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ABSTRACT

There have been many attempts to find a model that can accurately price options.

These models are built on many assumptions, including which probability distribution

stock returns follow. In this paper, we test several distributions to see which best fit

the log returns of 20 different companies over a period between November 1, 2006 to

October 31, 2011. If a “best” distribution is found, a modified Black-Scholes model

will be defined by modifying the Weiner process. We use Monte Carlo simulations

to generate estimated prices under specified parameters, and compare these prices to

those simulated by the model using the Weiner process. It was found the Student-t

distribution did a better job at modeling the larger time intervals and the 3-parameter

lognormal did a better job at modeling the smaller time intervals. We were not able

to make any definite conclusion due to the cost of purchasing historical option data.
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CHAPTER 1

INTRODUCTION

In finance, options are one of the most important instruments used because of their

application to both hedging and speculation. They are considered assets and are a

type of derivative security because their prices are derived from the price of another

asset. There are two types of options: calls and puts. Brodie, Kane, and Marcus define

a call option as a contract that gives rights to the holder to purchase an asset for a

specified price, called the exercise or strike price, on or before some specified expiration

date.[Bodie et al., 2009] They define put options as giving the right to the holder to sell

an asset for a specified strike price on or before some expiration date.[Bodie et al., 2009]

Options can be further classified into different types - European, American, Long-Term,

Exotic, etc. - depending upon the parameters of the option, such as time until expi-

ration, the average price of the underlying asset during the life of the option, whether

the underlying asset is a dividend-paying stock, whether a condition is satisfied by the

price of the underlying asset, etc. With the many different ways that option contracts

can be set up, sophisticated institutional traders can execute extremely complex strate-

gies. For instance, large pension funds and investment banking firms trade options in

conjunction with stock and bond portfolios to control risk and capture additional prof-

its. Corporations use options to execute their financing strategies and hedge unwanted

risks that they could not avoid in any other way.

The first historical account of options being used occurred in ancient Greece. In

Politics, Aristotle described how the philosopher Thales earned a fortune using option

contracts to speculate on the olive harvest. The next account occurred in Amsterdam

during the 1630’s: Investors used option contracts to speculate on the price of tulip

bulbs. As prices for the bulbs increased, dealers began using what are now known as

call options to secure a purchase price for the bulbs from the growers. This caused a
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buying frenzy. Eventually, the ordinary investor turned to options and began investing

everything they had. As with all bubbles, the price of the asset could only increase

for so long until it reached a saturation point when the price was so high no investor

could afford to buy the asset. The bubble burst and a selling frenzy began. The

price of the bulbs plummeted and all of the options expired worthless. Investors,

dealers, and growers were wiped out, tarnishing the reputation of options for a long

time.[Kairys and III, 1997, Poitras, 2009]

Eventually an option market was established in London, England during the mid-

1690’s but corruption ran rampant and in 1711, the English government concocted

a plan to convince investors to buy the British government’s debt accumulated from

wars. The government teamed with the South Sea Company and granted them a

monopoly to trade in Spain’s South America. Holders of government debt would ex-

change the debt for shares in the company and the government placed tariffs on all

goods coming from South America so it could pay the South Sea Company a per-

petual annuity at six percent annually. For the government, this interest rate was

much less than the rate on the short-term war debt. Investors believed that the com-

pany was making money by exploring South America, but in actuality the British

government was trying to lower its interest rate instead of making money. When spec-

ulators got wind that a company had monopoly rights to trade the stock price began

to soar. Management of the company took advantage of the situation and began to

issue more stock. In 1720, South Sea Company management saw the stock price soar

to £1,000 per share, but with earnings dismal, management began selling their own

shares. Soon after, other investors began to exit. Many had invested in options and

all they could do was to sit back and watch their life savings disappear as the options

expired worthless.[Dale et al., 2007, Shea, 2007] In 1734, London eventually banned

options trading by passing the Barnard’s Act, which made brokers a principal in spec-
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ulative transactions, requiring them to complete a transaction in the event of a default

by a client.[Poitras, 2009] This eventually lead to the creation of the Option Clearing

Corporation (OCC).

Options trading has been around for many years in America, although not on any

public market just over the counter (OTC). It wasn’t till 1872 that an investor by the

name of Russell Sage developed the idea that is similar to modern day call and put

options. He purpose to standardized option contracts which allowed them to become

more liquid. These contracts had a set number of shares of stock for each option,

specified the expiration date, and outlined the stock price pegged to each specific

option. His idea of establishing an exchange to trade options was never formalized

because it was hard for options to change hands past the initial buyer and seller due

to the lack of standardized terminology.

The Chicago Board of Trade (CBOT) was established in 1848 to bring order to

the chaotic commodities market. This was accomplished by giving buyers and sellers

a place to meet in order to negotiate and settle contracts. This led to contracts being

formalized and called forwards. It was not until 1973 that the CBOT decided to allow

the trading of options. CBOT set up a separate facility, called the Chicago Board of

Options Exchange (CBOE), in order to insulate themselves from the inherent risk in

options trading and to ensure that the obligations associated with options contracts are

fulfilled in a reliable and timely manner. They also standardized the price, expiration,

and contract size for all listed options.[Thomsett, 2009] Options traded before 1970 -

approximately 1.1 million - were typically basic call options. In 1977, the market had

grown to over 39 million contracts traded because they also allowed put options. In

1983, the CBOE introduced options on broad-based stock indexes such as the S&P

100 Index (OEX) and the S&P 500 Index (SPX). In 1984, option contracts were being

written for commodities, which were previously only futures contracts. This later led
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to options being written on futures, which is a form of leverage. In 1990, the long-term

equity anticipation securities options, now referred to as LEAPS, introduced options

that have much longer lifespan - as long as 8 to 30 months. This gave investors more

flexibility in using options in their portfolios. With all the new developments and many

improvements to how options are traded, this led to over 1.2 billion contracts being

traded in 2008, the busiest year in the CBOE’s 35 year history.[CBOE, 2011]

Pricing of option contracts has to be the most important aspects of trading op-

tions. One of the most important financial breakthroughs over the last century, came

by Louis Bachelier in 1900. He was able to develop an option-pricing model based on

the assumption that stock prices followed an arithmetic Brownian motion with zero

drift.[Merton, 1973] The next major development came from Fisher Black and My-

ron Scholes in 1973; they were able to derive the Black-Scholes option-pricing model

which allowed investors to approximate a price for a European style option. Previous

models by Ayers [Ayres, 1963], Boness [Boness, 1964], Sprenkle [Sprenkle, 1961], and

others had expressed the value of options in terms of warrants. Warrants are basi-

cally call options issued by a firm. The most important difference between warrants

and call options is that when warrants are exercised the firm is required to issue new

shares of stock. When call options are exercised the number of shares of the firm stays

fixed.[Bodie et al., 2009] The formulas found by each showed similarities and each of

these models had at least one arbitrary parameter. But it was the developers of the

Black-Scholes model that were able to find a solution to their stochastic partial differ-

ential equation that was not dependent on any unknown variables. In order to obtain

this solution they had to compromise and make some underlying assumptions. The

most important of these states, “The stock price follows a random walk in continu-

ous time with a variance rate proportional to the square of the stock price. Thus the

distribution of possible stock prices at the end of a finite interval is lognormal. The
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variance rate of the return on the stock is constant.”[Black and Scholes, 1973]

The key to the assumption is the fact that possible returns (daily price difference

divided by yesterday’s price) of stock prices follow a certain distribution, in particular,

the lognormal. Before Black and Scholes published their paper, research was suggesting

returns followed a Cauchy distribution or a Student-t distribution. These findings came

from Mandelbrot [Mandelbrot, 1963], Fama [Fama, 1965], and Blattberg and Gonedes

[Blattberg and Gonedes, 1974]. Their reasoning was that, due to the smaller tails of

the normal distribution, the model tends to overvalue far out-of-the-money options and

undervalue deep in-the-money, according to the explanation given by Robert Jarrow

and Andrew Rudd in 1982.[Jarrow and Rudd, 1982] Even with the work of Mandelbrot

and Fama in the sixties, Black and Scholes chose to use a lognormal distribution because

the model does price options reasonably well and it leads to a realistic depiction. If

returns are lognormally distributed, then the distribution of returns are “positively

skewed,” thus the lowest possible return is -100% and allows for a maximum return

well beyond 100% in any given period.[Black and Scholes, 1973] This assumption seems

to work when there is not much volatility in the market. But following the financial

crisis of the late 2000’s, there appears to be a sustained higher level of volatility in the

markets. Thus one could hypothesize that currently returns should follow a Cauchy or

Student-t distribution.

It has been this type of reasoning which has lead to researchers over the years to

take a different look at the Black-Scholes option-pricing model by relaxing some of its

assumptions. In 1973, Robert Merton was able to modify the model to account for

dividends and variable interest rates. He was able to account for variable interest rates

by letting σ2, which represents the variance of the stock, also account for the variance

in the value of a discounted bond where the value of the discount represents the interest

rate.[Merton, 1973] In 1976, Jonathan Ingersoll was able to relax the assumption that



6

there are no taxes or transaction costs.[Ingersoll, 1976] Also in 1976, John Cox and

Stephen Ross showed that prices do not have to move continuously, but may instead

jump from one price to the next.[Cox and Ross, 1976] In 1979, they collaborated with

Mark Rubinstein and developed a new option pricing model that uses this idea, which

is now called the Binomial Option pricing model. This model assumes that there are

two (and only two) possible prices for the underlying asset on the next time period.

The stock can either increase by a factor of u% (an uptick) or decrease by a factor of d%

(a downtick). This is a “discrete-time” model and watching the model expand through

time, one can see the model grow like branches on a tree forming a complex lattice

network. If one were to divide the model into an infinity number of periods, instead of

just N discrete periods,one would obtain the Black-Scholes model.[Cox et al., 1979] It

must be mentioned that William Sharpe was the first to suggest a model that follows the

binomial approach in 1978.[Sharpe et al., 1999] As mentioned earlier, there now seems

to be a sustained higher volatility in the returns of individual stocks thus leading to

doubts in the normality assumption of the Black-Scholes model. Thus in 2010, Daniel

Cassidy, Michael Hamp, and Rachid Ouyed re-derived the Black-Scholes model using

the Student-t distribution. They chose the Student-t because of research previously

done by Blattberg and Gonedes.[Cassidy et al., 2010]

The purpose of this paper is to determine which family of distributions best fits

the most current data better than a normal distribution and also to determine if there

is a best time interval to refer to when determining how far in the past one must

look. The daily closing prices on 20 different companies from Google finance were

recorded for the dates of November 1, 2006 through October 31, 2011. The data were

then segmented into one-month intervals, three-month intervals, six-month intervals,

one-year intervals, and the entire five-year interval. Quantile-quantile plots provided a

rough estimation as to whether the data followed a normal distribution and whether
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the data followed one of the alternative distributions. The Anderson-Darling test was

then used to strengthen the argument against normality. Note, a visual comparison

method was used in conjunction with the Anderson-Darling test because the Anderson-

Darling test is very sensitive to deviations if the sample size n is too large, there are

changes in sigma, or both. If it is determined that one of the alternative distributions

is best, simulations of the new model determined most accurate will be compared to

the Black-Scholes model.

The plan for the rest of the paper is as follows: the probability distributions

will be introduced, along with certain statistical theorems used, and a derivation of

the original Black-Scholes partial differential equation will be presented in Chapter 2

showing where the equations used to run the numerical simulations in Chapter 5 come

from. In Chapter 3, we graph the probability plots and test the data to see which family

of distributions best fits the data by visual inspection and the Anderson-Darling test.

Then we discuss our results. In Chapter 4, we derive a new or modified Black-Scholes

model using the best fitting distribution(s) and compare the results. Section 5, will

deal with a final discussion of the results and give guidance to further research.



CHAPTER 2

CANDIDATE MODELS FOR DAILY STOCK RETURNS, DERIVATION

OF THE BLACK-SCHOLES MODEL, AND USEFUL THEOREMS

In this chapter, we introduce the candidate distributions that will be used to model

the daily stock returns, briefly review the properties of the candidate models, provide

a derivation of the Black-Scholes Model, and theorems and definitions from statistics

that will be used. We will be considering the following distributions: normal, Student-

t, Cauchy, Weibull, and 3-parameter lognormal. Note that due to time constraints we

were not able to test all distributions and chose these specific distributions from the

literature because they have the necessary characteristics needed to model the data.

The probability density functions for the distributions used below were obtained from

Minitab and are the ones used by the software.

2.1 Normal Distribution

The probability density function of the normal distribution is given by

f(x) =
1

σ
√

2π
exp

(
− 1

2

(x− µ
σ

)2)
for −∞ < x < ∞, where −∞ < µ < ∞ and 0 < σ < ∞, denoted by X ∼ N(µ, σ2).

Here µ is the location parameter also referred to as the mean, σ is the scale param-

eter (standard deviation), and σ2 is the variance. The normal distribution is also

referred to as the Gaussian distribution. Observe that all moments exist and the kur-

tosis for the normal family is 0. Note that the software Minitab used in Chapter 3

assumes that the kurtosis is 3. Stock returns were first recognized to follow a normal

distribution by Louis Bachelier.[Shao et al., 2001] It was later confirmed by M. F. M.

Osborne.[Osborne, 1959] The normality assumption was contested by Blattberg and

Gonedes, Clark, Kon, and Nederhoffer and Osborne. They found that daily stock
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returns exhibit fatter tails and greater kurtosis than the normal distribution. Our hy-

pothesis is in line with their reasoning, but we chose it as a competing model in order

to test it against the most recent data.

