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by 
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(Under the Direction of Yan Wu) 

ABSTRACT 

The objective of this work is to design a quotient controller to stabilize a chaotic flow in a 

single loop thermosyphon system with a high heat index.  The thermosyphon loop is 

heated from below and cooled from above, which causes time-dependent chaotic flow 

when the external heat index is above a threshold value.  Our goal was to stabilize the 

fluid into a convective uni-directional flow well into the chaotic regime.  We also 

investigated adding a tracking integrator to the thermosyphon system to allow “tracking” 

to a specific temperature.   
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CHAPTER 1 

 

INTRODUCTION 
 

Thermosyphon 
 

 A single-loop thermosyphon system is basically a torus where the distance from 

the center of the tube to the center of the torus is much greater than the radius of the tube.  

The torus is then filled with an incompressible fluid. The lower half of the loop is heated, 

and the upper half of the loop is cooled.  Since the lower half of the loop is heated and the 

upper half of the loop is cooled, the fluid within the loop has a steady convective flow if 

the heat that is applied to the lower half of the loop is within a specific range.  Because 

this single-loop thermosyphon system has no internal moving parts, it can be used as a 

very efficient means of cooling.  

 The main problem with using a single-loop thermosyphon as a means of cooling 

is that there is only a steady convective flow within the loop when the heat is below a 

certain level.  If the loop is heated above a certain level, the system becomes chaotic and 

the thermosyphon is no longer an efficient means of cooling.  

Lorenz Equations 

To understand the behavior of the fluid flow within the loop, we examine the 

Navier-Stokes equations (1-3).  The Navier-Stokes equations are the set of equations 

from fluid mechanics that govern and describe fluid flow.  Although the Navier-Stokes 

equations fairly accurately describe the flow and behavior of fluid, the problem arises 

from trying to solve the Navier-Stokes equations directly.  The Navier-Stokes equations 

are a set of three nonlinear partial differential equations.  Since the set of Navier-Stokes 

equations are nonlinear partial differential equations, it is not possible to employ the 
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usual methods for solving partial differential equations to find a general solution to the 

set of three equations that make up the Navier-Stokes equations.  For example, a 

superposition of solutions cannot be used.  Instead, each individual problem has to be 

examined on a case-by-case basis.  Because the normal methods cannot be used to find a 

general solution to the nonlinear partial differential equations, the set of nonlinear partial 

differential equations that make up the Navier-Stokes equations need to be transformed 

into a form that is easier to solve.  In this particular case, the nonlinear partial differential 

equations of the Navier-Stokes equations are transformed into the linear ordinary 

differential equations of the Lorenz equations.  

The Lorenz equations were obtained through a nondimensionalization of 

variables, a change of variables to take into account the new non-dimensional variables.  

The derivation of the Lorenz equations is covered in more detail in a following section.  

One of the main problems when using the Lorenz equations to model a system is that the 

Lorenz equations are highly dependent on the initial conditions and can easily lead to a 

chaotic behavior. 

Chaos 

 “A chaotic system is a nonlinear deterministic system that displays complex, 

noisy-like and unpredictable behavior.”[6] There are basically two methods used to 

control chaotic systems: non-feedback control and feedback control.   The method used 

here is feedback control which has many advantages over the non-feedback control 

method such as being more robust and not being as computationally demanding [6].   

There are several different feedback controllers that are used to control chaotic 

systems.  The particular feedback controller that is investigated here to control the chaotic 
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system is a quotient controller.  The quotient controller is added to the system to maintain 

stability for heat levels that would otherwise lead to a chaotic fluid flow within the 

thermosyphon loop.        

Control Systems  

 In order to have a more thorough understanding of the material this thesis covers 

and to better understand the reasoning behind the method that was used to control the 

single-loop thermosyphon system, a brief introduction to basic control systems is 

necessary.  Control systems are used in almost every aspect of life in today’s society.  For 

example, control systems are used in microwave ovens, navigation systems, space 

satellites, pollution control, and mass transit [4].  A control system is basically a 

collection of connected components that are used to provide a desired function.   

 The part of the control system that is going to be controlled is called the plant or 

process.  The plant is affected by applied signals (inputs) and produces signals of interest 

(outputs).  A controller is a device that is used to achieve a desired behavior from the 

plant.  There are basically two types of control systems.  One is referred to as open-loop 

or non-feedback control.  In non-feedback control, the control inputs are not influenced 

by the outputs of the plant.  The other basic type of control is called a closed-loop or 

feedback control.  In feedback control, the system outputs are measured and fedback to 

the controller.  The controller then compares the system outputs with the desired outputs 

and can make adjustments to have the actual output of the system be closer to the desired 

output.  These differences can be more easily explained by Figures 1.1 and 1.2. 
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Figure 1.1  Diagram for Open-Loop or Non-Feedback Control System 
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Figure 1.2  Diagram for Closed-Loop or Feedback Control System 
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CHAPTER 2 

DERIVING LORENZ EQUATIONS 

Since the diameter of the inside of the closed loop is much less than the overall 

diameter of the loop, d<<l, a one-dimensional modeling of the fluid flow and heat 

transfer within the loop is sufficient [2].  Because we are dealing with a circle and are 

using a one-dimensional modeling, it is convenient to use polar coordinate system to 

model the fluid behavior within the loop. 

