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CHAPTER 1 

 

INTRODUCTION 

 

The importance of statistics education has been in the forefront of educational 

reform in recent years. It has been shown that citizens are constantly presented with data 

and numbers they need to understand in order to make informed decisions regarding 

their personal lives. As times have changed with technological advancement, today’s 

society is dependent upon the collection and interpretation of data. Researchers have 

referred to this understanding as Quantitative Literacy. According to Jerry Moreno, 

assistant professor emeritus of statistics, “surely, a citizen should be able to read a 

newspaper intelligently, make decisions based on logic and quantitative information 

regarding political candidates, medicines and health, investments. Practically everyone 

in the workplace from farmers to lawyers, jurors to the accused, manufacturers to 

consumers’ needs to be able to think quantitatively” (Moreno). Students need to be 

equipped with the tools necessary to have a general understanding of decisions and 

conclusions that are based on statistical evidence.  

 

1.1 A Brief Historical Overview 

Georgia mandated a state curriculum that specifies what students should know 

for each subject in each grade through the Quality Basic Education (QBE) Act of 1985. 

Georgia’s state curriculum began with the creation of the Quality Core Curriculum 

(QCC) to provide a guideline of minimum standards which each school system must 

cover in the classroom to prepare their students for the state’s standardized tests which 

were also required by this act.  

In 2002, it was concluded by the group Phi Delta Kappa – a professional 

association for educators, - that the QCC lacked depth, could not be covered in a 

reasonable amount of time, and did not meet national standards. Criticism for QCC 

included shallow standards, which left teachers guessing what to teach and hoping that 

they had covered everything that will be on the standardized test. Teachers merely used 

the curriculum by mentioning them in the lesson plans, but nothing more (GA DOE). 

Because of this, the Georgia Performance Standards (GPS) were created by teachers, 

state and national experts, and consultants. Guidelines by National Council of Teachers 

of Mathematics (NCTM) and the American Association for the Advancement of Science 

(AAAS) were used as a guide; standards from high performing states such as Texas and 

North Carolina and countries such as Japan were also considered. GPS increased the 

depth of topics across content areas and provided instructors with suggested tasks. It 

defined expectations of skills students are to develop, acceptable assessment and 

instruction.  

While the GPS was being developed, the No Child Left Behind Act (NCLB) was 

being imposed on states. This act required states to develop assessments in basic skills 

that are required to be given to students at three different grade levels in order to receive 

federal school funding. The aim of NCLB was to support standards-based education 

reform such as Georgia’s development of the GPS, and increase accountability by 
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ensuring states standards allow equal opportunity for all students to receive a high 

school degree. With this in mind, the development of the GPS was made to align with 

the need to follow the NCLB Act (NCLB).  

Achieve – a bipartisan, non-profit organization that helps states raise academic 

standards was founded in 1996. This organization is dedicated to supporting standards-

based education reform across the nation. In 2005, Achieve; in partnership with the 

National Governor’s Association (NGA), sponsored the National Education Summit on 

High Schools. Forty five governors, along with corporate CEOs and education leaders 

from K-12 and higher education attended the summit. At the end, 13 states launched the 

American Diploma Project (ADP) Network with the goal of preparing students to be 

career and college ready. As of 2012, 35 states are part of the ADP network, educating 

85% of the nation’s public school students. (Achieve) The motivation for creation of the 

Common Core State Standards (CCSS) arose from ADP. The states in the ADP network 

are making the “case that education and opportunity are critical to America’s ability to 

innovate, compete and grow in an increasingly sophisticated and technologically-driven 

world economy” (Achieve, 2012). With the CCSS, high standards are created to be 

consistent across states, ensuring all students are equally well prepared with the skills 

and knowledge necessary for success in college and their careers.  

The nation’s governors and education commissioners through NGA and the 

Council of Chief State School Officers (CCSSO) led the development of the Common 

Core State Standards (CCSS). These standards are “internationally-benchmarked; 

college and career ready; rigorous, clear and focused, and grounded in research” 

(Achieve, 2012). The federal government was not involved in the development of the 

standards. CCSS was created through the collaboration of teachers, researchers and 

experts in curriculum design and development among the states. Beginning in 2010, 

each of the states independently chose to adopt the CCSS. On July 8, 2010 Georgia 

adopted the CCSS with a plan for full implementation during the 2012-13 school year. 

In 2009, 48 states, 2 territories and the District of Columbia signed an agreement 

committing to the CCSS Initiative (Achieve, 2013). Today, forty-five states have 

adopted the CCSS along with the District of Columbia and four territories. CCSS does 

not cover all subjects, but covers English language arts and mathematics as these are the 

subjects that are most frequently assessed and the basis of all other subjects (CCSSI). 

Georgia’s formal adoption of the CCSS has resulted in the creation of the 

Common Core Georgia Performance Standards (CCGPS).  This was created through a 

combination of the CCSS and the GPS. The purpose of CCGPS is to ensure that all 

Georgia students have equal access and opportunity to obtain the skills and knowledge 

necessary for success beyond high school. The focus of this thesis will be on the CCGPS 

Mathematics in grades 9-12.  

The QBE act required Georgia to have state standardized tests. There are two 

types of standardized assessments, the Criterion Referenced Competency Test (CRCT) 

for grades 1 – 8, first implemented in 2002, and the Georgia High School Graduation 

Test (GHSGT) typically first taken in grade 11. Students who entered 9
th

 grade between 

1981 – 1991 had their GHSGT as the Basic Skills Test (BST). The GHSGT was based 

on the QCC curriculum between 1991 – 2008. This was also a transition period in which 
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QCC GHSGT was phased out and the GPS GHSGT was phased in, and became just 

GPS GHSGT between 2008 – 2011. Students who enter 9
th

 grade after 2011 are no 

longer required to pass the GHSGT. (GA DOE) Since the creation of CCSS, the states 

that have adopted CCSS are to give a national assessment based on this curriculum. 

There are two assessment consortiums; Georgia is a member of the Partnership for 

Assessment of Readiness for College and Career (PARCC). Georgia will implement this 

national common assessment starting the 2014 - 2015 school year (Achieve, 2012).      

 

1.2 Tracking Statistics Standards 

With an understanding of the history of the mathematics curriculum, now, 

consider the grades 9-12 standards progression through the years with a focus on 

statistics standards present in the QCC, GPS and CCGPS.  According to Lynn Arthur 

Steen, Professor Emeritus of Mathematics at St. Olaf College, “It is no accident that 

mathematics is the discipline that launched the standards movement in the United States. 

Mathematics is central to the global movement to democratize education: it undergirds 

the increased need for postsecondary education, technical demands of the high 

performance workplace, and conceptual skills required to live and work in the 

information age” (Steen). The addition of statistics in the mathematics standards began 

in the early 1980’s with the NSF-Funded Quantitative Literacy Project (QLP). This was 

a joint project of the American Statistical Association (ASA) and the National Council 

of Teachers of Mathematics (NCTM). The results of the project were used as a basis for 

the statistics strands in the NCTM standards and included curriculum materials 

(Scheaffer, 1990). NCTM included statistics in their Curriculum and Evaluation 

Standards in 1989, and in the Principles and Standards in 2000. In 2005, the Guidelines 

for Assessment and Instruction in Statistics Education (GAISE) Report for Pre-K 

through 12 was adopted by the American Statistical Association and became the basis 

for statistics in the Common Core Standards (Franklin). This growth in development of 

statistics in the curriculum can be seen by the AP Statistics exam, first offered in 1997 

with 7,500 exams given, growing to 171,097 exams given in 2013 (Humphrey). 

The QCC math standards were created with respect to each mathematics course 

that could be offered by Georgia’s schools. The standards were separated into 20 

courses. This included a wide variety of courses ranging from common courses such as 

algebra, geometry, and pre-calculus to more concentrated options such as analysis, and 

discrete mathematics. In particular, two courses focused on statistics were included – 

Statistics, and Concepts of Probability and Statistics. Within each of these courses, a list 

of topics to be covered is given along with the standards to be addressed with the topic. 

Many of the courses had about 40 standards, which is one of the reasons why QCC was 

criticized as being too broad and not able to be addressed within the course time 

allotment. 

Thus, the GPS was formed to address such issues. GPS math standards for 

grades 9-12 were separated into four courses, Math I-IV. These courses are considered 

to be integrated due to the fact that each of the courses in the sequence consists of topics 

previously separated, such as algebra and geometry, blended together. All of the four 
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courses have content standards by topic, as well as process standards to be applied to 

each of the topics covered within the course. All four courses include Data Analysis and 

Probability as one of the topic strands to be covered in the course. Georgia was a 

visionary for having statistics as a major strand in the GPS standards, and has resulted in 

becoming a leader in statistics education in K-12 (Franklin). 

For example, consider the course Algebra 1 and the following statistics and 

probability standards in QCC and its revision for GPS assigned in Table 1.1. From this, 

it can be seen that the GPS standard has become more descriptive and specific for a 

clearer understanding. In this example, the QCC Algebra 1 statistics topics have been 

placed in Grade 7 GPS. This indicates that the breadth of the grades 9-12 QCC standards 

have been dispersed among different grade levels in GPS, including earlier grades such 

as 6-8. Also, since previous QCC standards found in grades 9-12 are present in grade 7 

math GPS, then it can be concluded that the GPS standards add rigor to the curriculum.  

Table 1.1 Algebra 1 QCC vs Statistics and Probability GPS  

QCC Standard GPS Standard 

35: Topic: Statistics  

Summarize data in various ways, including 

mean, median, mode, and range 

MCC7.SP.4 Use measures of center and 

measures of variability for numerical data 

from random samples to draw informal 

comparative inferences about two 

populations. (Grade 7) 

36: Topic: Probability 

Identifies possible outcomes of simple 

experiments and predicts or describes the 

probability of a given event expressed as a 

rational number from 0 to 1.  

MCC7.SP.5 Understand that the 

probability of a chance event is a number 

between 0 and 1 that expresses the 

likelihood of the event occurring. (Grade 

7) 

37: Topic: Probability 

Conducts and interprets a compound 

probability experiment. 

MCC7.SP.8 Find probabilities of 

compound events using organized lists, 

tables, tree diagrams, and simulation. 

(Grade 7) 

 

Most recently, in 2010 the Common Core math standards were created, and 

adopted by Georgia to create the current CCGPS math. According to the Achieve 

Common Core Comparison Tool, 90% of the overall GPS is aligned with the new 

Common Core math standards. Therefore, Georgia’s GPS was already very close to 

meeting the Common Core math standards (Georgia State Board). Since the Common 

Core math standards for high school were not divided into courses, rather just by topics 

for grades 9-12, it was the respective state’s decision on how to place the standards 

accordingly into their courses. Georgia’s approach to this was to keep four main math 

courses – Coordinate Algebra, Analytic Geometry, Advanced Algebra, and Pre-calculus. 

Along with these courses are a growing number of elective options for students, such as 

Advanced Mathematical Decision Making, Mathematics of Finance, and non-AP 

Calculus. These courses are growing as courses are currently being created, one example 

would be the course Statistical Reasoning.  
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The CCGPS Math standards were divided by conceptual categories for grades 9-

12. Consider one of the conceptual categories in CCGPS - Statistics and Probability, 

divided into three subcategories. These three subcategories of the Statistics and 

Probability standard clusters are found in CCGPS. Tables 1.2 to 1.4 show the 

development of these standards from the QCC, and GPS. Each respective CCGPS 

standard is traced by showing where it can be found in the previous standards. It can be 

seen from the tables that some standards are not specifically given in one set of 

standards but were presented in previous or later standards. Since the standards became 

much more detailed and specific as it developed to the CCGPS some standards do not 

seem to be present in previous standards. 

 Table 1.2 shows the focus on the use of context of data and using technology in 

the CCGPS. Fitting a function to the data and analyzing its residuals are standards given 

in CCGPS that were not explicitly stated in GPS and QCC. The use of technology in 

interpretation of the correlation coefficient, and distinguishing between correlation and 

causation are not found in QCC but are in both GPS and CCGPS. In general, QCC 

lacked emphasis on analyzing data that is imperative for students to be able to work with 

real-life data presented to them in their everyday life. Both the GPS and CCGPS include 

this; however the CCGPS also states that the students are to interpret the slope and 

intercept of their linear model in the context of the data. The relation back to the context 

of the data is one of the more prominent difference between GPS and CCGPS.  

  



   

6 
  

Table 1.2 Interpreting Categorical and Quantitative Data 

Standard CCGPS GPS QCC 

Represent quantitative and 

categorical data with plots 

Coordinate 

Algebra 

Math 2 Algebra 3 

Compare center and 

spread of data sets without 

using standard deviation 

and accounting for 

outliers 

Coordinate 

Algebra 

Math 1 Algebra 1 

Summarize categorical 

data in two-way frequency 

tables 

Coordinate 

Algebra 

 Algebra 3 

Represent data on two 

quantitative variables on a 

scatter plot 

Coordinate 

Algebra 

Math 2  

Fit a function to the data 

emphasizing linear and 

exponential model 

Coordinate 

Algebra 

 Advanced 

Algebra and 

Trigonometry 

Informally asses fit by 

analyzing residuals 

Coordinate 

Algebra 

  

Interpret slope and 

intercept of linear model 

in context of the data 

Coordinate 

Algebra 

  

Compute using 

technology and interpret 

the correlation coefficient 

of a linear fit 

Coordinate 

Algebra 

Math 2  

Distinguish between 

correlation and causation 

Coordinate 

Algebra 

Math 2  

Fit a function to data on 

two quantitative variables 

emphasizing quadratic 

model 

Analytic 

Geometry 

Math 2 Advanced 

Algebra and 

Trigonometry 

Compare center and 

spread of data sets 

including using standard 

deviation 

Advanced 

Algebra 

Math 2 Advanced 

Algebra and 

Trigonometry, 

Algebra 3 

Use mean and standard 

deviation to fit to a normal 

distribution and to 

estimate population 

percentages 

Advanced 

Algebra 

Math 2 Advanced 

Algebra and 

Trigonometry, 

Algebra 3 
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 Table 1.3 shows that in QCC, GPS, and CCGPS independence of events are 

addressed. The conditional probability of two events and their independence is covered 

in all three standards. However, constructing and interpreting two-way frequency tables 

is only introduced in the CCGPS. The standards for probability were not very extensive 

in the QCC and GPS standards, and are still relatively less than the standards given for 

interpreting data.  