2.2 Student’s t Distribution

The probability density function of the Student’s t distribution is given by

g(x) =
Γ(ν+1

2
)

Γ(ν
2
)

1√
νπ

(
1 +

x2

ν

)− ν+1
2

with ν degrees of freedom and ν ≥ 0, denoted by X ∼ t(ν). The mean is 0 and the

variance is ν
ν−2

. It is known that as ν tends to infinity, the Student’s t distribution

tends to a standard normal probability density function, which has a variance of one.

Blattberg and Gonedes were the first to propose that stock returns could be modelled

by this distribution.[Blattberg and Gonedes, 1974] Platen and Sidorowicz later reaf-

firmed these findings.[Platen and Rendek, 2007] Finally, Cassidy, Hamp, and Ouyed

used these findings to derive the Gosset formula, which is the Student-t version of

the Black-Scholes model.[Cassidy et al., 2010] They found that ν = 2.65 provides the

best fit when looking at the past 100 years of returns. They realized that as mar-

kets become more turbulent, the degrees of freedom should be adjusted to a smaller

value.[Cassidy et al., 2010]

2.3 Cauchy Distribution

The probability density function of the Cauchy distribution is given by

f(x) =
1

πθ(1 +
(
x−η
θ

))
where η is the location parameter and θ is the scale parameter, for −∞ < x < ∞.

and is denoted by X ∼ CAU(θ, η). This model is similar to the normal distribution
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in that it is symmetric about zero, but the tails are fatter. This would mean that the

probability of an extreme event occurring lies far out in the distributions tail. Using

a crude example, if the normal distribution gave a probability of an extreme event

occurring of 0.05% and the “best case” scenario of this event occurring 300 years, then

using the Cauchy distribution one would find that the probability of occurring would

be around 5% and now the “best case” scenario might have been reduced to only

63 years. Thus giving extreme events more of a likelihood of occurring. The mean,

variance, and higher order moments are not defined (they are infinite); this implies that

η and θ cannot be related to a mean and standard deviation. The Cauchy distribution

is related to the Student’s t distribution T ∼ CAU(1, 0) when ν = 1. In 1963, Benoit

Mandelbrot was the first to suggest that stock returns follow a stable distribution,

in particular, the Cauchy distribution.[Mandelbrot, 1963] His work was validated by

Eugene Fama in 1965.[Fama, 1965] Recent research by Nassim Taleb came to the same

conclusion as Mandelbrot, saying that stock returns follow a Cauchy distribution, as

reported in his New York Times best-seller book “The Black Swan”.[Taleb, 2010]

2.4 Weibull Distribution

The probability density function of the Weibull distribution is given by

f(x) =
β

θβ
xβ−1 exp

(
− x

θ

)β
where x ≥ 0, θ ≥ 0, and β ≥ 0, denoted by X ∼ WEI(θ, β). The mean is given

by θΓ
(

1 + 1
β

)
and the variance is given by θ2

[
Γ(1 + 2

β
) − Γ2(1 + 1

β
)
]
. Due to the

restriction on x, the returns for individual stocks were calculated as ln
( P (t)
P (t−1)

)
. This

distribution is a special case of an extreme value distribution and the generalized

gamma distribution.[Chen et al., 2008] Returns were first suggested to follow a Weibull

distribution by Mittnik and Rachev in 1993, when they looked at the S&P 500 daily
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index returns.[Mittnik and Rachev, 1989] Other authors have employed it as an error

distribution in range data modeling and trading duration models.[Chen et al., 2008,

Engel and Russell, 1998]

2.5 3-Parameter Lognormal Distribution

The probability density function of the 3-parameter lognormal distribution is given

by

f(x) =
1

σ(x− θ)
√

2π
exp

(
− [ln(x− θ)− ζ]2

2σ2

)
where x ≥ 0 and σ ≥ 0. The location parameter is σ, the scale parameter is ζ, and

the threshold parameter is θ. It was felt that the 3-parameter lognormal distribution

was a logical choice to test because of the ability to shift the distribution and shape it

in different ways in order to give it a slightly skewed right appearance.

2.6 Derivation of the Black-Scholes Model

In the remainder of this paper, we focus on the original Black-Scholes model pro-

posed by Fisher Black and Myron Scholes in 1973. The Black-Scholes model is used

to assess the market value of options at any given point in time and is referred to as

“Newton’s Law” or the “Schrödinger equation” of the whole field of financial engineer-

ing that makes these markets operate, according to Jeremy Bernstein.[Bernstein, 2004]

Their great insight came from the fact that an investor can create a riskless portfolio

by dynamically hedging a long (short) position in the underlying asset with a short

(long) position in a European call option. Since the expected return on the portfolio

is equal to the riskless rate of interest, then there is no arbitrage opportunity and the

underlying asset is considered to be “risk neutral.” This implies that in a risk neutral

economy, the option written against that asset will trade for the same price as if it

were traded in a risk-loving or risk-adverse economy. Therefore, the price of the option
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is not based upon the investor’s preference of risk.[Garven, 2012] The derivation of the

model is rather lengthy and complex and there are several assumptions that need to be

made, to which we turn to our attention to the original paper. As Black and Scholes

state in [Black and Scholes, 1973] the assumptions are:

1. The short-term interest rate is known and is constant through time.

2. The stock price follows a random walk in continuous time with a variance rate
proportional to the square of the stock price. Thus the distribution of possible
stock prices at the end of any finite interval is lognormal distribution. The
variance rate of the return on the stock is constant.

3. The stock pays no dividends or other distributions.

4. The option is “European,” that is, it can only be exercised at maturity.

5. There are no transaction costs in buying or selling the stock or the option.

6. It is possible to borrow any fraction of the price of a security to buy it or to hold
it, at the short-term interest rate.

7. There are no penalties to short selling. A seller who does not own a security will
simply accept the price of the security from a buyer, and will agree to settle with
the buyer on some future date by paying him an equal amount to the price of
the security on that date.

Most of the assumptions are self-explanatory. Special attention needs to be given

to the second assumption, which will be the focus of this paper. Black and Scholes

assumed that stock prices followed a random walk, which says that price changes

should be random and unpredictable.[Black and Scholes, 1973] In particular, St follows

a stochastic process governed by the stochastic differential equation:

dS

S
= µdt+ σdW (2.1)

where µ is called drift and measures the average growth rate of the asset price, σ

represents the volatility of the stock returns, and dW represents the infinitesimal change

in Brownian motion.[Black and Scholes, 1973] A Brownian motion process is defined in



13

Definition A.0.2. Let it be noted that W (t) is a Wiener process, which is a continuous-

time stochastic process. It generates a random variable that is normally distributed

with mean 0 and variance t, φ(0, t). The Wiener process is defined in Definition A.0.3.

Black and Scholes’ idea to use geometric Brownian motion (GBM) stemmed from

the work by Paul Samuelson. Samuelson realized that GBM differs from Brownian

motion in the sense that if {W x(t)}t≥0 is a Brownian motion started at t > 0, then

eventually the path W(t) will drift below 0.[Lin, 2006, Paul and Baschnagel, 1999] This

is an unrealistic feature of the model because share prices of stocks cannot drop below

0.

To begin the derivation of the Black-Scholes model, we start with the second

assumption given by Black and Scholes, which is given by (2.1). This equation can be

rewritten as:

dS = µSdt+ σSdW

Next we need to use Ito’s Lemma stated in Theorem A.0.1. If we let α(t,X) = µS(t),

σ(t,X) = σS(t), and F (t) = φ(t, S) = ln(S(t)). Then we obtain:

dF (t) =
[
φt + µS(t)φS +

1

2
σ2S(t)2φSS

]
dt+ σS(t)φSdW

We can also see that: φS = 1
S(t)

, φSS = − 1
S(t)2

, and φt = 0.

This implies that:

dF (t) =

[
0 + µS(t)

1

S(t)
− 1

2
σ2S(t)2

1

S(t)2

]
dt+ σS(t)

1

S(t)
dW

= µdt− 1

2
σ2dt+ σdW (t)
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Now integrate both sides, using the fact that
∫ t
0
σdW (u) = σ(W (t)−W (0)):∫ t

0

dF (t) =

∫ t

0

(
µdt− 1

2
σ2dt+ σdW (t)

)
F (t)− F (0) =

∫ t

0

(
µ− 1

2
σ2
)
dt+

∫ t

0

σdW (t)

F (t) = F (0) +
(
µ− 1

2
σ2
)

(t− 0) + σ(W (t)−W (0))

It is known from the assumptions of the Wiener process that W (0) = 0, then:

F (t) = F (0) +
(
µ− 1

2
σ2
)
t+ σW (t)

Next substitute back in, F (t) = ln(S(t)):

ln(S(t)) = ln(S(0)) +
(
µ− 1

2
σ2
)
t+ σW (t)

Take the exponential of both sides:

eln(S(t)) = e
ln(S(0)+

(
µ− 1

2
σ2

)
t+σW (t)

S(t) = eln(S(0)) ∗ e

(
µ− 1

2
σ2

)
t+σW (t)

Therefore:

S(t) = S(0)e

(
µ− 1

2
σ2

)
t+σW (t)

(2.2)

The equation above is the solution to the SDE (2.1) and since W (t) is normally dis-

tributed, it follows that S(t) is lognormally distributed. This equation shows that stock

prices evolve over time. It is known that the value of a call option (C) depends on the

value of the underlying asset; i.e. C = C(S, t). Since the price of call options depends

directly on the stock price, Ito’s lemma justifies the use of a Taylor-series expansion

for the differential dC:

dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2

∂2C

∂S2
dS2 + higher order terms
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This is a first order approximation of the call option price. Note we let S = S(t),

dS2 = S2σ2dt, and dropped the higher order terms because any term with higher order

than the order of dt is small enough to ignore.[Lin, 2006] Then we have:

dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2
σ2S2∂

2C

∂S2
dt (2.3)

The goal is to create a perfectly hedged portfolio: a portfolio that has no risk. We

start by constructing a portfolio that has a short position in some quantity ∆(t) of the

underlying asset worth S per share and of one call option position worth C(S, t). Here

∆(t) is the hedge ratio and is a function of t because the portfolio will be dynamically

hedged; i.e., ∆(t) will change as the price of the stock changes through time. We know

that the value of this hedged portfolio is Π = C(S, t) − ∆(t)S(t), which implies that

the portfolio changes as dΠ = dV −∆(t)dS, then plug in:

dΠ =
∂C

∂t
dt+

∂C

∂S
dS +

1

2
σ2S2∂

2C

∂S2
dt−∆(t)dS

=

(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

)
dt+

(
∂C

∂S
−∆(t)

)
dS

Because this is a risk-neutral economy, we can set ∆(t) = ∂C
∂S

. This will give a perfectly

hedged portfolio:

dΠ =

(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

)
dt (2.4)

To make sure there is no arbitrage opportunity, let

dΠ = rΠdt (2.5)

This implies that the hedged portfolio must earn the riskless rate of interest r. Because

we let ∆(t) = ∂C
∂S

, then V = C(S, t)− ∂C
∂S
S. Substituting this into the right-hand side

of equation (2.5) and equating the result with the right-hand side of equation (2.4), we

obtain:

rΠdt =

(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

)
dt (2.6)
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Divide both sides by dt and rearrange the terms to obtain:

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (2.7)

This equation along with the boundary conditions, C(S, t)) = max[S − K, 0] and

C(S, t) = 0, represents the famous Black-Scholes partial differential equation. One can

see that dynamic hedging causes the valuation relationship between a call option and

its underlying asset to be risk neutral. It can also be observed that the price of a call

option depends on four parameters: the exercise price X, the current stock price S,

the time to expiration t, and the volatility of the underlying asset σ. Note, we could

take the Black-Scholes pde and find an analytical solution but for the purpose of this

paper we will not continue down that route.



CHAPTER 3

TEST AND RESULTS FOR NORMALITY

This chapter is dedicated to examining the returns in order to determine which family

of distributions fits best. Probability plots are used to visually assess the distributions

and descriptive statistics are provided in order to give an initial value for some of the

parameters needed to test the models.

3.1 Data and Software

The goal was to find a distribution family that could model the daily returns

of individual companies. It was felt that in order for a distribution to model stock

returns accurately, one should look at a time frame where stock returns had gone

through a wide range of volatility. It was felt that an option pricing model must be

able to accurately price options even under the most volatile of times. The financial

crisis of the late 2000’s provided a recent time frame to focus on. We only focus on

a five-year time interval because it seems to this point everyone that looks at this

research area looks at many decades of past data when running their analysis. But we

felt that when pricing options today the most relevant data would only be the most

recent data, especially when the stock market becomes very volatile. It was decided

that the five-year time frame between the dates of November 1, 2006 to October 31,

2011 would capture a period of normal growth (11/06− 01/08), a violent down-swing

(11/06−05/09), and then a violent up-swing (05/09−05/11). With so much variability

in the data, the distributions that were used to model the data needed to have the

characteristic of fatter tails than a normal distribution. The following distributions

have this characteristic: Student-t, Weibull, 3-parameter lognormal, and the Cauchy

distribution.

For many of these distributions, we chose to use log returns for a couple reasons.
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Let’s say that at time i the price of the asset is pi and if we let j ≡ (i − 1), then the

return of the asset from period j to i is ri =
pi−pj
pj

= pi
pj
− 1. The first property of

interest is lognormality. Assuming prices are lognormally distributed, then using the

fact that 1 + ri = pi
pj

= exp
log(

pi
pj

)
this implies that log(1 + ri) is normally distributed.

