatment (F2, 9 = 55.1, P < 0.05; Figure 1(e)). Control
seedlings showed E values threefold higher than those
under the 5% and 10% treatments (F2, 9 = 59.45, P < 0.05;
Figure 1(f)).

After 16 days, only control seedlings and those under
the 5% treatment survived; the first showed an A max-
imum value of 7.9 ± 0.7 μmol CO2 m

−2 s−1, which dimin-
ished by 50% in the second (Figure 1(g); F1, 6 = 9.65,
P < 0.05). The gs and E followed the same pattern than
A, i.e. control seedlings showed higher values than those
under the 5% treatment (F1, 6 = 17.73, P < 0.05; Figure 1(h);
F1, 6 = 21.77, P < 0.05; Figure 1(i)).

Total chlorophyll did not show significant differences
at 3 (F3, 12 = 1.26, P > 0.05), 9 (F2, 9 = 0.51, P > 0.05) and
16 days (F1, 6 = 2.89, P > 0.05; Figure 2) among treat-
ments. Moreover, this variable did not show a signifi-
cant variation for each of the pollution treatments
during the experiment (P > 0.05).

The RWC of control seedlings was 89 ± 25.4% and was
reduced in a 30% in seedlings under the 5%, 10% and 15%
treatments after 3 days; although these values were only

Figure 1. Rhythm of the photosynthetic rate (A), stomatal conductance (gs) and transpiration (E) of Quercus oleoides seedlings in
response to different photosynthetic photon flux densities (PPFD) at 3, 9 and 16 days of soil diesel pollution. Different lowercase
letters denote significant differences among diesel treatment within each panel (P < 0.05). Each point represents the mean ± SE
(n = 4). Circle represents 0% treatment, triangle 5% treatment, square 10% treatment and diamond 15% treatment.
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significant for seedlings in the 15% treatment (F3, 12 = 3.59,
P < 0.05; Figure 3). After 16 days, the RWC was higher in
control seedlings than those in the 15% treatment (73.5 ± 5
vs. 51.6 ± 5%; F1, 6 = 9.62, P < 0.05; Figure 3).

The interaction of seedlings presence and pollution
levels affected soil respiration (F2, 12 = 53.60, P < 0.05;
Table 2; Figure 4). Soil respiration was proportional to
soil pollution; it was higher in the 5% treatment

without seedlings than the one with seedlings. This
result was opposite in the 10% treatment (F2,
12 = 53.60, P < 0.05; Figure 4).

3.2. Experiment II

After 15 days, seedlings showed a photosynthesis rate
of 6.3 ± 0.9 μmol CO2 m−2 s−1 in the 2% treatment,
which was higher than control seedlings, even higher
than seedlings in the 3.5% treatment (F2, 9 = 4.24,
P < 0.05; Figure 5(a)). However, the gs and E were 20%
higher in the control seedlings than in those in the 2%
(F2, 9 = 4.37, P = 0.05; Figure 5(b)) and 3.5% treatments
(F2, 9 = 4.40, P < 0.05; Figure 5(c)).

After 30 days, there were no differences in photosynth-
esis rate between control seedlings and those in the 2%
treatment (6.12 ± 0.02 vs. 6.63 ± 0.02 μmol CO2 m

−2 s−1;
F2, 9 = 5.64, P > 0.05; Figure 5(d)). Particularly, photosynth-
esis rate was higher only in seedlings in the 2% than 3.5%
of soil polluted (F2, 9 = 5.64, P < 0.05; Figure 5(d)). The gs
and E values of control seedlings were 50% higher in
comparison to those in polluted soil (F2, 9 = 11.47,
P < 0.05 in the 5% treatment, Figure 5(f); F2, 9 = 10.11,
P < 0.05 in the 10% treatment; Figure 5(e)).

After 50 days, again, seedlings in the 2% treatment
showed higher photosynthesis rates than those in
the 3.5% treatment, and that of control seedlings
(F2, 9 = 4.19, P = 0.05; Figure 5(g)). On the other hand,
nonsignificant differences were found for gs and E
between control seedlings and those in the 2% treat-
ment (F2, 9 = 4.60, P > 0.05; Figure 5(h); F2, 9 < 5.12,
P > 0.05; Figure 5(i), respectively).

At 11 and 30 days, nonsignificant differences for
total chlorophyll were found among treatments (0%,
2% and 3.5%) (F2, 9 = 3.74, P > 0.05; Figure 6).
However, seedlings under the 2% treatment showed

Figure 2. Total chlorophyll of Quercus oleoides under three
levels of soil diesel pollution (5%, 10% and 15%) and in control
seedlings. Different letters mean significant differences among
diesel treatment on each day (P < 0.05). Each point represents
the mean ± SE (n = 4). Note: only one measurement was made
in the seedlings under the 15% of contamination because
leaves were wilting after day 11 of treatment.

