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TIME SERIES ANALYSIS OF STOCK PRICES USING THE BOX-JENKINS 
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by 

SHAKIRA GREEN 

(Under the Direction of Patricia Humphrey) 

 

ABSTRACT 

A time series is a sequence of data points, typically measured at uniform time intervals. 

Examples occur in a variety of fields ranging from economics to engineering, and 

methods of analyzing time series constitute an important part of Statistics. Time series 

analysis comprises methods for analyzing time series data in order to extract meaningful 

characteristics of the data and forecast future values. The Autoregressive Integrated 

Moving Average (ARIMA) models, or Box-Jenkins methodology, are a class of linear 

models that are capable of representing stationary as well as nonstationary time series. 

ARIMA models rely heavily on autocorrelation patterns. This paper will explore the 

application of the Box-Jenkins approach to stock prices, in particular sampling at 

different time intervals in order to determine if there is some optimal frame and if there 

are similarities in autocorrelation patterns of stocks within the same industry. 
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CHAPTER 1 

 

1.1 Motivation 

The stock market is a general term referring to the organized trading of securities 

through the various physical and electronic exchanges and the over the counter market. 

The stock market is one of the most vital areas of a market economy, because it provides 

companies with access to capital by allowing investors to buy shares of ownership in a 

company. By buying shares of ownership, investors stand to possibly gain money by 

profiting from companies’ future prosperity. Although there are millions to be gained by 

buying shares and then selling them for a profit, not all investors are successful in gaining 

a return on their investment, and even fewer are successful in making a lot of money. 

This happens because the price of stocks is constantly fluctuating and at any given 

moment, the price of a stock could fall below the price at which it was bought; selling the 

shares at this reduced price results in the investors losing money.  A natural solution to 

not losing money would be for investors to sell their shares before they begin to diminish 

in value, ideally at a point when the stock’s price is higher than when it was purchased by 

the investor.  

 

1.2 Introduction 

A statistical approach to being able to determine when this desired point in time 

would be is to first look at a stock’s price at various times of interest, and then represent 

this data as a time series. Then, after an analysis of the time series is carried out, an 

appropriate model can be used to forecast prices and possibly help the investor determine 
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when to buy or sell. This chapter will provide the reader with the necessary background 

information on time series to be able to analyze the series, but also to identify the 

necessary model and make forecasts. Although this paper only highlights two modeling 

approaches: Box-Jenkins procedures and regression models, there are other techniques 

that may be more applicable to different areas of interest. This paper was written with the 

idea in mind that these procedures are being applied to stock values, but is not limited to 

only this case.  

 

1.3 Background Information 

A time series is a collection of observations made sequentially and typically 

equally spaced in time. The special feature of time series analysis is the fact that the 

analysis must take into account the time order because the successive observations are 

usually not independent observations, whereas most other statistical theory is concerned 

with random samples of independent observations.  Methods of analyzing time series 

constitute an important area of statistics. Although there are several objectives that can be 

satisfied by analyzing a time series, they can all be classified as descriptive, explanatory, 

predictive, or control [1].  

Time series are often examined in hopes of discovering a historical pattern that 

can be exploited in the preparation of a forecast. In order to identify this pattern, it is 

often convenient to think of a time series as consisting of several components, and in 

doing so, taking a descriptive approach. The components of a time series are trend, 

seasonal variation, cyclic changes, and irregular factors.  
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Trend is the long-term change in the mean level and often thought of as the 

underlying growth or decline component in the series. The seasonal component is 

concerned with the periodic fluctuation in the series within each year. Seasonal 

fluctuations are most often attributed to social customs or weather changes.  This type of 

behavior where variation is annual in period is most often seen in time series for sales 

figures and temperature readings. Cyclic changes within a time series are similar to the 

seasonal component in that it is revealed by a wavelike pattern. Cyclic changes can be 

thought of as variation across a fixed period due to some physical cause other than 

seasonal effects. Cycles are normally confined to a particular fixed period and can be a 

behavior that takes place over a period of years.  

Once the trend and cyclic variations have been accounted for, the remaining 

movement is attributed to irregular fluctuations and the resulting data is a series of 

residuals. This set of residuals is not always random, so this series of residuals is also 

analyzed to determine if all the cyclic variation has truly been removed.  

When analyzing a time series, an essential step is to plot the observations against 

time and then join successive points with line segments. The line segments are not solely 

for aesthetics, but also to reinforce the feeling that a continuous time scale exists between 

the plotted points [1].  The plotted time series is used to obtain simple descriptive 

measures of the main properties of the series.  This plot can immediately reveal features 

such as trend, seasonal variation, discontinuities, and outliers that may be present in the 

data.  

As previously mentioned time series are also analyzed for the purpose of 

prediction or forecasting. When successive observations are dependent, future values may 
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be predicted from past observations. If the future values of the time series can be 

predicted exactly then the times series is classified as deterministic. It is most often the 

case that these predicted values can only be partially determined from past observations.  

 

1.4 Box-Jenkins Methodology 

1.4a. Autocorrelation and Partial Autocorrelation Functions 

The different Box-Jenkins models are identified by the number of autoregressive 

parameters (p), the degree of differencing (d), and the number of moving average 

parameters (q). Any such model can be written using the uniform notation ARIMA (p, d, 

q).  

We begin the investigation of appropriate model type by looking at the 

autocorrelations and partial autocorrelations. The sample autocorrelation coefficient 

(ACF) of lag k is computed for the (n-k) pairs 1 1 2 2 3 3(, ),(, ),(, )(,)k k k nknyyyyyy yy  

and is given by 2

( )( )

( )

ik i

k

i

y yyy
r

yy
. 

This quantity measures the linear relationship between the time series observations 

separated by a lag of k time units. The autocorrelation coefficient is analyzed to 

determine the appropriate order p of the model [5].  

The partial autocorrelation coefficient (PACF) of lag k, denoted, kk , is a measure 

of the correlation between ty  and kty  after adjusting for the presence of 

121 ,,, kttt yyy  . This adjustment is done to see if there is any correlation between ty  

and kty beyond that induced by the correlation ty  has with 121 ,,, kttt yyy  .  
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One method of computing the partial autocorrelation at lag k is to perform a 

regression of ty on 1ty  through kty , using the resulting coefficient of the kty  term as 

the estimate of kk . Another approach is to use an algorithm that recursively generates the 

partial autocorrelation coefficient from knowledge of the autocorrelation coefficients. 

This recursive process is most often carried out by a computer. When kk is graphed for 

lag 1, lag 2 …lag k the result is the partial autocorrelation graph (PACF) of the series. 

If the ACF trails off and the PACF shows spikes, then an autoregressive (AR) 

model with order q equal to the number of significant PACF spikes is considered the 

“best” model. If the PACF trails off and the ACF shows spikes, the moving average 

(MA) model with order q equal to the number of significant ACF spikes is the best 

model. If both the ACF and the PACF trail off then an autoregressive moving average 

(ARMA) model is used with p and q equal to one. If the data had to be differenced for it 

to become stationary, then the ARIMA model is used.  

 

1.4b. ARIMA Models 

Autoregressive models are used when the current level of the series is thought to 

depend on the recent history of the series.  An autoregressive model of order p (AR(p)) or 

ARIMA (p, 0, 0 )) is expressed as   

0112233t t t t ptpty yyy y  

where i  is the autoregressive parameter for ity . In practice AR models higher than 

order 2 are rarely observed. The following figures show the typical ACF and PACF for 

stationary AR(1) and AR(2). 
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Figure 1.1: Typical autocorrelation and partial autocorrelation functions for stationary 

AR(1). After lag 1 the ACF dies off to 0 as an exponential function or damped sine 

wave while the PACF=0 

 

 

 

 

 

 

 

 

 

Figure 1.2: Typical autocorrelation and partial autocorrelation functions for stationary 

AR(2). After lag 2 the ACF dies off to 0 as an exponential function or damped sine 

wave while the PACF=0 

 

Moving average models are based on the fact that ty  may not be most influenced by 

past values, but more so by recent shocks or random errors to the series. That is, the 

current value of a series may be best explained by looking at the most recent q error 
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terms. The moving average model of order q, (MA(q)) or ARIMA (0, 0, q), is expressed 

as,  

0 1122t t t t qtqy  

where i is the moving average parameter for it . We assume ,,, 21 ttt  are 

uncorrelated with one another. The MA model is appropriate when it is believed that the 

effects of the random component, t , may be felt for a few periods beyond the current 

one[2].   It is also worth noting that there is an invertibility imposed on MA models. 

This restriction forces the sum of the moving average parameters to be less than one. 

This condition causes decreasing weights to be given to the past values of the series and 

more importantly guarantees that there is a unique moving average model of order q , 

MA(q), for a given autocorrelation factor [2]. The following figures show the typical 

ACF and PACF for stationary MA(1) and MA(2). 

 

 

 

 

 

 

 

 

Figure 1.3: Typical autocorrelation and partial autocorrelation functions for stationary 

MA(1). After lag 1 the ACF =0 while the PACF dies off to 0 as an exponential 

function or damped sine wave 
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Figure 1.4: Typical autocorrelation and partial autocorrelation functions for stationary 

MA(2). After lag 2 the ACF =0 while the PACF dies off to 0 as an exponential function 

or damped sine wave 

 

The autoregressive and moving average model (ARMA) model is a model that 

contains terms from both the autoregressive and moving average models. However, the 

ARIMA model is integrated, meaning that because it is a stationary model being fitted to 

a differenced series it has to be summed (or integrated) to provide a model for the 

originally nonstationary data. The ARMA model of order p and q, and the ARIMA model 

of order p, d, q are essentially the same except that  the ARIMA model replaces ty with 

the ty  series that has been differenced d times. Differencing involves computing the 

changes (differences) between successive observations of a given time series until it 

becomes stationary. For non-seasonal data, first order differencing is usually adequate 

enough to attain apparent stationary, so that the new series based on }{ 1 Nxx  is 

expressed by 11 tttt xxxy  . Occasionally second-order differencing, if the trend 
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is quadratic, is required using the operator 2 , where 

tttttt xxxxxx 12122

2 2                               

So the model for ARMA (p,q) or ARIMA (p ,0, q) is                                                      

1122 0 1122t t t ptp t t t qtqyyy y  

where ,,, 21 ttt  are uncorrelated with one another. 

The model for ARIMA (p, d, q) is   

 1122 01122t t t ptpt t t qtqwwww  

where ,,, 21 ttt  are uncorrelated with one another and t

d

t yw . 

Pictured below table is a summary of the properties of the ACF and PACF for AR, MA 

and ARMA models. We notice that the behavior of the ACF and PACF are the exact 

opposite for the AR model and MA model.  

Table 1.1  

 

Summary of properties of ACF and PACF for Autoregressive, Moving Average and 

Mixed ARMA models [2] 

 Autoregressive 

Processes 

Moving Average 

Processes 

Mixed Processes 

Autocorrelation 

Function 

Infinite(damped 

exponentials and/or 

damped sine waves) 

 

Tails off 

Finite 

 

Cuts off after lag q 

Infinite(damped 

exponentials and/or 

damped sine waves 

after first q-p lags) 

 

Tails off 

Partial 

Autocorrelation 

Function 

Finite 

 

Cuts off after lag p 

Infinite (dominated 

by damped 

exponentials and/or 

sine waves) 

 

Tails off 

Infinite(damped 

exponentials and/or 

damped sine waves 

after p-q lags) 

 

Tails off 
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1.4c. Other Models 

A variety of different forecasting procedures are available and it is important to 

realize that no single method is universally applicable. The Box-Jenkins methodology 

does not consist of only one model, but rather a family of models. The time series models 

used in Box-Jenkins forecasting are called autoregressive integrated moving average 

(ARIMA) models. The class of ARIMA models is very large and some notable special 

forms of ARIMA models are exponential smoothing, autoregressive models, and random 

walk models. The Box-Jenkins method can be used to forecast discrete or continuous 

data. However, the data must be measured at equally spaced, discrete time intervals. 

Also, ARIMA models can only be applied to stationary series, which is a time series 

whose mean and variance are essentially constant throughout time, or a series which has 

been made stationary by differencing.  

Exponential smoothing is a forecasting technique that attempts to track changes in 

a time series by using the newly observed time series values to update the estimates of the 

parameters describing the time series. In the smoothed form, the new forecast (for time 

t+1) may be thought of as a weighted average of the old forecast (for time t) and the new 

observation (at time t), with weight given to the newly observed value and weight (1- 

) given to the old forecast assuming 10 . Thus ttt yyy ˆ)1(ˆ . The forecast 

for an exponential smoothing model is produced by an ARIMA (0, 1, 1) model with no 

constant term. 