Starting with the Navier-Stokes equations in polar coordinates [2], the Lorenz 

equations that govern the single-loop thermosyphon were derived.  Because in fluid 

mechanics θ is used to represent temperature, hereφ  is used to represent the polar angle. 

                                                          0
1

=
∂
∂
φ
u

l
 (1) 

                                          wfgT
P

lt

u
−−

∂
∂

−=







∂
∂

φρ
φ

ρ sin)(
1

0  (2) 

                                          [ ]TTh
T

l
u

t

T
c wwp −=









∂
∂

+
∂
∂

)(
1

0 φ
φ

ρ  (3) 

 

From [2], we have the following equation to describe the frictional force acting on the 

wall of the loop. 
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The first step in deriving the Lorenz equations is to nondimensionalize the variables of 

state and time as follows [2]: 
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A Fourier series is used for the cross-sectional average temperature of the loop. 
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The Galerkin method was used to simplify the Fourier series by only taking the first term 

in the infinite series (9). 

                                     )cos()()sin()(),( 110 φφφ tCtSTtT ++=  (10) 

  

A change of variables must be performed to take into account the new 

nondimensionalized variable of time as follows: 
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The temperature distribution imposed on the loop wall, Tw(φ ), is obtained from (9). 

Since the vertical temperature difference is always (TH-TC) regardless of the value of the 

polar angle, we can write Cn = (TH-TC) = ∆T.  The horizontal temperature difference is 

either (TH-TH) or (TC-TC); therefore, we can write Sn = 0.  Finally the Galerkin method is 

used to take only the first term in the infinite series. 
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Solving (6-8) for u, C1, and S1, the following nondimensional variables for velocity, 

vertical and horizontal temperature difference are obtained. 
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Starting with the left-hand-side of (3), the nondimensionalized variables (5-8) are 

substituted into the equation along with the equation for the cross-sectional average 

temperature of the loop (10).  The change of variables (11&12) must also be included to 

take into account the new nondimensional variables.   

The non-dimensional variable for u (14) is substituted into the left-hand-side of 

(3) and then the change of variables (11-12) is performed to obtain the following 

equation. 
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Substituting the formula for cross-sectional temperature from Fourier series and Galerkin 

method (10) leads to the following expression. 

 

( ) ( )







++

∂
∂

+++
∂
∂

φφ
φ

φφ cossincossin 110110 CSTxCST
t

hw  

 

Then substituting the non-dimensional values for Fourier coefficients (15-16) into the 

above equation yields the following expression. 
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Now, cancelling terms yields the following expression. 
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By performing differentiation, the following can be obtained.  
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By grouping sine and cosine terms, (17) is obtained. 
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Substituting formula for cross-sectional temperature from Fourier series and Galerkin 

method (10) into the right-hand-side of (3) allows us to obtain the following equation. 
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By substituting the formula for the temperature distribution imposed on the loop wall 

(13), we obtain the equation below. 
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Substituting the non-dimensional values for Fourier coefficients (15-16) leads to (18). 
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Since both sides of (3) were reduced to only sines and cosines, we can set the coefficients 

of cosφ  equal to each other and the coefficients of sinφ  equal to each other to obtain the 

Lorenz equations for horizontal and vertical temperature difference. 

Setting the cosφ  coefficients equal to each other yields the following equation.   
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Cancelling terms and solving for zɺ gives (19). 
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Setting the sinφ  coefficients equal to each other yields the following equation. 
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Cancelling terms and solving for yɺ gives (20). 
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Working with the momentum equation (2), substitute (4) to describe the frictional force 

acting on the wall of the loop and substitute non-dimensional variables into the equation.   
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We also need to use the Boussinesq approximation in describing the fluid density, ρ(T).  

The Boussinesq approximation assumes that all fluid properties are independent of 

temperature with the exception of fluid density, which varies linearly with temperature. 
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Now substitute the formula for cross-sectional averaged temperature (10) obtained from 

Fourier series and Galerkin method and perform change of variables to take into account 

new non-dimensional variables to get the following equation. 
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Then canceling terms and performing differentiation we arrive at (22). 
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Now substitute (15) and (16) for S1 and C1, respectively, and integrate (22) around loop 

to remove the φ dependence and obtain the velocity equation. 
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Performing the integration around the loop, leads to the following equation. 
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Since φ =2 π is the same point as φ=0, we have P(2π) = P(0).  Therefore P(2 π)-P(0)=0. 
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Performing other cancellations we obtain (23). 