The second property is approximate raw-log equality. If returns are small, r � 1,

then the log returns are approximately the raw returns, log(1 + r) ≈ r. Thus, the log

returns were calculated by r(t) = ln
(
P (t+1)
P (t)

)
for the normal, Student-t, and Cauchy

distributions. But there lies an inherent problem due to the restrictions for some of

the distributions that variable values must be greater than zero. It was decided to use

the gross returns of the form r(t) = P (t)
P (t−1)

for the Weibull and 3-parameter lognormal

distribution.

The companies of interest are listed in table B1. These companies span the major

indices and are spread through multiple industrial sectors. For the sake of being thor-

ough, we tested the distributions on a couple of indices as well. This was determined

to be important since options are not just for stocks but for indices as well. So, if

there is a best distribution, it would need to accurately model returns of individual

companies as well as indices. The indices that were looked at are the S&P 500 (SP)

and the Wilshire 5000 (WIL). Their ticker symbols are located in table B1.

The software of choice was Minitab. It had a built-in function to find the descrip-

tive statistics and many of the distributions were built-in, which made creating the

probability plots rather effortless. Matlab was used to find the estimate of the scale

parameter of the Cauchy distribution. Excel was used to calculate the log returns and

gross returns using the daily closing prices of the companies and indices. The data was

obtained from Google Finance (www.google.com/finance).
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3.2 Decriptive Statistics

Due to the large number of plots that needed to be produced in order to carry out

the analysis, it was decided to limit the number of companies presented in this paper.

The companies of choice were determined from the normal probability plots, which we

will discuss in more detail in Section 3.3.1. We narrowed the 20 companies down to

three companies in order to provide the reader with a summary of what we felt was

a true representation of all the companies. The normal probability plots were created

for the entire five-year interval and over one month, three month, six month, one year

intervals for all 20 companies. The results were based on how well the individual

companies fit the normal distribution over all the intervals. From the plots, Bank

of America (BAC) was one of the worst fitting companies, The Coca-Cola Company

(KO) was one of the best, and AT&T (T) was average (for some intervals it was really

good and others it was really bad). Thus, the statistics were calculated from the log-

transformed data for BAC, KO, and T. The descriptive statistics were calculated in

Minitab. The statistics concentrated on are the mean, standard deviation, skewness

and kurtosis. The returns for each company were sectioned into different intervals:

the full five-year, one-year, six-month, three-month, and one-month. This sectioning

allowed us to observe how each of the statistics changed between the three companies

and over the different time intervals. From the tables in Section B, it can be seen that

for each interval for all the companies, the mean is approximately 0 and the standard

deviation (SD), which is directly linked to the volatility, is not constant.

3.3 Procedures

The first objective is to provide evidence that the normality assumption does not

hold for the distribution of stock returns. The second objective is to test a variety
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of other distributions to see which, if any, can model the returns. The five-years

worth of returns will be tested over different intervals. This should provide evidence to

practitioners showing them how far to look back in order to accurately price options.

It was decided to test this assumption by using a combination of visual inspection of

the quantile-quantile plots and the Anderson-Darling test.

The Anderson-Darling test is a goodness of fit test and belongs to the sub-class

called distance tests. Minitab calculates the Anderson-Darling statistic using the

weighted squared distance between the fitted line of the probability plot (based on

the chosen distribution and using either maximum likelihood or least squares esti-

mates) and the nonparametric cumulative distribution step function. This statistic is

a squared distance that is weighted more heavily in the tails of the distribution. Here,

a smaller test statistic indicates that the distribution fits the data better. Minitab

calculates the test statistics as follow: A2 = −n− S where

S =
n∑
k=1

2k − 1

n
[ln(F (Yk)) + ln(1− F (Yn+1−k))]

Yi are the ordered observations, n is the total number of observations, and F is the

cumulative distribution function of the specified distribution. The Anderson-Darling

test is defined as:

H0 = The data follows the specified distribution

Ha = The data does not follow the specified distribution

The analysis was started by importing the log returns into the software in its

various intervals. Then the built-in function was used to create the normal probability

plots. Minitab gives the researcher the option to enter a predetermined estimate for

the mean and standard deviation but it was decided to let the software estimate those

parameters. As part of the built-in function, the software calculates the Anderson-

Darling test statistic. A sample of the output can be seen at the top of the next page
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with the data from BAC over the entire five-year interval. All of the Anderson-Darling

test statistics generated can be found in Appendix B Table B.7.

Figure 3.1: BAC over 5-year interval

For the Student-t probability plots, Minitab does not have a built-in function.

Thus, the plots will have to be constructed. Continuing with the log-transformed

data, Minitab was used to order the data and to calculate the corresponding inverse

cumulative probability values. The software allowed the user to enter a non-centrality

parameter and the number of degrees to freedom to use. It was decided to let the non-

centrality parameter equal zero. This was determined to be the correct assumption after

calculating the descriptive statistics in Section 3.2, the mean value was approximately

zero. For the degrees of freedom we turn to Section 2.2. There we referred to the paper

by Cassidy, Hamp, and Ouyed, through their simulations they determined that setting

the degrees of freedom to 2.65 would allow the Student-t distribution to properly model

the data.[Cassidy et al., 2010] Next, we used the built-in function to create a time series

plot where the ordered data values are on the x-axis and the calculated inverse values

on the y-axis.

There is no built-in function to create the Cauchy probability plots, a similar

procedure to the one used to create the Student-t probability plots will be used. But
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this time the log-transformed data will be imported into Matlab. Using Matlab’s built-

in function, cauchyfit, we can find the corresponding scale parameter for each interval

of the data. With the ordered log-transformed data in Minitab, the inverse cumulative

probabilities can be calculated for the Cauchy distribution using the scale parameter

and again setting the location parameter to zero. Now, we used the built-in function

to create a time series plot where the ordered data values are on the x-axis and the

calculated inverse values on the y-axis.

As previously stated, there are some inherent problems with using log-transformed

data to create the Weibull probability plots. When creating the inverse cumulative

probabilities, the data must be greater than zero. The solution was to use the gross

returns defined in 3.1. The returns are centered about one instead of zero. This would

ensure that the data would not be less than or equal to zero. After importing the data

into Minitab, the built in function was used to create the Weibull probability plots. It

was decided to let the software estimate the shape and scale parameters.

Finally, we looked to see if the returns followed a 3-parameter lognormal distribu-

tion. Following the motif of the Weibull probability plots, we used the gross returns

to perform this analysis. Using the built-in function for the 3-parameter lognormal

probability plots we chose to set the location parameter to zero and to let the software

estimate the scale. We set the threshold parameter to .00005 because the software has

the requirement that this value must be less than the data minimum. One could also

let the software estimate this parameter and then after creating the graph, uncheck the

box that says, “adjust scale for threshold if distribution has this parameter.” If it is

left checked, the scales from graph to graph differ widely as can be seen in Figure 3.2

at the top of the next page. Note: due to the large number of plots produced, specific

time intervals were chosen and the graphs for all the distributions are presented in the

appendix C and are divided into different time intervals.
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Figure 3.2: 3-parameter lognormal probability plot of BAC,KO, T, S&P, Wilshire over

5-year interval

3.4 Results of Normality

The analysis looked at how each distribution modeled the returns of the chosen

companies and indices over a given time interval. The data was sectioned into intervals

of 1 year, 6 months, 3 months, and individual months. In the appendix, abbreviations

were used to designate which time interval we are looking at. For instance, if the plot is

labeled BAC-Y3H2 then we are referring to Bank of America in the second half of the

third year (this is referring to the interval: May 1, 2008 to October 31, 2011). In general

this will mean H stands for half year and Q means quarterly. The corresponding graphs

are located in Appendix C.2-C.6. The analysis will be broken up by time interval and

the discussion will begin with the normal distribution. Then the discussion will turn to

the Student-t and Cauchy distribution. They are examined this way because both of

these distributions used log-transformed data and a built-in function was not available

to create the plots. Thus, only visual inspection was used to analyze them. Finally,

we will discuss the Weibull and 3-parameter lognormal distributions.
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3.4.1 Five-year Interval

The analysis will begin by looking at the the normal probability plots on the five-year

data set and the corresponding plots are located in Figure C.4. It is quite noticeable

the plot for BAC has a definite S shape to it, implying that returns for BAC do not

follow a normal distribution. The S-shape of the graph, where the values on the left

hand side are above the line and the values on the right hand side are below the line,

suggests that the normal distribution is underestimating the tails or that the “true”

distribution should have heavier tails. Looking at the plot for KO, it can be seen

that the normal distribution does a much better job of fitting the data but still with

noticeable tails. This behavior leaves room for improvement. The plots for T, SP, and

WIL each have a slight S-shape to them but they still have heavy tails. The plots

over the five-year interval seem to make logical sense because if we look at Table B.2,

we can see that the volatility for BAC is approximately four times as great leading

to an emphasis of the S-shape. To confirm our results we turn our attention to the

corresponding Anderson-Darling (AD) test statistics as can be seen in Table B.7. The

AD values are many times greater than the AD critical value and according to the test

we reject the null hypothesis. This suggest that the data does not follow the normal

distribution.

The next set of plots looked at were for the Student-t and the Cauchy distributions.

The plots are located in Figures C.5 and C.6, respectively. It seems that the Student-t

distribution models the five-year returns rather well. There is some over estimating in

the tails, especially for BAC. For the Cauchy distribution it is quite obvious that the

distribution is overestimating the tails. One can see that the plots seem to be very

symmetric.

Turning our attention to the Weibull and 3-parameter lognormal probability plots

located in Figures C.7 and C.8, we can see that the Weibull distribution does a horrible
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job of fitting the data. The Weibull distribution with the parameters estimated from

this data is left skewed. While the data is actually less left skewed than the distribu-

tion. This leads to the hanging tails we see in the plots. It seems that there are many

observations on the lower end and this implies that the data is skewed. The AD test

statistics,in Table B.7, for the Weibull distribution agree with the visual inspection.

The values are many times greater than the critical value leading to the conclusion that

the data does not follow a Weibull distribution. The 3-parameter lognormal distribu-

tion is very similar to the normal distribution. BAC has a definite S-shape, while T, SP,

and WIL have a slight S-shape to them. The shape has the same implications as before.

The 3-parameter lognormal distribution fits KO rather well, except for the tails. The

AD test statistics for this distribution are similar to those of the normal distribution.

We arrive at the same conclusion: the data does not follow a 3-parameter lognormal

distribution. It seems that the Student-t distribution fits the five-year interval best.

3.4.2 One-Year Intervals

Next, let’s look at the one-year intervals in Section C.3. The first set of plots that we

will look at are the normal probability plots located in Figure C.9. We can see that the

normal probability distribution does a decent job of fitting the returns in year 1. The

AD values are close to the critical value and for T we fail to reject the null hypothesis.

This implies that there is statistical evidence that the data for T in year 1 follows a

normal distribution. As we move to years 2 and 3, one can see that the tails became

fatter. This is logical because in Table B.3 it can be seen for each company that the

standard deviation rises dramatically. Note, this rise corresponds with the financial

crisis. As the standard deviation increases the fit of the data starts to weaken and

outliers start to appear giving rise to the S-shape. Also, one could say this led to an

increase in the AD values over this time interval. Through years 4 and 5, visually the
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fit was rather good for KO, T, SP, and WIL but the lower tails of BAC, SP, and WIL

grew slightly. Referring to the corresponding AD values one can see that these values

grew with the exception of T. But we still reject the null hypothesis for the AD test on

all intervals. Overall, the normal distribution was a decent fit but not good enough.

Turning our attention to the Student-t and Cauchy probability plots in Figures

C.10 and C.11, we can see that the Student-t distribution does a good job in the first

year. As the volatility increases in year 2 and 3, a few outliers start to creep in and tails

start to form. The tails are indicating, as before, the distribution is overestimating the

outliers. But when compared to the other distributions it does a very good job. The

Cauchy distribution overestimates the data on just about every account when looking

at the data in one-year intervals. The Cauchy distribution does not provide a good fit

to the data.

The Weibull and 3-parameter lognormal probability plots for the one-year intervals

are located in Figures C.12 and C.13. One can see that the Weibull distribution fit

the data rather well in years 1, 4, and 5. When the standard deviation increases in

years 2 and 3, the fit broke down and we see that there are many observations at the

lower end leading once again to the conclusion that the data are less skewed than the

distribution. On closer inspection, we reject the hypothesis on all intervals. The AD

test statistics can be found in Table B.7. The 3-parameter lognormal probability plots

again have a similar outcome to the normal probability plots. They begin by fitting the

data well and as the one looks into years 2 and 3, a tail and S-shape crop up. Looking

at the AD values one can see that the 3-parameter distribution does not fit the data

that well. There were only 2 intervals that fail to reject the null hypothesis AD and

they were T in year 1 and year 5.
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3.4.3 Six-Month Intervals

The next set of intervals to analyze are the six month intervals located in Section C.4

The figures of interest are C.14 and C.15. Here the normal distribution begins to fit

the data quite well by visual inspection. Some of the intervals, such as BAC-Y1H1,

BAC-Y1H2, WIL-Y2H1, have a slight curve or bend in them but does not seem to be

too bad. It is quite obvious that as the second half of year two to comes around, there

is more volatility introduced into the data and more outliers started to appear for all

test subjects. The further through time one looks, the more the normal distribution

does a good job of fitting the returns. Outliers occasionally pop up but mainly for BAC

because on average it tends to be a more volatile stock. The AD test statistics tells us

that the normal distribution was the appropriate model for 29 out of 50 intervals.