A random walk is a series whose first differences form a sample from a Normal 

distribution. That is, ),0( ~  with ,1 Nyy tttt .  This is exactly the form of an 

ARIMA (0,1,0) model with no constant term. If a nonzero constant term, 0 , is used, the 
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ARIMA (0,1,0) model is then called a random walk with drift [5].  Random walks are 

characterized by extremely high autocorrelations.  That is, adjacent observations are 

highly associated with each other.  The ACFs will be high for the shortest lags (1 and 2) 

and decline slowly as the number of lag periods increase. 
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  Random walk ACF patterns are similar to trend ACF patterns.  A series with 

random walk floats up and down over time whereas the ACF of a trend series shows a 

well-defined pattern in the ACF. Autocorrelations at low lags are very high, and decline 

slowly as the lag increases for a trended series.  
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Figure 1.5: Autocorrelation Function for a Random Walk Series 

Figure 1.6: Autocorrelation function for a trended series  
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1.4d.Carrying out the Box-Jenkins procedure for a nonseasonal series 

The Box–Jenkins forecasting methodology consists of four basic steps. The first step 

involves tentatively identifying a model by examining the behavior of the autocorrelation 

function (ACF) and the partial autocorrelation function (PACF) for the values of a 

stationary time series.   The autocorrelation function is usually displayed as a graph of the 

sample autocorrelation coefficients evaluated for lag 1, lag 2, lag 3… lag k and graphed 

versus k.  

Once the ACF and PACF have been calculated and the behavior of them has been 

examined to determine the number of autoregressive parameters (p), and/or the moving 

average parameters (q) and an appropriate model has been selected, then the next step is 

to use the historical data to estimate the parameters of the tentatively identified model. In 

theory, the parameters of the selected model can be generated through least squares. 

However, because it is sometimes the case that nonlinear least squares algorithms, which 

usually consist of a combination of search routines, that then need to be implemented, 

computer programs are a necessity to complete this step.  

The third step in the Box-Jenkins modeling procedure is to perform a diagnostic 

check. A diagnostic check is carried out to validate the model, or possibly realize that the 

tentative model may need to be modified.   For a model to be considered “good” it should 

have the following properties: the residuals should be approximately Normal, all the 

parameter estimates should have significant p-values, and the model should contain as 

few parameters as possible. The last step is to use the final model to forecast future time 

series values. 
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The following example in time series analysis is based on data that was collected 

at Broadbalk field at Rothamsted from 1892 to 1925. The data is made up of the count of 

the average yield of grain that was harvested annually from 1892 -1925. The Box-Jenkins 

procedure will be used to analyze this series. The following calculations and models are 

created using Minitab. 

19211914190719001893188618791872186518581852

3.5

3.0

2.5

2.0

1.5

1.0

YEAR

Y
IE

L
D

TIME SERIES PLOT _YIELD/YEAR

 
                      Figure 1.7: Time Series Plot of data 

 

The first step in the process was to create a time series plot of the data, which 

displayed the daily average for each year of the yield of wheat, versus the years from 

1852 to 1925. There are some outliers in 1853, 1879, 1916, and1924, but because the data 

goes back over 150 years ago and nothing could be found to explain the outliers, we 

cannot justify or eliminate the outliers. 

 

 

 



14 

 

                        

19211914190719001893188618791872186518581852

3.5

3.0

2.5

2.0

1.5

1.0

YEAR

Y
IE

L
D

MAPE 21.9633

MAD 0.4419

MSD 0.3057

Accuracy Measures

Actual

Fits

Variable

Trend Analysis Plot for YIELD
Linear Trend Model

Yt = 2.578 - 0.003621*t

 
Figure 1.8:  Time Series Plot of data with the trend modeled 

 

The trend analysis displays that there is very little trend, so we compare the ACF 

of the original series to the ACF of a single differenced series to determine if differencing 

is necessary. 
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                   Figure 1.9: Autocorrelation Function of Yield/Year 
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                 Figure 1.10: Plot of Autocorrelation Function of single differenced data 

 

 

Examining the two autocorrelation functions (Figure 1.9 and 1.10) reveals that 

differencing does not cause the ACF to die off any faster. So we can use the series in its 

original form and assume it is stationary.  
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              Figure 1.11: Plot of the Autocorrelation Function for the Yield/Year 
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      Considering the behavior of the ACF and PACF, both trail off, so we let the proposed 

model be AR(1).  Minitab produces the following output: 

Table 1.2 

 Model output for Yield/Year data sampled yearly 

ARIMA Model: YIELD  
 

Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1     0.3875   0.1121   3.46  0.001 

Constant  1.48761  0.06102  24.38  0.000 

Mean      2.42878  0.09963 

 

Number of observations:  74 

Residuals:    SS =  19.7951 (backforecasts excluded) 

              MS =  0.2749  DF = 72 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    4.3   19.2   29.3   40.0 

DF             10     22     34     46 

P-Value     0.935  0.634  0.699  0.719 
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                        Figure 1.12: Histogram of the residuals  
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                    Figure 1.13: Time Series Plot of the residuals 

 

 

From the output we are able to confirm the fact that all the parameters including 

the constant are significantly different from zero, because they have p-values that are 

significantly smaller than .05. Furthermore, the model contains minimal parameters. The 

model for this data is ttt yy 13875.48761.1 . This model tells us that the predicted 

average annual yield was determined by .3875 of the previous year’s yield plus 1.48761 

and some random error. A probability plot of the residuals reveals that they are 

essentially Normal and the time series plot of the residuals contains only noise. These 

diagnostics indicate that a reasonable model has been found 

 

1.4e. Carrying out the Box-Jenkins Procedure for a seasonal series 

The previously mentioned process for the Box-Jenkins procedure was outlined 

assuming that the series was nonseasonal, but the process can also be extended to handle 

seasonal time series data. With seasonal data, not only does regular differencing have to 

be applied to make the nonseasonal part of the series stationary, but seasonal differencing 
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has to be applied to the seasonal part to make it stationary as well. Seasonal and regular 

differencing are similar, except seasonal differences are taken over a span of L periods 

rather than one period. 

Regular differencing: 1ttt yyy  

Seasonal Differencing: LttLt yyy  

The number of seasonal differences used, D, and the number of regular 

differences, d, are needed when specifying the model. The seasonal part of the model also 

has its own autoregressive and moving average parameters with order P and Q, while the 

nonseasonal part are order p and q . Note seasonal parameters are the uppercase version 

of the nonseasonal parameters.  To determine P and Q, the ACF and PACF are examined 

but only at the seasonal lags.  

With seasonal models that also have nonseasonal terms a choice exists for how 

the seasonal and nonseasonal terms are to be combined into a single model.  The terms 

can just be added together using an additive model, or a multiplicative model formed by 

applying the nonseasonal model to the terms from a purely seasonal model could be used. 

An additive model with one seasonal MA term and one nonseasonal MA term is written  

0 1 1 1t t t tLy . 

The multiplicative model is 1111110 LtLtttty .  

After identifying the nonseasonal order (p, d, q) and the seasonal orders (P,D, Q) for a 

given series, a multiplicative model is denoted as an ARIMA (p, d, q)(P,D,Q) L  model 

[5]. 
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Once the appropriate model is identified, the diagnostic check is carried out the same way 

as it is for a nonseasonal series.  

The following example in time series analysis is based on the data that comes 

from the classic Golden Gate Bridge example. The data is made up of the count of the 

average number of vehicles that crossed the Golden Gate Bridge daily, for each month, 

from the years 1967-1980 (Appendix 1). For this time series the Box-Jenkins procedure 

will be used to analyze the series and select an appropriate model that can be used for 

forecasting. The following calculations and models are created using Minitab. 
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                            Figure 1.14: Time Series Plot of data 
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                      Figure 1.15:  Time Series Plot of data with trend 

 

The first step in the process was to create a time series plot of the data, which 

displayed the daily average for each month of the number of vehicles that crossed the 

bridge, versus the months from 1967 to 1979. From the plot, it is apparent there is an 

increasing linear trend and seasonal fluctuations because the increasing mean and pattern 

of peaks and valleys. In particular the seasonal variation is on a monthly basis, that is 

L=12. We also notice that there is an outlier at t=75. Because t is associated with a month 

and year, by doing additional research, it is discovered that there was an oil crisis in 

1973, and this outlier was most likely a direct result of the oil shortage. 
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                    Figure 1.16: Time Series Plot of single differenced data 

 

Because the original series is not stationary and the trend is linear, the first order 

differences are taken of the series. Using the differenced data produced “Time Series Plot 

of single differenced data” (Figure 1.16). The stationary series is used to calculate the 

ACF and PACF. 

4035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e

la
ti

o
n

Autocorrelation Function for DETRENDED
(with 5% significance limits for the autocorrelations)

 
                   Figure 1.17: Plot of the Autocorrelation Function for the differenced series 

 



22 

 

           

4035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

P
a

rt
ia

l 
A

u
to

c
o

rr
e

la
ti

o
n

Partial Autocorrelation Function for DETRENDED
(with 5% significance limits for the partial autocorrelations)

 
           Figure 1.18: Plot of the Partial Autocorrelation Function for the differenced series 

 

      We note that there are significant positive correlations in the ACF at lags 8, 10, 11, 

13, 25 and significant negative correlations at lags 5, 6, 7, 17, 18, 19, 30. Considering the 

behavior of the nonseasonal lags for the ACF and PACF, both trail off, so we let q=1, 

p=1, and d=1, because the series was already differenced once. Considering the behavior 

of the seasonal lags for the ACF and PACF , the ACF spikes once as the PACF dies off, 

so we let Q=1, P=0, and D=1. So the proposed model is ARIMA (1, 1, 1 )(0,1,1) and for 

this model Minitab produces the following output: 
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Table 1.3 

 Minitab output for Golden Gate Bridge data 

ARIMA Model: traffic 

 

ARIMA model for traffic 

 

Final Estimates of Parameters 

 

Type          Coef     SE Coef         T        P 

AR   1      0.5128      0.1370      3.74    0.000 

MA   1      0.8054      0.0944      8.53    0.000 

SMA 12      0.9194      0.0562     16.36    0.000 

Constant -0.007533    0.005080     -1.48    0.140 

 

Differencing: 1 regular, 1 seasonal of order 12 

 

Number of observations:  Original series 168, after differencing 155 

Residuals:    SS =  621.257  (backforecasts excluded) 

MS =   4.114  DF = 151 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag               12        24        36        48 

Chi-Square       3.4       8.1      12.5      30.0 

DF                 8        20        32        44 

P-Value        0.909     0.991     0.999     0.946 

 

Forecasts from period 156 

95 Percent Limits 

Period      Forecast        Lower        Upper       Actual 

157          91.208       87.231       95.184       90.707 

158          93.308       88.438       98.179       94.949 

159          96.629       91.278      101.980       94.970 

160          98.519       92.837      104.200      100.286 

161          99.154       93.208      105.100      101.497 

162         104.566       98.389      110.742      106.352 

163         106.599      100.210      112.987      107.415 

164         109.289      102.701      115.877      109.385 

165         103.562       96.783      110.342      103.266 

166          98.992       92.028      105.957       99.432 

167          95.978       88.834      103.122       93.965 

168          93.625       86.307      100.944       94.385 
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                     Figure 1.19: Histogram of the residuals 
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                  Figure 1.20: Time Series Plot of the residuals 

 

 

From the output we are able to confirm the fact that all the parameters except the 

constant are significantly different from zero, because they have p-values that are equal 

zero. Furthermore, the model contains minimal parameters. The model for this data 

is ttttt yyy 1211 9194.8054.5128. . This means that the predicted number of 

cars to cross the bridge is made up of .5128 of the number of cars that crossed the 
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previous month, minus .8054 of some random shock, which is then added to .9194 of 

number of cars that crossed a year ago and some random error.  

A histogram of the residuals reveals that they are essentially Normal and a time 

series of the residuals contains only noise. We can conclude that we have produced an 

adequate model for forecasting future values of this series; however, we are uncertain 

how well this model will perform past the period of a year because this is the interval for 

which it was tested.  It is suspected that the variability would increase as the forecast is 

extended to longer period of time.  

 

1.5 Regression Methods 

Regression analysis is a statistical method for estimating the functional relationship 

between a response variable and one or more independent predictor variables and can be 

applied to a set of y and x variables, whether or not they represent time series data. 

 However, there are regression models that have been adapted specifically for 

time series, where variables are not always independent. One of these involves using 

indicator variables to produce a model of seasonal data. 

  Time series regression models are useful when the parameters describing the 

trend, seasonal, or cyclic components of a time series are deterministic. It may also be 

useful to use a regression model when a linear model is not appropriate, a situation that 

can often occur in practice. 

It can sometime be useful to describe a time series ty  by model 

tttt SNTRy where tTR  denotes the trend in the time series t, tSN , denotes the 

seasonal factor in time period t, and t  denotes the error term in the time period t. The 
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above model says that the time series observation ty  can be represented by an average 

level that changes over time combined with random fluctuations.  

When there is 

no trend: 0tTR  

linear trend: tTRt 10  

quadratic trend: 2

210 ttTRt , 

where the s' are the trend parameters. Supposing that there are L seasons per year, we 

will assume that tSN  is given by the equation: 112211 LLt xMxMxMSN   

where 121, LMMM   are used to denote the parameters for the monthly or quarterly  

seasonal component [6].  

Seasonal patterns can also be modeled using indicator variables. The use of 

indicator variables to model time series is a regression procedure that has been 

specifically adapted to time series. A dummy or indicator variable can be used to 

incorporate qualitative information such as season of the year, geographical region, or 

occurrence of a specific event into a model. The indicator variables convert qualitative 

information into quantitative information by making use of a coding scheme. The most 

common coding scheme uses a 1 to indicate the occurrence of an event of interest and a 0 

to indicate its nonoccurrence [6]. Using indicator variables is also a way of producing a 

model that reflects a change in slope; however, not all models using indicator variables 

will reflect a change in slope. In the latter situation the reason a simple trend line is not 

used is because the indicator variables approach gives a better estimate of the variation 

in the series by using all the available data.  
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Although not mentioned when discussing the Box-Jenkins procedure, the 

autoregressive model is also a regression model. Autoregressive models are a method of 

fitting that is based on using lagged values of  ty  as predictor variables in regression 

models. The parameters for regression models are also calculated using the least squares 

method and some type of computer package is most often used to calculate these 

parameters.  