Table 1.3 Conditional Probability and the Rules of Probability 

Standard CCGPS GPS QCC 

Describe events as subsets 

of a sample space using 

characteristics of the 

outcomes 

Analytic 

Geometry 

 Advanced 

Algebra and 

Trigonometry, 

Algebra 3 

Understand and determine 

independence of two 

events  

Analytic 

Geometry 

Math 1  

Understand conditional 

probability of two events 

and determine 

independence of each 

event  

Analytic 

Geometry 

Math 1 Algebra 3 

Construct and interpret 

two-way frequency tables 

and determine if events 

are independent 

Analytic 

Geometry 

  

Compute probabilities of 

compound events in a 

uniform probability model 

Analytic 

Geometry 

 Algebra 1 

 

 Table 1.4 presents standards covered in the advanced algebra course under 

CCGPS. These standards cover topics that involve large data sets from random samples 

of populations, surveys, and experiments. Students should be able to make inferences 

about these data sets. In QCC this is only covered in a course called Statistics, which 

was not one of the required common courses required, thus most students never received 

exposure to these topics. In GPS, they are minimally addressed in Math III or IV; again 

the chance of students covering these standards was unlikely. However, in the CCGPS 

these standards are very specific and being in Advanced Algebra, the third year course, 

the students will be exposed to these topics. 
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Table 1.4 Making Inferences and Justifying Conclusions 

Standard    

Make inferences about 

population parameters 

based on a random sample 

from the population  

Advanced 

Algebra 

Math 1 Statistics 

Decide if a specified 

model is consistent with 

results from a given data-

generating process 

Advanced 

Algebra 

 Statistics 

Recognize differences 

among sample surveys, 

experiments, and 

observational studies 

explaining how 

randomization relates to 

each 

Advanced 

Algebra 

Math 3  

Use data from a sample 

survey to estimate a 

population mean or 

proportion, develop a 

margin of error through 

simulation models for 

random sampling 

Advanced 

Algebra 

Math 4 Statistics 

Use data from a 

randomized experiment to 

compare two treatments, 

use simulations to decide 

if differences between 

parameters are significant 

Advanced 

Algebra 

  

Evaluate reports based on 

data 

Advanced 

Algebra 

 Concepts of 

Probability and 

Statistics 

 

1.3 Motivation for Revision of Lesson Plans 

In order for our citizens to be quantitatively literate, we must prepare students to 

make informed decisions by presenting problems in real-world contexts which students 

can relate to, and care about. According to Bernard Madison, professor of mathematics 

at University of Arkansas, “although high school and introductory college mathematics 

do include some so-called real-world problems, these very often are not embedded in the 

world of any student” (Madison). From Madison’s statement, we consider the context in 

which we present problems to students is not a matter of using real data sets, rather it is 

imperative that the context be one to which students can relate in their own personal life. 

Through contextual problems, students will understand the concepts and processes used 
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in analyzing and interpreting data.  According to Richard Scheaffer, professor emeritus 

of statistics at University of Florida, “in addition to being important in their own right, 

data analysis skills help build connections between mathematics and other subjects in 

the school curriculum and to the world outside of the classroom. Such connections are 

essential if the students are to comprehend the importance of mathematics and the role it 

plays in virtually all aspects of life” (Scheaffer, 1990). 

There are two things to consider when discussing the difference between 

mathematical thinking and statistical thinking. “In mathematics, context obscures the 

mathematical structure. But in statistics and data analysis, context provides the 

meaning” (Franklin). Scheaffer states that, “although statistics uses mathematics, the key 

to statistical thinking is the context of a real problem and how data might be collected 

and analyzed to help solve that problem” (Scheaffer, 2003). Design of surveys and 

experiments plays an important role in modern science, such as demographic surveys of 

the Census Bureau and economic surveys of the Bureau of Labor Statistics, as well as 

experiments in healthcare. Statistics emphasizes the context, and uses mathematics as 

one of the main tools for practical problem solving (Scheaffer, 2003). 

The lack of teacher preparation is one of the main factors of poor statistical 

teaching in the classroom. It has been recommended for many years that to improve 

math and science education, there must be stronger teacher preparation (National 

Commission). There is a need for extensive training in teaching mathematics and 

statistics in context. This is especially true for statistics, as many mathematics graduates 

lack the statistics education preparation due to statistics courses rarely being required as 

a course in general education programs. This weak training in statistics leaves teachers 

unprepared to teach the data analysis and probability present in the school curriculum 

(Madison).  In recent years, there has been an increase in the focus of preparing future 

teachers, proving more clearly the belief that teachers will be mathematically well-

prepared if they receive a degree in mathematics. This ignores the importance of 

pedagogy, the need for teachers to learn strategies for creating lessons and tasks that will 

help students gain understanding of mathematics. Teachers who understand higher 

mathematics often don’t have the training necessary to have an idea on how to translate 

higher math knowledge into simpler form suitable for students (Steen). 

Also, teachers tend to teach according to the test, given the lack of a sufficient 

amount of time to cover all standards given. This result in choosing to teach only the 

topics covered in the End of Course Test (EOCT). Many times this means statistical 

concepts are never covered. In addition, there was no EOCT for Math III and IV, 

therefore many teachers chose to teach only the topics they were comfortable in 

teaching. This resulted in some teachers skipping the statistics unit of the course. 

(Humphrey) 

The Georgia Department of Education provided lesson plans for teachers to use 

in their classroom that were determined to be aligned with CCGPS. Lesson plans were 

provided for Unit 4: Describing Data in the Coordinate Algebra course, and Unit 7: 

Applications of Probability in the Analytic Geometry course. In choosing lesson plans to 

revise, NCTM standards and the GAISE K-12 Report were considered. Both 
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frameworks consider linear models as an important statistical topic for high school 

students to learn.  

Applications of linear models are seen in other courses such as social science, 

and physical science. Linear models are sometimes called trend lines, representing 

trends over a period of time. These trends can represent consumer prices or stocks. 

Linear models are seen throughout the news, in finance and economics. We considered 

the vast amount of applications and the importance of the topic of linear models in 

choosing lesson plans to revise. For these reasons, the learning tasks and performance 

task given in Unit 4: Describing Data in the Coordinate Algebra course covering linear 

models were chosen for revision.  
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CHAPTER 2 

LEARNING TASK 1: SIMPLE LINEAR REGRESSION 

 

The original learning task, Spaghetti Regression, found in Appendix A has the 

following mathematical goal, “to investigate the concept of goodness of fit and develop 

an understanding of residuals in determining a line of best-fit”. The revised learning task 

follows the same goal, and in addition students should be able to define a residual, and 

know how it is measured. They should also be able to determine a best-fit line based on 

the residual measure.  

Figure 2.2 Overhead 1 in the original lesson served to introduce the topic of 

goodness-of-fit by discussing with the students why the line on the top graph fits the 

data better than the bottom graph. However, the graphs did not show clearly a best-fit 

line, and the bottom graph did not have a line fit to the data points. To address this, the 

revised lesson gives a new overhead to use as an introduction to the lesson. The new 

overhead 1 is an example of a scatter plot of data representing years of education versus 

income per year.  Figure 2.3 Overhead 2 is the same example, but with the best-fit line 

included on the graph.  

The introduction of residuals has been revised to define to the students what a 

residual is and how is it measured. This creates an understanding of a residual, rather 

than having the students use a piece of spaghetti to find the regression and having some 

incorrectly measure their distances by having them measure in different directions as 

proposed in the original lesson (contrary to the statistical definition of a residual). 

 The original task does not address the notion of sum of squared residuals. This 

method of determining the best-fit line by minimizing the sum of squared residuals is 

missing in the original learning task. Students are directed to line up their spaghetti 

pieces to see whose line fits best by determining whose spaghetti pieces ended up 

shortest. However, this allows for multiple best-fit lines, which is addressed in the 

revised task. In this task, students are to calculate the residual measure of the best-fit line 

they created, by finding the sum of squared residuals. Also, a class discussion is 

presented and the teacher is provided with information to address some possible 

questions students may ask. This better prepares teachers to be able to teach the topic of 

regression with a deeper understanding. 

The worksheet provided for students has been revised in such a way that there is 

context in the data provided. The original scatter plot does not have axis labels, nor does 

it have a scale for which the students can determine the distance of each point. In the 

revised task, data from TV watching hours versus test scores is given on a scatter plot 

for students to eye-ball a best-fit line, and measure their residual sum of squares. 

Students are then asked to make conclusions of their findings in terms of the context 

given.  
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2.1 Teaching Guide 

Learning Task 1: Simple Linear Regression 

 

Mathematical Goals 

 To investigate the concept of best-fit and develop an understanding of 

residuals in determining a line of best-fit 

 

Table 2.1 Learning Task 1 Standards 

 

Common Core State Standards Student Worksheet Questions  

MCC9-12.S.ID.6 Represent data on two 

quantitative variables on a scatter plot, and describe 

how the variables are related. 

1, 2 

MCC9-12.S.ID.6b Informally assess the fit of a 

function by plotting and analyzing residuals. 

3, 4, 5, 9 

MCC9-12.S.ID.6c Fit a linear function for a scatter 

plot that suggests a linear association. 

6, 7, 8 

 

 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

 

Introduction 

Students will investigate the concept of the “goodness-of-fit” by determining the 

regression line or best-fit line for a set of data. This is the first exploration in a series of 

three activities to explore a best-fit line and residuals. Fitting of an equation to the graph 

of a data set is covered in all mathematics courses from Algebra to Calculus and beyond.  

The objective of this activity is to explore the concept in-depth. 

 

In real life, functions arise from data gathered through observations or 

experiments. These data rarely fall neatly into a straight line or along a curve. There is 

variability in real data, and it is up to the student to find the function that best 'fits' the 

data.  Regression, in its many facets, is probably the most widely used statistical 

methodology in existence. It is the basis of almost all modeling. 

 

Students create scatter plots to develop an understanding of the relationships of 

bivariate data; this includes studying correlations and creating models from which they 

will predict and make critical judgments. As always, it is beneficial for students to 

generate their own data.  This gives them ownership of the data and gives them insight 
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into the process of collecting reliable data.  Teachers should naturally encourage the 

students to discuss important concepts such as goodness-of fit.  Using the graphing 

calculator facilitates this understanding.  Students will be curious about how the linear 

functions are created, and this activity should help students develop this understanding. 

 

Materials:  

 Transparencies of Overhead 1 and 2, and Measuring Notes 

 Handouts – copy for each student of the Scatter plot,  

 Student Activity: Simple Linear Regression, and Measuring Notes 

 Rulers  

 

 

Procedure: 

I. Introduce the topic of Goodness-of-Fit with Overhead 1 and 2.  

a. Define a scatterplot as a graphical representation of data points plotted on 

a graph from a data set with x (predictor) and y (response) variables.  

b. Figure 2.2 Overhead 1 shows a scatterplot representing a data set of 

Number of Years of Education (x) and Average Income (y) from a 

sample of ten people. Discuss with the students that when data are 

collected from observations or experiments, the data rarely fits nicely on 

a straight line or curve. Many times data “scattered” on a graph will be 

encountered due to variability in real data. Ask the students the following 

questions: 

i. Do you think there is a relationship between the years of 

education with the amount of income? 

ii. If you want to have an idea of how much your income will be 

after you attended college for 4 years or if you didn’t go to 

college at all, how can you use the graph to estimate your 

income? 

c. Figure 2.3 Overhead 2 shows the same scatterplot with the addition of the 

best-fit line drawn on the graph as well.  Ask the students the following 

questions: 

i. How can we determine that this is the best fit line? 

ii. How can we find the equation for this line? 

 

II. Introduce the concept of residual and how it is measured using the Measuring 

Notes handout. Discuss that the residuals are used to measure the goodness 

of fit of the best-fit line and ask the students how they can use the residuals to 

find the best fit line. From this, the class should come to a consensus that the 

residuals measure the distance from the actual value of the data point to the 

predicted value on the line. Direct the class to infer that the best-fit line will 

have the minimum error, thus the minimum residual sum.  

 

*It is important to note here that though the class makes this inference 

regarding the residual sum, it is imperative that students are corrected after 
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the Learning Task that using the least squares method, we are to minimize 

the sum of squared residuals.*  

 

 

III. Given the following data set, have each student create a scatter plot of the 

data on their empty graph, Figure 2.7.  

 

Table 2.2 TV Time & Test Score 

TV Time 

(Hours) 

Test Score 

30 70 

12 85 

30 75 

20 85 

10 100 

20 88 

15 85 

12 90 

15 90 

11 90 

16 95 

20 85 

19 85 

 

 

IV. Now the students all have a scatterplot of Time Spent Watching TV 

(predictor) and Test Score (response). Have the students draw what they 

believe to be the best-fit line by eyeballing and have them measure the 

residuals.  

 

V. Have the students answer the questions on their Learning Task Worksheet.  

 

VI. Discuss with the class who has the best-fit line based on their previous 

inference that they must minimize the residual sum. Now, question their 

inference by using one of the students’ best-fit line and asking what happens 

with residuals that are positive and negative when you add them together. 

Ask the students how this affects their measure for the goodness of fit.  

 

Guide the students to conclude that when two data points have an equal 

distance from the line but one is above the line and one is below the line then 

the residuals cancel each other out, therefore seeming like there is no error. 

This can be shown through the example data set of Years of Education vs 

Income, where we give an example of residual approximately -3, and a 

residual of approximately 3. Ask the students to suppose all the data points 

paired up in this manner and cancelled each other, in that case we have sum 
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of residuals as zero; however it is clear to see that we have a positive 

correlation and error in the model.  

 

Probe the class for suggestions for how to correct this problem. Most likely 

the students will propose the idea of using absolute value. Though this 

sounds like a great solution, demonstrate to the students that this could lead 

to multiple best-fit line equations. Because of this lack of uniqueness we 

search for a better solution. Reach a consensus that by taking the square of 

each residual there will no longer be negative residual values, yet produces 

one best fit line. So instead of taking the sum of the residuals, we take the 

sum of the squared residuals to measure the goodness of fit.  

 

*An example of this can be given with the following.* 

Graph the points (0,0), (0,2), (2,2) and (2,4). Then ask the students what the 

best-fit line is by finding the absolute value of the residuals. The students 

should agree upon y = 1 +  x as the best-fit line. Now point out to the 

students that other equations such as y = 2, y = x, and y = 0.2 + 1.6x also all 

have absolute value of residuals equal to 4. However, consider their sum of 

squared residuals and notice that the sum of squared residuals for these lines 

are larger than 4, which is the sum of squared residuals for y = 1 + x. This 

shows that by finding the minimum sum of squared residuals, we are able to 

find a unique best-fit line. On the other hand, the sum of the absolute value of 

residuals does not give us a unique best-fit line (Watkins). 

 

Table 2.3 Measuring Residuals 

Best-Fit Line 

Equation 

Absolute Value 

Residuals 

Sum of Squared 

Residuals 

y = 1 + x 4 4 

y = 2 4 8 

y = x 4 8 

Y = 0.2 + 1.6x 4 5.6 
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Figure 2.1 Best Fit Line Example 

 

 
 

 

VII. Have the students square all of their residuals and find the sum. Now, ask the 

students to share their sum of squared residuals to find who has the best fit 

line from the class.  

 

VIII. As a class determine the equation of the best-fit line using the point-slope 

form.  

 

IX. Using the best-fit line equation from the class, ask the students how they can 

use the line to predict what their test score will be based on how many hours 

of TV they watch per week.  

 

X. Ask the students what they can conclude about the relationship between the 

number of hours of TV they watch per week and their test score. Be sure they 

use context in interpreting the numerical value of the slope. 

 

XI. For deeper thinking, an extension activity can be given to the students by 

discussing the appropriateness of the linear regression model using residual 

plots. A residual plot analysis information sheet, and calculator instructions 

are provided for reference.  
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Figure 2.2 Overhead 1 
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Figure 2.3 Overhead 2 
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Figure 2.4 Measuring Residual Distances 

 

Teaching Note: 

While discussing the definition of residual, discuss the issue that rises when two 

residuals are of the same absolute value but have different signs by demonstrating the 

example above. If we take just the value itself in calculating the residual sum, then we 

could potentially have a residual of zero when all values cancel out, however, this could 

occur even when there is in fact a linear relationship. To solve this problem, it seems 

logical then to take the absolute value of each of the residuals, and use their sum to find 

the best fit line. However, this isn’t the best solution to this problem since this does not 

produce a unique best fit line. This can cause a problem as there could be multiple best 

fit line equations. This also brings difficulty mathematically as a formula containing 

absolute value is difficult to minimize using differentiation in Calculus. For these 

reasons, a preferred solution is to square the residuals to make all the residuals a positive 

number. Therefore, the minimum sum of squared residuals gives us the unique “best fit” 

linear equation line. 
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Measuring Notes 

 

Figure 2.5 Residual Definition 

 

The purpose of regression is to find a function that can model a data set. The 

function is then used to predict the y values (outputs or      for any given input  .  