Let’s turn our attention to the Student-t and Cauchy probability plots in Figures

C.16 - C.19. By visual inspection, it can be seen that the model fits the data well for

Y1H1 but then a noticeable bend appears. The bend is persistent throughout time and

suggests that the returns in the tails are being overestimated. There are time where

there are outliers that are being under estimated as in KO-Y2H2 and T-Y2H2. This

seems to be the worst job of fitting that the Student-t distribution has done. Looking

at the Cauchy probability plots we can see that the Cauchy distribution almost fits

one time interval for KO, the second year, second half interval. But there are definite

outliers and a slight bend. The conclusion can be made that the Cauchy overestimates

the data and is not an appropriate distribution for this time interval.

The Weibull and 3-parameter lognormal probability plots are located in Figures

C.20-23. The Weibull distribution does a mediocre job of modeling the 6-month interval

returns. We can see that the Weibull distribution does a good job until year 2. Then

we see that many of the observations tend to be on the lower end leading to the long

hanging tail. If we look at the AD values one would reject the null hypothesis for
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all intervals. Implying that none of the intervals were appropriately modeled by the

Weibull distribution. The AD test suggests that is not an appropriate distribution

for this time interval. For the 3-parameter lognormal distribution, we can see that

the fit falls apart starting in Year 2 half 2 for all test subjects. Applying the AD

test, it was determined that one can fail to reject the null hypothesis on 24 out of 50

intervals. Though less than fifty percent of the intervals are appropriately modeled

by the 3-parameter lognormal distribution, it is much better than most of the other

distributions.

3.4.4 Three-Month Intervals

Let’s continue our analysis by looking at the three month intervals located in Section

C.5. As stated before, due to the large number of graphs the area of interest has

been narrowed down to Y2Q3 - Y3Q4, Y4Q3 and Y4Q4. We start with the normal

Probability plots that are located in Figure 24. Using visual inspection, we can see

that BAC fails for Y2Q3 and the other subjects seem to pass for that interval. When

looking over the other intervals, we can see that the outliers in some of the plots are

being underestimated. For instance: SP-Y2Q4, KO-Y3Q2, and BAC-Y4Q2. This is

similar to the 5-year interval for the subjects back in Section 3.4.1. Looking at the AD

values determines that 36 of the 40 intervals fail to reject the null hypothesis. This is

quite a success when compared to how the normal distribution fared over the 6-month,

1-year and 5-year intervals.

The next set of plots to look at will be for the Student-t and Cauchy distributions.

We can see from Figure C.25 that the Student-t distribution does a fair job at fitting

the returns for KO, T, SP and WIL. As time moves from Y2Q3 to Y2Q4, we can see

that outliers appear for KO, T, SP and WIL. But there should be no cause for alarm

since it looks like less than 5% of the returns are outliers. From Y3Q1 to Y4Q3, a
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noticeable curve appears and seems to persist in the plots. The curve suggests that

the returns in the tails, are underestimated. It’s interesting to note that all the plots

seem to be very symmetric even though some quarters saw extreme loses and others

saw extreme gains. Let’s move on to the Cauchy distribution located in Figure C.26.

With the initial look one can come to a conclusion as with the other intervals. It’s

obvious that every interval has about this interval noticeable tails. This implies that the

returns in the tails are overestimated. Note that the width of the values on the Cauchy

probability plot are directly dependent on the volatility of the underlying data. As one

can see from the figures, it is obvious to spot difference in volatility from quarter to

quarter. The plots seem to be implying that the volatility is not constant when viewed

from a quarterly prospective.

The quarterly intervals for Weibull and 3-parameter lognormal probability plots

are located in Figures C.27 and C.28. From an initial inspection, the Weibull distri-

bution seems to fit KO, T, SP, WIL on Y2Q3 and Y3Q3; then add in BAC and the

distribution fits the subjects over Y3Q4 - Y4Q4. For the quarters not mentioned, it can

be seen that the long lower tails exist which leads to the same conclusion as previously

stated in Section 3.4.3. The AD values state otherwise. According to the AD values,

they suggests that 9 out of 40 of the quarterly intervals could be model by the Weibull

distribution. This is a pass rate of only 22.5%. Let’s see how the 3-parameter lognor-

mal distribution performed. Looking at Figure C.28, it seems that the 3-parameter has

done a good job with the exception of a few outliers on BAC-Y2Q3, BAC-Y2Q4, KO-

Y2Q4 and a few others. Applying the AD test, it was found that 36 of the 40 quarterly

intervals were appropriately fitted by the 3-parameter lognormal distribution.
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3.4.5 One-Month Intervals

We finish our analysis by discussing the one-month intervals located in Section C.6.

Note, we cut down the number of plots presented and our attention is now focused on

May 2008 - October 2009 and we will be referencing each interval by the first 3 letters

of the month. The corresponding normal probability plots are located in Figures C.29

and C.30. Looking at May 08 and Jun 08 everything is good. For BAC-Jul 08, T-OCT

08, and a few others, one can see that the plots do have the curve to them causing the

data points on the ends to be below the straight line. This suggests that the data is

positively skewed. All in all, the normal distribution looks to be a good fit, but there

are a few places where there is an obvious outlier (ex. BA-Oct 08, SP-Dec 08, BAC-Apr

09). Reviewing the AD values, we can determine that the normal distribution fits the

intervals 90 out of 90 times.

The next set of plots to look at will be for the Student-t and Cauchy distributions.

The Student-t plots are located in Figures C.31-C.33. The data values seem to fall on a

straight line. There are a few exceptions such as BAC-Jul 08, BAC-Aug 08, and T-Aug

08. Looking at the Nov 08 intervals, the curve appears and lasts for several months.

Then the data straightens back out and becomes very symmetrical. This lasted until

the September 08 intervals. Turning our attention to the Cauchy distribution located

in Figures C.34-36. There is still a curve in the data plots but there seem to be some

intervals that are somewhat straight (for example: SP-Jun 08, T-Jul 08, BAC-Apr 09,

and SP-Aug 09). It can still be seen that there is much volatility in the data and it is

not constant.

Finally, let’s evaluate the Weibull and 3-parameter lognormal distributions. The

Weibull probability plots are in Figures C.37 and C.38. One can see that most of

the Weibull probability plots for BAC have the elongated tail hanging down, again

indicating the data is less left skewed that the distribution. This also occurs for KO,
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T and SP on October 2008. This behavior seems to reoccur on March 2009 and April

2009. Reviewing the AD values, we can determine that the Weibull distribution fits 71

of the 90 intervals. This was a decent fit but other distributions were perfect to nearly

perfect for the 1 month intervals. Let’s see how the 3-parameter lognormal distribution

performed. The plots are located in Figures C.39 and C.40 and they look quite linear

with the exception of BAC starting in July 08 and ending in June 09. There were a

few outliers (ex. KO-Oct 08, T-Oct 08, KO-Feb 09) but nothing to seem concerned

about. Applying the AD test, it was found that 90 of the 90 monthly intervals were

appropriately fitted by the 3-parameter lognormal distribution.

3.4.6 Conclusion of Normality Examination

The reason for analyzing so many different intervals of the same data set was to see

if any conclusion could be drawn when deciding which length of time one should look

back in order to know you have enough information to properly price options. This

requires the knowledge of a distribution that models the returns. The goal was to find

a statistical distribution that could model any set of returns no matter how volatile

the returns may be. If the distribution is not normal, then we would modify the Black-

Sholes model and test to see if the prices are more accurate when compared to the true

value at option expiration. We found that when assessing all the intervals one notices

that the normal and 3-parameter lognormal distributions did an effective job of fitting

the data with the exception of BAC. The Cauchy and Weibull distributions were not

nearly as effective. The success of the distributions just mentioned occurred with small

sample sizes. Looking at how the distributions model the data with a large sample size,

the Student-t distribution did the best job of fitting the data. And when one considers

the examined distributions, it appears that the Student-t and 3-parameter lognormal

distributions should be considered for further examination.



CHAPTER 4

SIMULATIONS

In this chapter, we look at what happens to option prices when the normality assump-

tion is changed in the Black-Scholes model. Monte Carlo simulations were used to

estimate the call price at some time t in the future. Using the results from Chapter

3 we will be examining the Black-Scholes model with the Student-t and 3-parameter

lognormal distributions.

4.1 The Models

Looking back at Section 2.6, a derivation of the Black-Scholes model was presented

and it finished with the famous Black-Scholes pde, Equation 2.7. As stated before,

one could take the initial conditions along with the boundary conditions and finish

deriving the Black-Scholes pde to arrive at an analytical solution but we will take

a different approach which does not rely on solving the Black-Scholes pde. Instead

we will try and model the behavior of the underlying asset itself, from which we will

obtain estimates for the corresponding call option values. To allow us to do this, we

make an assumption that all investors are “risk-neutral”, that is they do not require

a premium to encourage them to take risks. According to Higham, the phrase “risk

neutral” comes from the phrase “risk-neutral investor” and he states the case as “an

unlikely person who regards an investment with guaranteed rate of return r and a

risky investment with expected rate of return r as equally attractive... we see that a

risk-neutral investor would have no preferences between investing in a bank and in any

asset.”[Higham, 2004] A consequence of this assumption is that the average return on

assets (µ) must be equal to the risk free interest rate (r). Thus, in Equation 2.2, we

may replace µ (the expected return of the asset) with r (the risk free rate of returns

on short-term Treasury bonds) and one finds an equation that will allow us to model
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the value of some asset through time. The new equation looks like:

S(t) = S(0)e

(
r− 1

2
σ2

)
t+σW (t)

. (4.1)

. This is basically saying that for the purposes of pricing securities, one pretends

that the asset price process is a geometric Brownian motion, GBM(r, σ), instead of

GBM(µ, σ).

A new question arises: how to find an equation to simulate the call option prices?

We already know that the price of a call option at expiration time T is determined by

the equation, CT = max(ST −K, 0) where ST is the asset price at expiration, T , and K

is the option’s strike price. At an earlier date t, the call option value will be the expected

present value of the call option price and we obtain, Ct = E[PV (max(ST − K, 0))].

This represents the expected payoff at discount rate r. Thus the price of a call option

at time T is given by the resulting equation:

Ct = e−rTEQ[(max(ST −K, 0))]

Note that EQ makes it clear that we are taking the expectation in the risk-neutral world

(the expectation in the Q-measure). Therefore the above equation can be rewritten for

practical purposes as:

CT = e−rTE[(max(ST −K, 0))] (4.2)

Knowing what exactly the Q-measure is is not relevant to this paper and would take

a while to explain; thus, it will be skipped. If one would like to read more about the

topic, I refer you to the book by Lin.[Lin, 2006] The risk-neutral world is not reality.

Investors would be unintelligent to think that the drift rate of risky investments is

r. One would rather buy risk-free bonds in this case. Nevertheless, this concept is

important and allows one to use Monte Carlo simulations to estimate the call option

price.
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With knowledge of Formulas 4.1 and 4.2 one can estimate the Black-Scholes call

option price. The next idea to look at is what models should be examined to make

reasonable comparisons to the Black-Scholes model. This will come down to altering

one of the assumptions made by Black and Scholes, the assumption under consideration

is number 2 in Section 2.6. As previously discussed, their assumption was that the

underlying asset price moves as a random walk and in particular the asset prices process

is governed by GBM. We talked about was the fact that GBM works using a Weiner

process. Here lies the premise of our argument. Our hypothesis for the paper is

that stock returns do not follow a lognormal distribution and must follow some other

distribution, as discussed in Chapter 3. In order to modify the model to use a different

distribution, we shall use a modified Weiner process. Typically, the Weiner process

generates a random variable that is normally distributed but we are going to modify it

to generate a random variable that has a Student-t distribution and then a 3-parameter

lognormal distribution. This will in turn give us a modified GBM and cause the

underlying stock and call prices to have the distribution we want.

4.2 Simulations and Analysis

The goal was to determine if there are any price discrepancies when comparing the

different models and if there are, then how large are they? Hopefully, this will lead us to

a point where we are confident enough to say that the simulated prices are overvalued,

undervalued, or priced correctly when compared to the baseline (the model using the

normal distribution). Depending on the situation, a statement like this will give us a

result that implies using one distribution is better than the others. Remember, the

main strategy that seems to be implied by the Black-Scholes model is that of buying

undervalued options (or selling overvalued ones) and holding them to expiration even

in the face of any and all apparent setbacks in the position, trusting that the stock’s
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historical volatility characteristic will be fulfilled over the longer term to raise the

option’s market value to equal the “fair value” that you calculated before you bought

it. Hence, the goal would be to take advantage of a temporary market inefficiency to

purchase the stock’s volatility at a bargain rate.

To start the analysis, we need to determine the baseline. We are assuming that the

model using the normal distribution (the Black-Scholes version) will be the baseline.

This seems logical because as of now, that is the one a practitioner would use. It has

been tested thoroughly and has been shown that, due to the smaller tails of the normal

distribution, the model tends to overvalue far out-of-the-money (FOTM) options and

undervalue deep in-the-money (DITM) options. FOTM call options are ones where

the strike price is way higher than the current stock price and DITM options are the

opposite. It seems that the better distribution would be give a lower price for FOTM

options showing that they are not so overpriced (hopefully equal) when compared to

the actual cost of the option and a higher price for DITM options showing that they

are closer to the actual value of the the option. Herein lies a huge dilemma. We were

not able to obtain historical options price data due to enormous cost. Thus, we will

be able to determine if the prices of the modified Black-Scholes model are overvalued

or undervalued when compared to the Monte Carlo simulated Black-Scholes prices but

we won’t be able to see exactly how they relate to the actual option price.