 

1.6 Conclusion 

 

To a naïve mind, forecasting is simply putting data into the computer and letting 

the program do the work. This is not the case. Before being able to conceive the 

formation of a model, an in-depth analysis of the data has to be made. The computer is 

simply a tool to help the forecaster carry out the analysis in a shorter period of time. The 

analysis of time series has been carried out for decades and used in several different 

fields. The methods used to analyze a time series truly depend on the objective that needs 

to be met and the characteristics of the data. Time series can be analyzed solely for the 

purpose of determining the behavior of the series, i.e. recognizing trend or some seasonal 

or cyclic movement, and used strictly in that form to monitor behavior, or as a tool to see 

how occurrences in nature, the economy, or in the world could have possibly affected the 

data. They can be also analyzed with the purpose in mind of forecasting. In order to 

produce a model for a series, the forecaster first must recognize that there are many 

approaches to modeling and that no single method exists for every situation. The ARIMA 

models alone provide several options. The forecaster has to be familiar with the models 

that exist for each process, but also be aware of under what circumstances that procedure 
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can be used.  The Box-Jenkins approach is very useful in that it not only provides the 

forecaster with a class of models to choose from, but it also consists of a methodology 

that outlines how to forecast a series. It is again up to the forecaster to make the sure that 

the underlying assumed conditions are met to carry out the process and, more 

importantly, that the analysis work is done properly so that the most appropriate model is 

selected 

Given the information provided in this chapter, the next step is to apply this 

content to stock prices. Our intent is not only to be able to create a model and predict 

values, but also through further research, do so in a more effective way. The basic 

question is to attempt to determine if there is some optimal data time frame that can be 

used to create an accurate forecast. For example, instead of having to collect data on a 

daily (or hourly) basis, would weekly or monthly observations provide models equally 

good (or better) for forecasting? Also, are stocks of the same industry equally 

predictable? 
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CHAPTER 2 

Many empirical series, such as stock market prices, behave as though they have 

no fixed mean. However, they usually exhibit homogeneity in that one part of the series 

behaves much like any other part. Models that describe such homogenous nonstationary 

behavior can be obtained by assuming some difference of the process to be stationary. 

These are a class of models for which the dth difference is a stationary mixed 

autoregressive-moving average process. These models are called autoregressive 

integrated moving average (ARIMA) processes, which were introduced in Chapter 1.  

This chapter looks at an initial analysis stock prices for Apple, Inc. (APPL), 

Microsoft Corp.( MSFT), Kroger Company (KR), Winn-Dixie Stores, Inc. (WINN), 

ASML Holding (ASML), Advanced Analogue Technologies, Inc. (AATI), PepsiCo, Inc. 

(PEP), and Coca-Cola Bottling Co. Consolidated(COKE). AATI is a company that 

develops and engineers of advanced power management semiconductors. AATI also 

offers a broad range of analog and mixed-signal circuits that play a critical role in system 

design and their product play a key role in the continuing evolution of feature rich 

convergent devices ASML is the world's leading provider of lithography systems for the 

semiconductor industry. They manufacture complex machines that are critical to the 

production of integrated circuits or chips. These eight stocks were chosen because they 

represent the leading companies in their perspective industries. 

The closing prices for each stock going back ten years or from the date the 

company went public, whichever was reached first, were obtained from Yahoo! Finance. 

The companies of interest are two entities from the following industries: computers and 
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software, grocery stores, semiconductor production, and soft drinks. The industries were 

chosen because they all offered different products to people all over the world.  The data 

for each stock was examined on a weekly basis, and on the 1
st
 and 15

th
 trading day of the 

month: the closing price for each Tuesday (because Monday is often a holiday), the first 

trading day of the month, and the midway trading day of the month. Because there are 

252 trading days on Wall Street in a year, when the word year is used in this context, it 

refers to this time interval.  

It is important to note that the time frames that are being modeled can only be 

used to forecast values in the same range. That is the monthly data produces a forecast of 

monthly values. Extrapolation occurs when the values that are trying to be predicted are 

well beyond the range of the data provided.  

   Table 2.1 

   Data Dates 

APPL MSFT KR WINN ASML AATI PEP COKE 

5/30/2000- 

5/25/2010 

5/30/2000- 

5/25/2010 

5/30/2000- 

5/25/2010 

11/28/2006 – 

5/25/2010 

10/2/2007- 

5/25/2010 

8/9/2005- 

5/25/2010 

5/30/2000- 

5/25/2010 

5/30/2000- 

5/25/2010 

 

We begin analyzing the stock prices by examining a time series for each interval.  

The following time series plots are of stock prices sampled weekly. The time series plots 

should reveal any apparent trend or seasonality,\ and indicate any drastic rise or fall in the 

price of the stock.  
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Figure 2.1: Time Series Plot of APPL sampled weekly 

 

The time series indicated that there are possibly some events that 

influenced the price per share for Apple because of the inconsistency of the 

behavior of the stick. Through examining the release dates and announcements of 

products by APPL it was realized that an announcement or actual new release 

didn’t necessarily have a significant change (positive or negative) in the price per 

share. Also the time series plot did not show any extreme outliers or drastic 

fluctuation in the price per share, when looking at the data sampled weekly.   
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                     Figure 2.2: Time Series Plot of MSFT sampled weekly 

 

Microsoft’s drastic change in stock price that occurred on February 18, 2003 was 

due to a stock split that was authorized by the Board of Directors of Microsoft. The stock 

split was a two-for-one and was announced on January 16, 2003. A two-for-one split 

results in the price per share being decreased by half and stockholders owning twice as 

many shares. The price per share went from 46.44 on February 11, 2003 to 24.96 on the 

18
th

. Because we know exactly how this impacted the stock and at which point, we can 

justify eliminating the prices prior to February 18
th

, 2003 and only modeling the resulting 

series. This manipulation produces the following time series plot. 
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          Figure 2.3: Time Series Plot of MSFT (modified) sampled weekly 

 

This modified time series reflects the behavior of the stock without any known imposed 

manipulations. This series consists mainly of random peak and valleys without any 

significant change in the price per share.  
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        Figure 2.4: Time Series Plot of APPL and MSFT sampled weekly 

 

Comparing APPL and MSFT on the same interval, we notice that while the price 

per share for both has continued to increase. APPL has done so at a much faster rate. In 
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particular from February 18, 2003 to May 25, 2010 MSFT had an overall percent of 

increase of 44.5% versus APPL’s being 3111.8%.  

Table 2.2:  

 

Comparison of the percent of change for the two (APPL and MSFT) stocks based on 

weekly data, in one-year intervals: 
 APPL MSFT 

2/18/03-2/17/04 51.7% 08.1% 

2/24/04-2/22/05 281.4% 06.1% 

3/1/05-2/28/06 53.9% 06.3% 

3/7/06-3/6/07 33.0% 02.9% 

3/13/07-3/11/08 44.1% 09.6% 

3/18/08-3/17/09 (25.0%) (42.6%) 

3/24/09-3/23/10 114.0% 66.8% 

3/30/10-5/25/10 04.0% 12.4% 

 

Table 3.2 shows that although at different rates, APPL and MSFT. The price per share for 

both increased and decreased during the same time frames.  
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                   Figure 2.5: Time Series Plot of WINN sampled weekly 
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                        Figure 2.6: Time Series Plot of KR sampled weekly 

 

 

The time series plots for WINN and KR have different starting points because Winn- 

Dixie went public after Kroger did.  
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        Figure 2.7: Time Series Plot of KR and WINN sampled weekly 

 

 

Table 2.3 

 

 Comparison of the percent of change for the two stocks (KR and WINN) based on weekly 

data, in one-year intervals 
 KR WINN 

11/18/06-11/27/07 28.7% 44.3% 

12/4/07-12/2/08 (5.6%) (18.8%) 

12/9/08-12/8/09 (53.9%) (31.8%) 

12/15/09-5/25/10 .67% 9.7% 

 

Comparing the percent change for KR and WINN on the same interval, we notice 

that the stocks behave similarly, although this is not so apparent from the individual time 

series plots. What is shown by time series plot is that since November 2006 the price per 

share for WINN has fluctuated within the 10 to 30 dollar price range, while during the 

same interval, KR has remained within a 20 to 30 dollar range. WINN is the more 

volatile of the two stocks. 
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    Figure 2.8: Time Series Plot of ASML sampled weekly 
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                         Figure 2.9: Time Series Plot of AATI sampled weekly 
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                        Figure 2.10: Time Series Plot of AATI and ASML sampled weekly 

 

 

 

Table 2.4 

 

Comparison of the percent of change for the two stocks (AATI and ASML) based on 

weekly data, in one-year intervals: 
 AATI ASML 

10/2/07-9/30/08 (60.1%) (48.1%) 

10/7/08-10/06/09 (14.1%) 96.7% 

 10/13/09-5/25/2010 5.4 (14.5%) 

 

Comparing the percent change for AATI and ASML on the same interval, we 

notice that the stocks only behaved the same way from 10/2/2007 – 9/30/2008. From 

10/2/2007 – 5/25/2010, although price per share for AATI has remained between 11.68 

and 3.31, this is nearly a 72% decrease in price per share for this time interval. This 

decline is most obvious when examining the individual time series plot for AATI (Figure 

2.9). However, during the same interval ASML, although still on the decline, has only 

decreased by 20% 
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 Figure 2.11: Time Series Plot of PEP sampled weekly 
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     Figure 2.12: Time Series Plot of COKE sampled weekly 
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Table 2.5 

 

Comparison of the percent of change for the two (PEP and COKE) stocks based on 

weekly data, in one-year intervals: 
 PEP COKE 

5/30/00-5/29/01 9.6% (18.0%) 

6/5/01-6/4/02 13.6% 18.1% 

6/11/02-6/10/03 (12.8%) 23.7% 

6/17/03-6/15/04 23.0% (7.3%) 

6/22/04-6/21/05 .7% (19.2%) 

6/28/05-6/27/06 7.8% 0.0% 

7/11/06-7/10/07 6.9% (7.9%) 

7/17/07-7/15/08 (1.3%) (36.2%) 

7/22/08-7/21/09 (15.2%) 55.2% 

7/28/09-5/25/10 12.4% (12.9%) 

 

Comparing the percent change for PEP and COKE we notice that, for seven of the 

ten years, as COKE saw a decrease in price per share PEP experienced an increase during 

those same intervals.  Looking at both time series plots individually shows that both 

stocks have consistently fluctuated up and down, with no seasonal variation.  

Now we would like to determine if there is some trend and/or seasonal component 

or each of the stocks. To determine if there is any underlying trend or seasonality, an 

autocorrelation function (ACF) of the undifferenced series is analyzed. The 

autocorrelations for stationary series are large for low order autocorrelations but die out 

rapidly as lag length increases. If the series is trended, autocorrelations are large and 

positive for short lags, decreasing slowly as the lag increases.  
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      Figure 2.14: Autocorrelation Function for Undifferenced APPL 
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               Figure 2.15: Trend Analysis for APPL 
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                 Figure 2.16: Autocorrelation Function for Undifferenced MSFT 
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              Figure 2.17: Trend Analysis for MSFT 
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 Figure 2.18: Autocorrelation Function for Undifferenced KR 
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               Figure 2.19: Trend Analysis for KR 
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       Figure 2.20: Autocorrelation Function for Undifferenced WINN 
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              Figure 2.21: Trend Analysis for WINN 
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       Figure 2.22: Autocorrelation Function for Undifferenced ASML 
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              Figure 2.23: Trend Analysis for ASML 
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      Figure 2.24: Autocorrelation Function for Undifferenced AATI 
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              Figure 2.25: Trend Analysis for AATI 
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   Figure 2.26: Autocorrelation Function for Undifferenced PEP 
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               Figure 2.27: Trend Analysis for PEP 
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      Figure 2.28: Autocorrelation Function for Undifferenced COKE 
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              Figure 2.29: Trend Analysis for COKE 

 

We again note that although Coke and Pepsi are in the same industry the two 

stocks behave very differently, this may largely be due to the frequent change in 

consumers taste and the constant introduction of similar products into the market.  

Because the ACF for each of the stocks dies off slowly, we can conclude that all 

the stocks contain some trend. Once it is determined that the series is not stationary, then 
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we model the trend. The trend in the series is modeled by simply fitting a general trend 

model to the series.  This trend is most often linear or quadratic. This is represented in 

ARIMA (p, d, q) as 0d if there is no trend present, 1d if the trend is linear, and 

2d if the trend is quadratic.  