So, the vertical distance represents how far off the prediction is from the actual data 

point (i.e., the “error” in each prediction.)  Residuals are calculated by subtracting 

the model’s predicted values,      , from the observed values,   . 

 

Residual = yi  − f ( xi ) 
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Figure 2.6 TV Hours vs Test Score with Best-Fit Line 
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Teaching Extension: Residual Plots 

A residual plot plots the residual (yi  − f ( xi )) against the explanatory variable  . This 

shows the appropriateness of the linear regression equation for the data set.  

The residual plot should not have any pattern, rather the residuals should be randomly 

distributed around zero. A residual plot with a random pattern represents a good fit for 

the linear model. Residual plots with non-random patterns indicate that perhaps a higher 

order model is more appropriate, or a transformation of the data is suggested.  

 

The following are examples of common residual plots.  

Random Pattern (Good fit for a linear model):  

Figure 2.7 Random Residual Plot 

 

 

Non-Random Pattern:  

Figure 2.8 Non-Random Residual Plot
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Plotting Residual Plots using a TI-83/84 Calculator 

We will use the following example data set to introduce how to use a graphing calculator 

to plot the residual plot of the linear regression equation.  

 

Table 2.3 Education and Income Data 

 

Years of Education Income Per Year 

(in thousands) 

19 110 

20 125 

16 60 

16 70 

18 90 

12 15 

14 35 

12 25 

16 50 

17 70 

 

1. Before entering our data set into the calculator, first turn on the diagnostics so our 

correlation coefficient r will be shown. Do this by pressing   then 

press  then scrolling down to DiagnosticOn and pressing  twice. 

 

Figure 2.9 Calculator Diagnostic  

  

    
 

 

2. Enter the data set into the calculator. Do this by pressing and press  

when Edit… is highlighted. This will take you to the lists screen. L1, L2, L3 are 

different lists of data, in our case we will put our Years of Education data in L1 

and Income in L2.  
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Figure 2.10 Calculator Listing 

 

    
 

3. To clear the data lists, press  and press  when Edit… is highlighted. 

This will take you to the lists screen. To clear a list, use the up arrow to place the 

cursor on the list name then press  and . Take note that pressing  

instead of  will delete the list from your calculator rather than clearing the 

data in the list.  

 

4. Enter the data Years of Education into L1 then right arrow to the next column and 

enter the Income data into L2. After, press  to quit the listing screen. 

Note: The lists must be the same length (L1 and L2 should have the same number 

of data elements in each). If they are not the same length then, ERR: DIM 

MISMATCH will be displayed when attempting to graph the data or perform the 

regression.  

 

Figure 2.11 Data Lists 

 

 
  

5. To plot the residual plot, we will need to find the linear regression . To do this 

press  and scroll to the right to CALC. Press  to choose LinReg(ax+b) then 

specify the lists in which the explanatory variable, and response variable are stored 

in, do this by pressing     . Then to save the regression line as a 

function (perhaps to show it with the original data), press   to select Y-

VARS, then select 1: Function and press , then select where you want to 

store the function, such as Y1 then press  and the screen should look like the 

one below in Figure 2.11.  
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Figure 2.12 Linear Regression 

 

    
 

6. Before creating the residual plot, we turn off other plots, so that we only see the 

residual plot. First, check to make sure that any functions are not plotted. To do 

this, press  and check that all equal signs are not bold. If an equal sign is bold, 

move the cursor to the equal sign and press , this should change the equal 

sign to remove the bold feature. Also, ensure that all other statplots are off by 

pressing  , this will give you the STAT PLOTS menu, where you check that 

all plots are off.  

 

7. Now, to generate the residual plot press  , this will give you the STAT 

PLOTS menu. Turn on and define Plot 1 by highlighting 1 then pressing . 

This will bring you to the Plot1 screen. Highlight On and press . The Xlist 

should have the list where the explanatory variable was stored, in our case L1. The 

Ylist should have the residuals list. To state RESID on the Ylist, press   

 and select 7:RESID. Press  to quit the current screen.  

 

Figure 2.13 Stat Plots 

 

    
 

8. Now, to view the residual press  or scroll down to 9: ZoomStat and press 

. Have the students observe the residual plot and determine if the linear 

regression equation is appropriate for the given data set.  

 

Figure 2.14 Zoom Stat 
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2.2 Student Worksheet: Simple Linear Regression 

 

Name__________________________________ Date____________________ 

 

Learning Task: Simple Linear Regression 
 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

 

Common Core State Standards 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing 

residuals. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear association. 

 

Part I 

 

1. Create a scatter plot of the following data set TV Time and Test Score. Plot the 

data points on the graph provided. 

 

Table 2.4 TV Time and Test Score 

 

TV Time 

(Hours) 

Test Score 

30 70 

12 85 

30 75 

20 85 

10 100 

20 88 

15 85 

12 90 

15 90 

11 90 

16 95 

20 85 

19 85 
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2. Examine the scatter plot you created and visually determine a line of best-fit (or 

trend line).  Draw your best-fit line on your scatter plot.  

 

 

Figure 2.15 Hours of TV vs Test Score 

 

 
 

 

 

 

 

60

65

70

75

80

85

90

95

100

105

5 10 15 20 25 30 35

Te
st

 S
co

re
 

Hours Watching TV Per Week 



   

28 
 

 

3.  Now investigate the “goodness” of the fit.  Measure the residual using the method 

from the Measuring Notes sheet. Repeat this for each point in the scatter plot. 

 

Answers will vary.  

 

 

 

 

 

4.  Calculate the sum of your residuals.  

 

 

 Total error = ________ 

 

* Class discussion before moving to Part II. * 

 

 

Part II 

 

5. Calculate the square of each residual. Find the sum of your squared residuals. 

 

Answers will vary. Each residual found in question 3 is to be squared.  

 

 

 

 

 

 

Total residual sum of squares = ________ 

 

 

6. As a class find the equation of the best-fit line.  

 

The best-fit line found using the calculator is                  

 

Figure 2.16 Linear Regression Output 
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7.  Using the class best-fit line, what do you think your test score will be based on 

how many hours of TV you watch per week? 

 

Answers will vary depending on how many hours of TV the student thinks 

he/she watches per week. 

 

 

 

 

 

8.  What can you conclude about the relationship between the number of hours of TV 

students watch per week and your test score? 

 

 

 The students should conclude that for every hour of TV they spend watching 

per week, their test score decreases by about 1 point.  

 

 

9. Extension: Plot the residual plot of the data using your calculator. What can you 

conclude about the linear model for the data set? Is the linear model an appropriate 

representation of the data? 

 

 

Figure 2.17 Hours of TV vs Test Score Residual Plot  

 

 
 

The linear model is appropriate for this data set, as the residual plot appear to be 

randomly distributed around the x-axis. 
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2.3 Comparison Summary  
 

In considering the original learning task, some shortcomings were found. One of 

the shortcomings was that it stated three standards to be addressed in the lesson – 

represent the data on a scatter plot and describe how the variables are related, informally 

assess the fit of the function by defining and analyzing residuals, and fit a linear function 

that suggest a linear association.  

 

The first standard states that students are to represent the data on a scatter plot and 

describe how the variables are related. The students were given a scatter plot, so they did 

not need to represent the data on a scatter plot themselves. There was also no question 

asking the students to describe the relation of the two variables. Also in this case, there 

was no context for the scatter plot data points, so the students could not relate the two 

points with meaning. The revised task asks the students to create a scatter plot given a 

data set, and asks the students to make a conclusion of the association between the two 

variables.  

 

The students are also to fit a function that suggests a linear association and analyze 

the residual. In both the original and revised task the students eye-ball a line as their 

best-fit line, and calculate the residual of their line. However, the original task does not 

provide the students with the definition of a residual, nor how to properly measure the 

distance of their fitted line from their data points. The students line up their spaghetti 

distances and check who has the shortest total distance. This does not teach the students 

how to correctly calculate a residual, using one of the methods such as least-squares 

method. The revised task asks the students to find who has the best-fit line in the class 

by asking the students to calculate their residual by finding their sum of squared 

residual. The students analyze their residual by comparing them with the rest of the 

class, and concluding who has the best-fit line by the minimum sum of squared 

residuals.  

 

In the revised task the students are asked to make a conclusion about the 

relationship between the number of hours of TV students watch per week and their 

respective test score.  

 

An extension of the task is to plot the residual plot for the data for checking the 

appropriateness of the linear model. The second learning task will continue the lesson of 

linear models by introducing correlation coefficients as a measure of association of two 

numeric variables.  
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CHAPTER 3 

 

LEARNING TASK 2: TV WATCHING HOURS AND TEST GRADES 
 

The goals of the original learning task TV/Test Grades in Appendix B are to 

represent data on a scatter plot and describe how the two variables are related, and fit a 

linear function and assess the fit of the function by plotting and analyzing residuals. The 

revised task will address similar goals, by having the students represent the data on a 

scatter plot and fitting a best-fit-line to the data. However, the revised task focuses on 

the introduction of correlation coefficients and its interpretation. Students should be able 

to determine if there is a positive, negative, or no correlation between two variables. 

Students should also understand the difference between correlation and causation.  

The original learning task TV/Test Grades in Appendix B does not provide a 

procedure section for the teachers, only the student worksheet. This lack of procedure 

section does not provide the teacher the material necessary for teaching the lesson of 

correlation as the goal of this task. In the revised task, the teacher will define the 

correlation coefficient of two variables, and discuss how to interpret the value of this 

coefficient. In the original learning task, this was assumed to have been previously 

learned; however this topic is not covered in previous courses in the new CCGPS. 

Students will gain practice in the ability to recognize strong and weak, positive and 

negative correlations using applets available online for teachers to show students. This 

will give the students an understanding of interpretation of the correlation coefficient. 

Also provided for the teacher is the example data set from the previous task, 

years of education versus income per year. Using this data set, students will be shown 

how to make a scatter plot, obtain the best-fit line and correlation coefficient using their 

graphing calculator. This ensures teachers have the directions needed to direct their 

students in learning how to compute the correlation coefficient using technology as 

stated by the standards. Again, we ensure that students relate their findings back to the 

context by asking probing questions that demand this type of answer. 
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3.1 Teaching Guide 

Learning Task 2: TV Watching Hours and Test Grades 

Mathematical Goals 

 Describe how two variables are related using the correlation coefficient 

 Use a graphing calculator to draw a scatter plot, fit a linear regression equation, and 

calculate the correlation coefficient  

 Distinguish between correlation and causation of two variables  

 

Table 3.1 Learning Task 2 Standards 

 

Common Core State Standards Student Worksheet Questions 

MCC9-12.S.ID.6 Represent data on two 

quantitative variables on a scatter plot, and 

describe how the variables are related. 

3 

MCC9-12.S.ID.6c Fit a linear function for a 

scatter plot that suggests a linear association.  

Interpret linear models. 

3 

MCC9-12.S.ID.7 Interpret the slope (rate of 

change) and the intercept (constant term) of a 

linear model in the context of the data. 

9 

MCC9-12.S.ID.8 Compute (using technology) and 

interpret the correlation coefficient of a linear fit.  

3, 4, 5, 6 

MCC9-12.S.ID.9 Distinguish between correlation 

and causation.  

7, 8 

 

 

Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

 

Introduction 
Before beginning the task, ask the class what they know about correlation. The 

correlation coefficient is a measure of how closely two quantitative variables are 

linearly related, and is a number between –1 and 1. If the values of both variables tend 

to increase (or if the values of both decrease), the two variables are positively 

correlated. If one variable tends to decrease as the other increases (or vice versa), the 

two variables are negatively correlated. If the values of the variables in both sets do not 

demonstrate a linear relationship, the variables are not correlated. Determining a 

relationship between two variables, especially from a scatter plot, may be subject to 

interpretation. The teacher will likely want to have students use a graphing calculator 

with statistical capabilities to do this task, determining ahead of time which features on 

the calculator are appropriate. 
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Lines of good fit may be found using paper-and-pencil techniques (such as 

writing the equation based on two points) or using a graphing calculator (either 

generating possible lines to use for guessing and checking or using the regression 

feature of the calculator to determine a particular function rule). Discuss correlation 

and causation with the group. Ask them at the end of the task to summarize television 

watching and test grades and if they believe there is a causal relationship. Have them 

defend their position based on statistical analysis. 

 

Materials 

 pencil 

 graphing paper 

 graphing calculator or statistical software package 

 

Prerequisites 

Students must have knowledge of writing linear equations based on two points and 

understand correlation. 

 

Time Required  

1 to 2 class periods. 

 

Procedure: 

 

1. Recall the previous Learning Task – Simple Linear Regression. Briefly discuss 

with the students the creation of scatter plots given a set of data, and finding the 

best-fit line and its equation. Previously, the measure of best-fit was quantified by 

finding the residual sum of squares. Now, the class will learn how to measure the 

strength of the linear association between two variables using the correlation 

coefficient. 

 

2. Using the Correlation Coefficient handout, introduce to the students the definition 

of correlation coefficient and how it is interpreted.  

 

3. An option for helping students understand correlation, and practice determining 

positive and negative correlation, show the students several scatter plots available 

online through correlation applets. You may refer to the Guess the Correlation 

applet at 

www.rossmanchance.com/applets/guesscorrelation/GuessCorrelation.html . There 

are many other applets found online by searching “correlation applets”.  

 

4. Have the students answer Part 1 of their worksheet. From the knowledge they have 

of correlation, have them predict what they think will be the correlation between 

different pairs of variables from their data set.  

 

5. Using the data from Income and Education as an example, show the students how 

to create a scatter plot, fit a line and find the correlation coefficient of their data 

using their graphing calculator (TI-83/TI-84). 

http://www.rossmanchance.com/applets/guesscorrelation/GuessCorrelation.html
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Table 3.2 Education and Income 

Years of Education Income Per Year  

(in thousands) 

19 110 

20 125 

16 60 

16 45 

18 85 

12 28 

14 35 

12 24 

16 55 

17 65 

 

 

6. Have the students work on Part 2 of their worksheet TV/Test grades.  

 

7. Discuss as a class if the students’ instincts were right with their guess of the 

relationship of the given variables.   
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Correlation Coefficient Handout 

 

Correlation coefficients, represented with the letter r, are used in Statistics to measure how 

strong a linear relationship is between two variables (x and y). This can be a positive 

correlation, in which as x increases, y also increases, or if x decreases, y also decreases. 

This is a direct relationship, where the behavior of a second variable is the same as the 

behavior of the first variable. A negative correlation occurs when there is an inverse 

relationship, where the behavior of a second variable is opposite of the behavior of the 

first variable. In this case, when x increases, y decreases or when x decreases, y increases. 

It is possible that there is no correlation between two variables, that is there is no linear 

relationship between x and y. Take note that no correlation does not imply no relationship; 

we can only conclude we have no linear relationship.  

 

The correlation coefficient can be calculated using the following formula. From the 

formula, we can see that we are taking the sum of the products of x and y relationships, 

then taking the average by dividing by the number of pairs (n-1).  