The idea behind the Monte Carlo simulation relies on the fact that the distribution

of asset values at option expiry is determined by the process that generates future

movements in the value of the asset. A simulation model can be viewed as progressing

in three steps: 1) generate n random paths of the underlying variables; 2) compute the

corresponding n discounted option payouts; and 3) average the last results to estimate

the expected value of an options price at expiration. An example is displayed at the

top of the next page. The top plot shows 10 simulated paths of the stock price and
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the bottom plot shows the resulting 10 paths of the call option price using the normal

distribution and a 30-day to expiration option.

Figure 4.1: 30-day option using normal distribution w/ 10 paths

The simulations were run with Matlab R2011b on a computer with an Intel Core

i5-2430M CPU at 2.40GHz and with 16.0 GB of memory on Windows 7 64-bit operating

system. The corresponding Matlab code is located in Appendix D and was used to

generate the baseline for comparison. The results can be seen in Tables B.8 to B.12.

We chose to compare the options prices by distributions looking at how they change

from deep in-the-money (DITM) all the way to far out-of-the-money (FOTM) options.

Theory says that the deeper in the money an option is the more one will have to pay in

order to purchase that option because there is a very high probability that the option

will expire in the money. For FOTM options, the probability of the option price making

it back to in the money is so low that the option is practically worthless. We should

see that as we simulate the prices from DITM to FOTM options, the price should drop

dramatically. Also, we will compare the option prices by looking at the corresponding

volatility. Let’s say we are going to model a 30 day option. The first simulation will use

the one-month standard deviation and then the second simulation will use the five-year
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standard deviation. After the simulations we will compare and hopefully extract some

useful information. Note we used Table 4.1 on the top of the next page to determine

where to set S0 and K for the corresponding ITM, ATM, etc.

Table 4.1: Table for S0 and K

Type of Option S0 K

DITM 10 6

ITM 10 9.5

ATM 10 10

OTM 10 10.5

FOTM 10 14

The first set of simulations was for a 30-day option. The sigma used was from

BAC-Oct 08 and had a value of 0.0962. We set n, representing the number of paths, to

1000. Note we only use 1000 because going higher would mean creating a unrealistically

narrow confidence intervals. In general, the output will give Cmean which is the

expected payoff (the price of the call option), the upper and lower bounds of a 95%

confidence intervals and the standard deviation of the call price represented by Cstd.

Looking at Table B.8 we can see the output for these simulations. One might notice

that looking at the DITM option the normal and Student-t distribution are quite

similar. When examining the standard deviations, we notice that the Student-t is

significantly larger than the normal. This increase could be due in part to the fatter

tails of the distribution. The 3-parameter lognormal is saying that the fair price of

a 30-day option is lower than the price estimated by the normal and Student-t. As

we move toward ATM and FOTM options, the prices estimated by the normal and

Student-t drop to approximately zero as they should, while the standard deviation
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for the Student-t is noticeably higher than the corresponding value for the normal.

Looking at the values for the 3-parameter lognormal and comparing it to the other

two it appears that something is not right. The price estimated by the 3-parameter

distribution for the FOTM options is outrageous. No rational investor would ever pay

$1.94 for that option that has a probability approximately 0 of getting back into the

money by expiration. As for the other two distributions, it seems that the Student-t

would slightly overvalue a FOTM option when compare to the normal. As previously

stated, studies have shown that the normal overvalues FOTM options. If we take that

to be true, then the Student-t should noticeably overvalue FOTM options. The same

seems to be true for DITM options because if the normal distribution is undervaluing

DITM options then our estimated price in Table B.8 is too low and the true value

of the option is worth more. We can see that the Student-t distribution does give a

slightly higher price. This might suggest that the Student-t is closer to the true option

value.

The results for the second set of simulations are contained in Table B.9. For this

set of simulations, we have decided to use the volatility for BAC 5-year which has the

value of .04832. Let’s start off with the DITM options. One can see that the normal

distribution has estimated a price that is slightly higher than that of the Student-t.

This might be a moot point because the standard deviation is quite bigger for the

Student-t. We see these attributes continue through the ITM and ATM options. Note,

we see that the 3-parameter lognormal is estimating a price that is much lower than

that given by the other two distributions for the DITM options. It would seem that it

is deeply underestimating what the value of the call should be worth. For ITM options

the 3-parameter distribution is vastly overestimating the fair value price. And this

overestimating continues for the other types of options. Returning to the discussion

on the normal and Student-t, it’s not until OTM options that we see a noticeably gap
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between their simulated prices.

The third set of simulations was for a thirty day option and their results are

contained in Table B.10. Here we used the one-month volatility for T Oct 08 which

has a value of .0586. We can see that for the DITM options the normal and Student-

t distributions have an approximately the same fair value price. The 3-parameter

lognormal distribution has an estimated price that is significantly below the other two

and with a standard deviation that is at least three times greater than the others.

Moving down the table toward the FOTM options the prices drop as they should. For

the ITM, ATM, OTM options, the Student-t distribution is giving an estimated fair

value price that is higher than the one given by the normal distribution. The standard

deviation for the Student-t was typically twice that of the standard deviation for the

normal distribution with the exception for OTM options. Here the standard deviation

was 4 times as great. The FOTM options have a similar outcome to the DITM options.

In the fourth set of simulations, we decided to use the one-month volatility for

KO which has a value of .00886. The results for the fourth set of simulations are

contained in Table B.11. For DITM options, we can see that the normal distribution is

estimating a price that is slightly higher than the price from the Student-t distribution.

This suggests that the Student-t distribution is producing an option’s fair value that

is slightly more undervalued than the normal distribution which is not something we

want to see. Note the standard deviation is twice as high for the Student-t than for the

normal. As we move down the table, the simulated prices for the normal distribution

are quite similar to the simulated prices for the Student-t distribution. As usual, the

estimated standard deviation was typically twice as high for the Student-t distribution

when compared to the one produced by the normal distribution with the exception for

ATM options. Here the standard deviation was 3 times as high.

In the fifth and final set of simulations, we decided to look at an index. Our
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choice was a 30 day option and then use the S&P 500’s one-month volatility for Oct 08

which has a value of 0.05036. Since we are focusing on an index having the underlying

asset price start at 10 is not logical. It does not make sense to use Table 4.1 as a

guideline, more realistic numbers that will be used can be found in Table 4.2. Looking

at the results in Table B.12 we can see what happens when the initial stock price is

increased to a rather large number. For the DITM options the Student-t distribution

has a simulated price that is noticeably higher than the one for the normal distribution.

This agrees with the theory that if the Student-t is to be the best it would need to have

a greater estimated fair value than the normal distribution hopefully not undervaluing

the options price. As we move down the table one can see that the estimated price

for the Student-t distribution remains significantly higher than the one for the normal

distribution. This is not good because when we observe the FOTM options a better

model would have a simulated fair value price that is lower than the normal distribution

estimates. We can observe in the Table B.12 that this is not the case. Note that the

same phenomena with the 3-parameter lognormal is occurring with extreme overvaluing

and the volatility for the Student-t distribution is much higher for all the different types

of options.

Table 4.2: Table for S0 and K for the S&P 500 Index

Type of Option S0 K

DITM 1360 1330

ITM 1360 1355

ATM 1360 1360

OTM 1360 1365

FOTM 1360 1390
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Comparing simulations in Tables B.8, B.9, and B.11 one can see that the only

initial parameter to change was the value of volatility. We decided to pick intervals

with a high level of volatility (BAC Oct 08), an average level of volatility (BAC 5 yr),

and one on with a lower level of volatility (KO Dec 07). We can see that for DITM,

ITM, and FOTM options in all three tables that the simulated call prices for the normal

and Student-t distributions are quite similar for their being such a large difference in

the standard deviations between the tables. The simulated prices seem to gradually

change when going from ITM options to FOTM options. The change in the volatility

parameter can be seen in the simulated call price. Looking at each type of option from

Tables B.8, B.9, and B.11 we can see that the simulated call prices either stays the same

or drops in value as they should. The less variable stock returns are the less the option

will be worth. One can see that the simulated call price standard deviation decreases

from Table B.8, B.9, and B.11, this makes sense because the volatility parameter is

decreasing as well.

Looking at the simulations in Tables B.10 and B.12 one can see that when the

initial stock price changes we see dramatic differences in the simulated call price. Note

the volatility parameter for each set of simulations was approximately the same. The

initial stock price was change from 10 to 1360 which would better represent the value of

an index. We observe that from Table B.10 to B.12 the call price has risen dramatically.

Table B.10 shows that there is only a slight if any difference between the estimated

call prices from the normal to the Student-t distribution but we can see in Table B.12

that there is a noticeable difference between the normal and Student-t simulated call

prices. The call price standard deviation is larger in Table B.12 than in Table B.10 but

this is to be expected. Note that the standard deviation for the Student-t distribution

is twice that of the standard deviation for the normal distribution in Table B.12 and

this is similar to what we found in Table B.10.



CHAPTER 5

RESULTS

From Chapter 3, we feel that it is a safe conclusion to say that returns for individual

companies and even indices, do not follow a normal distribution. In other words, we

could say that there are other distributions that fit the data better. Further analysis

needs to be done in order to determine if there is an overall distribution that best fits

the data. It seemed that for the entire interval the Student-t distribution was the best

fit but when analyzing the smaller intervals the 3-parameter lognormal distribution

was the best, especially for the 1-month intervals.

In Chapter 4 it is hard to discern tangible results without having the historical

options data. Using Monte Carlo simulations the results can change rather dramatically

from one set to the next. There is something noticeably wrong with the 3-parameter

lognormal distribution results. We believe it has to do with the scaling of the data. We

see that the model with the Student-t distribution is allowing more movement in the

simulated fair value price than the model using the normal distribution. This is a good

sign because even though we cannot say with certainty that the Student-t distribution

is best it is heading in the right direction. We saw that using the Student-t distribution

does allow for more variability, or in other words volatility, in the option prices but it

was interesting to see that Student-t distribution gave a tighter 95% confidence interval.

Future research directions include instead of assuming the normal distribution is

“correct,” taking the simulated prices and comparing them to the historical option

prices using the historical parameter data. This will show if the normal and Student-t

distributions are overvaluing FOTM options or undervaluing DITM options and by

how much then a true comparison can be made. One can also try to model stock

returns using other distributions, ARMA models, or GARCH models. Also, it would

make sense to try to apply changepoint analysis to option pricing and see if this will
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lead to a better option pricing model. This will allow a model to start pricing options

using, say, a normal distribution when times are less volatile and when the volatility

estimates exceed some parameter the model switches over to another distribution.
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Appendix A

THEOREMS AND DEFINITIONS

Theorem A.0.1. (One Dimensional Ito’s Lemma) Let {S(t)} be a solution of the

stochastic differential equation dX = α(t,X)dt+σ(t,X)dW and φ(t, x) a deterministic

function which is continuously differentiable in t and twice differentiable in x. Then

the stochastic process φ(t,X(t)) is a solution of the following SDE:

dφ(t,X) =
[
φt(t,X) + α(t,X)φx(t, x) +

1

2
σ2(t,X)φxx(t,X)

]
dt

+σ(t,X)φx(t,X)dW

Proof. A proof of Theorem A.0.1 is given by Lin.[Lin, 2006]

Definition A.0.2. (Brownian Motion) A random process Bt, t ∈ [0, T ], is a (standard)

Brownian motion if:

1. The process begins at zero, B0 = 0.

2. Bt has stationary, independent increments.

3. Bt is continuous in t.

4. The increments Bt−Bs, have a normal distribution with mean zero and variance
|t− s|:

(Bt −Bs) ∼ N(0, |t− s|)

Definition A.0.3. (Weiner Process) A Weiner process, W (t), satisfies three proper-

ties:

1. W (0) = 0.

2. W (t) −W (s) has a normal distribution with mean 0 and variance σ2(t − s) for
s ≤ t.

3. W (t2)−W (t1),W (t3)−W (t2), ...,W (tn)−W (t(n− 1)) are independent for t1 ≤
t2 ≤ ... ≤ tn.



Appendix B

TABLES

Table B.1: Company and Index Names with Ticker Symbols

Company and Index Names Ticker Symbol

3-M Company MMM

Alcoa AA

AT&T Inc. T

Bank of America BAC

Caterpillar CAT

The Coca-Cola Company KO

E L Du Ponte Nemours and Co. DD

Eastman Kodak Company EK

Exxon Mobil Corp. XOM

General Electric GE

Goodyear Tire GT

International Business Machines IBM

Intel Corp. INTC

International Paper IP

Johnson & Johnson JNJ

Microsoft Corp. MSFT

Owens-Illinois, Inc. OI

The Procter & Gamble PG

Sears Holdings Corp. SHLD

S&P 500 .INX

Wal-Mart Stores, Inc. WMT

Wilshire 5000 W5000FLT
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Table B.2: Descriptive Statistics for Logged Data on Entire Interval