 

                                                       )(
2

00
xy

h

fc
x

w

wp −=
ρ

ɺ  (23) 

 

Rewriting (19), (20), and (23), we now have the Lorenz equations governing the single-

loop thermosyphon. 

w

wp

h

fc
pxypx

2
,)(

00ρ=−=ɺ  

0

00
,

ww

p

flh

Tgc
RxzyRxy

∆
=−−=

αρ
ɺ  

1, =−= bbzxyzɺ  

    (24) 
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CHAPTER 3 

 

LOCAL STABILITY ANALYSIS 
 

Once we have the Lorenz equations, we need to perform a stability analysis of the 

equations to determine what is required to have a stable thermosyphon system. 

 

Working with Lorenz equations 

)( xypx −=ɺ       (24a) 

 xzyRxy −−=ɺ     (24b) 

                                                      zxyz −=ɺ              (24c) 

 

The first main step in performing the local stability analysis is to find ssx
�

, the three 

steady-state equilibria.  We define state vector that describes the system as  zyxx ,,=
�

 

and the steady-state state vector as ssssssss zyxx ,,=
�

. 

 

The steady state is the constant value that the function with have at time equal to infinity. 

0.lim =⇒==
∞→

x
dt

d
constxx ss

t

���
 

 

Applying the steady state condition to (24a-c) and then solving the three equations for the 

three unknowns yields (25-27). 

zss = R-1                          (25) 

 

1−±= Ryss              (26) 

 

1−±= Rxss         (27) 

 

From (29-31), we can see that there are three equilibria which we define below. 

 

0=ssx  1−= Rxss  1−−= Rxss  

0=ssy  1−= Ryss  1−−= Ryss  

0=ssz  1−=Rz ss  1−=Rz ss  
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The second main step in performing the local stability analysis is to examine the 

local stability of ssx
�

 , the three steady-state equilibria that were found.  In order to 

examine the local stability, we first introduce a small time dependent perturbation 

vector, )(txx
��
δδ = : xxx ss

���
δ+= , where zyxx δδδδ ,,=

�
. 

We now have zzyyxxx ssssss δδδ +++= ,,
�

                           (28) 

Using (24a) and (28), the following can be obtained. 

 

( ) ( )xxyypxx
dt

d
xypx ssssss δδδ −−+=+⇒−= )(ɺ  

 

 

From calculations, we know xss=yss, so we can cancel terms to obtain: 

 

 ypxpx δδδ +−=ɺ .                       (29) 

 

Using (24b) and (28), we obtain the following: 

 

( ) ))(( zzxxyyxRRxyy
dt

d
xzyRxy ssssssssss δδδδδ ++−−−+=+⇒−−=ɺ  

 

)( yxzxxzzxyyxRRxy ssssssssssss δδδδδδδ +++−−−+=ɺ . 

 

Since δx and δz are very small, δx δz is sufficiently small to be neglected. 

 

zxxzzxyyxRRxy ssssssssssss δδδδδ −−−−−+=ɺ  

 

( ) yxRzxxzzxyRxy ssssssssssss δδδδδ −+−−−−=ɺ  

 

From calculations, we know (Rxss-yss-xsszss=0), so we can cancel terms to obtain (30). 

 

( ) zxyxzRy ssss δδδδ −−−=ɺ                     (30) 

 

Using (24c) and (32), yields the following: 

 

( ) ( )( ) ( )zzyyxxzz
dt

d
zxyz ssssssss δδδδ +−++=+⇒−=ɺ  

 

( ) zyxyxxyzyxz ssssssssss δδδδδδ −+++−=ɺ . 
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From calculations, we know (xssyss-zss=0) and xss=yss, so we can obtain the following 

equation. 

zyxyxxxz ssss δδδδδδ −++=ɺ  

Since δx and δy are very small, δx δy is sufficiently small to be neglected. 

 

zyxxxz ssss δδδδ −+=ɺ                    (31) 

 

From (29-31) we can get xJx
�ɺ� δδ = , or in matrix form: 

 

































−

−−−

−

=

















z

y

x

xx

xzR

pp

z

y

x

ssss

ssss

δ
δ

δ

δ
δ

δ

1

1)(

0

ɺ

ɺ

ɺ

 

 

where the Jacobian matrix, 

















−

−−−

−

=

1

1)(

0

ssss

ssss

xx

xzR

pp

J .             (32) 

  

Since solutions to the differential equations will have the form 

 

n

ttt
vevevex nλλλ +++= ...21

21 , we need to have Re{λi}≤0 so that ∞≠x as ∞→t . 

 

We need to examine individual cases for each equilibrium point. 

 

 case(i):   0=== ssssss zyx  

 case(ii):  1  1-R −=== Rzyx ssssss  

 case(iii): 1  1-R- −=== Rzyx ssssss  

 

 

Using the standard convention, we set p=10 for the Prandtl number and using the steady 

state values for case(i), (32) can be rewritten as:   

















−

−

−

=

100

01

01010

RJ . 
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Then we find the eigenvalues of J. 

 

 

 

 

0))1((10)1)(1)(10( =−−−−−−−−− λλλλ R  

 

    0))1(1011)(1( 2 =−++−− Rλλλ                         (33) 

 

 

 

From (33), we can find the first eigenvalue: λ1= -1.  To find the other two eigenvalues, 

we need to use the quadratic formula and (33).  Using the quadratic formula to find the 

roots of λ
2
+11λ+10(1-R) = 0, we arrive at the following eigenvalues.    