After developing a proposed model for the trend, we have to confirm that the 

chosen model is the most accurate by examining the measures of accuracy for fitted 

models.  The mean absolute percentage error (MAPE), mean absolute deviation (MAD), 

and mean standard deviation (MSD), are three measures of accuracy that and the smaller 

they are the better the fit of the model. All three indicators measure the accuracy of the 

fitted time series values, but they express the results in different units. MAPE measure 

the accuracy of fitted time series values and expresses accuracy as a percentage. MAPE is 

calculated as 100  x 

/)ˆ(
1

n

yyy
n

t

ttt

 where ty  equals the actual value, tŷ equals the 

fitted value, and n equals the number of observations. MAD is expressed in the same 

units as the data and is calculated as
n

yy
n

t

tt

1

)ˆ(

.  And 
n

yy

MSD

n

t

tt

1

2)ˆ(

 
.  Each of 

these three statistics can be used to compare the fits of the different models [5]. 

Once the trend has been modeled appropriately, we compute the autocorrelation 

and partial autocorrelation coefficients for the residuals of the trend model, or detrended 

data. The ACF and PACF are only useful indicators of the order p and q of the ARIMA 

(p,q,d) model if the series for which they are computed is stationary.  

After deciding on a tentative model, it is essential to perform diagnostic checks to 

determine if the selected model contains the smallest possible number of parameters and 
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that the chosen model is the most appropriate. The least squares criterion is used to obtain 

the estimates for the parameters, and by examining the p-value of the t-test, it can be 

determined whether or not the parameters are statistically significant (different from 

zero). In some instances, further analysis of the variances at different lags pk , may 

indicate that an AR(p) is equivalent to ARIMA (1,1), but using the AR(p) would entail 

the use of  additional parameters. 

A good way to check the adequacy of an overall ARIMA model is to analyze the 

residuals obtained from the model, by calculating the autocorrelation and partial 

autocorrelation function for the residuals. Using the ACF and PACF we can examine a 

statistic that determines whether the first K sample autocorrelations of the residuals, 

considered together, indicate adequacy of the model.  

One such statistic is the Ljung-Box statistic:
K

t

l arlnnnQ
1

21'''* )ˆ()()2( . 

Here )(' LDdnn  where n is the number of observations in the original time series, 

L is the number of seasons in a year (if seasonal variation is present), and d and D, 

respectively, the degrees of nonseasonal and seasonal differencing used to transform the 

original time series into a stationary time series. )ˆ(2 arl is the square of )ˆ(arl , the sample 

autocorrelation of the residuals at lag l that is, the sample autocorrelation of residuals 

separated by lag of l time units [2]. Because the modeling process is supposed to account 

for the relationship between the time series observations, the residuals of the model 

should be uncorrelated. Hence, the autocorrelations of the residuals should be small, 

resulting in a small
*Q . A large value of 

*Q  indicates that the model is inadequate. We 
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can reject the adequacy of the model under consideration by setting the probability of 

Type I error equal to  if and only if either of the following equivalent conditions hold 

1. 
*Q  is greater )(2

][ pnK , the point on the scale of the chi-square distribution 

having pnK  degrees of freedom, such that there is an area of α under the curve 

of the distribution above the point. Here pn is the number of parameters that must 

be estimated in the model under consideration. 

2. P-value is less that α where p-value is the area under the curve of the Chi-Square 

distribution having pnK  degrees of freedom to the right of 
*Q  

The following chapter contains the result of applying the outlined process to the 

previously mentioned stocks.  
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CHAPTER 3 

     3.1. Results 

Table 3.1 provides the confirmed model for each stock at each interval. 

Confirmed, meaning that the models contain only significant parameters and the residuals 

are both random and approximately Normal.  

Table 3.1 

 Confirmed Models 

 Weekly 
1ST  Trading Day 

of the Month 
15th Trading Day of the Month 

KR 

ARIMA(1,1,0) 

ttt ww 10879.  

AR(1) 

ttt yy 19350.4002.1  

AR(1) 

ttt yy 19260.6845.1  

WINN 

AR(1) 

ttt yy 19732.36313.  

AR(1) 

ttt yy 18575.9935.1  

AR(1) 

ttt yy 19083.2664.1  

ASML 

AR(1) 

ttt yy 19815.5347.  

AR(1) 

ttt yy 18892.1738.3  

AR(1) 

ttt yy 19158.3721.2  

 

AATI 
AR(1) 

ttt yy 19952.  

AR(1) 

ttt yy 19714.  

AR(1) 

ttt yy 19717.  

PEP 
AR(1) 

ttt yy 19732.5886.1  

AR(1) 

ttt yy 18984.0996.6  

AR(1) 

ttt yy 19595.2305.2  

COKE 
AR(1) 

ttt
yy

1
96.78.1  

AR(1) 

ttt
yy

1
89.72.5  

AR(1) 

ttt yy 1864370.7  

MSFT 
AR(1) 

ttt yy 19625.98941.  

AR(1) 

ttt yy 18456.0799.4  

AR(1) 

ttt yy 18644.3369.3  

APPL 
ARIMA(1,1,0) 

ttt ww 1070.14783.  

ARIMA(0,1,0) 

ttt ww 1
 

ARIMA(1,1,0) 

ttt ww 12930.  

 

To determine which interval is possibly most effective, we compare the mean 

square errors (MSE) for each model at the different intervals. The smaller the mean 

squared error the better the fit of the model. Amongst all the industries, weekly data 

resulted in a better model. Monthly data sampled on the first only produced a better 

model than from the 15
th

 with COKE, KR, and PEP.  
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                         Table 3.2 

                          Mean Squared Error for each model 

 Weekly 1
ST

  Trading 

Day 

of the Month 

15
th

 Trading 

Day of the 

Month 

KR .659 2.149 2.575 

WINN 1.774 8.759 6.063 

ASML 2.006 10.152 8.399 

AATI .267 1.440 1.431 

PEP 2.221 8.278 8.930 

COKE 3.830 11.800 16.380 

MSFT .754 3.230 2.743 

APPL 26.600 156.700 139.100 

 

3.1 a: Kroger Company 

The resulting models for Kroger, were ARIMA (1,1,0) for data sampled weekly 

and AR(1)  for the data sampled both on the  1
st
 trading day of the month and 15th 

trading day of the month. Looking at the single differenced ACFs below, of the data 

sampled on the 1
st
 and the 15

th
, we recognize that they are almost exactly the same. 

Because the ACFs are similar it is expected that the model for both series will also be the 

same. For both Figures 3.1 and 3.2, the autocorrelations at low lags are very high, and 

decline slowly as the lags increase.  However, a well-defined pattern does exist because 

the ACFs continue to decrease and become negative; this is behavior that is expected of a 

trended series, not one that has already been differenced.  This suggests that although 

trend is present, it is not significant. We conclude that the appropriate model is an AR(1). 

An AR(1) tells us that this week’s (or month’s) price is a function of last week’s 

(month’s) price plus some constant and error term.  
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                      Figure 3.1: Autocorrelation function for single differenced KR sampled  

 

                      on the 1st trading day of the month 
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                      Figure 3.2: Autocorrelation function for single differenced KR sampled on  

 

                      the 15
th

 trading day of the month 
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Table 3.3 

 

Partial Minitab output for KR sampled on the 1
st
 trading day of the month 

 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.9350   0.0319  29.27  0.000 

Constant  1.4002   0.1306  10.72  0.000 

Mean      21.535    2.009 

 

Number of observations:  126 

Residuals:    SS =  266.418 (backforecasts excluded) 

              MS =  2.149  DF = 124 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   11.3   17.7   24.2   28.9 

DF             10     22     34     46 

P-Value     0.335  0.725  0.893  0.977 
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                      Figure 3.3: Four-in-One Residual Plots for KR sampled on the 1

st
 trading  

 

                      day of the month 
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Table 3.4 

 

Partial Minitab output for KR sampled on the 15th trading day of the month 
 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.9206   0.0359  25.63  0.000 

Constant  1.6845   0.1454  11.59  0.000 

Mean      21.220    1.831 

 

Number of observations:  122 

Residuals:    SS =  308.980 (backforecasts excluded) 

              MS =  2.575  DF = 120 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    9.1   19.9   26.1   30.2 

DF             10     22     34     46 

P-Value     0.523  0.589  0.831  0.966 
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                  Figure 3.4: Four-in-One Residual Plots for KR sampled on the 15th trading  

 

                  day of the month 
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Because all the p-values are much less than .05 and the behavior of the residuals 

are Normal we can conclude that AR(1) is a reasonable fit for the data that was sampled 

on the 1
st
 and 15

th
 trading day of the month.  
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Figure 3.5: Autocorrelation Function for single differenced KR sampled                   

weekly 

 

The ACF for the series that was sampled weekly behaves differently than the two 

previously mentioned. They are all similar because the autocorrelations are highly 

correlated for lower lags and then decreases as the lags increase, but for this series the 

ACF continues to die off positively. Also compared to the ACF for the original series, 

differencing caused the ACF to die off faster.   We can assume the model for this series 

should be ARIMA (1,1,0).  The Minitab output also supports this claim. The MSE for the 

model ARIMA (1,1,0) was.659. Also the histogram and probability plot of the residuals 

suggests that the residual are Normal. 
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Table 3.5 

 Partial Minitab output for KR sampled weekly(with constant) 

Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1    -0.0879   0.0432  -2.03  0.042 

Constant  0.00295  0.03514   0.08  0.933 

 

Differencing: 1 regular difference 

Number of observations:  Original series 535, after differencing 534 

Residuals:    SS =  350.816 (backforecasts excluded) 

              MS =  0.659  DF = 532 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statist 

Lag            12     24     36     48 

Chi-Square   13.9   25.1   43.7   49.5 

DF             10     22     34     46 

P-Value     0.179  0.292  0.124  0.337 

 

Table 3.6 

Partial Minitab output for KR sampled weekly 

Final Estimates of Parameters 

 

Type       Coef  SE Coef      T      P 

AR   1  -0.0879   0.0432  -2.04  0.042 

 

Differencing: 1 regular difference 

Number of observations:  Original series 535, after differencing 534 

Residuals:    SS =  350.821 (backforecasts excluded) 

              MS =  0.658  DF = 533 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   13.9   25.1   43.7   49.5 

DF             11     23     35     47 

P-Value     0.240  0.345  0.150  0.375 

 

Because the constant term is not significantly different from zero, the model was refit 

without a constant, resulting in the following output: 
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      Figure 3.6: Four-in-One Residual Plots for KR sampled weekly 

 

 

Comparing the MSE for each sampling interval, from Table 3.2, we can conclude 

that the model series for KR that was sampled weekly fits better than data sampled on the 

1
st
 or 15

th
 trading day of the month. 
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          Figure 3.7: Time Series Plot of KR sampled weekly with forecasts 
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                          Table 3.7 

                          Analysis of forecasts for KR sampled weekly (ARIMA (1,1,0)) 

Dates Actual Forecast 

6/1/2010 19.87 20.48 

6/8/2010 19.64 20.47 

6/11/2010 19.99 20.47 

6/22/2010 20.18 20.48 

6/29/2010 19.81 20.48 

7/6/2010 20.02 20.48 

7/13/2010 20.78 20.48 

7/20/2010 20.49 20.49 

7/27/2010 21.28 20.49 

8/3/2010 21.58 20.49 

8/10/2010 22.43 20.49 

8/24/2010 20.540 20.50 

8/31/2010 19.730 20.50 

9/7/2010 20.700 20.50 

9/14/2010 21.260 20.51 

9/21/2010 21.600 20.51 

9/28/2010 21.880 20.51 

10/5/2010 21.370 20.51 

10/12/2010 21.690 20.51 

10/19/2010 21.42 20.52 

10/26/2010 22.070 20.52 

 The mean absolute percentage error (MAPE) for the forecasted values is .036292. 

When examining the forecasts for Kroger, for the data sampled weekly, we notice that the 

fits barely change. For the five month period the fits had a range of 20.48 – 20.52. 

However, the actual prices had a range of 19.64 – 22.43. There is not much change in the 

fits because the coefficient of the autoregressive term is -.0879 and the model does not 

contain a constant, so the forecast’s price is only -.0879 of the previous week’s price. The 
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model is nearly ARIMA (0,1,0) ;  this is most likely due to the random behavior in 

approximately the last 100 observations, compared to the prior observations that 

contained quadratic trend. Modeling the series using only the last 100 observation, we see 

that fits behave more like the actuals, compared to the series that contained all the data 

points. The confirmed model for this series is AR(1.) 
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Figure 3.8: Time Series Plot of KR sampled weekly (last 100 observations)                  

with forecasts 
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Figure 3.9: Time Series Plot of KR sampled on the 1

st
 trading day of the    

month with forecasts 

 

 

Table 3.8 

 

 Analysis of forecasts for KR sampled on the 1
st
 trading day of the month (AR(1)) 

 
Date Actual  Forecasts 

6/1/2010 19.87 22.66 

7/1/2010 20.01 22.59 

8/2/2010 21.38 22.52 

9/1/2010 20.06 22.46 

10/1/2010 21.72 22.40 

11/1/2010 22.01 22.34 

 

The MAPE for the forecasted values is 0.081.The fits of the model show a slight 

downward trend, because only a portion (.9350) of last month’s prices is used to predict 

the forecasts. This differs from the behavior of the actual values, which increased during 

this time frame.  So although the model is an appropriate fit statistically, the results 

would not be desirable for an investor.  
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Figure 3.10: Time Series Plot of KR sampled on the 15th trading day of the      

 

month with forecasts 

 

 

 

Table 3.9 

 

Analysis of forecasts for KR sampled on the 15
th

 trading day of the month  

 

(ARIMA(1,1,0)) 
Date Actual  Forecasts 

6/15/2010 20.38 22.159 

7/15/2010 20.79 22.084 

8/16/2010 21.92 22.016 

9/15/2010 21.49 21.95 

10/15/2010 22.01 21.89 

 

The MAPE for forecasted values is .0361. Examining the actual versus the fits for 

the data sampled on the 15
th

 trading day of the month, their behavior is similar to the data 

sampled on the 1
st
 trading day of the month. The fits decreased, while the actual values 

increased. This model would also not be desirable for an investor.  