Ticker Mean SD Skewness Kurtosis

Over 5 years

BAC -0.00162 0.04832 -0.19 11.83

KO 0.000299 0.013876 0.63 11.6

T -0.000122 0.01742 0.56 8.87

Table B.3: Descriptive Statistics for Logged Data on 1-Year Intervals

Ticker Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

1st Year 2nd Year

BAC -0.000436 0.010252 0.02 2.27 -0.00273 0.05378 -0.33 6.96

KO 0.001112 0.007880 0.13 1.50 -0.00133 0.01987 1.00 11.20

T 0.000793 0.012347 -0.01 0.34 -0.00176 0.02572 0.95 7.00

3rd Year 4th Year

BAC -0.00198 0.08349 -0.02 3.36 -0.00093 0.02235 -0.43 1.59

KO 0.00075 0.01721 0.51 2.39 0.000538 0.009839 -0.40 1.62

T -0.000160 0.022080 0.20 1.73 0.000405 0.009799 -0.17 0.62

5th Year

BAC -0.002040 0.035200 -0.63 8.46

KO 0.000427 0.010641 -0.35 2.12

T 0.000108 0.011112 -0.36 1.53
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Table B.4: Descriptive Statistics for Logged Data on 6-Month Intervals

Ticker Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

Year 1 Half 1 Year 1 Half 2

BAC -0.000550 0.008879 -0.77 3.66 -0.00041 0.01141 0.37 1.49

KO 0.000907 0.006647 -0.05 4.84 0.00131 0.00891 0.17 0.14

T 0.001005 0.010972 -0.10 1.37 0.000590 0.01356 0.05 -0.23

Year 2 Half 1 Year 2 Half 2

BAC -0.002030 0.027290 0.87 1.20 -0.00341 0.07055 -0.31 3.62

KO -0.000390 0.011720 -0.08 0.03 -0.00225 0.02536 1.05 7.74

T -0.000620 0.020080 -0.14 0.40 -0.00286 0.03022 1.26 7.08

Year 3 Half 1 Year 3 Half 2

BAC -0.007840 0.110830 0.09 1.05 0.00383 0.04106 0.71 3.38

KO -0.000180 0.021470 0.50 1.17 0.00167 0.01154 0.87 2.03

T -0.000350 0.028150 0.25 0.45 0.00002 0.01373 -0.31 0.60

Year 4 Half 1 Year 4 Half 2

BAC 0.001550 0.019710 -0.48 0.96 -0.00341 0.02454 -0.31 1.66

KO 0.000020 0.009672 -0.59 1.57 0.00106 0.01002 -0.24 1.70

T 0.000116 0.009312 -0.23 0.81 0.00069 0.01029 -0.14 0.49

Year 5 Half 1 Year 5 Half 2

BAC 0.000560 0.001720 0.59 0.57 -0.00458 0.00403 -0.48 4.93

KO 0.000763 0.008065 0.01 0.60 0.00010 0.01269 -0.37 1.48

T 0.000698 0.009489 -0.10 0.24 -0.00047 0.01251 -0.41 1.55

Table B.5: Descriptive Statistics for Logged Data on 3-Month Intervals

Ticker Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

Year 1 Quarter 1 Year 1 Quarter 2

BAC -0.000397 0.006640 -0.05 0.71 -0.00053 0.01078 -0.88 2.87

KO 0.000402 0.005080 1.87 7.53 0.00792 0.00792 -0.67 3.63

T 0.001540 0.01111 0.08 1.08 0.000470 0.01089 -0.29 1.84
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Table B.5: (continued)

Ticker Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

Year 1 Quarter 3 Year 1 Quarter 4

BAC -0.001110 0.008000 -0.12 0.99 0.00028 0.01401 0.33 0.53

KO -0.000020 0.008080 -0.18 -0.54 0.00261 0.00955 0.27 0.21

T 0.000180 0.01284 -0.04 -0.84 0.001000 0.01432 0.09 0.15

Year 2 Quarter 1 Year 2 Quarter 2

BAC -0.001440 0.026660 0.45 0.57 -0.00262 0.02811 1.25 1.96

KO -0.000740 0.013280 -0.05 -0.32 -0.00004 0.01003 -0.05 0.39

T -0.001330 0.02152 0.05 0.32 0.000090 0.01867 -0.39 0.62

Year 2 Quarter 3 Year 2 Quarter 4

BAC -0.002060 0.052700 1.74 4.31 -0.00470 0.08500 -0.74 2.36

KO -0.002090 0.014310 0.20 0.91 -0.00240 0.03294 0.97 4.70

T -0.003570 0.01582 0.20 0.24 -0.002160 0.03973 1.07 3.81

Year 3 Quarter 1 Year 3 Quarter 2

BAC -0.020300 0.098800 -0.06 2.27 0.00480 0.12130 0.06 0.39

KO -0.000480 0.022990 0.56 0.75 0.00012 0.02000 0.43 1.98

T -0.001310 0.03228 0.33 0.22 0.000630 0.02344 0.15 0.24

Year 3 Quarter 3 Year 3 Quarter 4

BAC 0.007760 0.050030 0.68 2.27 -0.00023 0.02894 -0.24 0.25

KO 0.002250 0.013670 0.99 1.42 0.00107 0.00889 -0.04 0.41

T 0.000360 0.01516 -0.36 0.53 -0.000340 0.01218 -0.24 0.49

Year 4 Quarter 1 Year 4 Quarter 2

BAC 0.000620 0.020890 -0.27 0.55 0.00248 0.01857 -0.74 1.79

KO 0.000270 0.009140 -0.47 0.57 -0.00023 0.01024 -0.67 2.25

T -0.000190 0.00994 0.07 0.89 0.000420 0.0087 -0.64 0.82

Year 4 Quarter 3 Year 4 Quarter 4

BAC -0.003680 0.028130 -0.46 1.52 -0.00314 0.02056 0.15 0.74

KO 0.000470 0.012090 -0.37 0.72 0.00164 0.00744 0.77 2.13

T -0.000070 0.01147 0.08 0.19 0.001460 0.00898 -0.43 1.02

Year 5 Quarter 1 Year 5 Quarter 2

BAC 0.002880 0.022040 0.40 -0.04 -0.00180 0.01576 0.65 1.35

KO 0.000390 0.007950 0.24 1.15 0.00114 0.00822 -0.21 0.33

T -0.000570 0.00934 -0.55 0.84 0.001980 0.00954 0.30 -0.65

Year 5 Quarter 3 Year 5 Quarter 4

BAC -0.003730 0.017110 0.12 0.12 -0.00541 0.06204 -0.35 1.69

KO 0.000130 0.007960 0.73 3.56 0.00007 0.01606 -0.45 0.15

T -0.000980 0.00817 -0.26 0.20 0.000030 0.01566 -0.45 0.57
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Table B.6: Descriptive Statistics for Logged Data on 1-Month Intervals

Ticker Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

Nov-06 Dec-06

BAC -0.000020 0.005940 0.50 0.63 -0.000430 0.007450 -0.22 1.58

KO 0.000112 0.004339 0.37 0.30 0.001490 0.006820 2.12 6.50

T -0.000480 0.012600 0.04 0.28 0.002640 0.006870 -0.43 0.14

Jan-07 Feb-07

BAC -0.000760 0.006800 -0.17 0.07 -0.001780 0.010650 -2.43 7.91

KO -0.000385 0.003620 0.19 -0.12 -0.001340 0.008010 -2.10 6.82

T 0.002560 0.013000 0.36 1.14 -0.001170 0.011730 -1.35 3.87

Mar-07 Apr-07

BAC 0.000170 0.012870 -0.38 1.26 -0.000120 0.008640 -0.24 -0.25

KO 0.001270 0.007850 -0.70 1.02 0.004180 0.007320 0.89 3.19

T 0.003140 0.012200 0.21 0.23 -0.000910 0.008180 -0.19 -0.35

May-07 Jun-07

BAC -0.000170 0.005160 -1.74 4.58 -0.001740 0.007950 0.23 0.49

KO 0.000690 0.008090 -0.12 -0.54 -0.000620 0.006520 0.00 -0.90

T 0.002980 0.009210 -0.18 -0.61 0.000180 0.015300 -0.18 -1.21

Jul-07 Aug-07

BAC -0.001450 0.010430 0.09 0.26 0.002890 0.016930 0.17 -0.17

KO -0.000180 0.009670 -0.31 -0.71 0.001370 0.010780 0.72 0.12

T -0.002760 0.013360 0.60 -0.42 0.000780 0.018800 0.04 -0.48

Sep-07 Oct-07

BAC -0.000430 0.012080 0.93 2.68 -0.001760 0.012360 -0.29 0.35

KO 0.003490 0.010030 -0.34 0.86 0.003130 0.008000 0.45 0.95

T 0.003130 0.013820 -0.18 -0.43 -0.000540 0.008960 0.69 0.04

Nov-07 Dec-07

BAC -0.002170 0.029390 -0.04 -0.63 -0.005580 0.016630 -0.17 0.36

KO 0.000260 0.012350 0.47 -0.75 -0.000590 0.008860 -0.55 0.23

T -0.004260 0.020080 -0.52 -0.23 0.004200 0.020240 1.05 0.87

Jan-08 Feb-08

BAC 0.003220 0.031640 0.63 0.39 -0.005260 0.020320 -0.48 -1.06

KO -0.001880 0.017550 -0.05 -1.05 -0.000460 0.010730 -0.47 -1.07

T -0.003650 0.023980 -0.09 -0.15 -0.005000 0.023360 -0.60 -0.45

Mar-08 Apr-08

BAC -0.002360 0.037360 1.39 1.10 -0.000450 0.025450 1.33 2.47

KO 0.002020 0.011140 0.25 1.80 -0.001520 0.008310 -0.42 -0.63

T 0.004750 0.018860 0.32 -0.61 0.000480 0.012300 0.17 0.87
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Table B.6: (continued)

Ticker Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

May-08 Jun-08

BAC -0.004700 0.019530 1.02 1.08 -0.016860 0.025590 -0.06 -0.56

KO -0.001320 0.010860 0.48 1.83 -0.004610 0.015800 0.59 1.24

T 0.001440 0.014040 -0.17 0.14 -0.008060 0.016150 0.69 0.28

Jul-08 Aug-08

BAC 0.014600 0.082600 0.82 -0.19 -0.002620 0.040380 -0.40 -1.02

KO -0.000420 0.015940 -0.16 0.88 0.000520 0.015010 0.32 -0.47

T -0.004060 0.016410 0.25 1.89 0.001790 0.016770 0.53 -1.02

Sep-08 Oct-08

BAC 0.005600 0.105000 -0.56 0.69 -0.016100 0.096200 -0.90 2.48

KO 0.000740 0.018730 -0.29 0.19 -0.007900 0.050800 1.14 1.78

T -0.006480 0.030840 -0.53 0.18 -0.001800 0.058600 1.11 1.31

Nov-08 Dec-08

BAC -0.019900 0.087600 1.07 3.09 -0.006200 0.080000 -0.61 2.24

KO 0.003090 0.030120 0.71 -0.45 -0.001510 0.022410 -0.08 0.99

T 0.003240 0.043740 0.14 -0.61 -0.000090 0.028490 0.13 0.14

Jan-09 Feb-09

BAC -0.036200 0.126300 -0.01 1.79 -0.026900 0.135900 0.09 -0.16

KO -0.002760 0.015200 -0.30 -1.16 -0.002360 0.026760 1.15 2.07

T -0.006970 0.022740 0.12 -0.59 -0.001850 0.024750 -0.58 -0.46

Mar-09 Apr-09

BAC 0.024800 0.123200 0.31 -0.72 0.012300 0.105100 0.00 4.22

KO 0.003320 0.020600 -0.76 0.74 -0.000940 0.011190 -0.23 0.75

T 0.002660 0.027610 0.73 0.03 0.000750 0.018030 -0.47 0.07

May-09 Jun-09

BAC 0.011600 0.073400 0.70 0.49 0.007190 0.039520 -0.73 1.65

KO 0.006640 0.017200 0.89 0.33 -0.001090 0.011750 1.10 2.10

T -0.001650 0.019310 -0.24 0.46 0.000090 0.011120 0.28 -0.53

Jul-09 Aug-09

BAC 0.004940 0.033380 0.68 0.48 0.008670 0.029390 -0.08 0.42

KO 0.001640 0.011280 0.14 0.88 -0.001090 0.008820 -0.34 0.13

T 0.002370 0.014860 -0.61 -0.13 -0.000340 0.009080 -0.43 0.67

Sep-09 Oct-09

BAC -0.001850 0.023910 -0.63 1.38 -0.006770 0.031980 -0.21 -0.29

KO 0.004590 0.009170 0.25 0.45 -0.000330 0.008000 -0.47 0.12

T 0.001720 0.013540 0.19 -0.24 -0.002310 0.013420 -0.65 0.40
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Table B.6: (continued)