 

2

408111
2

R++−
=λ                    

2

408111
3

R+−−
=λ  

 

λ3 will always have a negative value since the Rayleigh number, R, is always positive, so 

λ2 will be the limiting eigenvalue because it may be positive if R4081+ is sufficiently 

large.   

Now that we know the λ2 is the limiting eigenvalue, we need to solve for the 

conditions to make λ2 lie in the left-hand-side of the complex plane.  Once we know the 

conditions necessary to keep λ2 in the left-hand-side of the complex plane, we will have 

the conditions necessary to keep the system stable under case (i).   

 

112140811140810
2

408111
2 ≤⇒≤+⇒≤+⇒≤

++−
= RRR

R
λ           (34) 

 

 

 

 

0

100

01

01010

=

−−

−−

−−

=−

λ
λ

λ
λ RIJ
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From (34), we see that for case (i) the system is unstable when R>1. 

 

 

 xss = yss = zss = 0 system is unstable for R>1 (35) 

 

 

 

Using the standard convention, we set p=10 for the Prandtl number and the steady state 

values for case (ii), (32) can be rewritten as:   

 

















−−−

−−−

−

=

111

111

01010

RR

RJ . 

 

Then we find the eigenvalues of J. 

 

  0

111

111

01010

=

−−−−

−−−−

−−

=−

λ
λ

λ

λ
RR

RIJ                       (36) 

 

After taking the determinate, (36) yields the following characteristic polynomial: 

 

         0)2020()10(12 23 =−++++ RR λλλ .          (37) 

 

Using the standard convention, we again set p=10 for the Prandtl number then the steady 

state values for case (iii), (32) can be rewritten as:   

 

















−−−−−

−−

−

=

111

111

01010

RR

RJ . 

 

Then we find the eigenvalues of J. 

 

  0

111

111

01010

=

−−−−−−

−−−

−−

=−

λ
λ

λ

λ
RR

RIJ          (38) 
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After taking the determinate, (38) yields the same characteristic polynomial, (37), that we 

obtained from case (ii).  Since case (ii) and case (iii) have the same characteristic 

polynomial for finding the eigenvalues, solving (37) for values of Re{λ}≤0 will give us 

the conditions required to make the system stable for case (ii) and case (iii). 

Because (37) is a cubic polynomial that cannot be easily factored or solved 

directly, we used Routh-Hurwitz Testing [4] to determine what values of R will give 

values of Re{λ}≤0.  Routh-Hurwitz testing is a method that can be used to determine how 

many eigenvalues of a given system lie on the right-hand-side of the complex plane.   

For Routh-Hurwitz testing, we construct a table using the coefficients of the 

characteristic polynomial and then look for sign changes in the first column of the table.  

The number of sign changes in the first column will be equal to the number of 

eigenvalues that lie on the right-hand-side of the complex plane.  Since no sign changes 

in the first column will mean that all of the eigenvalues for the system lie either in the 

left-hand-side of the complex plane or on the imaginary axis, we can solve for values of 

R that will cause us to have no sign changes in the first column of our table in order to 

determine the conditions necessary to have the system be at least marginally stable. 

The Routh-Hurwitz table for (37) will have the following form: 

 

λ
3 

1 (10+R) 0 

λ
2 

12 (20R-20) 0 

λ
1 

a1 a2  

λ
0 

a3   

   

  

where  
12

)2020(12

)10(1

1

−

+
−

=
R

R

a  , 
12

0)2020(

0)10(

2

−

+
−

=
R

R

a , 
1

21

3

)2020(12

a

aa

R

a

−
−

= . 
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By taking the determinate and substituting the values for a1 and a2, we get the following 

values for a1, a2 and a3. 

3

)235(
1

R
a

−
=                02 =a               20203 −= Ra                       (39a-c) 

 

Substituting (39a-c), the Routh-Hurwitz table above can be rewritten as: 

 

λ
3 

1 (10+R) 0 

λ
2 

12 (20R-20) 0 

λ
1 

(35-2R)/3 0  

λ
0 

(20R-20)  . 

 

In order to have the system be at least marginally stable, we need to have no sign changes 

in the first column of the Routh-Hurwitz table.  This means that there are two conditions 

that need to be met to have a system that is a least marginally stable. 

 

    (35 - 2R)/3 ≥ 0                 and                 (20R – 20) ≥ 0 

 
Solving for R, the conditions for stability can be rewritten as 

 

(i)    R ≤ 35/2                             (ii)     R ≥ 1. 

 

Therefore, by combining (i) and (ii), we arrive at the following condition to have a 

thermosyphon system that is at least marginally stable. 