 



65 

 

3.1 b. Winn-Dixie Stores Inc.  

The resulting models for Winn -Dixie, were all AR(1). Looking at the ACFs 

below, we recognize that they behave the same, except for the weekly data containing 

more lags.  
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Figure 3.11: Autocorrelation Function for single differenced WINN sampled    

weekly 
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Figure 3.12: Autocorrelation Function for single differenced WINN sampled           

on the 1
st
 trading day of the month 
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Figure 3.13: Autocorrelation Function for single differenced WINN sampled     

on the 15
th

 trading day of the month 

 

 

Table 3.10 

Partial Minitab Output for WINN sampled weekly 

Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1     0.9732   0.0183  53.09  0.000 

Constant  0.36313  0.09815   3.70  0.000 

Mean       13.549    3.662 

 

Number of observations:  200 

Residuals:    SS =  351.223 (backforecasts excluded) 

              MS =  1.774  DF = 198 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    9.8   31.9   48.1   59.5 

DF             10     22     34     46 

P-Value     0.460  0.079  0.055  0.087 
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            Figure 3.14: Four-in-One Residual Plots for WINN sampled weekly 

 

 

 

Table 3.11 

 

Partial Minitab Output for WINN sampled on the 1
st
 trading day of the month 

 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.8575   0.0835  10.27  0.000 

Constant  1.9935   0.4364   4.57  0.000 

Mean      13.994    3.064 

 

Number of observations:  48 

Residuals:    SS =  402.904 (backforecasts excluded) 

              MS =  8.759  DF = 46 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36  48 

Chi-Square    4.7   14.9   20.1   * 

DF             10     22     34   * 

P-Value     0.913  0.868  0.972   * 
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Figure 3.15: Four-in-One Residual Plots for WINN sampled on the 1

st
     

trading day of the month 

 

 

 

Table 3.12 

 

 Partial Minitab Output for WINN sampled on the 15
th

 trading day of the month 
 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.9083   0.0706  12.87  0.000 

Constant  1.2664   0.3708   3.42  0.001 

Mean      13.805    4.042 

 

Number of observations:  47 

Residuals:    SS =  272.844 (backforecasts excluded) 

              MS =  6.063  DF = 45 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36  48 

Chi-Square   13.9   25.6   37.5   * 

DF             10     22     34   * 

P-Value     0.178  0.268  0.313   * 
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Figure 3.16: Four-in-One Residual Plots for WINN sampled on the 15

th
      

trading day of the month 

 

The Minitab output confirms that an AR(1) is the appropriate model for each of 

the series. The small p-value, essentially zero, for the autoregressive parameter and the 

constant tell us that these parameters are significantly different from zero. Also, the 

histogram and probability plot of the residuals confirms Normality.  But we do 

acknowledge that all series have a high outlier, which will be examined in more detail 

later in the paper. However, data that is sampled on a weekly basis produces the best 

model based on the MSE.  
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                  Figure 3.17: Time Series Plot for WINN sampled weekly with forecasts 
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                            Table 3.13 

                            Forecasts analysis for WINN sampled weekly (AR(1)) 

Date Actual  Forecasts 

6/1/2010 10.93 11.31 

6/8/2010 10.58 11.37 

6/11/2010 10.72 11.43 

6/22/2010 10.34 11.49 

6/29/2010 9.74 11.54 

7/6/2010 9.18 11.60 

7/13/2010 9.97 11.65 

7/20/2010 9.80 11.70 

7/27/2010 10.22 11.75 

8/3/2010 9.60 11.80 

8/10/2010 9.54 11.84 

8/24/2010 7.94 11.89 

8/31/2010 6.56 11.93 

9/7/2010 6.40 11.98 

9/14/2010 7.17 12.02 

9/21/2010 7.08 12.06 

9/28/2010 7.17 12.10 

10/5/2010 7.27 12.14 

10/12/2010 7.11 12.18 

10/19/2010 7.00 12.21 

10/26/2010 6.79 12.25 

The MAPE for the forecasted values is 0.424. Although the confirmed model for 

the data sampled weekly was a AR(1) the fits increased while the actual values 

decreased. This is because the confirmed model is ttt yy 19732.36313. . Although 

most of last week’s price (.9732) is used to forecasts this week’s price, the forecasts 

increase because the constant in the model (.36313) is greater than nearly all the 

differences of consecutive decreasing actual values. So, this confirmed model would not 

be valuable for an investor, because the fits do not behave like the actual values. The 
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same is true for the data that was sampled on the 1
st
 and 15

th
 trading day of the month.  

The models for those series were 

.9083.2664.1 and 8575.9935.1 11 tttttt yyyy  
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Figure 3.18: Time Series for WINN sampled on the 1

st
 trading day of the  

 

month with forecasts 
 

 

 

Table 3.14  

 

Forecasts analysis for WINN sampled on the 1
st
 trading day of the month (AR(1)) 

 
Date Actual  Forecasts 

6/1/2010 10.93 13.09 

7/1/2010 9.33 13.22 

8/2/2010 9.73 13.33 

9/1/2010 6.58 13.42 

10/1/2010 7.22 13.51 

11/1/2010 6.53 13.58 

 

The MAPE for the forecasted values is 0.662. 
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                      Figure 3.19: Time Series for WINN sampled on the 15

th
 trading day of the  

 

                       month with forecasts 
 

 

 

                        Table 3.15 

 

                         Forecasts analysis for WINN sampled on the 15
th

 trading day of the  

 

month (AR(1)) 
 

Date Actual  Forecasts 

6/15/2010 10.80 12.86 

7/15/2010 9.93 12.94 

8/16/2010 8.64 13.02 

9/15/2010 7.16 13.09 

10/15/2010 7.11 13.16 

 

The MAPE for the forecasted values is 0.536. 

 

3.1 c. ASML Holdings 

The resulting models for ASML Holdings were all AR(1), although the results 

from the trend analysis in Chapter 2 may have suggested otherwise. The trend analysis in 
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Chapter 2 for the weekly data shows that the modeled trend for this series is quadratic. 

Also, the ACF for the original series compared to the series differenced twice shows that 

differencing the series twice does cause the ACF to die off faster. So we initially 

proposed that the appropriate model is AR(0,2,0), because the ACF of the twice 

differenced series behaves like a random walk. 
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Figure 3.20: Autocorrelation Function ASML differenced twice sampled         

weekly 

 

However the Minitab output for ASML sampled weekly for the model ARIMA 

(2,2,0), suggests that differencing twice causes us to overfit the model, because based on 

the behavior of the ACF no AR parameters should be significant.  
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Table 3.16 

 Partial Minitab Output for ASML sampled weekly (ARIMA (2,2,0)) 

Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1    -0.7127   0.0828  -8.60  0.000 

AR   2    -0.2936   0.0828  -3.55  0.001 

Constant  -0.0199   0.1341  -0.15  0.882 

 

Differencing: 2 regular differences 

Number of observations:  Original series 137, after differencing 135 

Residuals:    SS =  320.662 (backforecasts excluded) 

              MS =  2.429  DF = 132 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   18.3   31.3   51.2   75.1 

DF              9     21     33     45 

P-Value     0.032  0.069  0.022  0.003 
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Figure 3.21: Autocorrelation function for ASML differenced once sampled    

weekly 

 

 

So we then examine the ACF for the weekly data differenced once. The resulting 

ACF is that of a trended model. This is the same scenario that happened with KR and for 

reasons explained earlier, the appropriate model for the ASML data sampled weekly is 
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AR(1).  For the data that was sampled on the 1
st
 and the 15

th
, the resulting differenced 

ACFs are again trended series, so the model for these series should also be AR(1). 
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Figure 3.22: Autocorrelation Function for ASML differenced twice sampled         

 

on the 1
st
 trading day of the month 
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                      Figure 3.23: Autocorrelation Function for ASML differenced twice  

                       sampled on the 15
th

 trading day of the month 
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Table 3.17 

 

Partial Minitab Output for ASML sampled weekly (AR(1)) 
 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.9815   0.0183  53.51  0.000 

Constant  0.5347   0.1236   4.33  0.000 

Mean      28.874    6.675 

 

Number of observations:  158 

Residuals:    SS =  312.909 (backforecasts excluded) 

              MS =  2.006  DF = 156 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    6.2   18.7   29.7   41.6 

DF             10     22     34     46 

P-Value     0.802  0.664  0.679  0.657 
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            Figure 3.24: Four-in-One Residual Plots for ASML sampled weekly 
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Table 3.18 

 

 Partial Minitab Output for ASML sampled on the 1
st
 trading day of the month (AR(1)) 

 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.8892   0.0851  10.45  0.000 

Constant  3.1738   0.5478   5.79  0.000 

Mean      28.641    4.944 

 

Number of observations:  38 

Residuals:    SS =  365.462 (backforecasts excluded) 

              MS =  10.152  DF = 36 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36  48 

Chi-Square   14.0   28.3   34.5   * 

DF             10     22     34   * 

P-Value     0.172  0.167  0.446   * 
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                      Figure 3.25: Four-in-One Residual Plots for ASML sampled on the 1

st
  

                      trading day of the month 
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Table 3.19 

 

Partial Minitab Output for ASML sampled on the 15th trading day of the month (AR(1)) 
 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.9158   0.0815  11.24  0.000 

Constant  2.3721   0.5400   4.39  0.000 

Mean      28.182    6.416 

 

Number of observations:  34 

Residuals:    SS =  268.768 (backforecasts excluded) 

              MS =  8.399  DF = 32 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24  36  48 

Chi-Square    6.2   18.9   *   * 

DF             10     22   *   * 

P-Value     0.798  0.650   *   * 
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          Figure 3.26: Four-in-One Residual Plots for ASML sampled on the 15th  

 

          trading day of the month 
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                Figure 3.27: Time Series plot of ASML sampled weekly with forecasts 
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                            Table 3.20 

                            Analysis of the forecasts for ASML sampled weekly 

Date Actual  Forecasts 

6/1/2010 28.10 27.08 

6/8/2010 27.82 27.12 

6/11/2010 29.44 27.15 

6/22/2010 29.92 27.18 

6/29/2010 27.75 27.21 

7/6/2010 28.68 27.24 

7/13/2010 31.27 27.27 

7/20/2010 30.93 27.30 

7/27/2010 31.94 27.33 

8/3/2010 33.01 27.36 

8/10/2010 31.06 27.39 

8/24/2010 26.50 27.42 

8/31/2010 24.73 27.44 

9/7/2010 25.98 27.47 

9/14/2010 28.26 27.50 

9/21/2010 29.21 27.52 

9/28/2010 29.99 27.55 

10/5/2010 30.31 27.57 

10/12/2010 30.57 27.60 

10/19/2010 32.05 27.62 

10/26/2010 32.82 27.64 

The MAPE for the forecasted values is 0.087.The fits continued to steadily 

increase, while the actual values also increased overall, but not without decreasing at 

some periods in the forecasting time interval and having a fair amount of variability. 

During this five month period the overall change in the fits was $ 0.56 or 2% whereas the 

percent change for the actual values was 15.8%. Although the overall behavior of the 

forecasts and actual values are both increasing the forecasts in no way reflect what 
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happens during the forecasting period. This information could be vital to an investor 

because that behavior would indicate if they should sell the stock, in anticipation of a 

drastic change in price, or continue to stay invested to take advantage of the long-term 

behavior of the stock.  

 

 

35302520151051

45

40

35

30

25

20

15

10

Time

C
L
O

S
E
_

1
S

T

Time Series Plot for ASML_1ST
(with forecasts and their 95% confidence limits)

 
                    Figure 3.28: Time Series plot of ASML sampled on the 1

st
 trading day of the  

                    month with forecasts 

 

 

                          Table 3.21 

 

                          Analysis of the forecasts for ASML sampled on the 1
st
 trading day of the  

 

                           month 
Date Actual Forecasts 

6/1/2010 28.10 32.77 

7/1/2010 27.94 32.31 

8/2/2010 33.02 31.90 

9/1/2010 25.99 31.54 

10/1/2010 29.92 31.22 

11/1/2010 33.27 30.93 
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The MAPE for the forecasted values is 0.113917. The forecasts for the weekly 

data suggested that stock would slowly, but steadily be on the rise for this five month 

period. However, the forecasts for the data sampled on the 1
st
 and 15

th
 trading day of the 

month suggest that the prices will decline. So, although we were able to confirm models 

for the data that were sampled on the 1
st
 and 15

th
, those models would not be appropriate 

investing tools.  
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                    Figure 3.29: Time Series plot of ASML sampled on the 15

th
 trading day of  

 

                  the month with forecasts 

 

 

Table 3.22 

 

Analysis of the forecasts for ASML sampled on the 15th trading day of the month 

 
Date Actual Forecasts 

6/15/2010 30.93 29.77 

7/15/2010 31.59 29.64 

8/16/2010 28.39 29.52 

9/15/2010 28.17 29.40 

10/15/2010 32.81 29.30 
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The MAPE for the forecasted values is 0.057914.The Minitab output confirms 

that an AR(1) is an adequate model for each of the series. The small p-value, essentially 

zero, for the autoregressive parameter and the constant tell us that these parameters are 

significantly different from zero. The plots for the analysis of the residuals suggest 

Normality and randomness. We can conclude that data that is sampled on a weekly basis 

produces the best model based on the MSE and the analysis of the forecasts.   