 

   
 

   
∑(

    ̅

  
) (

     ̅

  
) 

 

The correlation coefficient r, takes on the value between -1 and 1. The sign of r defines the 

direction of the relationship, positive or negative. While 0 represents no correlation. To 

measure the strength of the correlation, we use the following guideline. 

 

                 :  Strong Negative Correlation 

                 :  Moderate Negative Correlation 

                    :  Weak Negative Correlation   

                             :   No Correlation (No linear relationship) 

                      :   Weak Positive Correlation 

                     :   Moderate Positive Correlation 

                     :   Strong Positive Correlation 

 

Figure 3.1 Correlation 

 

*Note: Although, we almost always 

consider x as our predictor variable, and y 

our response variable, we cannot make 

any conclusions on cause and effect. 

Correlation does not mean causation, we 

cannot determine if x causes y or y causes 

x based on our correlation coefficient.* 
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Teaching Notes: 

 

Correlation equal zero 

When r = 0, this is interpreted as no correlation. However, assert to students that this does 

not imply that there is no relationship between the two variables being considered. From 

this, we can only conclude that there is no linear relationship. For example, we could have 

a quadratic equation, in which case the correlation coefficient can be zero, but this doesn’t 

imply a lack of relationship. 

 

Association vs. Correlation 

Although association and correlation are sometimes used interchangeably, it is important 

to take note that association is not equivalent to correlation. When we have correlation, we 

also have association. However, the other case is not necessarily true. If we have 

association this does not imply we have correlation. Correlation requires a relationship 

between two numeric variables, while association includes the relationship between 

categorical variables. For example, we can find the correlation between years of education 

and income per year since both variables take on numerical values. On the other hand, we 

cannot find the correlation between gender and income per year since gender is a 

categorical variable. 

 

Association vs. Causation 

Measuring association using the correlation coefficient determines the level of strength of 

the linear relationship between two variables. However, this does not determine the cause 

of the relationship. In other words, we cannot say that variable x causes y, nor can we say 

variable y causes x. Thus, we cannot conclude causation from association. For example, 

we found that as ice cream sales increase, the rate of drowning deaths also increase. But 

we cannot conclude that ice cream sales cause drowning deaths, nor can we conclude that 

drowning deaths cause ice cream sales. 

 

Lurking Variables 

Lurking variables are hidden variables that are correlated to the variables being studied. 

For example, a better explanation for the relationship between ice cream sales and 

drowning deaths is that during the summer, the hot temperature lead to increased ice 

cream sales and more people swimming. Time of the year would be considered a lurking 

variable.  

 

Misconceptions about categorical variables 

Some common misconceptions about categorical variables are that there can be a 

correlation when one or both of the data set is comprised of categorical data. In this case, it 

does not make sense to find a correlation between the variables, rather an association is 

appropriate. For example, given data for the variables gender, and income, we cannot find 

a correlation between gender and income. But we can find an association in this case.   
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Using a TI-83/84 Calculator to Find the Linear Regression Equation 

 

We will use the following example data set to introduce how to use a graphing calculator 

to find the best fit line equation and the correlation coefficient of a given data set.  

 

Table 3.3 Education and Income Data 

 

Years of Education Income Per Year 

(in thousands) 

19 110 

20 125 

16 60 

16 70 

18 90 

12 15 

14 35 

12 25 

16 50 

17 70 

 

1. Before entering our data set into the calculator, first turn on the diagnostics so our 

correlation coefficient r will be shown. Do this by pressing   then press 

 then scrolling down to DiagnosticsOn and pressing  twice. 

 

Figure 3.2 Calculator Diagnostic  

  

    
 

 

2. Enter the data set into the calculator. Do this by pressing and press  

when Edit… is highlighted. This will take you to the lists screen. L1, L2, L3 are 

different lists of data, in our case we will put our Years of Education data in L1 

and Income in L2.  

 

Figure 3.3 Calculator Listing 

 

    



   

38 
 

 

3. To clear the data lists, press  and press  when Edit… is highlighted. 

This will take you to the lists screen. To clear a list, use the up arrow to place the 

cursor on the list name then press  and . Take note that pressing  

instead of  will delete the list from your calculator rather than clearing the 

data in the list.  

 

4. Enter the data Years of Education into L1 then right arrow to the next column and 

enter the Income data into L2. After, press  to quit the listing screen. 

Note: The lists must be the same length (L1 and L2 should have the same number 

of data in each). If they are not the same length then, ERR: DIM MISMATCH will 

be displayed when attempting to graph the data or performing the regression.  

 

Figure 3.4 Data Lists 

 

 
 

  

5. To generate a scatterplot press  , this will give you the STAT PLOTS menu. 

Turn on and define Plot 1 by highlighting 1 then pressing . This will bring 

you to the Plot1 screen. Highlight On and press . Again, press  to 

quit the current screen. Note: In defining Plot 1, ensure that the Xlist and Ylist are 

referring to the lists where your data are stored, in this case L1 and L2.  

 

Figure 3.5 Stat Plots 

 

    
 

6. Now, to view the scatterplot press  or scroll down to 9: ZoomStat and 

press . Have the students observe the scatterplot and determine if there is a 

linear trend, and if there is a positive, negative or no correlation. Also have 

students guess the strength of the relationship by guessing the correlation 

coefficient value. When done, quit the screen.  
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Figure 3.6 Zoom Stat 

 

     
 

7. To find the correlation coefficient, we will need to find the linear regression 

equation. To do this press  and scroll to the right to CALC. Press  . 

This will give the linear regression equation by giving the values a, b, as well as 

the correlation coefficient r. Have the students write their equation and interpret 

the correlation coefficient. Was there a strong linear relationship? Note: The 

calculator defaults to L1=x, and L2=y. When using other lists, specify which lists 

are being used. LinReg xlist, ylist. In this case “xlist” should be the list where 

your x data is stored, and ylist is where your y data is stored. If you want to store 

the regression line for future use, this can be done by adding a Y function. For 

example, to store the regression line of L1 and L2 into function Y1, state LinReg 

L1, L2, Y1. 

Y1 can be found by pressing   to Y-VARS, then  . 

 

Figure 3.7 Linear Regression 

 

    
 

8. As a reminder, when starting a new problem, it is a good idea to clear previous 

lists to minimize confusion and error. This can be done the same way we cleared 

data in step 3.  
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Teaching Extension: Coefficient of Determination  

The coefficient of determination is denoted by         as seen on the linear regression 

output of the TI-83/84 calculator. This checks the goodness of fit of a model, by 

determining how well the regression line approximates the actual data points.  

 

The coefficient of determination is defined by the following formula:  

      
     

     
  where, 

Residual sum of squares:         ∑        
    

Total sum of squares:          ∑      ̅       

Note:  ̅ is the mean of the observed data. 

 

   takes on the value between 0 and 1, representing the proportion of variance explained 

by the model. When    is 1 then the model fits perfectly, explaining all variability in  . In 

general, the higher the     the better the model fits the data. The higher the proportion of 

the explained variance, the closer the data points will fall to the linear regression model (or 

any mode1). Because of its definition in terms of the residual sum of squares,   can be 

used to assess goodness of fit for models other than linear models, where correlation is 

undefined.   

For our learning tasks, we are working with simple linear regression, with cases of a single 

regressor. In this case,    is simply the square of the correlation coefficient  .  

Figure 3.8 shows the linear regression calculator output from the class example. Notice 

that   is simply   that has been squared. In this example, we have          , which can 

be interpreted as 94.78% of the variation in the income per year can be explained by the 

education level of people.  

Figure 3.8 R-Squared Example 
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3.2 Student Worksheet: TV Watching Hours and Test Grades 

 

Name__________________________________ Date____________________ 

 

Learning Task: TV Watching Hours and Test Grades 

Common Core State Standards 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear 

association.  

 

Interpret linear models  

 

MCC9-12.S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of 

a linear model in the context of the data. 

 

MCC9-12.S.ID.8 Compute (using technology) and interpret the correlation coefficient 

of a linear fit.  

 

MCC9-12.S.ID.9 Distinguish between correlation and causation.  

 

Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

 

Part I:  

 

1.   Students in Ms. Garth’s Algebra II class wanted to see if there are correlations 

between test scores and height and between test scores and time spent watching 

television. Before the students began collecting data, Ms. Garth asked them to 

predict what the data would reveal. Answer the following questions that Ms. 

Garth asked her class. 

 

a.   Do you think students’ heights will be correlated to their test grades? If you 

think a correlation will be found, will it be a positive or negative correlation? 

Will it be a strong or weak correlation? 

 

Answers may vary, but a possible answer could be: “I do not think there will 

be correlation between height and test grades, since it is not reasonable to 

think a person’s height affects their intelligence or effort level.” 
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b.   Do you think the average number of hours students watch television per 

week will be correlated to their test grades? If you think a correlation will 

be found, will it be a positive or negative correlation? Will it be a strong or 

weak correlation? Do watching TV and low test grades have a cause and 

effect relationship? 

 

Answers may vary, but a possible answer could be: “I think the average 

number of hours a student watches television will be negatively correlated 

with the student’s test grades. It is reasonable to think that the more TV 

you watch, the less time you spend studying, resulting in low test grades. 

However, it does not seem like these variables will be strongly correlated, 

since some people do not watch TV but do not spend time studying either. 

On the other hand, some students may watch a lot of TV and still study a 

lot.” Discuss correlation vs. causation with students. Give samples of 

variables that correlate and have them justify their argument. 

 

2.   The students then created a table in which they recorded each student’s height, 

average number of hours per week spent watching television (measured over a four-

week period), and scores on two tests. Use the actual data collected by the students 

in Ms. Garth’s class, as shown in the table below, to answer the following 

questions. 

 

Table 3.4 Ms. Garth’s Class Data 

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 

Height 

(inches) 
60 65 51 76 66 72 59 58 70 67 65 71 58 

TV 

hrs/week 
30 12 30 20 10 20 15 12 15 11 16 20 19 

Test 1 60 80 65 85 100 78 75 95 75 90 90 80 75 

Test 2 70 85 75 85 100 88 85 90 90 90 95 85 85 

 

 

a. Which pairs of variables seem to have a positive correlation? Explain. 

 

Test 1 scores and test 2 scores appear to be positively correlated. For the most 

part, student performance on both tests was fairly consistent, so students who 

did well on test 1 also did well on test 2, while those who did not do well on test 

1 didn’t do very well on test 2 either. 

 

b.   Which pairs of variables seem to have a negative correlation? Explain. 

 

Test 1 scores and hours per week watching television, and test 2 scores and 

hours per week watching television appear to be negatively correlated. In 

general, students who spent more time watching television had lower test 

scores than those who spent less time watching television. 
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c.   Which pairs of variables seem to have no correlation? Explain. 

 

Height and hours per week watching television, test 1 scores and height, and 

test 2 scores and height seem to have no correlation. Height does not seem to 

be correlated with any of the other variables. That is, taller students do not 

seem to watch any more or less television or perform any better or worse on 

tests than shorter students. 

 

 

Part II: 

 

9. For each pair of variables listed below, create a scatter plot with the first 

variable shown on the x-axis and the second variable on the y-axis. Are the 

two variables correlated positively, correlated negatively, or not correlated? 

What is their best-fit regression equation?  

 

Table 3.5 Correlation of Variables 

X Y Linear 

Correlation? 

Linear Reg. 

Equation 

Correlation 

coefficient 

Height TV Hrs    

TV Hrs Test 1    

TV Hrs Test 2    

Test 1 Test 2    
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Figure 3.9 Correlation Calculator Outputs 

 

Height vs TV Hours 

  

  
No linear correlation  

  

TV Hours vs Test 1 

 

     
Strong Negative Correlation   Test1 = -1.43(TV) + 105.98   

 

TV Hours vs Test 2 

 

    
Strong Negative Correlation  Test2 = -1.00(TV) + 104.14 

 

Test 1 vs Test2 

 

    
Strong Positive Correlation  Test2 = .60(Test1) + 37.83 

 

 

10. From Ms. Garth’s class data, and the correlations calculated, which variables can 

you say affects test scores? 

 

Students should be able to conclude that there is no linear relationship between 

height and test scores. But that the number of hours of watching TV has a strong 

negative correlation with test score.  
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11. Maria has asked you to predict her Test 1 score and told you that she is 61 inches 

tall. What do you think her score will be and how much belief do you have in 

this?  

 

Answers will vary. The student should state that they do not believe in their 

prediction since there is no linear correlation between height and test score 1. 

Height is not a good indicator of test 1 score. 

 

12. On the other hand, Johnny says he does not know his height but he knows he 

watches 15 hours of TV per week. What do you think his score will be and how 

much belief do you have in this?  

 

Answers will vary. The student should state that they believe this is a good 

prediction of test score 1 since there is a strong negative correlation between TV 

hours watching and test score 1. 

 

13. Lauren made the conclusion that watching TV causes lower test scores. Can she 

make this conclusion? If not, why not? 

 

The student should state that watching TV does not cause lower test scores, but 

that there is a negative correlation between the number of hours of watching TV 

and the test score. Students who watched a higher number of hours of TV had 

lower test scores than those who watched less number of hours of TV.  
 

14. Jacob concluded that a student scoring well on test 1 result in a high score on test 

2. Is this a valid conclusion? 

 

The student should state that scoring well on test 1 does not result on a high score 

for test 2, but that there is a positive correlation between test score 1 and test score 

2, students who scored well on test 1 also scored well on test 2..  
 

15. What is your best-fit linear regression equation for TV Hours vs Test 2 scores? 

Interpret the slope of your equation in terms of the context.  

 

Best-fit linear regression equation: Test 2 = -1.00(TV)+104.14  

The slope of -1.00 means that for every hour of TV watched, the test score 

decreases by 1 point.  
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16. Extension Question: Interpret the coefficient of determination (    for the 

variable pairs, TV Hours vs Test 1, TV Hours vs Test 2, and Test 1 vs Test 2.  

Referring to the calculator outputs from Figure 3.8 we have the following 

coefficient of determination for the variable pairs. 

TV Hours vs Test 1:     .6724 

TV Hours vs Test 2:     .7195 

Test 1 vs Test 2:     .7924 

 

62.74% of the variance in Test 1 scores is accounted for using the TV Hours 

watched. 

71.95% of the variance in Test 2 scores is accounted for using the TV Hours 

watched. 

79.24% of the variance in Test 2 scores is accounted for using Test 1 scores. 
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3.3 Comparison Summary 

A careful review of the original learning task showed standards indicated to be 

addressed by the task that was not satisfied. There were seven standards to be addressed 

– represent data on a scatter plot, fit a function to the data to solve problems in the 

context, emphasizing linear and exponential models, informally assess the fit of a 

function by plotting and analyzing residuals, fit a linear function for a scatter plot, 

interpret the slope and intercept of a linear model in the context of the data, compute and 

interpret the correlation coefficient of a linear fit, and distinguish between correlation 

and causation. 

However, only three of these standards are covered in the original learning task. 

The students did not analyze residuals, interpret slope and intercept of their linear 

model, nor fit exponential models. In the original learning task students are to fit a 

function to the data and compute the correlation coefficient. These were the standards 

addressed in the original learning task and are still in the revised learning task. In 

addition to the previously addressed standards, the revised learning task also covers the 

distinction between correlation and causation, and interpretation of the slope of the 

linear model. 

A third learning task is created to cover the CCGPS standard of fitting data into 

an exponential model, which was not previously addressed in the first two tasks.  
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CHAPTER 4 

LEARNING TASK 3: U.S. POPULATION GROWTH 

A third learning task was created to address the standard of fitting an exponential 

model to the data set. Exponential models were not introduced in any learning tasks but 

appeared as a performance task in the original tasks. This task was not a revision, rather 

an original task created to supplement the previous two tasks. The goal of this task is for 

students to be introduced to exponential models, and determine if a linear model or an 

exponential is a better fit for the data.  