 

1 ≤ R ≤ 35/2 
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CHAPTER 4 

 

SIMULATION 
 

 After determining what values of the Rayleigh number are needed to have 

stability in the Thermosyphon system, we needed to simulate the system in order to 

verify the results from the stability analysis.  The single-loop thermosyphon system was 

simulated in MATLAB using the Fourth -Order Runge-Kutta method to solve the 

ordinary differential equation.  The Fourth -Order Runge-Kutta method is a numerical 

method for solving ordinary differential equations, and is given by the formulae below. 

( ) whereFFFFtxhtx ,22
6

1
)()( 4321 ++++=+  

 

                  (40) 

 

 

             [5] 

       

 

The numerical method that we used to solve the ordinary differential equations is called a 

fourth-order method because it reproduces the terms in Taylor’s series up to and 

including the h
4
 term.  Because the Fourth -Order Runge-Kutta method cannot take into 

account all of the terms in Taylor’s series, there is a truncation error inherent in this 

method of numerical integration.  Since the Fourth-Order Runge-Kutta method does not 

take into account the terms in Taylor’s series beyond the h
4
 term, the truncation error for 

the Fourth -Order Runge-Kutta method is of O(h
5
) [5]. 

 The first program that was created simulated the behavior of the single-loop 

thermosyphon system with no controller.  Once the MATLAB code for the single-loop 

thermosyphon was written, we were ready to simulate the behavior of the system to see if 

),(

),(

),(

),(

34

22
1

2
1

3

12
1

2
1

2

1

FxhthfF

FxhthfF

FxhthfF

xthfF

++=

++=

++=

=
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the stability analysis was correct.  To achieve this, we created a set of three bifurcation 

plots.  We had a bifurcation plot for the velocity of the fluid within the loop, x, the 

horizontal temperature difference, y, and the vertical temperature difference, z.  The plots 

showed the behavior of the system over different values of the Rayleigh number, R.  An 

example of the bifurcation plots can be seen in Figure 4.1.  

 

 

 

 

 

Since the Rayleigh number refers to the heat index imposed at the bottom of the loop, we 

can see that the system is stable if the heat that is applied to the bottom of the loop is 

Figure 4.1.  Bifurcation Plots for x, y, z vs. R 
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below a given value.  More specifically, the bifurcation plot shows that the thermosyphon 

system is stable for values of R<15.  This simulation verifies that the fluid flow within 

the thermosyphon becomes chaotic for values of R that are greater than a certain value.  

However, the simulation differs slightly from what we found analytically.  The 

simulation shows that the system is chaotic for R≥15, but analytically we found that the 

system would be stable for R≤35/2=17.5.  The slight difference between what we found 

analytically and what the simulation shows can be explained by the strong dependence of 

the Lorenz equations on the initial conditions, the inherent error present in the numerical 

methods used in the simulation and by the limited precision of MATLAB.  The complete 

MATLAB code for the all of the simulations can be seen in the Appendix.   

From the bifurcation plot, we can see the behavior of the thermosyphon system 

for many different values of the Rayleigh number.  However, to attain a more thorough 

understanding of the thermosyphon system, we need to observe the behavior of the 

system as it changes over time.  In order to achieve this, we created a set of plots that 

shows how the velocity, horizontal temperature difference, and vertical temperature 

difference change over time for a specific value of the Rayleigh number.  In Figures 4.2-

4.5, we can see the behavior of the system for R=10.   
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Figure 4.2  Plot for System Behavior  x vs. time  with R=10 

Figure 4.3  Phase Plot for System Behavior  x vs. y  with R=10 
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Figure 4.4  Plot for System Behavior  y vs. time  with R=10 

Figure 4.5  Plot for System Behavior  z vs. time  with R=10 
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The plots in Figures 4.2-4.5 were obtained by giving the system some arbitrary 

initial conditions and setting R = 10.  The value of R that was used is well within the 

required range for the system to be stable, and we can easily see from Figures 4.2-4.5 that 

initially the system has an oscillatory behavior that quickly decays to one of the steady-

state equilibria.  In this particular case the steady-state equilibrium 

was 1  1-R −=== Rzyx ssssss . 

 

 

 
Figure 4.6  Plot for System Behavior x vs. time with R=30 
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Figure 4.7 Phase Plot for System Behavior x vs. y with R=30 

Figure 4.8  Plot for System Behavior y vs. time with R=30 
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 In Figures 4.6-4.9, we can see the behavior of the system for R=30.  Again the 

system was given arbitrary initial conditions, but this time the value of R was set equal to 

30.  The value of R that was used for the Figures 4.6-4.9 plots was well above the region 

that would make the system behave in a chaotic manner, and as we can see from Figures 

4.6-4.9, the system begins with an oscillatory behavior and then quickly becomes more 

chaotic.   

 

Figure 4.9  Plot for System Behavior z vs. time with R=30 
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CHAPTER 5 

QUOTIENT CONTROLLER 

The controller that is used to return stability to the thermosyphon system once the 

fluid flow in the thermosyphon becomes chaotic is a quotient controller with the form 

seen in (41). 