3.1 d. Advanced Analogue Technologies, Inc.  

The resulting models for Advanced Analogue Technologies, Inc. were once again 

all AR(1).  Looking at the ACFs below, we recognize that they behave the same, except 

for the weekly data containing more lags. Again, the ACF for the differenced series are 

those of a trended series, so we conclude that differencing is not necessary and the lags 

are strongly correlated, so the appropriate model is an AR(1). 
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Figure 3.30: Autocorrelation Function for single differenced AATI sampled                    

weekly 
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Figure 3.31: Autocorrelation Function for single differenced AATI sampled 

on the 1
st
 trading day of the month 
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                      Figure 3.32: Autocorrelation Function for single differenced AATI  

 

                      sampled on the 15
th

 trading day of the month 
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In the Minitab output below we fit the model without a constant because the 

results for the model with the constant indicated it is not significantly different from zero, 

which was reflected by the p-value for this parameters being larger than .05(nearly 1). So 

we refit the models and produce the following results.  

Table 3.23 

Partial Minitab Output for AATI sampled weekly 

Final Estimates of Parameters 

 

Type      Coef  SE Coef       T      P 

AR   1  0.9981   0.0042  240.26  0.000 

 

Number of observations:  268 

Residuals:    SS =  71.1688 (backforecasts excluded) 

              MS =  0.2665  DF = 267 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   14.1   22.6   34.3   52.6 

DF             11     23     35     47 

P-Value     0.225  0.484  0.500  0.267 
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           Figure 3.33: Four-in-One Residual Plots for AATI sampled weekly 
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Table 3.24 

 

Partial Minitab Output for AATI sampled on the 1
st
 trading day of the month 

 

Final Estimates of Parameters 

 

Type      Coef  SE Coef      T      P 

AR   1  0.9978   0.0197  50.61  0.000 

 

Number of observations:  63 

Residuals:    SS =  90.2395 (backforecasts excluded) 

              MS =  1.4555  DF = 62 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    9.7   20.3   31.4   33.9 

DF             11     23     35     47 

P-Value     0.557  0.626  0.645  0.923 
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                      Figure 3.34: Four-in-One Residual Plots for AATI sampled on the 1

st
  

                      trading day of the month 

 

The histogram and probability plots of the residuals (Figure 3.36) again show that 

there are three low outliers and also one high outlier. This causes skewness. Also, 

examining the residuals versus order we recognize that the variation is nonconstant. The 

residuals versus fits are relatively homoscedastic, compared to the order plot. 
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Table 3.25 

 

Partial Minitab Output for AATI sampled on the 15th trading day of the month 
 

Final Estimates of Parameters 

 

Type      Coef  SE Coef      T      P 

AR   1  0.9979   0.0193  51.69  0.000 

 

Number of observations:  60 

Residuals:    SS =  84.6610 (backforecasts excluded) 

              MS =  1.4349  DF = 59 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   13.0   23.9   33.8   36.4 

DF             11     23     35     47 

P-Value     0.295  0.409  0.525  0.869 
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                      Figure 3.35: Four-in-One Residual Plots for AATI sampled on the 15th  

 

          trading day of the month 

 

The Minitab output confirms that an AR(1) is an adequate model for each of the 

series. The small p-value (essentially zero) for the autoregressive parameter tells us that 

the autoregressive parameter is significantly different from zero. Although the probability 

plot suggests Normality, there are several low outliers present. Also the plot of the 

residuals versus the fit does not appear to be totally random or dispersed evenly.    
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                 Figure 3.36: Time Series Plot for AATI sampled weekly with forecasts 

 

Examining the time series above, we notice that the behavior is completely 

different, during different intervals in the series. For the first 1/3 of the series, from 

observations 1 to about 60, the price per share starts out increasing but then steadily 

decreases. For the second 1/3, the price gradually increases, but also begins to decrease. 

There is a steady cluster of observations present amongst the last one-third of the fitted 

values. 
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                           Table 3.26 

   

    Analysis of forecasts for AATI sampled weekly (AR(1)) 
Dates Actual Forecasts 

6/1/2010 3.46 3.30 

6/8/2010 3.34 3.30 

6/11/2010 3.55 3.29 

6/22/2010 3.37 3.29 

6/29/2010 3.21 3.28 

7/6/2010 2.97 3.27 

7/13/2010 3.27 3.27 

7/20/2010 3.42 3.26 

7/27/2010 3.38 3.25 

8/3/2010 3.24 3.25 

8/10/2010 3.31 3.24 

8/24/2010 3.37 3.24 

8/31/2010 3.24 3.23 

9/7/2010 3.30 3.22 

9/14/2010 3.42 3.22 

9/21/2010 3.46 3.21 

9/28/2010 3.62 3.21 

10/5/2010 3.53 3.20 

10/12/2010 3.43 3.19 

10/19/2010 3.78 3.19 

10/26/2010 3.75 3.18 

The MAPE for the forecasted values is 0.056. 
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                     Figure 3.37: Time Series for AATI sampled on the 1

st
 trading day of the  

 

         month with forecasts 
 

 

 

 

               Table 3.27 

  

 Analysis of forecasts for AATI sampled on the 1
st
 trading day of the                      

 

  month (AR(1)) 
Dates Actual Forecasts 

6/1/2010 3.4600 3.45 

7/1/2010 3.0900 3.45 

8/2/2010 3.2200 3.44 

9/1/2010 3.4700 3.43 

10/1/2010 3.4800 3.42 

11/1/2010 3.7200 3.42 

The MAPE for the forecasted values is 0.049. 
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                      Figure 3.38: Time Series for AATI sampled on the 15th trading day of the  

                      month with forecasts 

 

 

    Table 3.28 

  

    Analysis of forecasts for AATI sampled on the 1
st
 trading day of the  

 

    month (AR(1)) 

 
Dates Actual Forecasts 

6/15/2010 3.78 3.62 

7/15/2010 3.43 3.62 

8/16/2010 3.20 3.61 

9/15/2010 3.39 3.60 

10/15/2010 3.91 3.59 

 

The MAPE for the forecasted values is 0.073.The models for the forecast for the 

series were, ttttttttt yyyyyy 111 9979. and  ,9978.  ,9981. , 

for the data sampled weekly,  on the 1
st
 trading day of the month and the 15

th
 trading day 

of the month , respectively. The model for each series is very similar to one that would be 

produced for a random walk. A random walk model is of the form ttt yy 1 . So 
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comparing this to an AR(1) model or ttt yy 110 , for a random walk 

1 and 0 10 . And for the confirmed models the autoregressive parameters were 

.9981, .997 and .9979. These models indicate the next weeks or month’s price is just this 

week’s or month’s price plus some random error.   However, although the Minitab output 

confirms that the parameters are significantly different from zero, an analysis of the 

residuals the data sampled on the first and 15
th

 of the month indicated that the data is not 

well modeled. Even though we realize that AR(1) does not produce an adequate model, 

this is the most appropriate model when compared to the results of any other ARIMA 

model for these series.  

3.1 e. PepsiCo Inc. 

The resulting models for PepsiCo. were all again AR(1). Looking at the ACF’s 

below, we recognize that they behave the same, except for the weekly data containing 

more lags. The suggested model is AR(1) because the ACF for the differenced series was 

that of a trended series. From previous series, we know this implies that differencing isn’t 

necessary and that the appropriate AR(1) model.  
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Figure 3.39: Autocorrelation Function for single differenced PEP sampled          

weekly 
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                   Figure 3.40: Autocorrelation Function for single differenced PEP sampled on  

                 

                 the 1
st
 trading day of the month 
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        Figure 3.41: Autocorrelation Function for single differenced PEP sampled  

        

       on the 15
th

 trading day of the month 

 

 

Table 3.29 

 Partial Minitab Output for PEP sampled weekly 

Final Estimates of Parameters 

 

Type         Coef  SE Coef       T      P 

AR   1     0.9923   0.0067  147.63  0.000 

Constant  0.42796  0.06253    6.84  0.000 

Mean       55.920    8.170 

 

Number of observations:  535 

Residuals:    SS =  1102.73 (backforecasts excluded) 

              MS =  2.07  DF = 533 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   15.7   26.0   42.7   55.4 

DF             10     22     34     46 

P-Value     0.108  0.250  0.146  0.161 
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   Figure 3.42: Four-in-One Residual Plots for PEP sampled weekly 

 

 

 

 

Table 3.30 

 

Partial Minitab Output for PEP sampled on the 1
st
 trading day of the month 

 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.9666   0.0274  35.26  0.000 

Constant  1.8214   0.2571   7.09  0.000 

Mean      54.525    7.695 

 

Number of observations:  126 

Residuals:    SS =  1030.65 (backforecasts excluded) 

              MS =  8.31  DF = 124 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   10.6   29.6   42.8   48.0 

DF             10     22     34     46 

P-Value     0.391  0.129  0.142  0.394 
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                   Figure 3.43: Four-in-One Residual Plots for PEP sampled on the 1

st
 trading  

                   day of the month 

 

Table 3.31 

 

Partial Minitab Output for PEP sampled on the 15th trading day of the month 
 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.9595   0.0293  32.77  0.000 

Constant  2.2305   0.2707   8.24  0.000 

Mean      55.077    6.684 

 

Number of observations:  122 

Residuals:    SS =  1071.83 (backforecasts excluded) 

              MS =  8.93  DF = 120 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   15.3   24.6   29.9   37.9 

DF             10     22     34     46 

P-Value     0.123  0.317  0.669  0.798 
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                   Figure 3.44: Four-in-One Residual Plots for PEP sampled on the 15th trading  

 

                  day of the month 

 

500450400350300250200150100501

80

70

60

50

40

30

Time

C
L
O

S
E
_

W
E
E
K

L
Y

Time Series Plot for PEP_WEEKLY
(with forecasts and their 95% confidence limits)

 
             Figure 3.45: Time Series Plot for PEP sampled weekly with forecasts 

 

The plots in the residual analysis reveal that there are at least two low outliers. 

From examining the time series plot above we  notice that these are caused by the drop in 

price  that occurred from 9/30/2008 to 10/7/2008,  where the price per share dropped 

from $71.27 to $65.12 and then to $54.40 on the 10/14/2008. By doing some additional 
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research these drops can be explained by events that occurred within the company. In 

October 2008, Pepsi announced that it would be redesigning its logo and re-branding 

many of its products by early 2009. Also, in late 2008, Pepsi overhauled their entire 

brand, simultaneously introducing a new logo and a minimalist label design. The redesign 

was comparable to Coca-Cola's earlier simplification of their can and bottle designs. Also 

in 2008 Pepsi teamed up with Google/YouTube to produce the first daily entertainment 

show on Youtube, Poptub. This daily show deals with pop culture, internet viral videos, 

and celebrity gossip. Poptub is updated daily from Pepsi. Because it is most likely that 

these events and the anticipation of them caused the price per share to drop drastically 

and then continue to decline, and more importantly this type of overhaul of a company is 

not something that occurs regularly, we explain the outliers and can justify eliminating all 

observations the observations prior to this point and only using the values after 

10/14/2008 to model this series. However doing this does significantly shrink our data 

set.  
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         Figure 3.46: Time Series Plot for PEP sampled weekly (modified) 
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                        Figure 3.47: Autocorrelation Function for PEP sampled weekly differenced  

                    

                  once(modified) 

 

Table 3.32 

 

Partial Minitab Output for PEP sampled weekly (modified) 
 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.9732   0.0256  38.00  0.000 

Constant  1.5886   0.1459  10.89  0.000 

Mean      59.368    5.451 

 

Number of observations:  105 

Residuals:    SS =  227.692 (backforecasts excluded) 

              MS =  2.211  DF = 103 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   13.4   18.2   26.2   37.4 

DF             10     22     34     46 

P-Value     0.204  0.694  0.830  0.813 
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                      Figure 3.48: Four-in-One Residual Plots for PEP sampled  

 

                      weekly(modified) 
 

 

Although there are still outliers present the residuals are appear both Normal and 

random. The confirmed model is still AR(1) but using the modified data we did not  

produce a  better model, based on the MSE. For the original series it was 2.07 and for the 

modified series it is 2.211. But the MAPE for the forecasted values for the modified 

series was significantly better, 0.003309 compared to 0.04979. Because we are modeling 

these series in order to forecast stock prices, using the original series would be best, 

assuming that the assumptions for Normality and randomness are met.  The same results 

were true for the data sampled on the 1
st
 and 15

th
 trading day of the month. The MAPE 

for the forecasts for the 1
st
 trading day of the month was 0.037581 for the modified series 

and for the original series it was 0.03186.  
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Table 3.33 

 

Analysis of forecasts for PEP sampled weekly (AR(1)) for the modified series 
Data Actual Forecasts 