This task uses U.S. Population data, and asks the students to determine if they 

think a linear model or an exponential model best fits the data. It also shows that taking 

a partial data set may mean concluding the data is best represented as a linear model, 

while in actuality the best-fit model is an exponential model when considering the whole 

data set. The data table given is an example of data which citizens encounter in their life 

through newspaper articles. By having the students work with real-life data, students can 

see and understand the use of statistics in their everyday life. Students are asked to use 

their model to predict the population in a future date. 
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4.1 Teaching Guide 

Learning Task 3: U.S. Population Growth 

 

Mathematical Goals 

 Fit a linear and exponential model to the data and determine the appropriate model 

for the given data 

 

Table 4.1 Learning Task 3 Standards 

 

Common Core GPS Student Worksheet Questions 

MCC9-12.S.ID.6 Represent data on two 

quantitative variables on a scatter plot, and 

describe how the variables are related. 

1 

MCC9-12.S.ID.6a Fit a function to the data; use 

functions fitted to data to solve problems in the 

context of the data. Use given functions or choose 

a function suggested by the context. Emphasize 

linear and exponential models. 

2, 3 

MCC9-12.S.ID.6b Informally assess the fit of a 

function by plotting and analyzing residuals. 

6 

MCC9-12.S.ID.6c Fit a linear function for a 

scatter plot that suggests a linear association.  

Interpret linear models. 

2 

MCC9-12.S.ID.7 Interpret the slope (rate of 

change) and the intercept (constant term) of a 

linear model in the context of the data. 

4 

 

 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

8.  Look for and express regularity in repeated reasoning. 

 

 

Introduction 
 

In this third learning task, students will focus on exponential models. In doing 

this task, students analyze data sets, create scatter plots, determine the appropriate 

mathematical model, and justify their model selection. 

 



   

50 
 

This task provides a good example of how data points can appear to be linear 

over a relatively small domain, but how a different type of mathematical model might 

be more appropriate over a larger domain. This is an opportunity for students to discuss 

strengths and limitations of using mathematical functions to model real data. One 

discussion might arise as to whether other types of mathematical functions might 

sometimes be used for different types of data, perhaps leading students to look for 

patterns in data they might gather from sources like newspapers or books of world 

records. 

 

Time Required 

1 class period 

 

Materials 

Pencil and (graphing) paper; graphing calculator or statistical software package. 

 

 

Procedure:  

1. Recall the previous Learning Task – TV/Test Grades. Remind students how to 

use their graphing calculator for creating scatter plots and finding linear 

regression models. 

 

2. Review different equation models and their graphs, such as the linear model, 

quadratic model, and exponential model. Show the students these graphical 

representations and make sure they are able to recognize the model given a 

graph.  

 

3. Using the following part of the population data as an example, remind students 

how to create a scatter plot and fit a line to the data. Introduce exponential 

models, and how to use the calculator to fit an exponential model to the given 

data set.  

 

Table 4.2 Partial Population Data  

Year Population 

1950 150,697,361 

1960 179,323,175 

1970 203,302,031 

1980 226,545,805 

1990 248,709,873 

2000 281,421,906 

2010 308,745,538 
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Figure 4.1 Partial Population Data Scatter Plot 

 

 
 

 

 

 

4. Have the students answer their U.S. Population Growth Learning Task 

worksheet. 

 

5. Discuss with the students their conclusion regarding the linear and exponential 

model. Which do the students think is a better fit for the data? How does this 

compare to the example presented where only the data from 1950 to 2010 are 

considered? Students should understand that data points can appear to be linear 

over a relatively small domain; however a different type of mathematical model 

might be more appropriate over a larger domain. 

 

6. Extension: After the task, ask the students to consider modeling the data using 

two regression models rather than one. Discuss with the students where they 

think they should split the data using some justification for their choice. For 

example, other variables influencing the data. Work with the students on finding 

two regression models for the data using the calculator. Find what is the more 

appropriate model – the linear model or exponential model by graphing residual 

plots.  
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4.2 Student Worksheet: U.S. Population Growth 

 

Name__________________________________ Date____________________ 

 

Learning Task: U.S. Population Growth 

 

The data table shows the population in the United States gathered by the U.S. Census 

Bureau from 1800 to 2010. Use the data table to complete the task. Answer all questions 

in depth to show your understanding of the standards. 

 

Table 4.3 U.S. Population Data 

  

Year Population 

1800 5,308,483 

1810 7,239,881 

1820 9,638,453 

1830 12,866,020 

1840 17,069,453 

1850 23,191,876 

1860 31,443,321 

1870 39,818,449 

1880 50,189,209 

1890 62,947,714 

1900 76,212,168 

1910 92,228,496 

1920 106,021,537 

1930 122,775,046 

1940 132,164,569 

1950 150,697,361 

1960 179,323,175 

1970 203,302,031 

1980 226,545,805 

1990 248,709,873 

2000 281,421,906 

2010 308,745,538 

 

 

1. Create a scatter plot of the given data set of population over time.  

 

Use the same method of directions for students for graphing the data as given in 

the previous learning task (TV/Test Grades). The following graph from excel can 

be used for a clearer picture of the scatter plot to the class.  
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Figure 4.2 Population Scatter Plot 

 

 
 

 

Figure 4.3 Scatter Plot Calculator Output 

 

    
 

 

 

2. Fit a linear model to the data using your graphing calculator. Does this 

model seem to be the most appropriate model for this data set? 

 

Use the same method of directions for students for finding the linear regression 

model as given in the previous learning task (TV Watching Hours and Test 

Grades). Students’ answers will vary about the appropriateness of the model. 

They should point out the curvature of the model. 

 

Figure 4.4 Linear Regression Calculator Output 

 

 

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

1800 1850 1900 1950 2000

P
o

p
u

la
ti

o
n

 

Year 



   

54 
 

3. Stacy believes the data does not look linear, and thinks that an exponential 

model might be more appropriate for the data. Find the exponential model for 

the data. Do you think this is a more appropriate model? 

 

Use the ExpReg function on the graphing calculator to find the exponential 

model for this data. Students’ answers will vary about the appropriateness of the 

model. They should point out the curvature of the model. (Note: The calculator 

really fits the exponential model as ln y = ln a + b x; this is how a value for r 

becomes reasonable) 

 

Figure 4.5 Exponential Regression Calculator Output 

 

      
 

4. Compare your models with the model in the example given in class. Do the 

models agree? Why do you think there is a difference? 

 

Students should notice that the linear model was best during the example, but in 

this task the exponential model turned out to be more appropriate. Point out to 

students that sometimes having a small data set from a small domain is not 

enough data to create a model for analysis and drawing conclusions from it is 

not appropriate.  

 

5. Use both models to predict the population in year 2020. Which model makes 

sense in representing the growth of the US Population? 

 

Linear:                                           

Exponential:                                              

 

At year 2020, the US Population is as follows: 

Linear: Population = 272, 288, 403.4 

Exponential: Population = 548,940,715.2 

Given that the US Population is 308,745,538 from the data table provided, and 

considering the increasing trend in population, then the linear model doesn’t 

make sense in this case, giving us the exponential model as the better model for 

representation of the data provided. 

 

6. Extension: Fit two models to the population data. Changes in immigration laws 

occurred after World War 1 in 1918, so consider 1910 and 1920 as the splitting 

points of the data. Fit a linear and exponential model to both of the data subsets 

(1800-1910, and 1920-2010) and decide which is model is more appropriate by 

graphing the residual plots.  
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Figure 4.6 Pre-War Regression Models and Residual Plot 

     

 

 

Figure 4.7 Pre-War Scatter Plot with Model Fits 

 

   
 

Figure 4.8 Post-War Regression Models and Residual Plot 

 

     

 

Figure 4.9 Post War Scatter Plot with Model Fits 

 

   

 

Both residual plots show some pattern, suggesting that a linear regression 

model isn’t appropriate for the data. This can be confirmed from the higher 

value of the correlation coefficient r for the exponential models, and visually 

from the scatter plots with the exponential model fitted.   
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4.3 Summary 

This task was created to place emphasis on exponential models. The previous two 

tasks only involved linear models. CCGPS standards states “Fit a function to the data; 

use functions fitted to data to solve problems in the context of the data. Use given 

functions or choose a function suggested by the context. Emphasize linear and 

exponential models”.  

 

This third task asks the students to fit both a linear and exponential models to a 

given data set and determine the appropriate model for the given data. The students are 

asked to compare the models fitted for the whole data set versus a small subset of the 

data. This provides the student the emphasis of linear and exponential models as given 

in the standards. The students are asked to predict the population in a future year and 

asked to make sense of the prediction based on the model they chose. 

 

An extension to this task is given. The students are to fit two regression models to 

the data, and using residual plots to determine if a linear or an exponential model is 

more appropriate.  

  

The three tasks cover all of the CCGPS standards pertaining to representation and 

interpretation of data on quantitative variables and linear models. A performance task is 

given as a culmination of the topics introduced in the three learning tasks. This will 

assess the students understanding of the content taught in the previous three tasks.  
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CHAPTER 5  

 

PERFORMANCE TASK: SAVINGS ACCOUNTS 
 

The Savings Accounts performance task assesses students' understanding of 

regression models by determining the best-fit model and interpreting the model in the 

context given.  

The original performance task given in Appendix C, Equal Salaries for Equal 

Work asks the students to create a scatter plot of the data given, fit a linear and 

exponential model, then determine which model better fits the data. The revised task 

asks the students to do the same, however using a data set consisting of savings accounts 

balances for three different savings plans. This data set is another way students can see 

the usefulness of statistics in their everyday life, as they compare different saving plans 

for the best investment. 

In the revised version of the task, the students are asked to interpret their model 

in the context given. For example, compare the following questions:  

Original question: “Terry and Tomas are trying to decide what type of model 

will most accurately represent the data. Terry thinks that a linear model might be most 

appropriate for the scatter plot. Help Terry find reasonable function rules for each scatter 

plot. Explain how you found these.” 

Revised question: “Terry and Tomas are trying to decide what type of model will 

most accurately represent the data. Terry thinks that a linear model might be most 

appropriate for each scatter plot. Help Terry find the linear regression model for each of 

the data sets, and interpret the slopes of the models with respect to the context.” 

The new question not only tests the students’ ability to find the best-fit linear 

model for the data set, but also their understanding of what the model represents by 

asking the students to interpret the slope of the models they find.  

The changing of the scenario and adding question eight on the student worksheet 

lets students do some interesting analysis given a data set. This question solicits students 

understanding of how they can use given data presented to them to make citizenship 

decisions pertaining to their lives. It tests the students' ability to interpret data and make 

informed decisions from it. 
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5.1 Teaching Guide 

Savings Accounts 

 

Mathematical Goals 

 Fit a linear and exponential model to the data and determine the appropriate model 

for the given data 

 

Table 5.1 Performance Task Standards 

 

Common Core GPS Student Worksheet Questions 

MCC9-12.S.ID.6 Represent data on two 

quantitative variables on a scatter plot, and 

describe how the variables are related. 

1 

MCC9-12.S.ID.6a Fit a function to the data; use 

functions fitted to data to solve problems in the 

context of the data. Use given functions or choose 

a function suggested by the context. Emphasize 

linear and exponential models. 

2, 4, 6 

MCC9-12.S.ID.6b Informally assess the fit of a 

function by plotting and analyzing residuals. 

9 

MCC9-12.S.ID.6c Fit a linear function for a 

scatter plot that suggests a linear association.  

Interpret linear models. 

2, 3 

MCC9-12.S.ID.7 Interpret the slope (rate of 

change) and the intercept (constant term) of a 

linear model in the context of the data. 

2 

MCC9-12.S.ID.8 Compute (using technology) and 

interpret the correlation coefficient of a linear fit.                      

7 

 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

8.  Look for and express regularity in repeated reasoning. 

 

 

Introduction 

This performance task asks students to compare additive and multiplicative 

growth (represented by linear and exponential models) to make predictions and solve 

problems within the context of gender-based salary differences. In doing this task, 

students analyze data sets, create scatter plots, determine the most appropriate 

mathematical model, and justify their model selection. 
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This task provides a good example of how data points can appear to be linear 

over a relatively small domain, but how a different type of mathematical model might 

be more appropriate over a larger domain. This is an opportunity for students to discuss 

strengths and limitations of using mathematical functions to model real data. One 

discussion might arise as to whether other types of mathematical functions might 

sometimes be used for different types of data, perhaps leading students to look for 

patterns in data they might gather from sources like newspapers or books of world 

records. 

 

Prerequisites 

Students must have knowledge of using the graphing calculator to create linear 

and exponential models and to analyze residuals. It is important that students understand 

how to assess the fit of a function to data and choose a function suggested by context. 

 

Learning Targets 

When making statistical models, technology is valuable for varying assumptions, 

exploring consequences and comparing predictions with data. Students will interpret the 

correlation coefficient and show understanding of strengths and limitations of using 

mathematical functions to model real data.  

 

Time Required 

1 class period 

 

Materials 

Pencil and (graphing) paper; graphing calculator or statistical software package. 
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5.2 Student Performance Task Worksheet 

 

Name__________________________________ Date____________________ 

 

Performance Task: Teacher Salary 

 

Use the data table to complete the task. Answer all questions in depth to show your 

understanding of the standards. 

Table 5.2 Savings Chart 

 

Year John Lucy Mark 

0 1,000 10,000 5,000 

1 3,628 12,826 10,274 

2 6,288 15,709 15,601 

3 8,982 18,650 20,982 

4 11,710 21,650 26,417 

5 14,472 24,711 31,906 

6 17,269 27,834 37,450 

7 20,101 31,020 43,050 

8 22,968 34,270 48,707 

9 25,782 37,585 54,420 

10 28,813 40,968 60,191 

11 31,790 44,419 66,019 

12 34,804 47,939 71,906 

13 37,857 51,531 77,853 

14 40,948 55,195 83,859 

15 44,078 58,933 89,925 

16 47,078 62,747 96,052 

17 50,456 66,637 102,241 

18 53,705 70,606 108,492 

19 56,995 74,655 114,806 

20 60,326 78,786 121,183 

21 63,700 83,000 127,624 

22 67,116 87,299 134,130 

23 70,574 91,685 140,702 

24 74,076 96,160 147,339 

25 77,623 100,725 154,043 

 

Table 5.3 Savings Accounts 

 

 John Lucy Mark 

Initial Deposit (Principal) 1,000 10,000 5,000 

Annual Interest Rate 1.25% 2% 1% 

Contribution per pay period 100 100 200 

Pay periods per year 26 26 26 
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1. Create three scatter plots of the data of savings amount throughout over age. 

Describe two things you notice about the scatter plots. 

 

This can be done on graphing paper or with the use of a graphing calculator. Use 

the calculator guide in the previous learning task – Simple Linear Regression for 

directions on how to create a scatter plot on the TI-84 graphing calculator. 