Figure 3. Relative water content (RWC) of Quercus oleoides
leaves under three levels of soil diesel pollution (5%, 10%
and 15%) and in control seedlings. The measurements were
made at the beginning and end of the experiment. Different
letters mean that the treatments are statistically different
(P < 0.05). Each bar represents the mean ± SE (n = 4).

Table 2. Analysis of the two-way ANOVA to estimate the effect
of the presence of seedlings and the percentage of contamina-
tion with diesel in edaphic respiration.
Sources of variation SS df MS F p

Presence of seedlings 0.03556 1 0.03556 2.286 0.156 ns
% diesel polluted 21.13000 2 10.5650 679.17 <0.05*
Presence of seedlings × %
diesel polluted

1.66778 2 0.83389 53.60 <0.05*

Error 0.18667 12 0.01556

Each value represents the mean ± SE.
In Bold: *Significant differences among contamination treatments, P < 0.05.

Figure 4. Soil respiration in treatments of 0%, 5% and 10% of
soil diesel pollution. The measurement was performed at
18 days of treatment. Different letters mean that the treat-
ments are statistically different (P < 0.05). Each point represents
the mean ± SE (n = 4).
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30% more total chlorophyll than those under the 3.5%
and control seedlings at 15 and 50 days (F2, 9 < 5.40,
P < 0.05; Figure 6).

At 50 days from the experiment, soil respiration
was increased at the 2% and 3.5% soil polluted than
control seedlings (H = 7.73, df = 2, P < 0.05;
Figure 7).

Seedlings in the 2% treatment showed higher
growth (20%) in comparison to control seedlings at

46 days (F2, 9 = 10.12, P < 0.05; Table 3). Leaf number
was similar between control seedlings and those in the
2% treatment. No leaves were produced in seedlings in
the 3.5% treatment at 46 days (Table 3).

4. Discussion

Diesel-contaminated soil at 5%, 10% and 15% had a
negative effect on photosynthesis, transpiration and sto-
matal conductance of Q. oleoides seedlings. However,
seedlings showed certain resistance and tolerance under
2% of soil pollution; it is interesting that photosynthesis
rate and growth increased when were compared with

Figure 5. Photosynthetic rate (A), stomatal conductance (gs) and transpiration (E) in leaves of Quercus oleoides in different
photosynthetic photon flux densities (PPFD) at 15, 30 and 50 days of treatment. Different lowercase letters denote significant
differences among diesel treatment within each panel (P < 0.05). Each point represents the mean ± SE (n = 4). Circle represents 0%
treatment, triangle 2% treatment and square 3.5% treatment.

Figure 6. Total chlorophyll of Quercus oleoides under two levels
of contamination by diesel (2% and 3.5%) and in control
seedlings. Different letters mean significant differences among
diesel treatment in each day (P < 0.05). Each point represents
the mean ± SE (n = 4).

Figure 7. Soil respiration in treatments with 0%, 2% and 3.5%
of soil diesel pollution. Different letters mean that the treat-
ments are statistically different (P < 0.05). Each bar represents
the mean ± SE (n = 4).
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control seedlings. Hydrocarbons such as diesel frequently
have a negative effect on plant growth and it may even
lead to death because of disintegration of the cell wall,
reduction of gas exchange levels, chlorosis and other
processes (Lin et al., 2002; Reynoso-Cuevas et al., 2008).
Plants tolerance to pollutants may be very variable and it
depends on the plant species, as well as the actual con-
centration of the pollutant in the soil (Adam & Duncan,
2002; Reynoso-Cuevas et al., 2008; Rivera-Cruz & Trujillo-
Narcía, 2004). Harvey et al. (2001) mention that pollutant-
related stress on plants may diminish cells ability to obtain
reducing power and as a consequence the formation of
reactive oxygen species. These may cause oxidation stress
in cells, modifying metabolic activities such as photo-
synthesis. It has also been reported that light and aro-
matic fractions (present in diesel) are the most phytotoxic
(Chaîneau et al., 1997). In that respect, Mallakin et al.
(2002) found that anthracene, an aromatic fraction hydro-
carbon with a medium fraction similar to that of diesel
and its derivate, produced by photodecomposition,
induces general damage to photosystems I and II of plants
reducing photosynthesis rate.