                                            







−=

z

y
ku

2

                      (41) 

 

In the equation for the quotient controller, y describes the horizontal temperature 

difference in the thermosyphon loop, z describes the vertical temperature difference and k 

is the gain of the quotient controller.  The vertical temperature difference in the loop is 

always a positive value related to (Th-Tc), where Th is the temperature in the lower half of 

the loop and Tc is the temperature in the upper half of the loop.  Since Th will always be a 

higher temperature than Tc, the quantity (Th-Tc) is always positive.  The vertical 

temperature difference is usually a positive number with the exception mentioned above 

where Th=Tc.  In this case, we will have z=0 which is the trivial steady-state solution for 

the thermosyphon system and does not require a controller to return stability to the 

system. 

 For the quotient controller to return stability to the system, it is added to the value 

of R, in the Lorenz Equations that govern fluid flow within the thermosyphon.  R is the 

Rayleigh number which refers to the heat index imposed at the bottom of the 

thermosyphon loop, so adding the quotient controller to R is like a small perturbation to 

the amount of heat in the system.  Because the controller has the form seen in (41), where 

y and z are representative of temperature differences of the loop and k is the gain of the 
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controller, which only depends on R or the heat index of the system, y, z, and k can all be 

easily determined from measurements of the thermosyphon system.  Therefore, the value 

of the quotient controller can be easily and completely determined from temperatures 

measurements taken from the system.  After adding the quotient controller, the Lorenz 

equations can now be rewritten as follows: 

                                             )( xypx −=ɺ            (42a) 

                                             xzyxuRy −−+= )(ɺ    (42b) 

   zxyz −=ɺ .                                   (42c) 

 

 Now that we have the quotient controller included in the Lorenz equations that 

govern the fluid flow inside the thermosyphon loop, we need to perform local stability 

analysis on these new Lorenz equations (42) the same way that the stability analysis was 

performed on the Lorenz equations that did not contain the quotient controller.  The first 

step in performing the local stability analysis is to find ssssssss zyxx ,,=
�

, the three 

steady-state equilibria.  The steady state is the constant value that the function with have 

at time equal to infinity. 

0.lim =⇒==
∞→

x
dt

d
constxx ss

t

���
 

Applying the steady state conditions to (42a-c), and then solving the three equations for 

the three unknowns we get (43-45). 

 

          (43) 

 

1−−±= kRyss                (44) 

 

1−−±= kRxss          (45) 

 

 

 

1−−= kRzss
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From (43-45), we can see that there are three equilibria which we define below. 

 

0=ssx  1−−= kRxss  1−−−= kRxss  

0=ssy  1−−= kRyss  1−−−= kRyss  

0=ssz  1−−= kRzss  1−−= kRzss  
 

 

The second main step in performing the local stability analysis is to examine the 

local stability of ssx
�

 , the three steady-state equilibria that were found. Once the quotient 

controller is added, the system becomes too complicated to use the perturbation approach 

that was used previously to determine the local stability of ssx
�

.  Therefore to determine 

the local stability of the system with the quotient controller, we used the Jacobian 

approach where the Jacobian is given by (46). 

 

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

z

z

y

z

x

z

z

y

y

y

x

y

z

x

y

x

x

x

zyxJ

ɺɺɺ

ɺɺɺ

ɺɺɺ

),,(         (46) 

 

Using (42) and (46) and simplifying, we rewrite the Jacobian matrix as: 

 



















−

−+−

−

=

1

)12(1

0

ssss

ss

ss

xx

x
x

k
k

pp

J .   (47) 

 

Since solutions to the differential equations will have the form 

 

n

ttt
vevevex nλλλ +++= ...21

21 , we need to have Re{λi}<0 so that ∞≠x as ∞→t . 
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We need to examine individual cases for each equilibrium point. 

 

 case(i):   0=== ssssss zyx  

 case(ii):  1 , 1-k-R −−=== kRzyx ssssss  

 case(iii): 1  1,-k-R- −−=== kRzyx ssssss  

 

 

Using the standard convention we set p=10 for the Prandtl number.  Then rewriting (47) 

we find the characteristic polynomial as follows: 

 

0

1

)12(1

01010

=

−−








 −−−−

−−

=−

λ

λ

λ

λ

xx

x
x

k
kIJ  

 

020)2111()212( 2223 =++++++ ssss xxkk λλλ .  (48) 

 

Since case (ii) and case (iii) have the same values for x
2
ss, we can examine the 

local stability of these two equilibria at the same time.  Substituting the value for x
2
ss 

from case (ii) and case (iii) into (48), the characteristic polynomial becomes: 

0)1(20)2010()212( 23 =−−++++++ kRRkk λλλ .  (49) 

 

From the characteristic polynomial, we need to determine what values for the gain of the 

quotient controller, k, will give eigenvalues in the left-hand-side of the complex plane, so 

the system will be stable.  The restrictions on the gain of the quotient controller are found 

by using Routh-Hurwitz Testing. 

For Routh-Hurwitz testing, we construct a table using the coefficients of the 

characteristic polynomial and then look for sign changes in the first column of the table.  