Ticker Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

Nov-09 Dec-09

BAC 0.003980 0.019860 0.47 -0.28 -0.002220 0.016440 0.06 0.00

KO 0.003350 0.008370 -0.41 0.48 -0.000150 0.008650 -0.96 2.16

T 0.002300 0.009020 1.56 2.62 0.001720 0.008030 -0.79 0.01

Jan-10 Feb-10

BAC 0.000380 0.026140 -0.76 0.46 0.004650 0.022430 -0.71 1.37

KO -0.002350 0.009860 -0.07 0.40 -0.001430 0.014120 -0.71 1.60

T -0.004770 0.011460 0.33 0.58 -0.001100 0.008180 -0.41 0.82

Mar-10 Apr-10

BAC 0.003000 0.011640 -0.24 -0.54 -0.000050 0.021040 -0.82 1.44

KO 0.001840 0.007160 -0.02 -0.18 -0.001300 0.008860 0.07 -0.77

T 0.001770 0.007440 -1.47 3.19 0.000390 0.010390 -0.43 0.46

May-10 Jun-10

BAC -0.005940 0.033780 0.13 0.47 -0.004140 0.022090 0.22 -0.70

KO -0.001860 0.013460 -0.05 0.62 -0.001150 0.013810 -0.31 0.12

T -0.003330 0.012780 0.37 -0.05 -0.000210 0.012780 0.22 0.18

Jul-10 Aug-10

BAC -0.001060 0.028700 -1.64 4.94 -0.005430 0.014620 0.30 0.03

KO 0.004310 0.007650 0.89 0.25 0.000580 0.008870 0.68 1.49

T 0.003170 0.007770 0.62 1.37 0.001870 0.010930 -0.21 -0.13

Sep-10 Oct-10

BAC 0.002280 0.020740 0.97 1.08 -0.006410 0.025030 -0.34 -0.53

KO 0.002150 0.007630 1.46 3.84 0.002230 0.005610 0.21 0.68

T 0.002570 0.005740 0.63 0.40 -0.000130 0.009690 -0.76 1.39

Nov-10 Dec-10

BAC -0.002130 0.021900 0.57 0.04 0.008970 0.020470 0.27 -0.55

KO 0.001420 0.008340 0.26 0.63 0.001830 0.008000 0.55 2.10

T -0.001230 0.008410 0.49 -0.46 0.002530 0.006620 1.13 1.53

Jan-11 Feb-11

BAC 0.001440 0.023330 0.60 1.19 0.002100 0.017230 0.03 1.68

KO -0.002270 0.007180 -0.45 1.12 0.000890 0.006390 0.52 2.25

T -0.003270 0.011930 -0.77 -0.53 0.001620 0.007220 -0.25 -0.73

Mar-11 Apr-11

BAC -0.003020 0.017230 1.38 2.05 -0.004100 0.012240 -0.43 0.12

KO 0.001620 0.010390 -0.57 -0.13 0.000840 0.007270 0.30 -0.20

T 0.003290 0.012030 0.10 -1.19 0.000830 0.008470 0.62 -0.49
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Table B.6: (continued)

Ticker Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

May-11 Jun-11

BAC -0.002100 0.010960 0.47 0.10 -0.003160 0.020150 -0.28 -0.22

KO -0.000460 0.006150 0.11 0.82 0.000330 0.008250 -0.87 0.81

T 0.000670 0.008650 -0.04 0.65 -0.000220 0.007970 -0.29 -1.27

Jul-11 Aug-11

BAC -0.006050 0.019260 0.73 0.19 -0.007500 0.082900 -0.43 1.14

KO 0.000530 0.009560 1.97 5.75 0.001530 0.020860 -0.56 -0.25

T -0.003550 0.007630 -0.92 1.17 -0.001170 0.021680 -0.39 -0.45

Sep-11 Oct-11

BAC -0.013760 0.041140 0.26 -0.49 0.005200 0.053600 -0.21 -0.63

KO -0.001990 0.014520 -0.10 -1.10 0.000530 0.011360 -1.08 2.16

T 0.000070 0.011820 -0.25 -1.40 0.001300 0.011170 0.28 -0.17

Table B.7: Anderson-Darling Values (Note: * represents AD values with pvalues less

than .05 and ** represents AD vales with pvalues less than .01)

Interval Distribution BAC KO T S&P Wilshire

Normal 66.753** 22.600** 18.784** 30.880** 29.290**

5-Year Weibull 154.312** 152.290** 135.129** 105.655** 97.414**

3-Parameter 66.696** 22.558** 18.744** 30.838** 29.249**

Normal 3.271** 1.584** 0.352 4.625** 4.155**

Year 1 Weibull 11.015** 8.642** 4.189** 7.443** 6.207**

3-Parameter 3.243** 1.562** 0.345 4.596** 4.128**

Normal 6.503** 5.205** 3.474** 5.512** 5.314**

Year 2 Weibull 17.538** 28.620** 22.626** 21.245** 20.202**

3-Parameter 6.458** 5.156** 3.435** 5.466** 5.270**

Normal 6.491** 2.286** 1.927** 2.667** 2.490**

Year 3 Weibull 15.966** 12.933** 9.815** 7.412** 6.870**

3-Parameter 6.453** 2.260** 1.906** 2.643** 2.467**
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Table B.7: (continued)

Interval Distribution BAC KO T S&P Wilshire

Normal 1.218** 2.693** 1.184** 3.160** 2.958**

Year 4 Weibull 4.109** 6.510** 4.579** 8.540** 8.168**

3-Parameter 1.201** 2.671** 1.172** 3.135** 2.933**

Normal 6.295** 2.049** 0.662 4.722** 4.402**

Year 5 Weibull 16.661** 6.691** 3.848** 9.574** 9.633**

3-Parameter 6.250** 2.024** 0.648 4.688** 4.295**

Normal 1.683** 1.767** 0.655 2.221** 2.185**

Y1H1 Weibull 3.286** 6.821** 3.03** 2.768** 2.368**

3-Parameter 1.651** 1.728** 0.638 2.181** 2.148**

Normal 1.623** 0.524 0.206 1.71** 1.465**

Y1H2 Weibull 5.894** 2.908** 1.824** 2.574** 2.034**

3-Parameter 1.601** 0.52 0.209 1.694*8 1.452**

Normal 1.188** 0.285 0.368 0.320 0.300

Y2H1 Weibull 5.982** 1.51** 1.873** 2.674** 2.456**

3-Parameter 1.175** 0.285 0.360 0.315 0.297

Normal 2.166** 3.015** 3.338** 3.917** 3.920**

Y2H2 Weibull 5.895** 12.953** 13.027** 10.416** 10.012**

3-Parameter 2.131** 2.967** 3.294** 3.874** 3.879**

Normal 1.167** 0.643 0.528 0.344 0.321

Y3H1 Weibull 4.372** 4.573** 3.129** 1.760** 1.571**

3-Parameter 1.148** 0.63 0.522 0.337 0.316

Normal 1.351** 1.300** 0.236 0.694 0.665

Y3H2 Weibull 7.808** 6.900** 1.338** 1.917** 1.887**

3-Parameter 1.321** 1.280** 0.231 0.687 0.658
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Table B.7: (continued)

Interval Distribution BAC KO T S&P Wilshire

Normal 0.947* 0.881* 0.474 1.911** 1.754**

Y4H1 Weibull 1.707** 1.559** 1.955** 1.481** 1.295**

3-Parameter 0.933* 0.865* 0.463 1.896** 1.740**

Normal 0.765* 2.338** 0.965* 1.554** 1.438**

Y4H2 Weibull 2.850** 5.150** 2.752** 4.503** 4.254**

3-Parameter 0.746* 2.314** 0.954* 1.534** 1.418**

Normal 0.708 0.344 0.222 1.634** 1.416**

Y5H1 Weibull 4.263** 2.526** 1.871** 2.990** 2.558**

3-Parameter 0.702 0.334 0.217 1.615** 1.399**

Normal 2.572** 1.221** 0.669 1.107** 1.04**

Y5H2 Weibull 6.289** 2.792** 2.031** 2.542** 2.645**

3-Parameter 2.536** 1.201** 0.654 1.084** 1.016*

Normal 2.666** 0.520 0.241 0.515 0.392

Y2Q3 Weibull 6.591** 2.070** 1.430** 0.784* 0.718

3-Parameter 2.636** 0.507 0.237 0.517 0.393

Normal 0.723 1.384** 1.402** 1.105** 1.085**

Y2Q4 Weibull 1.083** 5.332** 5.057** 3.294** 3.100**

3-Parameter 0.698 1.343** 1.370** 1.079** 1.061**

Normal 0.884* 0.536 0.407 0.288 0.294

Y3Q1 Weibull 2.642** 2.330** 1.642** 0.788* 0.678

3-Parameter 0.856* 0.530 0.407 0.290 0.296

Normal 0.457 0.401 0.263 0.296 0.268

Y3Q2 Weibull 1.672** 2.560** 1.344** 1.360** 1.296**

3-Parameter 0.449 0.384 0.258 0.289 0.263
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Table B.7: (continued)

Interval Distribution BAC KO T S&P Wilshire

Normal 0.839* 1.151** 0.195 0.735 0.741

Y3Q3 Weibull 3.574** 3.710** 0.545 1.594** 1.644**

3-Parameter 0.813* 1.140** 0.194 0.733 0.738

Normal 0.283 0.254 0.218 0.471 0.514

Y3Q4 Weibull 0.725 1.036** 0.896* 0.325 0.343

3-Parameter 0.278 0.246 0.211 0.472 0.517

Normal 0.517 1.017* 0.542 0.474 0.443

Y4Q3 Weibull 1.175** 1.708** 1.758** 1.711** 1.637**

3-Parameter 0.499 1.006* 0.536 0.465 0.434

Normal 0.366 1.092** 0.933* 0.804* 0.725

Y4Q4 Weibull 1.710** 3.888** 1.344** 2.522** 2.333**

3-Parameter 0.356 1.068** 0.920* 0.783* 0.706

Normal 0.647 0.351 0.300 0.560 0.567

May 08 Weibull 1.197** 1.039** 0.398 0.325 0.289

3-Parameter 0.658 0.334 0.306 0.572 0.578

Normal 0.260 0.333 0.388 0.566 0.543

Jun 08 Weibull 0.413 0.935 0.968 0.522 0.595

3-Parameter 0.279 0.329 0.394 0.564 0.540

Normal 0.616 0.211 0.453 0.269 0.217

Jul 08 Weibull 1.105** 0.472 1.077** 0.394 0.356

3-Parameter 0.638 0.202 0.431 0.296 0.242

Normal 0.420 0.224 0.748* 0.307 0.298

Aug 08 Weibull 0.277 0.530 1.047** 0.598 0.490

3-Parameter 0.454 0.239 0.790* 0.322 0.318
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Table B.7: (continued)

Interval Distribution BAC KO T S&P Wilshire

Normal 0.297 0.219 0.499 0.382 0.390

Sep 08 Weibull 0.248 0.341 0.432 0.285 0.348

3-Parameter 0.291 0.218 0.508 0.385 0.396

Normal 0.381 0.830* 0.662 0.472 0.401

Oct 08 Weibull 0.386 1.725** 1.534** 1.245** 1.121**

3-Parameter 0.363 0.823* 0.658 0.468 0.397

Normal 0.538 0.574 0.188 0.349 0.337

Nov 08 Weibull 1.481** 0.886* 0.349 0.492 0.473

3-Parameter 0.520 0.604 0.207 0.387 0.374

Normal 0.472 0.309 0.382 0.383 0.439

Dec 08 Weibull 0.652 0.677 0.736* 0.336 0.275

3-Parameter 0.453 0.299 0.386 0.366 0.348

Normal 0.439 0.519 0.331 0.358 0.434

Jan 09 Weibull 0.901* 0.455 0.657 0.556 0.553

3-Parameter 0.420 0.560 0.349 0.373 0.454

Normal 0.159 0.445 0.446 0.268 0.277

Feb 09 Weibull 0.413 1.175** 0.287 0.402 0.454

3-Parameter 0.167 0.439 0.470 0.269 0.276

Normal 0.402 0.579 0.516 0.171 0.161

Mar 09 Weibull 0.786* 0.441 1.149** 0.627 0.589

3-Parameter 0.426 0.581 0.528 0.175 0.167

Normal 0.965* 0.290 0.243 0.308 0.254

Apr 09 Weibull 1.738** 0.571 0.295 0.153 0.125

3-Parameter 0.927* 0.283 0.247 0.306 0.251
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Table B.7: (continued)

Interval Distribution BAC KO T S&P Wilshire

Normal 0.335 0.490 0.179 0.236 0.271

May 09 Weibull 0.948* 1.041** 0.357 0.419 0.505

3-Parameter 0.335 0.500 0.178 0.264 0.297

Normal 0.301 0.444 0.312 0.511 0.538

Jun 09 Weibull 0.321 1.312** 0.636 0.612 0.648

3-Parameter 0.287 0.435 0.329 0.501 0.526

Normal 0.297 0.425 0.330 0.875* 0.781*

Jul 09 Weibull 0.895* 0.990* 0.161 1.226** 1.097**

3-Parameter 0.299 0.416 0.344 0.862 0.769

Normal 0.408 0.251 0.282 0.188 0.178

Aug 09 Weibull 0.697 0.283 0.310 0.205 0.232

3-Parameter 0.407 0.255 0.277 0.187 0.181

Normal 0.298 0.240 0.502 0.283 0.269

Sep 09 Weibull 0.414 0.613 0.861* 0.305 0.268

3-Parameter 0.289 0.748 0.521 0.288 0.273

Normal 0.157 0.780* 0.256 0.195 0.237

Oct 09 Weibull 0.316 0.708 0.215 0.159 0.175

3-Parameter 0.165 0.792* 0.262 0.208 0.251
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Table B.8: Option Estimates for 30-day option using volatility from BAC Oct 08 with

95% Confidence Interval and Standard Deviation

Type of Option Distribution Cmean
Confidence Interval

Cstd
Lower Upper

DITM

Normal 4.0272 3.8615 4.1929 0.4707

Student-t 4.0894 4.0027 4.1762 1.3993

3-Para 3.5705 3.5581 3.5828 2.8159

ITM

Normal 0.5697 0.4196 0.7198 0.4263

Student-t 0.6384 0.5968 0.6801 0.6722

3-Para 2.7827 2.7706 2.7948 2.7631

ATM

Normal 0.2114 0.1065 0.3162 0.2978

Student-t 0.3145 0.2811 0.3479 0.5394

3-Para 2.6734 2.6613 2.6854 2.7520

OTM

Normal 0.0447 -0.0033 0.0927 0.1364

Student-t 0.1852 0.1298 0.2407 0.8947

3-Para 2.5838 2.5717 2.5960 2.7633

FOTM

Normal 0.0000 0.0000 0.0000 0.0000

Student-t 0.0071 -0.0069 0.0211 0.2259

3-Para 1.9354 1.9240 1.9468 2.5938
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Table B.9: Option Estimates for 30-day option using volatility from BAC 5 year with