Seedlings exposed to 5%, 10% and 15% pollution
treatments showed lower photosynthesis activity when
compared to control seedlings after 3 days. These seed-
lings could be in an acclimatization phase to contami-
nated soils, because seedlings exposed to the 5% of
diesel-contaminated soil had the same photosynthetic
responses at 3 and 9 days of treatment. The low values
of stomatal conductance and transpiration rate at 3 and
9 days indicate that seedlings were getting adjusted in
order to prevent further loss of water, which is an acclima-
tion mechanism to stress (Li, 1991). In fact, seedlings that
growth under 5% at 16 days registered a decrease in their
RWC in comparison with seedlings control. This can be
attributed to hydrophobic properties of diesel which
reduce water infiltration and humidity of the soil (Merkl
et al., 2005). In general, when plants are exposed to any
kind of stress, they react by reducing their physiological
processes, like photosynthesis and growth (Jahan et al.,
2014; Lambers et al., 1998). If the plant enters the resis-
tance stage, the changes that occur allow it to reach a
new suboptimal physiological state for the current

conditions, which corresponds to themaximum tolerance
degree that plants may reach under stress conditions
(Ashraf & Foolad, 2007). Therefore, it is important to
know the physiological mechanisms that allow them to
survive under suboptimal growth conditions. It is likely
that the results related to a reduction of stomatal con-
ductance, transpiration and RWC levels of Q. oleoides
under the different diesel-contaminated soil treatments
may be attributed to the toxicity and hydrophobicity of
diesel in the soil as well as water infiltration to surface
rhizosphere and to deeper soil levels are reduced sub-
stantially (Khairi et al., 2015; Labud et al., 2007).

The 2% (20,000 mg kg−1) treatment stimulated
growth of seedlings of Q. oleoides, which was unexpect-
edly higher than those under the 3.5%, even higher
than control seedlings. These results are in agreement
with the photosynthetic rate and transpiration showed
by seedlings in the 2% treatment. This physiological
response is known as hormesis, which is characterized
by the stimulating effects shown at low exposition
levels of toxic agents and inhibition when high doses
are used (Forbes, 2000; Labra-Cardón et al., 2012;
Roosens et al., 2003). Stomatal conductance of seed-
lings under 2% treatment registered twofold at the last
days of experiment driving in an increase of both
photosynthesis and growth, while that stomatal con-
ductance of seedlings control and those under 3.5%
treatment remained similar. Even though stomatal con-
ductance in these later seedlings did not diminish, and
transpiration registered a little decrease at the end of
the experiment, how it goes with Avicennia marina and
Bruguiera gymnorhiza have shown no differences in leaf
stomatal conductance and transpiration between oiled
treatments and controls (Naidoo et al., 2010). Diesel-
contaminated soil have negative effects on the growth
of Spartina foliosa, although 15% of plants survived in a
diesel treatment, because diesel refined nature and low
weight molecular (typically consists of compounds with
10–24 carbon atoms) make it more bio-available to the
plants (Lam, 2012; Redondo-Gomez et al., 2014;
Wilkinson et al., 2002). This response could explain in
part the increase of photosynthesis and growth in seed-
lings of Q. oleoides at 2% of diesel-contaminated soil.

Table 3. Increase in height and leaf number of Quercus oleoides at different levels of diesel contamination at the beginning and at
46 days of experiment II.

Height (cm) Leaf number

% of polluted Start End Increase (cm) Start End Increase of leaves number

0 24.25 ± 3.7 26.5 ± 6.0* 2.25 ± 1.2 11.5 ± 1.7 15.5 ± 6.8 4.00 ± 1.6
2 19.25 ± 7.4 23.2 ± 7.4* 4.00 ± 0.07 9.2 ± 1.5 13.5 ± 2.5 4.25 ± 0.7
3.5 20.30 ± 11 20.2 ± 1.0* 0 9.6 ± 4.4 3 ± 0 0

n = 4, ns: non-significant.
*Significant effect, P < 0.001.
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Seedlings of Q. oleoides exposed to 2% and 5% of
diesel-contaminated soil significantly increased their
total chlorophyll in comparison with control seedlings
at 50 and 16 days, respectively. The increase of total
chlorophyll in seedlings at 2% is related to their
increase in photosynthetic activity, because chlorophyll
is an important molecule in the light energy absorption
and transformation in photosynthesis. This response
supports the hormesis phenomenon in Q. oleoides,
where plants tolerate low levels of diesel-contaminated
soil. On the other hand, several works showed a
decrease in chlorophyll content in plants as a response
of direct toxic effects due to hydrocarbons pollution
(Chaîneau et al., 1997; Achuba 2006; Li, Wang et al.,
2008; Redondo-Gomez et al., 2014; Han et al., 2016).