The number of sign changes in the first column will be equal to the number of 

eigenvalues that lie on the right-hand-side of the complex plane.  Since no sign changes 

in the first column will mean that all of the eigenvalues for the system lie either in the 
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left-hand-side of the complex plane or on the imaginary axis, we can solve for values of k 

that will cause us to have no sign changes in the first column of our table in order to 

determine the conditions necessary to have the system be at least marginally stable. 

The Routh-Hurwitz table for (49) will have the following form: 

 

λ
3 

1 (10+20k+R) 0 

λ
2 

(12+2k) (20R-20k-20) 0 

λ
1 

a1 a2  

λ
0 

a3   

 

 

where  
)212(

)202020()212(

)2010(1

1
k

kRk

Rk

a
+

−−+

++
−

=  , 
)212(

0)202020(

0)2010(

2
k

KR

Rk

a
+

−−

++
−

= ,  

 

1

21

3

)202020()212(

a

aa

kRk

a

−−+
−

= . 

 

By taking the determinate and substituting the values for a1 and a2, we get the following 

values for a1, a2 and a3. 

 

)212(

)8140()2280(40 2

1
k

RkRk
a

+
−+++

=          02 =a         )1(203 −−= kRa             (50a-c) 

 

Substituting (50a-c), the Routh-Hurwitz table above can be rewritten as: 

 

λ
3 

1 (10+20k+R) 0 

λ
2 

(12+2k) 20(R-k-1) 0 

λ
1 

[40k
2
+(280+2R)k+(140-8R)]/(12+2k) 0  

λ
0 

20(R-k-1)  . 

 

In order to have the system be marginally stable, we need to have no sign changes in the 

first column of the Routh-Hurwitz table.  This means that there are three conditions that 

need to be met to have a system that is a least marginally stable. 
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0)212( ≥+ k ,        0
)212(

)8140()2280(40 2

≥
+

−+++
k

RkRk
 ,     0)1(20 ≥−− kR  

 

Since the gain for the quotient controller is always a non-negative number, the first 

condition will be satisfied by any value of k.  This leaves us with two constraints that will 

be used to determine what values we need for the gain of the quotient controller to return 

stability to our system. 

 

Solving for k, the conditions for stability can be rewritten as follows: 

 

(i) 
80

56000240042280 2 +++−−
≥

RRR
k         (ii)     1−≤ Rk . 

 

 

Therefore, by combining (i) and (ii), we can arrive at the following condition required to 

have a thermosyphon system with the quotient controller that is at least marginally stable. 

 

1
80

56000240042280 2

−≤≤
+++−−

Rk
RRR
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Figure 5.1  Plot of x vs. time with Quotient Controller and R=30 

Figure 5.2  Plot of x vs. y with Quotient Controller and R=30 
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Figure 5.3  Plot of y vs. time with Quotient Controller and R=30 

Figure 5.4  Plot of z vs. time with Quotient Controller and R=30 
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 After determining the values for the gain of the quotient controller needed to keep 

the thermosyphon stable, it was necessary to verify the results with a simulation in 

MATLAB.  Figures 4.6-4.9 show that with no controller the thermosyphon system 

becomes chaotic when R=30.  To demonstrate that the quotient controller can return 

stability to a chaotic system, the simulation was run with R=30 and no controller and then 

after a set number of iterations the controller was added to the system.  From Figures 5.1-

5.4, it is easy to see that the system is becoming more chaotic until the controller is 

activated (approximately at t=10s) and the oscillatory behavior begins to decay until the 

system reaches one of the steady-state equilibria.  In this particular case, the steady-state 

equilibrium was 1  1-k-R −−=== kRzyx ssssss . 
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CHAPTER 6 

 

TRACKING 

 

 The tracking integrator is added to the thermosyphon system to allow us to 

“track” to a specific state for the system.  If a quotient controller with tracking is used to 

control the single-loop thermosyphon system, stability would be able to be returned to the 

chaotic system and we would have the added advantage of being able to track to a 

specific state.  For example, we could have a stable system and then tune the controller so 

that the velocity of the fluid within the thermosyphon loop is within a specific range.  

Once the tracking is added to the system, the stable system that was achieved using the 

quotient controller is destabilized and a proportional controller has to be added to the 

system in order to return stability.  The tracking integrator, tr, has the form seen in (51),  

                            dwt r −=  (51) 

where d is the gain of the integrator and w can be found from (52). 

                                                              ryyw −=ɺ  (52) 

The value yr in (52) is the value that is being tracked to, and y is the state variable that 

corresponds to the horizontal temperature difference of the system. 

The proportional controller, pc, is defined by (53). 