95% Confidence Interval and Standard Deviation

Type of Option Distribution Cmean
Confidence Interval

Cstd
Lower Upper

DITM

Normal 4.0201 3.9379 4.1024 0.2336

Student-t 4.0178 3.9949 4.0407 0.3699

3-Para 3.0919 3.0155 3.1682 1.2318

ITM

Normal 0.5471 0.4643 0.6298 0.2350

Student-t 0.5540 0.5324 0.5757 0.3489

3-Para 2.2178 2.1396 2.2960 1.2611

ATM

Normal 0.1295 0.0726 0.1864 0.1616

Student-t 0.1625 0.1422 0.1828 0.3277

3-Para 2.0955 2.0220 2.1690 1.1863

OTM

Normal 0.0022 -0.0038 0.0083 0.0173

Student-t 0.0333 0.0227 0.0439 0.1712

3-Para 1.9929 1.9174 2.0684 1.2182

FOTM

Normal 0.0000 0.0000 0.0000 0.0000

Student-t 0.0000 0.0000 0.0000 0.0000

3-Para 1.1726 1.1039 1.2413 1.1088
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Table B.10: Option Estimates for 30-day option using volatility from T Oct 08 with

95% Confidence Interval and Standard Deviation

Type of Option Distribution Cmean
Confidence Interval

Cstd
Lower Upper

DITM

Normal 4.0235 3.9215 4.1254 0.2895

Student-t 4.0292 3.9982 4.0602 0.5004

3-Para 3.1461 3.0530 3.2391 1.5017

ITM

Normal 0.5488 0.4499 0.6476 0.2808

Student-t 0.6065 0.5761 0.6369 0.4907

3-Para 2.2420 2.1514 2.3327 1.4632

ATM

Normal 0.1387 0.0742 0.2032 0.1832

Student-t 0.1870 0.1668 0.2073 0.3270

3-Para 2.1963 2.1048 2.2878 1.4764

OTM

Normal 0.0079 -0.0061 0.0218 0.0396

Student-t 0.0380 0.0266 0.0495 0.1847

3-Para 2.0410 1.9520 2.1300 1.4355

FOTM

Normal 0.0000 0.0000 0.0000 0.0000

Student-t 0.0000 0.0000 0.0000 0.0000

3-Para 1.3729 1.2858 1.4600 1.4053
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Table B.11: Option Estimates for 30-day option using volatility from KO Dec 07 with

95% Confidence Interval and Standard Deviation

Type of Option Distribution Cmean
Confidence Interval

Cstd
Lower Upper

DITM

Normal 4.0311 4.0158 4.0464 0.0435

Student-t 4.0233 4.0182 4.0285 0.0833

3-Para 2.9249 2.9123 2.9375 0.2031

ITM

Normal 0.5451 0.5305 0.5597 0.0416

Student-t 0.5484 0.5433 0.5534 0.0818

3-Para 2.0921 2.0795 2.1047 0.2032

ATM

Normal 0.0511 0.0377 0.0646 0.0382

Student-t 0.0592 0.0528 0.0656 0.1027

3-Para 1.9675 1.9547 1.9803 0.2064

OTM

Normal 0.0000 0.0000 0.0000 0.0000

Student-t 0.0001 -0.0001 0.0002 0.0019

3-Para 1.8653 1.8520 1.8787 0.2150

FOTM

Normal 0.0000 0.0000 0.0000 0.0000

Student-t 0.0000 0.0000 0.0000 0.0000

3-Para 1.0263 1.0136 1.0390 0.2051
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Table B.12: Option Estimates for 30-day option using volatility from SP Oct 08 with

95% Confidence Interval and Standard Deviation

Type of Option Distribution Cmean
Confidence Interval

Cstd
Lower Upper

DITM

Normal 39.2424 28.4796 50.0053 30.5740

Student-t 43.5767 40.499 46.6544 49.6561

3-Para 297.4209 287.0188 307.8230 167.8307

ITM

Normal 19.7909 11.7650 27.8168 22.7990

Student-t 26.8870 23.9547 29.8193 47.3110

3-Para 292.0421 281.6131 302.4711 168.2657

ATM

Normal 17.8427 9.9476 25.7378 22.4276

Student-t 22.8106 20.4002 25.2209 38.8901

3-Para 293.5280 282.5561 304.4999 177.0251

OTM

Normal 13.6840 6.7589 20.6092 19.6722

Student-t 20.8551 18.4381 23.2721 38.9965

3-Para 292.7601 281.8656 303.6546 175.7761

FOTM

Normal 4.9415 0.6679 9.2150 12.1399

Student-t 9.0587 7.1062 11.0112 31.5024

3-Para 283.3558 272.5533 294.1583 174.2912



Appendix C

GRAPHS

C.1 Daily Closing Prices of Indexes Over 5-Year Interval

Figure C.1: DJIA over 5-year interval

Figure C.2: Nasdaq over 5-year interval
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Figure C.3: S&P 500 over 5-year interval
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C.2 5-Year Interval

Figure C.4: Normal probability plots over 5-year interval with a 95% confidence interval

Figure C.5: Student-t probability plots over 5-year interval

Figure C.6: Cauchy probability plots over 5-year interval
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Figure C.7: Weibull probability plots over 5-year interval with a 95% confidence interval

Figure C.8: 3-parameter lognormal probability plots over 5-year interval with a 95%

confidence interval
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C.3 1-Year Interval

Figure C.9: Normal probability plots over 1-year intervals with a 95% confidence in-

terval
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Figure C.10: Student-t probability plot over 1-year intervals
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Figure C.11: Cauchy probability plot over 1-year intervals
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Figure C.12: Weibull probability plots over 1-year intervals with a 95% confidence

interval
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Figure C.13: 3-Parameter Lognormal probability plots over 1-year intervals with a 95%

confidence interval
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C.4 6-Month Intervals

Figure C.14: Normal probability plots over 6-month intervals with a 95% confidence

interval
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Figure C.15: Normal probability plots over 6-month intervals with a 95% confidence

interval (Cont’d)
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Figure C.16: Student-t probability plots over 6-month intervals with a 95% confidence

interval
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Figure C.17: Student-t probability plots over 6-month intervals
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Figure C.18: Cauchy probability plots over 6-month intervals
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Figure C.19: Cauchy probability plots over 6-month intervals (Cont’d)



81

Figure C.20: Weibull probability plots over 6-month intervals with a 95% confidence

interval
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Figure C.21: Weibull probability plots over 6-month intervals with a 95% confidence

interval (Cont’d)
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Figure C.22: 3-parameter lognormal probability plots over 6-month intervals with a

95% confidence interval
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Figure C.23: 3-parameter lognormal probability plots over 6-month intervals with a

95% confidence interval (Cont’d)
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C.5 3-Month Intervals

Figure C.24: Normal probability plots over 3-month intervals with a 95% confidence

interval
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Figure C.25: Student-t probability plots over 3-month intervals
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Figure C.26: Cauchy probability plots over 3-month intervals



88

Figure C.27: Weibull probability plots over 3-month intervals with a 95% confidence

interval
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Figure C.28: 3-parameter lognormal probability plots over 3-month intervals with a

95% confidence interval
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C.6 1-Month Intervals

Figure C.29: Normal probability plots over 1-month intervals with a 95% confidence

interval
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Figure C.30: Normal probability plots over 1-month intervals with a 95% confidence

interval (cont’d)
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Figure C.31: Student-t probability plots over 1-month intervals
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Figure C.32: Student-t probability plots over 1-month intervals (cont’d)
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Figure C.33: Student-t probability plots over 1-month intervals (cont’d)
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Figure C.34: Cauchy probability plots over 1-month intervals
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Figure C.35: Cauchy probability plots over 1-month intervals (cont’d)
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Figure C.36: Cauchy probability plots over 1-month intervals (cont’d)



98

Figure C.37: Weibull probability plots over 1-month intervals with a 95% confidence

interval
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Figure C.38: Weibull probability plots over 1-month intervals with a 95% confidence

interval (cont’d)
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Figure C.39: 3-parameter lognormal probability plots over 1-month intervals with a

95% confidence interval
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Figure C.40: 3-parameter lognormal probability plots over 1-month intervals with a

95% confidence interval (cont’d)



Appendix D

MATLAB CODE

% Run th i s code f o r normal d i s t r i b u t i o n

days = 30 ;

S0 = 1360 ; %I n i t a l Stock Pr i ce

K = 1330 ; %St r i k e Pr i ce

r = . 0 2 ; %Treasury bond ra t e correspondg ing to opt ion l i f e

sig = 0 .05036 ; %Standard Deviat ion

m = days+1;

n = 1000 ; %Number o f s imulated paths

T = days /252 ; %Time to maturity ( in days )

t = 1/252;

S = zero s (m , n ) ;

C = zero s (m , n ) ;

q = normrnd (0 , 1 , m , n ) ;

f o r j = 1 : n

S (1 , j )=S0 ;

f o r i = 2 : m

S (i , j ) = S0∗exp ( ( r−0.5∗sig ˆ2) ∗( T+(i−1)∗t ) + sig∗ s q r t ( T+(i−1)∗t ) ∗q (i , j ) ) ;

end

f o r i = 1 : m

C (i , j ) = exp(−r ∗( T+(i−1)∗t ) ) ∗max( S (i , j )−K , 0 ) ;

end

end

Cmean = mean( C (m , : ) ) % Payof f Mean

width = 1.96∗ std ( C (m , : ) ) / sq r t ( m ) ;

Conf = [ Cmean − width , Cmean + width ] % Conf idence I n t e r v a l

Cstd = std ( C (m , : ) )

x = [ 1 : m ] ;

subp lot ( 2 , 1 , 1 ) ;

p l o t (x−1,S )

x l ab e l ( 'Time ( days ) ' )

y l ab e l ( ' Stock Pr i ce ' )

subplot ( 2 , 1 , 2 ) ;

p l o t (x−1,C )

x l ab e l ( 'Time ( days ) ' )

y l ab e l ( ' Cal l Pr i c e ' )
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% Run th i s code f o r Student−t d i s t r i b u t i o n

days = 30 ;

S0 = 1360 ; % I n i t a l Stock Pr i ce

K = 1390 ; % St r i k e Pr i ce

r = . 0 2 ; % Treasury bond ra t e correspondg ing to opt ion l i f e

sig = 0 .05036 ; % Standard Deviat ion

m = days+1;

n = 1000 ; % Number o f s imulated paths

T = days /252 ; % Time to maturity ( in days )

t = 1/252;

S = zero s (m , n ) ;

C = zero s (m , n ) ;

q = trnd ( 2 . 6 5 , m , n ) ;

f o r j = 1 : n

S (1 , j )=S0 ;

f o r i = 2 : m

S (i , j ) = S0∗exp ( ( r−0.5∗sig ˆ2) ∗( T+(i−1)∗t ) + sig∗ s q r t ( T+(i−1)∗t ) ∗q (i , j ) ) ;

end

f o r i = 1 : m

C (i , j ) = exp(−r ∗( T+(i−1)∗t ) ) ∗max( S (i , j )−K , 0 ) ;

end

end

Cmean = mean( C (m , : ) )

width = t_confidence_interval ( C (m , : ) ) ;

Conf = [ Cmean − width , Cmean + width ]

Cstd = std ( C (m , : ) )

x = [ 1 : m ] ;

subp lot ( 2 , 1 , 1 ) ;

p l o t (x−1,S )

x l ab e l ( 'Time ( days ) ' )

y l ab e l ( ' Stock Pr i ce ' )

subplot ( 2 , 1 , 2 ) ;

p l o t (x−1,C )

x l ab e l ( 'Time ( days ) ' )

y l ab e l ( ' Cal l Pr i c e ' )
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% Run th i s code f o r 3−parameter lognormal d i s t r i b u t i o n

days = 30 ;

S0 = 1360 ; % I n i t a l Stock Pr i ce

K = 1390 ; % St r i k e Pr i ce

r = . 0 2 ; % Treasury bond ra t e correspondg ing to opt ion l i f e

sig = 0 .05036 ; % Standard Deviat ion

m = days+1;

n = 1000 ; % Number o f s imulated paths

T = days /252 ; % Time to maturity ( in days )

t = 1/252;

S = zero s (m , n ) ;

C = zero s (m , n ) ;

q = lognrnd (r , sig , m , n ) + . 00005 ;

f o r j = 1 : n

S (1 , j )=S0 ;

f o r i = 2 : m

S (i , j ) = S (i−1,j ) ∗( q (i , j ) ) ;

end

f o r i = 1 : m

C (i , j ) = ( ( T+(i−1)∗t ) ) ∗max( S (i , j )−K , 0 ) ;

end

end

Cmean = mean( C (m , : ) )

width = t_confidence_interval ( C (m , : ) ) ;

Conf = [ Cmean − width , Cmean + width ]

Cstd = std ( C (m , : ) )

x = [ 1 : m ] ;

subp lot ( 2 , 1 , 1 ) ;

p l o t (x−1,S )

x l ab e l ( 'Time ( days ) ' )

y l ab e l ( ' Stock Pr i ce ' )

subplot ( 2 , 1 , 2 ) ;

p l o t (x−1,C )

x l ab e l ( 'Time ( days ) ' )

y l ab e l ( ' Cal l Pr i c e ' )
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