Our results were similar to those observed for
Mimosa pigra and Cyperus elegans (Rivera-Cruz et al.,
2005), where low pollutant concentrations showed an
increase in growth for these species and inhibition at
higher doses. In addition, low concentration of hydro-
carbon in soils stimulates growth of cotton plants due
to the increase in carbon content (Plice, 1948). Another
plants as the ornamental Mirabilis jalapa L. can effec-
tively promote the degradation of total petroleum
hydrocarbons when the concentration in the soil is
equal to and lower than 10,000 mg kg−1 (Peng et al.,
2009); even, the fungi population in soil under
10,000 mg kg−1 of petroleum hydrocarbons is greater
than that in clean soil. Our results are contrasting with
many reported for several plant species where some of
the stress factors such as lack of nutrients, water avail-
ability and light or dark excess induce a reduction of
growth rates and nutrient intake (Chapin, 1991). The
stimulating growth effects on seedlings of Q. oleoides
under soils with low pollutant require further research
on their relevant mechanisms.

Hydrocarbon-polluted soils have been reported to
have a negative growth response in legumes such as
Calopogonium mucunoides, Centrosema brasilianum and
Stylosanthes capitata. These species died at 42 and
56 days from exposure to raw oil (50,000 mg kg−1,
Merkl et al., 2005). These results are similar to the
obtained for Q. oleoides at higher diesel concentrations
than 50,000 mg kg−1. It is suggested that at this con-
centration, seedlings of Q. oleoides have no defense
mechanisms and the stressing factor may be higher
than the plant ability to respond (Lambers et al., 1998).

The different light levels used in pollution treatments
with Q. oleoides seedlings showed no effect on the
photosynthetic activity. However, we found a little
increase of stomatal conductance and transpiration at
200 μmol m−2 s−1 with a decrease of photosynthesis in
comparison with other light levels at 15 and 30 days. At

low light, microenvironment conditions such as tem-
perature leaf and vapor pressure deficit leaf were
slightly lower (26 ± 0.13°C; 1.64 ± 0.02 kPa, respectively)
than other light levels (29 ± 0.11°C; 2.01 ± 0.02 kPa,
respectively), which could mean a limit for assimilation
of CO2, because assimilation, activity of the Rubisco and
electron transport depend on irradiance (Farquhar &
Sharkey, 1982), although these responses need to be
explored in detail. Seedlings of Q. oleoides could have
the ability to grow either under shadow or open
canopy without modifying their photosynthetic rate
(Pimienta & Ramírez, 2003). However, it has been
reported that their congeneric Q. petraea and Q. pyre-
naica are susceptible to dryness when growing under a
dense canopy of old pines, and their growth is retarded
when compared to seedlings growing in open pines
canopy (Rodríguez-Calcerrada, 2007). Light and water
availability effect on seedlings physiology is useful
information required in order to design reforestation
and afforestation strategies as it provides important
information on ecological requirements of the species
(Kollmann & Grubb, 1999; Murata et al., 2007; Quero et
al., 2006; Sack & Grubb, 2002).

Soil respiration is a relevant parameter to know the
microbial degradation as well as the determination of
dehydrogenase activity, among other techniques
(Waarde et al., 1995). In this sense, soil respiration was
proportional todiesel-contaminated soil, and was
higher in soil with than without seedlings of Q. oleoides.
The increase of soil respiration as a result of biological
activity during the phase of the highest diesel oil degra-
dation activity has been found by other authors (Atlas &
Bartha, 1992; Margesin & Schinner, 1997). Hydrocarbon
is conformed at most by carbon, and microorganisms
can use it as an energy source increasing their meta-
bolic activity (Abaye & Brookes, 2006; Adam & Duncan,
2002; Nilsson et al., 2005). Plants stimulate organic
pollutant degradation, mainly to provide optimal con-
ditions for the microbial diversity in the rhizosphere
(Kruger et al., 1997; Peña-Castro et al., 2006).
Hydrocarbons deposited in the soils modify the micro-
bial populations, which inhibit plant coverage (Adams &
Morales-García, 2008); furthermore, they induce cata-
bolic microbial ways by compounds of vegetable origin
(Francova et al., 2004; Siciliano & Germida, 1998; Top &
Springael, 2003). Microbial degradation of oil-contami-
nated soil is a complex process and the biotic and
abiotic factors have a great influence on the fate of
spilled oil; therefore, it is quite necessary to test the
rhizosphere microbial communities for increasing diesel
degradation about the plant.

Q. oleoides resulted highly vulnerable to diesel-pol-
luted soils at levels higher than 5%; but it keeps its
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photosynthetic activity and growth in diesel-polluted
soils at 2%, showing hormesis phenomenon. These
results suggest that Q. oleoides could grow on soils
that have been contaminated with low levels of diesel
contamination. Notwithstanding, more field essays are
needed in order to evaluate physiological responses of
this species in soils with different pollutant concentra-
tions and exposure times, and their capacity as a poten-
tial use for phytoremediation in contaminated soils. The
results obtained are important since cultivation of a
hydrocarbon soil-polluted tolerant species is a determi-
nant condition in order to succeed in a phytoremedia-
tion process (Davis et al., 2002).
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