 

Figure 5.1 Savings Accounts Scatter Plot 

 

 
 

 

 

2. Terry and Tomas are trying to decide what type of model will most accurately 

represent the data. Terry thinks that a linear model might be most appropriate 

for each scatter plot. Help Terry find the linear regression equation for each of 

the data sets, and interpret the slopes of the equations with respect to the 

context. 
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 Using a graphing calculator to determine a regression line, we have the 

following: 

 

 John:                   

 Lucy:                    

Mark:                    

 

John’s savings increase at a rate of $3,060.33 every year, Lucy’s savings 

increase at a rate of $3,615.73 each year, and Mark’s savings increase at a rate 

of $5,956.25 each year. This shows that Mark’s savings is increasing at a much 

faster rate than John’s and Lucy’s, with almost double of their change in 

savings value each year. 

 

3. Using the linear models, will John’s savings ever equal Lucy’s savings? If so, 

at what year in their savings will this occur?  

 

Using the linear models created from the data provided, John’s linear model 

has a smaller y-intercept and a smaller slope, while Lucy’s linear model has a 

larger y-intercept and a larger slope. So Lucy’s savings will increase at a faster 

rate, so John will not equal to Lucy’s. 
 

4. Tomas thinks that an exponential model might be most appropriate for each 

scatter plot. Help Tomas find the exponential function for each scatter plot.  

 

Using a graphing calculator to determine a regression line, we have the 

following: 

 

 John:                     
 Lucy:                      

Mark:                          
 

5. Using the exponential models, will John’s savings ever equal Lucy’s savings? If 

so, when will this happen? Explain how you found your answer. 

 

Using the exponential models, John’s savings will eventually equal Lucy’s. The 

exponential model of John’s savings has a base of 1.13012, and the exponential 

model of Lucy’s savings has a base of 1.1178. Since John’s model has a higher 

base, his earnings are increasing at a faster rate and will eventually surpass 

Lucy’s savings. These functions can be graphed to determine their intersection. 

This occurs at x = 25.0146. This means that it will take about 25 years for John 

and Lucy to have the same amount in their savings account with a value of 

$123,361.72.  
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6. Based on the scatter plot and models, which of the linear model or exponential 

model do you think best represents the data? Why do you think so? 

 

 The gaps between the scatter plots are not all equal, indicating a non-linear 

model. The compounded interest rate indicates an exponential model. 

 

7. Using the correlation coefficient, which of the savings accounts have the 

strongest correlation? Is this correlation positive, negative, or no correlation? 

 

Figure 5.2 John’s Linear Model 

 

 
The correlation coefficient for John’s savings account is .9991, which means 

there is a strong positive correlation between time and the amount of money in 

her savings account.  

 

Figure 5.3 Lucy’s Linear Model 

 

 
The correlation coefficient for Lucy’s savings account is .9978, which means 

there is a strong positive correlation between time and the amount of money in 

her savings account.  

 

Figure 5.4 Mark’s Linear Model 

 

 
The correlation coefficient for Mark’s savings account is .9994, which means 

there is a strong positive correlation between time and the amount of money in 

his savings account.  
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8. Using the data provided, consider the following scenario. Lucy decided to 

make an initial deposit of $10,000 since she is starting at age 40, while John 

started his savings account at the age of 30. Also, Lucy decided to make the 

same contribution per pay period of $100, but was able to get a higher annual 

interest rate on her savings account. She believes she would have more 

money than John when they retire at the age of 55. Is this belief true? 

Considering how long it took for John and Lucy to have equal savings, 

which savings plan do you think is better for saving more money? 

 

After 25 years of savings for John has $77,623, while Lucy has $58,933 in her 

savings after 15 years since she started her account at the age of 40. Lucy’s 

account is better for savings due to its higher interest rate, however it is only 

better if she started at the same time or earlier than John.  

 

9. Extension: Using residual plots check the appropriateness of the linear 

regression model for each of the three savings accounts.  

 

Figure 5.5 Residual Plots 

 

     
John    Lucy    Mark 

 

All three residual plots suggest that the linear regression model is not 

appropriate for modeling the different savings accounts. The curve in the 

residual plot shows a non-random pattern and indicates a higher order model 

is recommended, in our case this indicates the exponential model is a better fit 

to the data set.  
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5.3 Comparison Summary 

Considering the original performance task provided; the main problem of the use 

of this assessment as the introduction of exponential models. This issue has been 

addressed through the creation of the third learning task.  

Another shortcoming of the original performance task was the lack of addressing 

the standards of plotting and analyzing residuals. This was considered in the revision of 

the assessment. However, in considering the time constraint for a class period 

assessment and the problem presented, it is best to remove these from the standards 

statement for this task.  

The original performance task data of women’s earnings versus men’s earnings 

were replaced with data on different savings accounts. This data provides the student 

data that is indeed exponential, as was the intention of the original task, and solicits 

contextual understanding of the concepts presented.  

Plotting and analyzing residuals as given in learning task 1 will take the students 

too much time to do. Also, students are not expected to plot data points of a large data 

set by hand as it is more efficient for students to know how to create a scatter plot using 

technology.  

An extension question is given for students to check the appropriateness of their 

linear regression model using residual plots. Residual plots were introduced as an 

extension in the first learning task.  
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CHAPTER 6 

CONCLUSION 

 

In general, the revised tasks ensure the students gain statistical literacy by giving 

the students real-life data that is relevant to their lives. An emphasis is placed on relating 

the findings back to the context, and interpreting their findings such as the slope and 

intercept where appropriate of the best-fit line in terms of the data given. This allows the 

students to analyze the data in such a way that they can make conclusions and informed 

decisions regarding the data sets given. For example, by asking the students “What can 

you conclude about the relationship between the number of hours of TV students watch 

per week and your test score?” We ensure that the students not only meet the standard of 

fitting a linear function to the scatter plot and suggesting a linear association, but that 

they are able to do this in the context of the data given which shows the students 

quantitative literacy. 

The revised tasks also provide the teachers with more content knowledge to guide 

them in teaching the lessons. As research has shown, many teachers do not have the 

statistical background knowledge to teach units such as regression. The guidance 

provided for the teachers is essential to the professional development of teachers, better 

informed teachers being able to provide a deeper understanding of the material for the 

students. 
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APPENDIX A 

 

LEARNING TASK 1: SPAGHETTI REGRESSION 

 

Spaghetti Regression 

 

Adapted from: http://txcc.sedl.org/events/previous/092806/10ApplyingStrategies/math-

teks-alg1.pdf 

Mathematical Goals 

 To investigate the concept of goodness of fit and develop an 

understanding of residuals in determining a line of best-fit 

 

Common Core State Standards 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing 

residuals. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear association. 

 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

 

Introduction 

Students will investigate the concept of the “goodness-of-fit” and its significance 

in determining the regression line or best-fit line for the data. This is the first exploration 

in a series of three activities to explore a best- fit line and residuals. Fitting the graph of 

an equation to a data set is covered in all mathematics courses from Algebra  to Calculus 

and beyond.  The objective of this activity is to explore the concept in-depth. 

 

In real life, functions arise from data gathered through observations or 

experiments. This data rarely falls neatly into a straight line or along a curve. There is 

variability in real data, and it is up to the student to find the function that best 'fits' the 

data.  Regression, in its many facets, is probably the most widely used statistical 

methodology in existence. It is the basis of almost all modeling. 

 

Students create scatter plots to develop an understanding of the relationships of 

bivariate data; this includes studying correlations and creating models from which they 
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will predict and make critical judgments. As always, it is beneficial for students to 

generate their own data.  This gives them ownership of the data and gives them insight 

into the process of collecting reliable data.  Teachers should naturally encourage the 

students to discuss important concepts such as goodness-of fit.  Using the graphing 

calculator facilitates this understanding.  Students will be curious about how the linear 

functions are created, and this activity should help students develop this understanding. 

 

Materials:  

 Spaghetti or linguine (3 or 5 pieces of spaghetti per student)  

 Transparent tape (roll for each group)  

 Transparencies of Overhead 1 and Measuring Notes 

 Handouts – copy for each student of the Scatter plot,  

 Student Activity: Spaghetti Regression, and Measuring Notes 

 Rulers (optional) 

 

 

Grouping: 4-5 students per group 

Time: 50 to 60 minutes 

 

Procedure

s 

Note

s 

1. Activity 1 

Introduce the topic of 

goodness of fit with Overhead 

1. 

 

Ask:  Why do we say that the 

line in the top graph fits the 

points better than the line in 

the bottom graph? 

 

Can we say that some other line 

might fit them better still? 

 

Say:  Usually we think of a 

close fit as a good fit.  But, what 

do we mean by close? 

 

Discuss the importance of modeling and 

lead student discussions of concepts such 

as goodness-of-fit,  (See the Background 

information provided in this lesson.) 

2. Give each student 3-5 pieces 

of spaghetti, the Scatter plot 

handout, and Student 

Activity: Spaghetti 

Regression. 

 

3. Have the students examine the 

plot and visually determine a 

line of best-fit (or trend line) 

using a piece of spaghetti. They 

This should be done individually so that 

there is variation in the choice of lines 

within each group. 
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then tape the spaghetti line onto 

their graph as described in #1 on 

the Student Activity handout. 

4. Before students go on to #2 

on the 

Student Activity handout, ask: 

 

Who has the best line in your 

group? 

How can we determine this? 

(Do not discuss how to measure 

this yet; this will be addressed 

later.) 

This is the central idea behind linear 

regression.  To determine a line-of best 

fit you must have an agreed upon 

measure of “goodness”.  If that 

measure is “closeness of the points to 

the line”, the best line is then the line 

with the least total distance from the 

points to the line. There are many types 

of regression. The most common is the 

method of least squares. 

 

Intuitively, we think of a close fit as a 

good fit. We look for a line with little 

space between the line and the points 

it's supposed to fit. We would say that 

the best fitting line is the one that has 

the least space between itself and the 

data points which represent actual 

measurements. 

5. Have the students follow the 

directions for #2 by using a 

second piece of spaghetti to 

measure the distance from 

each point to the line. Then 

break off that length. 

 

Groups may measure 

vertically, horizontally, 

perpendicularly, etc. 

However, each member of a 

group must measure the 

same way.  It is very 

important for each group to 

decide their method for 

measuring before they begin. 

Encourage diversity in measuring 

methods among the groups to add depth 

to the following discussions. 

6. Have the students line up their 

spaghetti distances to 

determine who in their group 

has the closest fit. 

Then, they replace the 

segments and tape them to their 

scatter plot. 

This will determine the total error (i.e., 

total distance from their line to the data). 

The scatter plot is on centimeter paper. 

To be able to express the total error as a 

numerical value you may want students to 

use a ruler. 

7. Have each group present their Discuss the fact that since the groups 
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method and results.  A good way 

to accomplish this is to have the 

“winner” from each group come 

up to the front to do the 

reporting.  They can then be 

grouped by their method of 

measurement. Have reporter 

share, discuss, compare, and 

contrast their results. 

used different methods of measuring, 

they cannot determine best-of-fit for the 

entire class. 

 

Discuss accuracy of measurement. 

 

Did they measure from the edge of each 

point or the middle? 

8. Hand out Measuring Notes and 

use it to discuss three ways 

(vertical, horizontal, and 

perpendicular) to measure the 

space between a point and a line. 

 

Discuss the meaning of a residual and 

why it is used in evaluating the 

accuracy of a model. Use the 

overheads of this page to 

cultivate the discussion. 

Why measure vertically? 

 

The sole purpose in making a regression 

line is to use it to predict the output for a 

given input.  The vertical distances 

(residuals) represent how far off the 

predictions are from the data we 

actually measured. 
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Group Learning Task: Spaghetti Regression 
 

 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

 

Common Core State Standards 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing 

residuals. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear association. 

 

1.  Examine the plot provided and visually determine a line of best-fit (or trend line) 

using a piece of spaghetti.  Tape your spaghetti line onto your graph. 

 

 

 

 

 

 

 

2.  Now investigate the “goodness” of the fit.  Use a second piece of spaghetti to 

measure the distance from the first point to the line.  Break off this piece to 

represent that distance.  Each person at the table must measure in the same way, so 

discuss the method you will use before starting.  Repeat this for each point in the 

scatter plot. 

 

Teacher notes: Encourage at least one group to use the shortest distance from 

the point to the line (i.e., the perpendicular distance.) 

 

3.  Line up your “spaghetti distances” to determine who in your group has the 

“closest” fit.  Determine the total error. (i.e., total distance from your line to the 

data.) Then replace the segments and tape them to your scatter plot. 

 

Total error =   cm (nearest tenth) 
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Have each group present their method and results. A good way to accomplish 

this is to have the “winner” from each table come up to the front.  They can then 

be grouped by their method of measurement.  Have each share, discuss, 

compare, and contrast. 

 

Discuss the fact that since the groups used different methods of measuring, we 

cannot determine best-of-fit for the entire class. Discuss the accuracy of their 

measurements.  Did they measure from the edge of each point or the middle, 

etc.? 

 

Use the page titled “Measuring Notes” to discuss three ways to measure the space 

between a point and the line.  Discuss the meaning of a residual and why it is used in 

evaluating the accuracy of a model.  Use the overheads of this page to cultivate the 

discussion. 
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Measuring 

Notes 
 

There are at least three ways to measure the space between a point and the line: 

vertically in the y direction, horizontally in the x direction, and the shortest distance 

from a point to the line (on a perpendicular to the line.) 

 

 
 

In regression, we usually choose to measure the space vertically.  These 

distances are known as residuals. 

 

• Why would you want to measure this way? What do the residuals represent in 

relation to our function?  Consider the purpose of the line and the following diagram. 

 

 
 

The purpose of regression is to find a function that can model a data set. The 

function is then used to predict the y values (outputs or f(x) for any given input x.  

So, the vertical distance represents how far off the prediction is from the actual data 

point (i.e., the “error” in each prediction.)  Residuals are calculated by subtracting 

the model’s predicted values, f(xi), from the observed values, yi. 

 

Residual = yi  − f ( xi ) 
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Overhead 1 
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Group Learning Task: Spaghetti Regression 
 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

 

Common Core State Standards 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing 

residuals. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear association. 

 

1.  Examine the plot provided and visually determine a line of best-fit (or trend line) 

using a piece of spaghetti.  Tape your spaghetti line onto your graph. 

 

 

 

 

 

2.  Now investigate the “goodness” of the fit.  Use a second piece of spaghetti to 

measure the distance from the first point to the line.  Break off this piece to 

represent that distance.  Each person at the table must measure in the same way, so 

discuss the method you will use before starting.  Repeat this for each point in the 

scatter plot. 

 

 

 

 

 

 

 

3.  Line up your “spaghetti distances” to determine who in your group has the 

“closest” fit.  Determine the total error. (i.e., total distance from your line to the 

data.) Then replace the segments and tape them to your scatter plot. 

 

 

 

Total error =   cm (nearest tenth)  
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Scatter plot 
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APPENDIX B 

 

LEARNING TASK 2: TV/TEST GRADES 

 

 

TV/Test Grades 

 

Mathematical Goals 

 Represent data on a scatter plot 

 Describe how two variables are related 

 Informally assess the fit of a function by plotting and analyzing residuals 

 Fit a linear function for a scatter plot that suggests a linear association 

 

Common Core State Standards 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve 

problems in the context of the data. Use given functions or choose a function suggested 

by the context. Emphasize linear and exponential models. 

 

MCC9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing 

residuals. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear 

association.  

Interpret linear models  

 

MCC9-12.S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of 

a linear model in the context of the data. 

 

MCC9-12.S.ID.8 Compute (using technology) and interpret the correlation coefficient 

of a linear fit.  

 

MCC9-12.S.ID.9 Distinguish between correlation and causation.  

 

Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

 

Introduction 
Before beginning the task, ask the class what they know about correlation. 