6/1/2010 62.76 61.92 

6/8/2010 62.65 61.85 

6/11/2010 63.56 61.79 

6/22/2010 63.30 61.72 

6/29/2010 61.23 61.66 

7/6/2010 61.64 61.60 

7/13/2010 63.43 61.54 

7/20/2010 64.73 61.48 

7/27/2010 65.69 61.42 

8/3/2010 65.77 61.37 

8/10/2010 66.53 61.31 

8/24/2010 64.78 61.26 

8/31/2010 64.18 61.21 

9/7/2010 65.48 61.16 

9/14/2010 65.98 61.11 

9/21/2010 66.46 61.07 

9/28/2010 66.78 61.02 

10/5/2010 67.76 60.98 

10/12/2010 66.08 60.93 

10/19/2010 65.41 60.89 

10/26/2010 64.7900 60.85 

The MAPE for the forecasted values is 0.003309. 
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                     Figure 3.49: Time Series for PEP sampled on the 1

st
 trading day of the  

 

                     month with forecasts (modified) 
 

 

 

Table 3.34 

 

Analysis of forecasts for PEP sampled on the 1
st
 trading day of the month (AR(1)) 

 
Dates Actual Forecasts 

6/1/2010 62.76 65.12 

7/1/2010 61.52 64.61 

8/2/2010 65.27 64.14 

9/1/2010 64.89 63.73 

10/1/2010 67.00 63.36 

11/1/2010 65.55 63.02 

The MAPE for the forecasted values is 0.037581.  
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                     Figure 3.50: Time Series for PEP sampled on the 15th trading day of the    

 

                     month with forecasts 

 

 

 

Table 3.35 

 

Analysis of forecasts for PEP sampled on the 15th trading day of the month (AR(1)) 

 
Dates Actual Forecasts 

6/15/2010 64.24 66.33 

7/15/2010 63.16 66.52 

8/16/2010 65.43 66.71 

9/15/2010 66.50 66.91 

10/15/2010 66.68 67.10 

 

The MAPE for the forecasted values is 0.02354. The fits for all the models except 

the data that was sampled on the 15
th

 trading day of the month showed a steady decline, 

although the actual prices increased overall. This is most likely do to the major drop in 

price that occurred in October 2008. This event did not affect the data sampled on the 15
th

 

trading day of the month as much, although the overall behavior is still very similar. The 

MSE tells us that the data sampled weekly produces a better model than the data sampled 
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on the 1
st
 and 15

th
 trading day of the month. As an investing tool the data sampled on the 

15
th

 trading day of the month would be the most appropriate, because the fits behave 

most like the actual values and it has the smallest MAPE.  

 

3.1 f. Coca-Cola Bottling Co. Consolidated 

The resulting models for Coca-Cola were again all AR(1). For all three intervals, 

even after the series were differenced, the ACFs still displayed trend. So this implies that 

AR(1) is the appropriate model. We also note that although ARIMA (0,1,0) or an random 

walk would have also produced an adequate model, the resulting residuals were not 

Normal.   
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Figure 3.51: Autocorrelation Function for single differenced COKE           

sampled weekly 

 

 

 

 

 



106 

 

 

3230282624222018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e

la
ti

o
n

Autocorrelation Function for COKE_1ST
(with 5% significance limits for the autocorrelations)

 
                    Figure 3.52: Autocorrelation Function for single differenced COKE sampled  

 

         on the 1
st
 trading day of the month 
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                   Figure 3.53: Autocorrelation Function for single differenced COKE sampled  

 

                  on the 15
th

 trading day of the month 
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Table 3.54 

Partial Minitab Output for COKE sampled weekly 

Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1     0.9646   0.0115  84.05  0.000 

Constant  1.78021  0.08461  21.04  0.000 

Mean       50.273    2.389 

 

Number of observations:  535 

Residuals:    SS =  2040.00 (backforecasts excluded) 

              MS =  3.83  DF = 533 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   17.1   29.2   39.9   47.7 

DF             10     22     34     46 

P-Value     0.073  0.139  0.224  0.404 
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       Figure 3.54: Four-in-One Residual Plots for COKE sampled weekly 

 
 

The probability plot of the residuals shows that there is a low outlier present. This 

outlier is due to the drop in price on 12/18/2007, when the price per share dropped from 

$58.91 to $54.91. However there was nothing that could be found to explain this drop in 

price.  
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Table 3.37 

Partial Minitab Output for COKE sampled on the 1
st
 trading day of the month 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.8861   0.0418  21.19  0.000 

Constant  5.7208   0.3060  18.69  0.000 

Mean      50.227    2.687 

 

Number of observations:  126 

Residuals:    SS =  1463.07 (backforecasts excluded) 

              MS =  11.80  DF = 124 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   17.8   25.6   32.7   36.0 

DF             10     22     34     46 

P-Value     0.059  0.269  0.531  0.855 
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                  Figure 3.55: Four-in-One Residual Plots for COKE sampled on the 1

st
 trading  

                  day of the month 

 

Again the Normal plot of the residuals shows that there is a low outlier present. 

This outlier is due to the drop in price on 5/1/2008, when the price per share dropped 

from $58.20 to $49.83, but there wasn’t anything that could be found to explain this drop 

in price.  
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Table 3.38 

 

Partial Minitab Output for COKE sampled on the 15th trading day of the month 
 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.8462   0.0488  17.33  0.000 

Constant  7.7007   0.3664  21.02  0.000 

Mean      50.086    2.383 

 

Number of observations:  122 

Residuals:    SS =  1965.03 (backforecasts excluded) 

              MS =  16.38  DF = 120 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    8.8   18.6   25.5   31.7 

DF             10     22     34     46 

P-Value     0.546  0.671  0.854  0.94 
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       Figure 3.56: Four-in-One Residual Plots for COKE sampled on the 15th  

 

       trading day of the month 

 

For this data there are three low outliers and two high outliers. A possible cause of 

the low outliers could be a result of the major drop in price that occurred from 5/15/2008 

to 7/15/2008. During this period the price per share dropped from 56.66 to 45.03 then to  

33.47. Again we are not able to offer a possible cause.  
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The Minitab output confirms that AR(1) is the best model for each of the series. 

The small p-value (less than .05) for the autoregressive parameter and the constant tell us 

that both parameters are significantly different from zero. Also the Normality Probability 

plot and the histogram of the residuals confirm approximate Normality.  For this stock 

the weekly data’s MSE was smaller than the one for data that was sampled on the 1
st
 and 

the 15
th

 trading day of the month, so we can conclude that weekly data will produce the 

best model.  

500450400350300250200150100501

70

60

50

40

30

Time

C
L
O

S
E
_

W
E
E
K

L
Y

Time Series Plot for COKE_WEEKLY
(with forecasts and their 95% confidence limits)

 
               Figure 3.57: Time Series Plot for COKE sampled weekly with forecasts 
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                           Table 3.39 

     Analysis of Forecasts for COKE sampled weekly (AR(1)) 

Dates Actual Forecasts 

6/1/2010 48.13 49.49 

6/8/2010 47.40 49.52 

6/11/2010 50.32 49.55 

6/22/2010 49.55 49.57 

6/29/2010 47.84 49.60 

7/6/2010 45.92 49.62 

7/13/2010 50.07 49.65 

7/20/2010 51.34 49.67 

7/27/2010 52.26 49.69 

8/3/2010 51.14 49.71 

8/10/2010 50.84 49.73 

8/24/2010 50.44 49.75 

8/31/2010 49.73 49.77 

9/7/2010 50.08 49.79 

9/14/2010 51.63 49.80 

9/21/2010 51.23 49.82 

9/28/2010 52.79 49.84 

10/5/2010 54.33 49.85 

10/12/2010 53.12 49.87 

10/19/2010 53.60 49.88 

10/26/2010 54.46 49.89 

The MAPE for the forecasts is 0.03726. 
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                    Figure 3.58: Time Series for COKE sampled on the 1

st
 trading day of the  

 

                    month with forecasts 
 

 

Table 3.40 

 

 Analysis of Forecasts for COKE sampled on the1st trading day of the month (AR(1)) 

 
Dates Actual Forecasts 

6/1/2010 48.13 54.79 

7/1/2010 46.72 54.27 

8/2/2010 51.68 53.81 

9/1/2010 50.93 53.40 

10/1/2010 52.94 53.042 

11/1/2010 53.44 52.72 

The MAPE for the forecasts is 0.06755. 
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                      Figure 3.59: Time Series for COKE sampled on the 15th trading day of the  

 

                     month with forecasts 
 

 

 

Table 3.41 

 

Analysis of Forecasts for COKE sampled on the1st trading day of the month (AR(1)) 

 
Dates Actual Forecasts 

6/15/2010 51.09 52.48 

7/15/2010 50.40 52.12 

8/16/2010 50.11 51.80 

9/15/2010 51.52 51.54 

10/15/2010 53.70 51.32 

The MAPE for the forecasts is 0.02798. For all three of the intervals the forecast 

overall behaved similar to the actual values. Although the data sampled weekly produced 

the best MSE, the MAPE indicates the forecasts were better for the data sampled on the 

15
th

 trading day of the month. 
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3.1 g. Microsoft Corporation 

Again the ACFs for the differenced series displayed trend so the appropriate 

model is AR(1) for all three intervals. The Minitab output as well as the plots for the 

residuals analysis confirm that AR(1)  is the appropriate model and Normality and 

randomness of the residuals are satisfied.  
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Figure 3.60: Autocorrelation Function for single differenced MSFT           

sampled weekly 
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 Figure 3.61: Autocorrelation Function for single differenced MSFT 

sampled on the 1
st
 trading day of the month 
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                      Figure 3.62: Autocorrelation Function for single differenced MSFT  

 

                     sampled on the 15
th

 trading day of the month 
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Table 3.42 

Partial Minitab Output for MSFT sampled weekly 

Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1     0.9625   0.0137  70.24  0.000 

Constant  0.98941  0.04362  22.68  0.000 

Mean       26.412    1.164 

 

Number of observations:  397 

Residuals:    SS =  297.893 (backforecasts excluded) 

              MS =  0.754  DF = 395 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    8.6   16.7   37.1   50.2 

DF             10     22     34     46 

P-Value     0.572  0.778  0.327  0.310 
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       Figure 3.63: Four-in-One Residual Plots for MSFT sampled weekly 

 
 

The probability plot and histogram reveal that there are low and high outliers for 

the data sampled weekly and high ones for the data sampled on the 1
st
 and 15

th
 trading 

day of the month. The time series plot does not show any major drops or increases greater 

than a few dollars which would lead us to offer an explanation for the outliers.  
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Table 3.43 

 

Partial Minitab Output for MSFT sampled on the 1
st
 trading day of the month 

 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.8456   0.0562  15.05  0.000 

Constant  4.0799   0.1864  21.89  0.000 

Mean      26.422    1.207 

 

Number of observations:  93 

Residuals:    SS =  293.914 (backforecasts excluded) 

              MS =  3.230  DF = 91 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    2.8   13.6   25.5   32.2 

DF             10     22     34     46 

P-Value     0.985  0.914  0.854  0.939 

 

 

630-3-6

99.9

99

90

50

10

1

0.1

Residual

P
e

r
c
e

n
t

3530252015

5

0

-5

Fitted Value

R
e

s
id

u
a

l

86420-2-4

20

15

10

5

0

Residual

F
r
e

q
u

e
n

c
y

9080706050403020101

5

0

-5

Observation Order

R
e

s
id

u
a

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for MSFT_1ST

 
                   Figure 3.64: Four-in-One Residual Plots for MSFT sampled on the 1

st
 trading  

                  

                day of the month 
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Table 3.44 

 

Partial Minitab Output for MSFT sampled on the 15th trading day of the month 

 
Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1    0.8644   0.0541  15.99  0.000 

Constant  3.5569   0.1750  20.33  0.000 

Mean      26.222    1.290 

 

Number of observations:  90 

Residuals:    SS =  241.354 (backforecasts excluded) 

              MS =  2.743  DF = 88 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    7.6   12.2   19.8   27.2 

DF             10     22     34     46 

P-Value     0.672  0.953  0.975  0.987 
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                  Figure 3.65: Four-in-One Residual Plots for MSFT sampled on the 15th  

 

                  trading day of the month 
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              Figure 3.66: Time Series Plot for MSFT sampled weekly with forecasts 
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                           Table 3.45 

    Analysis of forecasts for MSFT sampled weekly (AR(1)) 

Date Actual Forecasts 

6/1/2010 25.89 26.08 

6/8/2010 25.11 26.10 

6/11/2010 25.66 26.11 

6/22/2010 25.77 26.12 

6/29/2010 23.31 26.13 

7/6/2010 23.82 26.14 

7/13/2010 25.13 26.15 

7/20/2010 25.48 26.16 

7/27/2010 26.16 26.17 

8/3/2010 26.16 26.18 

8/10/2010 25.07 26.19 

8/24/2010 24.04 26.20 

8/31/2010 23.47 26.20 

9/7/2010 23.96 26.21 

9/14/2010 25.03 26.22 

9/21/2010 25.15 26.23 

9/28/2010 24.68 26.23 

10/5/2010 24.35 26.24 

10/12/2010 24.83 26.25 

10/19/2010 25.10 26.25 

10/26/2010 25.90 26.26 

 

The MAPE for the forecasts is 0.05032.Although the forecasts do not fluctuate 

like the actual prices did, they follow the same overall behavior and at some points 

intersect. The forecasts are very similar to the actual prices.  
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                      Figure 3.67: Time Series for MSFT sampled on the 1

st
 trading day of the  

 

                      month with forecasts 
 

 

Table 3.46 

 

Analysis of forecasts for MSFT sampled on the 1
st
 trading day of the month (AR(1)) 

 
Date Actual Forecasts 

6/1/2010 25.89 30.01 

7/1/2010 23.16 29.46 

8/2/2010 26.33 28.99 

9/1/2010 23.90 28.59 

10/1/2010 24.38 28.26 

11/1/2010 26.95 27.98 

 

The MAPE for the forecasts is 0.15431. 
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                    Figure 3.68: Time Series for MSFT sampled on the 15

th
 trading day of the  

 

                    month with forecasts 

 

 

Table 3.47 

 

Analysis of forecasts for MSFT sampled on the 15
th

 trading day of the month (AR(1)) 
 

Date Actual Forecasts 

6/15/2010 26.58 28.80 

7/15/2010 25.51 28.45 

8/16/2010 24.50 28.15 

9/15/2010 25.12 27.88 

10/15/2010 25.54 27.66 

6/15/2010 26.58 28.80 

The MAPE for the forecasts is 0.12474. For the data sampled on the 1
st
 and 15

th
 

trading day of the month the forecasts and the actual values both decreased, but the 

forecasts are quite a bit higher than the actual values. Also a few of the actual values are 

not contained within the 95% confidence interval.  As a, result the MAPE for the 

forecasts for these two sampling intervals are significantly higher than the MAPE for the 

data that was sampled weekly.  
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3.1 h: Apple Inc.  

The confirmed models for Apple sampled weekly and on the 15
th

 trading day of 

the month is ARIMA(1,1,0) and for data sampled on the 1
st
 trading day of the month the 

model is ARIMA(0,1,0).  We notice that although the ACFs for the data sampled on the 

1
st
 and the 15

th
 behave very similarly, the resulting models for the series are different. 

This is because the PACF for the series sampled on the 15
th

 trading day of the month has 

a significant negative spike at lag 2, which is not present in the PACF for the data that 

was sampled on the 1
st
 trading day of the month.   
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                  Figure 3.69: Autocorrelation function for single differenced APPL sampled  

 

                 on the 1st trading day of the month 
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                    Figure 3.70: Autocorrelation function for single differenced APPL sampled  

 

                  on the 1
st
 trading day of the month 

 

 

30282624222018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

P
a

r
t
ia

l 
A

u
t
o

c
o

r
r
e

la
t
io

n

Partial Autocorrelation Function for AAPL_1ST
(with 5% significance limits for the partial autocorrelations)

 
                     Figure 3.71: Partial autocorrelation function for single differenced APPL  

                    sampled on the 1
st
 trading day of the month 
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                    Figure 3.72: Autocorrelation function for single differenced APPL sample 

                   

                  on the 15
th 

trading day of the month 
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         Figure 3.73: Partial autocorrelation function for single differenced APPL  

 

         sampled on the 15
th

 trading day of the month 
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Table 3.48 

Partial Minitab output for APPL sampled weekly 

Final Estimates of Parameters 

 

Type        Coef  SE Coef     T      P 

AR   1    0.1070   0.0431  2.48  0.013 

Constant  0.4783   0.2234  2.14  0.033 

 

 

Differencing: 1 regular difference 

Number of observations:  Original series 535, after differencing 534 

Residuals:    SS =  14174.7 (backforecasts excluded) 

              MS =  26.6  DF = 532 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   11.7   31.8   49.6   59.7 

DF             10     22     34     46 

P-Value     0.303  0.081  0.041  0.085 
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     Figure 3.74: Four-in-One Residual Plots for APPL sampled weekly 

 

The probability plot and the plot of the residuals versus order indicate that the 

residuals are not Normal and that the variation is not constant. The same is true for the 

data sampled on the 1
st
 and 15

th
 trading day of the month.  But the Minitab output 

confirms that all the parameters in each model are significantly different from zero. So 

we tested other ARIMA models to determine if there may be a more appropriate model. 
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However, no other models produce results with significant estimates as well as residuals 

that are Normal and random. Also, although the p-values are not significant at the 

seasonal lags, they are low so we test to see if a seasonal component is present. So 

because the assumptions are violated we cannot trust the p-values of the t-test. 

Table 3.49: Partial Minitab output for APPL sampled on the 1
st
 trading day of the month 

Final Estimates of Parameters 

 

Type        Coef  SE Coef     T      P 

AR   1    0.0699   0.0908  0.77  0.443 

Constant   2.109    1.120  1.88  0.062 

 

Differencing: 1 regular difference 

Number of observations:  Original series 126, after differencing 125 

Residuals:    SS =  19271.8 (backforecasts excluded) 

              MS =  156.7  DF = 123 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    8.6   20.9   39.3   41.0 

DF             10     22     34     46 

P-Value     0.572  0.527  0.244  0.682 
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                   Figure 3.75: Four-in-One Residual Plots for APPL sampled on the 1

st
 trading  

                  day of the month 
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Table 3.50 

 

Partial Minitab output for APPL sampled on the 15
th

 trading day of the month 
 

Type        Coef  SE Coef     T      P 

AR   1    0.2930   0.0928  3.16  0.002 

Constant   1.813    1.073  1.69  0.094 

 

Differencing: 1 regular difference 

Number of observations:  Original series 122, after differencing 121 

Residuals:    SS =  16554.9 (backforecasts excluded) 

              MS =  139.1  DF = 119 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    9.3   20.2   31.1   32.2 

DF             10     22     34     46 

P-Value     0.500  0.569  0.611  0.939 
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                      Figure 3.76: Four-in-One Residual Plots for APPL sampled on the 15

th
  

 

                     trading day of the month 
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                Figure 3.77: Time Series Plot of APPL sampled weekly with forecasts 
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                            Table 3.51 

       Forecasts analysis for APPL sampled weekly 

Dates Actual Forecasts 

6/1/2010 260.83 254.44 

6/8/2010 249.33 255.01 

6/11/2010 253.51 255.55 

6/22/2010 273.85 256.09 

6/29/2010 256.17 256.63 

7/6/2010 248.63 257.16 

7/13/2010 251.80 257.70 

7/20/2010 251.89 258.23 

7/27/2010 264.08 258.77 

8/3/2010 261.93 259.30 

8/10/2010 259.41 259.84 

8/24/2010 239.93 260.37 

8/31/2010 243.10 260.91 

9/7/2010 257.81 261.45 

9/14/2010 268.06 261.98 

9/21/2010 283.77 262.52 

9/28/2010 286.86 263.05 

10/5/2010 288.94 263.59 

10/12/2010 298.54 264.12 

10/19/2010 309.49 264.656 

10/26/2010 308.05 265.20 

The MAPE for the forecasts is 0.05128. 
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                     Figure 3.78: Time Series Plot of APPL sampled on 1

st
 trading day of the  

 

                    month with forecasts 

 

                           Table 3.52 

                           Forecasts analysis for APPL sampled on the 1
st
 trading day of the month 

Dates Actual Forecasts 

6/1/2010 260.83 270.58 

7/1/2010 248.48 272.99 

8/2/2010 261.85 275.29 

9/1/2010 250.33 277.54 

10/1/2010 282.52 279.81 

11/1/2010 304.18 282.07 

The MAPE for the forecasts is 0.06304. 
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                      Figure 3.79: Time Series Plot of APPL sampled on1

st
 trading day of the   

 

                      month with forecasts 

 

 

                         Table 3.53 

                         Forecasts analysis for APPL sampled on the 15
th

 trading day of the month 

Dates Actual Forecasts 

6/15/2010 259.690 257.069 

7/15/2010 251.450 259.834 

8/16/2010 247.640 262.458 

9/15/2010 270.220 265.040 

10/15/2010 314.740 257.069 

6/15/2010 259.690 259.834 

The MAPE for the forecasts is 0.06125. Although all the forecasts are not far off 

from the actual values the residual analysis indicates that that these models are not 

adequate. So investor should be cautious when using this model, if they desire to use it at 

all. It was mentioned that the behavior of Apple’s price per share has been overall 

constantly fluctuating, without any exact indicator present. But it is not unreasonable to 



133 

 

assume that the behavior off this stock is more a result of speculation, then an actual 

event taking place. For example, the release of the newest IPod, IPhone, or MacBook is 

anticipated by the consumer months in advance. This anticipation could also be reflected 

in the market. However, there is no way to be exactly sure, but we do realize that this 

type of activity does influence the price per share.  
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CHAPTER 4 

I. Conclusion 

Although it is possible to forecast values based on an ARIMA (0,1,0) model, it 

would be not wise to do so, especially when using the model as an investment tool. The 

danger in using a random walk model to forecast is that we have no way of  estimating t  

within the model ),0(~ with ,1 Nyy ittt   , which is the model for a random 

walk. Although this result isn't desirable for prediction it is makes sense with respect to 

the type of data we modeled. We are attempting to produce a model based solely on 

previous stock prices, which are correlated but can be heavily impacted by endless 

possible extraneous factors. From a statistical stand point broad aggregates such as 

national consumption, income and savings are not considered and make it hard to 

produce a model based only on previous stock prices.  The resulting models for nearly all 

the series were AR(1) models either in a differenced or undifferenced form . For AATI, 

although the models were all AR(1) they behaved very similar to a random walk. This 

was the case because the AR parameter was very close to one and the constant was zero. 

Although the overall class of models were similar amongst the series the parameters for 

the confirmed models varied. The stocks belonging to the same class of ARIMA models 

only indicates that the ACF and PACF for the stocks behave similarly. But the analysis 

also revealed that even the though the ACF and PACF may behave similarly overall, 

differences within each particular series can heavily impact whether or not the model will 

be adequate for forecasting the series. Within the same stock there were also instances 

when the models varied greatly.  This reveals the interval at which you choose to sample 
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is very important. The adequacy of the forecasts and the model was determined by 

examining residual plots and analyzing how the actual prices compared to the predicted 

values  

When examining the ACFs and PACF for the stocks, with regard to industry, 

there is no similarity in behavior among stocks within the same industry. The only 

similarities are those that exist because the stocks could be fitted using the same type of 

ARIMA model.  

The aim of this paper was to address the following questions: using the Box-

Jenkins approach, is there an ideal model and sampling interval when looking at 

modeling stock prices, with regard to specific industries. The sampling intervals that were 

explored were weekly, the 1
st
 trading day of the month and the 15

th
 trading day of the 

month. The companies of interest are two entities from each of the following industries: 

computers and software, grocery stores, semiconductor production, and soft drinks.  This 

paper that addressed this issue was my first exploring time series analysis, its techniques, 

and with particular attention to the Box-Jenkins Approach. Then we carried out analysis 

of the stock prices for Apple, Inc. (APPL), Microsoft Corp.( MSFT), Kroger Company 

(KR), Winn-Dixie Stores, Inc. (WINN), ASML Holding (ASML), Advanced Analogue 

Technologies, Inc. (AATI), PepsiCo, Inc. (PEP), and Coca-Cola Bottling Co. 

Consolidated(COKE). The results of these analyses allowed us to determine which 

ARIMA model was most appropriate for each stock and interval and decide if there were 

some similarities between industries.  

The results revealed stocks do not behave a certain way based on the industry they 

are in. Their behavior has more do to with that particular company and how much their 
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stock prices are influenced by factors that cannot be quantified. But if given the option it 

is best to fit a model based on data that has been sampled weekly. To determine which 

interval was the best we examined the mean average percentage error for the forecasts for 

interval.  

                                        Table 4.1 

                                    MAPE for stocks on each interval 

 
Weekly 1st trading day 

 of the month 

15th trading day  

of the month 

KR .037  0.081 0.0361 
 

WINN 0.424 

 

0.662 

 

0.536 

 

ASML 0.087 
 

0.114 
 

0.058 
 

AATI 0.0586 0.049 

 

0.073 

 

PEP 0.003 

 

0.038 

 

0.024 

COKE 0.037 

 

0.068 

 

0.028 

 

MSFT 0.050 

 

0.154 

 

0.125 

 

APPL 0.051 

 

0.063 

 

0.061 

 

 

The interval with the lowest MAPE for each stock is its respective suggested 

sampling interval was the data sampled weekly, except for PEP and AATI. There was no 

particular interval that performed better all of the time, even when comparing within each 

industry, the best sampling interval varied by stock. 

 

II. Further Directions 

The use of the Box-Jenkins Approach to forecast stock prices could be made 

better by incorporating covariates into the models such as; the introduction of product by 

an outside company, events that may be occurring in politics,  natural disasters, and 

speculations that are being made about the company in the market. A covariate is a 
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secondary variable that can affect the relationship between the dependent variable and 

other independent variables of primary interest, and our primary variable is time. By 

addressing the fact that there are outside components that influence the price per share, 

we can modify the model to try and anticipate the effect these events will have on the 

forecasts.  

In addition to incorporating covariates we could also expand on the topic by 

looking at more stocks within each industry to determine if the behavior that we observed 

was the norm, or an exception. Also examine whether or not the behavior in different 

industries are codependent.  
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