Remind them that the correlation coefficient, a measure of how closely two variables 
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are related, is a number between –1 and 1. If the values of both variables tend to 

increase (or if the values of both decrease), the two variables are positively correlated. 

If one variable tends to decrease as the other increases (or vice versa), the two variables 

are negatively correlated. If the values of the variables in both sets do not demonstrate a 

relationship, the variables are not correlated. Determining a relationship between two 

sets of data, especially from a scatter plot, may be subject to interpretation. The teacher 

will likely want to have students use a graphing calculator with statistical capabilities to 

do this task, determining ahead of time which features on the calculator are appropriate. 

 

Lines of good fit may be found using paper-and-pencil techniques (such as 

writing the equation based on two points) or using a graphing calculator (either 

generating possible lines to use for guessing and checking or using the regression 

feature of the calculator to determine a particular function rule). Discuss correlation 

and causation with the group. Ask them at the end of the task to summarize television 

watching and test grades and if they believe there is a causal relationship. Have them 

defend their position based on statistical analysis. 

 

Materials 

 pencil 

 graphing paper 

 graphing calculator or statistical software package 

 

Prerequisites 

Students must have knowledge of writing linear equations based on two points and 

understand correlation. 

 

Time Required  

1 to 2 class periods. 
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1.   Students in Ms. Garth’s Algebra II class wanted to see if there are correlations 

between test scores and height and between test scores and time spent watching 

television. Before the students began collecting data, Ms. Garth asked them to 

predict what the data would reveal. Answer the following questions that Ms. 

Garth asked her class. 

 

a.   Do you think students’ heights will be correlated to their test grades? If you 

think a correlation will be found, will it be a positive or negative correlation? 

Will it be a strong or weak correlation? 

 

Answers may vary, but a possible answer could be: “I do not think there will 

be correlation between height and test grades, since it is not reasonable to 

think a person’s height affects their intelligence or effort level.” 

 

b.   Do you think the average number of hours students watch television per 

week will be correlated to their test grades? If you think a correlation will 

be found, will it be a positive or negative correlation? Will it be a strong or 

weak correlation? Do watching TV and low test grades have a cause and 

effect relationship? 

 

Answers may vary, but a possible answer could be: “I think the average 

number of hours a student watches television will be negatively correlated 

with the student’s test grades. It is reasonable to think that the more TV 

you watch, the less time you spend studying, resulting in low test grades. 

However, it does not seem like these variables will be strongly correlated, 

since some people do not watch TV but do not spend time studying either. 

On the other hand, some students may watch a lot of TV and still study a 

lot.” Discuss correlation vs. causation with students. Give samples of 

variables that correlate and have them justify their argument. 

 

2.   The students then created a table in which they recorded each student’s height, 

average number of hours per week spent watching television (measured over a four-

week period), and scores on two tests. Use the actual data collected by the students 

in Ms. Garth’s class, as shown in the table below, to answer the following 

questions. 

 

 

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 

Height 

(inches) 

60 65 51 76 66 72 59 58 70 67 65 71 58 

TV 

Hrs/week 

30 12 30 20 10 20 15 12 15 11 16 20 19 

Test 1 60 80 65 85 100 78 75 95 75 90 90 80 75 

Test 2 70 85 75 85 100 88 85 90 90 90 95 85 85 
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a. Which pairs of variables seem to have a positive correlation? Explain. 

Test 1 scores and test 2 scores appear to be positively correlated. For the most 

part, student performance on both tests was fairly consistent, so students who 

did well on test 1 also did well on test 2, while those who did not do well on test 

1 didn’t do very well on test 2 either. 

 

b.   Which pairs of variables seem to have a negative correlation? Explain. 

 

Test 1 scores and hours per week watching television, and test 2 scores and 

hours per week watching television appear to be negatively correlated. In 

general, students who spent more time watching television had lower test 

scores than those who spent less time watching television. 

 

c.   Which pairs of variables seem to have no correlation? Explain. 

 

Height and hours per week watching television, test 1 scores and height, and 

test 2 scores and height seem to have no correlation. Height does not seem to 

be correlated with any of the other variables. That is, taller students do not 

seem to watch any more or less television or perform any better or worse on 

tests than shorter students. 

 

3.   For each pair of variables listed below, create a scatter plot with the first variable 

shown on the y-axis and the second variable on the x-axis. Are the two variables 

correlated positively, correlated negatively, or not correlated? Determine whether 

each scatter plot suggests a linear trend. 

 

a.   Score on test 1 versus hours watching television 

 

Scatter Plot: 

 

   
 

Correlation? Negative. Linear Trend? Yes. 
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b.   Height versus hours watching television 

 

Scatter Plot: 

 

   
 

Correlation? No correlation. Linear Trend? No. 

 

c.  Score on test 1 vs. score on test 2 

Scatter Plot: 

 

   
 

Correlation? Positive. Linear Trend? Yes. 

 

 

d.   Hours watching television versus score on test 2 

 

Scatter Plot: 

 

   
 

Correlation? Negative. Linear Trend? Yes. 

 

 

4.   Using the statistical functions of your graphing calculator, determine a line of 

good fit for each scatter plot that suggests a linear trend. 

 

Answers may vary slightly from the ones shown here. 

 

Using linear regression and rounding to the hundredths place: 
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a. Score on Test 1 versus hours watching television: y = -1.43x 

+ 105.98  

b. Height versus hours watching television: no linear trend 

c. Score on test 1 versus score on test 2: y = 1.32x – 33.04 

d. Hours watching television versus score on test 2: y = -0.72x + 79.64 

 

 

Alternatively, using two points that appear to be close to a good representation 

of the trend in the data: 

 

Data from score on test 1 versus hours spent watching television: (20, 78) and (11, 

90) 
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Guided Learning Task: TV/Test Grades 

 

Name__________________________________ Date____________________ 

 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

 

Common Core State Standards 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve 

problems in the context of the data. Use given functions or choose a function suggested 

by the context. Emphasize linear and exponential models. 

 

MCC9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing 

residuals. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear 

association.  

 

Interpret linear models  

 

MCC9-12.S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of 

a linear model in the context of the data. 

 

MCC9-12.S.ID.8 Compute (using technology) and interpret the correlation coefficient 

of a linear fit. 

 

MCC9-12.S.ID.9 Distinguish between correlation and causation.  

 

 

1.   Students in Ms. Garth’s Algebra II class wanted to see if there are correlations 

between test scores and height and between test scores and time spent watching 

television. Before the students began collecting data, Ms. Garth asked them to 

predict what the data would reveal. Answer the following questions that Ms. 

Garth asked her class. 

 

a.   Do you think students’ heights will be correlated to their test grades? If you 

think a correlation will be found, will it be a positive or negative correlation? 

Will it be a strong or weak correlation? 



   

86 
 

b.   Do you think the average number of hours students watch television per week will be 

correlated to their test grades? If you think a correlation will be found, will it be a 

positive or negative correlation? Will it be a strong or weak correlation? Do watching 

TV and low test grades have a cause and effect relationship? 

 

 

 

 

 

 

 

2.   The students then created a table in which they recorded each student’s height, 

average number of hours per week spent watching television (measured over a four-

week period), and scores on two tests. Use the actual data collected by the students 

in Ms. Garth’s class, as shown in the table below, to answer the following 

questions. 

 

 

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 

Height 

(inches) 

60 65 51 76 66 72 59 58 70 67 65 71 58 

TV 

Hrs/week 

30 12 30 20 10 20 15 12 15 11 16 20 19 

Test 1 60 80 65 85 100 78 75 95 75 90 90 80 75 

Test 2 70 85 75 85 100 88 85 90 90 90 95 85 85 

 

 

a.   Which pairs of variables seem to have a positive 

correlation? Explain.  

 

b.   Which pairs of variables seem to have a negative 

correlation? Explain.  

 

c.   Which pairs of variables seem to have no correlation? 

Explain. 

 

 

3.   For each pair of variables listed below, create a scatter plot with the first variable 

shown on the y-axis and the second variable on the x-axis. Are the two variables 

correlated positively, correlated negatively, or not correlated? Determine whether 

each scatter plot suggests a linear trend. 

 

a. Score on test 1 versus hours watching 

television  
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b. Height versus hours watching 

television 

 

 

c. Score on test 1 versus 

score on test 2 

 

d.   Hours watching television versus 

score on test 2 

 

4.   Using the statistical functions of your graphing calculator, determine a line of good 

fit for each scatter plot that suggests a linear trend. 
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APPENDIX C 

 

PERFORMANCE TASK: EQUAL SALARIES FOR EQUAL WORK? 

 

 

Equal Salaries for Equal Work? 

 

Mathematical Goals 

 Represent data on a scatter plot 

 Describe how two variables are related 

 Informally assess the fit of a function by plotting and analyzing residuals 

 Fit a linear function for a scatter plot that suggests a linear association 

 

Common Core GPS 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve 

problems in the context of the data. Use given functions or choose a function suggested 

by the context. Emphasize linear and exponential models. 

 

MCC9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing 

residuals. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear 

association.  

 

Interpret linear models  

 

MCC9-12.S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of 

a linear model in the context of the data. 

 

MCC9-12.S.ID.8 Compute (using technology) and interpret the correlation coefficient 

of a linear fit.                            

 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

8.  Look for and express regularity in repeated reasoning. 
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Introduction 

This task asks students to compare additive and multiplicative growth 

(represented by linear and exponential models) to make predictions and solve problems 

within the context of gender-based salary differences. In doing this task, students 

analyze data sets, create scatter plots, determine the most appropriate mathematical 

model, and justify their model selection. 

 

This task provides a good example of how data points can appear to be linear 

over a relatively small domain, but how a different type of mathematical model might 

be more appropriate over a larger domain. This is an opportunity for students to discuss 

strengths and limitations of using mathematical functions to model real data. One 

discussion might arise as to whether other types of mathematical functions might 

sometimes be used for different types of data, perhaps leading students to look for 

patterns in data they might gather from sources like newspapers or books of world 

records. 

 

Note that students will need to make a decision about the initial value 

representing the year. For example, it would be reasonable to assign the year 1984 (the 

first year in the table) as Year 0. The sample solutions below are based on this 

assumption. 

 

Prerequisites 

Students must have knowledge of using the graphing calculator to create linear 

and exponential models and to analyze residuals. It is important that students understand 

how to assess the fit of a function to data and choose a function suggested by context. 

 

Learning Targets 

When making statistical models, technology is valuable for varying assumptions, 

exploring consequences and comparing predictions with data. Students will interpret the 

correlation coefficient and show understanding of strengths and limitations of using 

mathematical functions to model real data.  

 

Time Required 

1 class period 

 

Materials 

Pencil and (graphing) paper; graphing calculator or statistical software package. 
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The data table shows the annual median earnings for female and male workers in the 

United States from 1984 to 2004. Use the data table to complete the task. Answer all 

questions in depth to show your understanding of the standards. 

 

 

 

Year 

Women’s median 

earnings (in dollars) 

Men’s median 

earnings (in dollars) 

1984 8675 17026 

1985 9328 17779 

1986 10016 18782 

1987 10619 19818 

1988 11096 20612 

1989 11736 21376 

1990 12250 21522 

1991 12884 21857 

1992 13527 21903 

1993 13896 22443 

1994 14323 23656 

1995 15322 25018 

1996 16028 25785 

1997 16716 26843 

1998 17716 28755 

1999 18440 30079 

2000 20267 30951 

2001 20851 31364 

2002 21429 31647 

2003 22004 32048 

2004 22256 32483 

Data provided by 

U.S. Census Bureau 
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1.   Create two scatter plots, one for women’s median earnings over time and one 

for men’s median earnings over time. Describe two things you notice about 

the scatter plots. 

 

Each scatter plot below is graphed with the following window: 

 

Window: 

Xmin=(-)2 

X max=22 

Xscl=5 

Ymin=4500 

Ymax=37000 

Yscl=2500 

Xres=1 

 

 
 

Women’s Data Men’s Data Both Data Sets 

 

Answers may vary. 

 

Possible answers: From 1984 to 2004, median earnings for both men and 

women increased. In each of these years, men’s median earnings were greater 

than women’s median earnings. 

 

2.   Terry and Tomas are trying to decide what type of model will most accurately 

represent the data. Terry thinks that a linear model might be most appropriate for 

each scatter plot. Help Terry find reasonable linear function rules for each scatter 

plot. Explain how you found these. 

 

Answers may vary 

One solution 

method: 

To find a linear model of women’s median earnings, use the starting earnings 

figure for women, $8675, and the average rate of change of $680 per year. (To 

find the average rate of change, find successive differences and then find the 

average of the successive differences.) The linear model is m(x) = 680x + 8675, 

where x represents years and m(x) gives the median earnings. To find a linear 

model of men’s median earnings, use the starting earnings figure for men, 

$17,026, and the average rate of change of $773 per year. The linear model is 

m(x)= 773x + 17026, where x represents years and m(x) gives the median 

earnings. 
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Another solution method: 

Using a graphing calculator to determine a regression line, women’s median 

earnings could be represented by the function y =703x + 8181. 

 

Using a graphing calculator to determine a regression line, men’s median 

earnings could be represented by the function y = 814x + 16709. 

 

3.   Using the linear models, will women’s annual median earnings ever equal those 

of men? 

Why or why not? 

 

Using the linear models created from the data provided, women’s annual 

median earnings will never equal men’s annual median earnings. The men’s 

linear model has a larger y- intercept and a larger slope, meaning the men 

start out earning more money and also experience a faster rate of increase in 

earnings. 

 

4.   Tomas thinks that an exponential model might be most appropriate for each 

scatter plot. Help Tomas find reasonable exponential function rules for each 

scatter plot. Explain how you found these. 

 

Answers may vary.  

 

One solution method: 

To find an exponential model of women’s median earnings, use the starting 

income for women, $8675, and the average quotient, 1.048. (To find the average 

quotient, find successive quotients then find the average of the successive 

quotients.) The exponential model is m(x) = 8675(1.048)
x
, where x represents 

years and m(x) gives the median salary. To find an exponential model of men’s 

median earnings, use the starting earnings figure for men, $17,026, and the 

average quotient, 1.033. The exponential model is m(x) = 17026(1.033)
x
, where x 

represents years and m(x) gives the median earnings. 

 

Another solution method: 

 

Calculating an exponential regression function on a graphing calculator, 

women’s median earnings could be represented by the function y = 9087(1.049)
x
. 

 

Calculating an exponential regression function on a graphing calculator, men’s 

median earnings could be represented by the function y = 17479(1.034)
x
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5.   Using the exponential models, will women’s annual median earnings ever equal 

those of men? Why or why not? 

 

Using the exponential models, women’s annual median earnings will eventually 

equal those of men. The exponential model of men’s earnings has a base of 

1.034, and the exponential model of women’s earnings has a base of 1.049. 

Since the women’s model has a higher base, their earnings are increasing at a 

faster rate and will eventually surpass men’s earnings. These functions can also 

be graphed to determine their intersection (45.7, 79533.88), demonstrating that 

at some point during the year 2029, women’s annual median earnings will 

overtake men’s annual median earnings. 

 

6.   If you answered yes to either question 3 or question 5, use that model to 

determine the first year women will have higher median earnings than men. 

Explain how you found your answer. 

 

Using the exponential models, women’s annual median earnings will eventually 

equal those of men. The exponential model of men’s earnings has a base of 

1.034, and the exponential model of women’s earnings has a base of 1.049. 

Since the women’s model has a higher base, their earnings are increasing at a 

faster rate and will eventually surpass men’s earnings. These functions can also 

be graphed to determine their intersection (45.7, 79533.88), demonstrating that 

at some point during the year 2029, women’s annual median earnings will 

overtake men’s annual median earnings. 

 

7.   For each year listed in the table, find the ratio of women’s to men’s annual 

median earnings expressed as a percentage. Use the data to create a scatter plot of 

percentage versus year. Based on this graph, do you think women’s annual 

median earnings will ever equal those of men? Why or why not? 

 

 
 

The scatter plot has a positive correlation. This means that women’s annual 

earnings are approaching those of men and (if the trend continues) will 

eventually catch up to men’s annual median earnings. 
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8.   Considering the results of the scatter plot in question 7 above, do you think the 

linear model or exponential model makes more sense? Why? 

 

Answers will vary. Generally speaking, the exponential model makes more sense 

because the gap between men’s earnings and women’s earnings is decreasing, as 

shown in the percentage-versus-time scatter plot. This more closely represents 

the real situation. The linear model shows the gap widening — an inaccurate 

representation of what is actually happening. 

 

 

 

Data on earnings by gender provided by: 

U.S. Census Bureau. “Table P-41. Work Experience—All Workers by Median 

Earnings and Sex: 1967 to2005.” Historical Income Tables—People. 

www.census.gov/hhes/www/income/histinc/p41ar.html. (Date retrieved: July 24, 

2007.) 

  

http://www.census.gov/hhes/www/income/histinc/p41ar.html
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Performance Task: Equal Salaries for Equal Work! 

 

Name______________________________   Date__________________ 

 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

8.  Look for and express regularity in repeated reasoning. 

 

Common Core GPS 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve 

problems in the context of the data. Use given functions or choose a function suggested 

by the context. Emphasize linear and exponential models. 

 

MCC9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing 

residuals. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear 

association.  

 

Interpret linear models  

 

MCC9-12.S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of 

a linear model in the context of the data. 

 

MCC9-12.S.ID.8 Compute (using technology) and interpret the correlation coefficient 

of a linear fit.          

 

MCC9-12.S.ID.9 Distinguish between correlation and causation.  
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The data table shows the annual median earnings for female and male workers in the 

United States from 1984 to 2004. Use the data table to complete the task. Answer all 

questions in depth to show your understanding of the standards. 

 

 

Year 

Women’s median 

earnings (in dollars) 

Men’s median 

earnings (in dollars) 

1984 8675 17026 

1985 9328 17779 

1986 10016 18782 

1987 10619 19818 

1988 11096 20612 

1989 11736 21376 

1990 12250 21522 

1991 12884 21857 

1992 13527 21903 

1993 13896 22443 

1994 14323 23656 

1995 15322 25018 

1996 16028 25785 

1997 16716 26843 

1998 17716 28755 

1999 18440 30079 

2000 20267 30951 

2001 20851 31364 

2002 21429 31647 

2003 22004 32048 

2004 22256 32483 

Data provided by 

U.S. Census Bureau 

 

 

1.   Create two scatter plots, one for women’s median earnings over time and one 

for men’s median earnings over time. Describe two things you notice about 

the scatter plots. 
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2.   Terry and Tomas are trying to decide what type of model will most accurately 

represent the data. Terry thinks that a linear model might be most appropriate for 

each scatter plot. Help Terry find reasonable linear function rules for each scatter 

plot. Explain how you found these. 

 

 

3.   Using the linear models, will women’s annual median earnings ever equal those of 

men? 

Why or why not? 

 

 

 

 

 

 

 

 

4.   Tomas thinks that an exponential model might be most appropriate for each 

scatter plot. Help Tomas find reasonable exponential function rules for each 

scatter plot. Explain how you found these. 

 

 

 

 

 

5.   Using the exponential models, will women’s annual median earnings ever equal 

those of men? Why or why not? 

 

 

 

 

 

6.   If you answered yes to either question 3 or question 5, use that model to 

determine the first year women will have higher median earnings than men. 

Explain how you found your answer. 

 

 

 

 

 

7.   For each year listed in the table, find the ratio of women’s to men’s annual 

median earnings expressed as a percentage. Use the data to create a scatter plot of 

percentage versus year. Based on this graph, do you think women’s annual 

median earnings will ever equal those of men? Why or why not? 

 

 



   

98 
 

 

 

8.   Considering the results of the scatter plot in question 7 above, do you think the 

linear model or exponential model makes more sense? Why? 

 

 

 

 

Data on earnings by gender provided by: 

U.S. Census Bureau. “Table P-41. Work Experience—All Workers by Median 

Earnings and Sex: 1967 to2005.” Historical Income Tables—People. 

www.census.gov/hhes/www/income/histinc/p41ar.html. (Date retrieved: July 24, 

2007.) 

 

 

 

 

 

 

  

http://www.census.gov/hhes/www/income/histinc/p41ar.html
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APPENDIX D 

 

STUDENT WORKSHEET: LEARNING TASK 1 

 

Name__________________________________ Date____________________ 

 

Learning Task: Simple Linear Regression 
 

Common Core State Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

6.  Attend to precision.  

7.  Look for and make use of structure. 

 

Common Core State Standards 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing 

residuals. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear association. 

 

Part I 

 

3. Create a scatter plot of the following data set TV Time and Test Score. Plot the 

data points on the graph provided. 

 

TV Time 

(Hours) 

Test Score 

30 70 

12 85 

30 75 

20 85 

10 100 

20 88 

15 85 

12 90 

15 90 

11 90 

16 95 

20 85 

19 85 
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4. Examine the scatter plot you created and visually determine a line of best-fit (or 

trend line).  Draw your best-fit line on your scatter plot.  
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3.  Now investigate the “goodness” of the fit.  Measure the residual using the method 

from the Measuring Notes sheet. Repeat this for each point in the scatter plot. 

 

 

 

 

 

 

4.  Calculate the sum of your residuals.  

 

 

 Total error = ________ 

 

* Class discussion before moving to Part II. * 

 

 

Part II 

 

5. Calculate the square of each residual. Find the sum of your squared residuals. 

 

 

 

 

 

 

 

Total residual sum of squares = ________ 

 

 

6. As a class find the equation of the best-fit line.  

 

 

 

 

 

 

 

7.  Using the class best-fit line, what do you think your test score will be based on 

how many hours of TV you watch per week? 
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8.  What can you conclude about the relationship between the number of hours of TV 

students watch per week and your test score? 

 

 

 

 

10. Extension: Plot the residual plot of the data using your calculator. What can you 

conclude about the linear model for the data set? Is the linear model an appropriate 

representation of the data? 
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APPENDIX E 

 

STUDENT WORKSHEET:  LEARNING TASK 2 

 

Name__________________________________ Date____________________ 

 

Learning Task: TV Watching Hours and Test Grades 

Common Core State Standards 

MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and 

describe how the variables are related. 

 

MCC9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear 

association.  

 

Interpret linear models  

 

MCC9-12.S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of 

a linear model in the context of the data. 

 

MCC9-12.S.ID.8 Compute (using technology) and interpret the correlation coefficient 

of a linear fit.  

 

MCC9-12.S.ID.9 Distinguish between correlation and causation.  

 

Standards for Mathematical Practice 

1.  Make sense of problems and persevere in solving them. 

2.  Reason abstractly and quantitatively. 

3.  Construct viable arguments and critique the reasoning of others.  

4.  Model with mathematics. 

5.  Use appropriate tools strategically. 

 

Part I:  

 

1.   Students in Ms. Garth’s Algebra II class wanted to see if there are correlations 

between test scores and height and between test scores and time spent watching 

television. Before the students began collecting data, Ms. Garth asked them to 

predict what the data would reveal. Answer the following questions that Ms. 

Garth asked her class. 

 

a.   Do you think students’ heights will be correlated to their test grades? If you 

think a correlation will be found, will it be a positive or negative correlation? 

Will it be a strong or weak correlation? 
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b.   Do you think the average number of hours students watch television per 

week will be correlated to their test grades? If you think a correlation will 

be found, will it be a positive or negative correlation? Will it be a strong or 

weak correlation? Do watching TV and low test grades have a cause and 

effect relationship? 

 

 

 

 

 

 

2.   The students then created a table in which they recorded each student’s height, 

average number of hours per week spent watching television (measured over a four-

week period), and scores on two tests. Use the actual data collected by the students 

in Ms. Garth’s class, as shown in the table below, to answer the following 

questions. 

 

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 

Height 

(inches) 
60 65 51 76 66 72 59 58 70 67 65 71 58 

TV 

hrs/week 
30 12 30 20 10 20 15 12 15 11 16 20 19 

Test 1 60 80 65 85 100 78 75 95 75 90 90 80 75 

Test 2 70 85 75 85 100 88 85 90 90 90 95 85 85 

 

 

a. Which pairs of variables seem to have a positive correlation? Explain. 

 

 

 

 

 

b.   Which pairs of variables seem to have a negative correlation? Explain. 

 

 

 

 

 

c.   Which pairs of variables seem to have no correlation? Explain. 
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Part II: 

 

3. For each pair of variables listed below, create a scatter plot with the first 

variable shown on the x-axis and the second variable on the y-axis. Are the 

two variables correlated positively, correlated negatively, or not correlated? 

What is their best-fit regression equation?  

 

 

X Y Linear 

Correlation? 

Linear Reg. 

Equation 

Correlation 

coefficient 

Height TV Hrs    

TV Hrs Test 1    

TV Hrs Test 2    

Test 1 Test 2    

 

4. From Ms. Garth’s class data, and the correlations calculated, which variables can 

you say affects test scores? 

 

 

 

 

5. Maria has asked you to predict her Test 1 score and told you that she is 61 inches 

tall. What do you think her score will be and how much belief do you have in 

this?  

 

 

 

 

6. On the other hand, Johnny says he does not know his height but he knows he 

watches 15 hours of TV per week. What do you think his score will be and how 

much belief do you have in this?  

 

 

 

 

7. Lauren made the conclusion that watching TV causes lower test scores. Can she 

make this conclusion? If not, why not? 
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8. Jacob concluded that a student scoring well on test 1 result in a high score on test 

2. Is this a valid conclusion? 

 

 

 

 

9. What is your best-fit linear regression equation for TV Hours vs Test 2 scores? 

Interpret the slope of your equation in terms of the context.  

 

  

 

 

10. Extension Question: Interpret the coefficient of determination (    for the 

variable pairs, TV Hours vs Test 1, TV Hours vs Test 2, and Test 1 vs Test 2.  
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APPENDIX F 

 

STUDENT WORKSHEET: LEARNING TASK 3 

 

Name__________________________________ Date____________________ 

 

Learning Task: U.S. Population Growth 

 

The data table shows the population in the United States gathered by the U.S. Census 

Bureau from 1800 to 2010. Use the data table to complete the task. Answer all questions 

in depth to show your understanding of the standards. 

 

Year Population 

1800 5,308,483 

1810 7,239,881 

1820 9,638,453 

1830 12,866,020 

1840 17,069,453 

1850 23,191,876 

1860 31,443,321 

1870 39,818,449 

1880 50,189,209 

1890 62,947,714 

1900 76,212,168 

1910 92,228,496 

1920 106,021,537 

1930 122,775,046 

1940 132,164,569 

1950 150,697,361 

1960 179,323,175 

1970 203,302,031 

1980 226,545,805 

1990 248,709,873 

2000 281,421,906 

2010 308,745,538 

 

 

1. Create a scatter plot of the given data set of population over time.  
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2. Fit a linear model to the data using your graphing calculator. Does this 

model seem to be the most appropriate model for this data set? 

 

 

 

 

3. Stacy believes the data does not look linear, and thinks that an exponential 

model might be more appropriate for the data. Find the exponential model for 

the data. Do you think this is a more appropriate model? 

 

 

 

 

 

4. Compare your models with the model in the example given in class. Do the 

models agree? Why do you think there is a difference? 

 

 

 

 

 

5. Use both models to predict the population in year 2020. Which model makes 

sense in representing the growth of the US Population? 

 

 

 

 

 

6. Extension: Fit two models to the population data. Changes in immigration laws 

occurred after World War 1 in 1918, so consider 1910 and 1920 as the splitting 

points of the data. Fit a linear and exponential model to both of the data subsets 

(1800-1910, and 1920-2010) and decide which is model is more appropriate by 

graphing the residual plots.  
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APPENDIX G 

 

STUDENT WORKSHEET: PERFORMANCE TASK 

 

Name__________________________________ Date____________________ 

 

Performance Task: Teacher Salary 

 

Use the data table to complete the task. Answer all questions in depth to show your 

understanding of the standards. 

 

Year John Lucy Mark 

0 1,000 10,000 5,000 

1 3,628 12,826 10,274 

2 6,288 15,709 15,601 

3 8,982 18,650 20,982 

4 11,710 21,650 26,417 

5 14,472 24,711 31,906 

6 17,269 27,834 37,450 

7 20,101 31,020 43,050 

8 22,968 34,270 48,707 

9 25,782 37,585 54,420 

10 28,813 40,968 60,191 

11 31,790 44,419 66,019 

12 34,804 47,939 71,906 

13 37,857 51,531 77,853 

14 40,948 55,195 83,859 

15 44,078 58,933 89,925 

16 47,078 62,747 96,052 

17 50,456 66,637 102,241 

18 53,705 70,606 108,492 

19 56,995 74,655 114,806 

20 60,326 78,786 121,183 

21 63,700 83,000 127,624 

22 67,116 87,299 134,130 

23 70,574 91,685 140,702 

24 74,076 96,160 147,339 

25 77,623 100,725 154,043 

 

 

 John Lucy Mark 

Initial Deposit (Principal) 1,000 10,000 5,000 

Annual Interest Rate 1.25% 2% 1% 

Contribution per pay period 100 100 200 

Pay periods per year 26 26 26 
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1. Create three scatter plots of the data of savings amount throughout over age. 

Describe two things you notice about the scatter plots. 

 

 

 

 

 

2. Terry and Tomas are trying to decide what type of model will most accurately 

represent the data. Terry thinks that a linear model might be most appropriate 

for each scatter plot. Help Terry find the linear regression equation for each of 

the data sets, and interpret the slopes of the equations with respect to the 

context. 

 

 

 

 

 

3. Using the linear models, will John’s savings ever equal Lucy’s savings? If so, 

at what year in their savings will this occur?  

 

 

 

 

 

4. Tomas thinks that an exponential model might be most appropriate for each 

scatter plot. Help Tomas find the exponential function for each scatter plot.  

 

 

 

 

 

5. Using the exponential models, will John’s savings ever equal Lucy’s savings? If 

so, when will this happen? Explain how you found your answer. 

 

 

 

 

 

6. Based on the scatter plot and models, which of the linear model or exponential 

model do you think best represents the data? Why do you think so? 
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7. Using the correlation coefficient, which of the savings accounts have the 

strongest correlation? Is this correlation positive, negative, or no correlation? 

 

 

 

 

 

8. Using the data provided, consider the following scenario. Lucy decided to 

make an initial deposit of $10,000 since she is starting at age 40, while John 

started his savings account at the age of 30. Also, Lucy decided to make the 

same contribution per pay period of $100, but was able to get a higher annual 

interest rate on her savings account. She believes she would have more 

money than John when they retire at the age of 55. Is this belief true? 

Considering how long it took for John and Lucy to have equal savings, 

which savings plan do you think is better for saving more money? 

 

 

 

 

 

9. Extension: Using residual plots check the appropriateness of the linear 

regression model for each of the three savings accounts.  
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