                                                            )( rc yylp −−=  (53) 

In the equation for the proportional controller, l is the gain for the controller, yr is the 

value that is being tracked to, and y is the state variable that corresponds to the horizontal 

temperature difference of the system.  For the tracking integrator to track to a specific 

value and still maintain the stability of the system, the tracking integrator along with the 

quotient and proportional controllers are added to the value of R in the Lorenz Equations 
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that govern fluid flow within the thermosyphon.  R is the Rayleigh number which refers 

to the heat index imposed at the bottom of the thermosyphon loop, so adding the tracking 

integrator and the quotient and proportional controllers to R is like a small perturbation to 

the amount of heat in the system.  After adding the tracking integrator and the 

proportional controller to R, the Lorenz system of equations that govern the fluid flow 

within the single-loop thermosyphon can be rewritten as follows: 

                                             )( xypx −=ɺ            (54a) 

                                             xzyxyyldw
z

y
kRy r −−








−−−−= )(

2

ɺ              (54b) 

   zxyz −=ɺ                                   (54c) 

         ryyw −=ɺ .                                  (54d) 

Now that we have the tracking included in the Lorenz equations that govern the 

fluid flow inside the thermosyphon loop, we need to perform local stability analysis on 

this new system of equations (54) the same way that the stability analysis was performed 

on the Lorenz equations that did not contain the tracking.  The first step in performing the 

local stability analysis is to find ssssssssss wzyxx ,,,=
�

, the steady-state equilibrium.  The 

steady state is the constant value that the function with have at time equal to infinity. 

0.lim =⇒==
∞→

x
dt

d
constxx ss

t

���
 

 

Applying the steady state condition to (54a-d), and then solving the four equations for the 

four unknowns, we get (56-59).                            

                     rss yy =   (56) 

  

                                                          
d

ykR
w r
ss

21−−−
=  (57) 
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                                                          rss yx =  (58) 

 

                                                           2

rss yz =  (59) 

 

Grouping (56-59) we see that we have only one equilibrium. 

 

rss yx =  

rss yy =  
2

rss yz =  

d
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w r
ss

21−−−
=  

 

 

The second main step in performing the local stability analysis is to examine the 

local stability of ssx
�

 , the steady-state equilibrium that was found. Once the quotient 

controller and tracking are added, the system becomes too complicated to use the 

perturbation approach to determine the local stability of ssx
�

, so to determine the local 

stability of the system with the quotient controller and tracking, we used the Jacobian 

approach where the Jacobian is given by (60). 
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Using the standard convention we set p=10 for the Prandtl number.  Then rewriting (61) 

we find the characteristic polynomial as follows: 
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From the characteristic polynomial (62), we need to determine what values for the gain of 

the integrator, d, and the gain of the proportional controller, l, will give eigenvalues in the 

left-hand-side of the complex plane, so the system will be stable.  The restrictions on the 

gain of the quotient controller are found by using Routh-Hurwitz Testing. 

For Routh-Hurwitz testing, we construct a table using the coefficients of the 

characteristic polynomial and then look for sign changes in the first column of the table.  

The number of sign changes in the first column will be equal to the number of 

eigenvalues that lie on the right-hand-side of the complex plane.  Since no sign changes 

in the first column will mean that all of the eigenvalues for the system lie either in the 

left-hand-side of the complex plane or on the imaginary axis, we can solve for values of k 

that will cause us to have no sign changes in the first column of our table in order to 

determine the conditions necessary to have the system be at least marginally stable. 

The Routh-Hurwitz table for (62) will have the following form: 
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where  
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By taking the determinate and substituting the values for a1 and a2, we get the following 

values for a1, a2, a3, a4, a5 and a6. 
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In order to have the system be marginally stable, we need to have no sign changes 

in the first column of the Routh-Hurwitz table.  This means that there are four conditions 

that need to be met to have a system that is a least marginally stable. 

(i)  (2k+lyr+12) ≥ 0       (ii) a1 ≥ 0        (iii) a4 ≥ 0        (iv) a6 ≥ 0 
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Since all of the conditions for local stability (i-iv) have at least two values for the gain, it 

can easily be shown that there are an infinite number of combinations for the gain of the 

quotient controller, tracking integrator and proportional controller that will lead to a 

system that is at least marginally stable. 

After examining the local stability of the Lorenz system with the quotient 

controller, tracking integrator, and the proportional controller, it was necessary to verify 

the results with a simulation in MATLAB.  Figures 4.6-4.9 show that with no controller 

the thermosyphon system becomes chaotic when R=30.  To demonstrate that the quotient 

controller with tracking can return stability to a chaotic system and track to a specific 

value, the simulation was run with R=45 and no controller.  After a set number of 

iterations, the controller was added to the system.  Once stability was returned to the 

system, some time was allowed to pass, and the tracking was turned on.   From Figures 

6.1-6.3, it is easy to see that the system is becoming more chaotic until the controller is 

activated (approximately at t=40s) and the oscillatory behavior begins to decay until the 

system reaches the steady-state equilibrium.  Then the tracking integrator is turned on 

(approximately at t=60s).  It is easy to see from Figures 6.1-6.3 that the system is initially 

perturbed, but then quickly goes to the value that is being tracked to.  In this particular 

case the value that is being tracked to is yr=13.54. 
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Figure 6.1  Plot of x vs. time with Quotient Controller and Tracking at R=45 

Figure 6.2  Plot of y vs. time with Quotient Controller and Tracking at R=45 
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Figure 6.3  Plot of z vs. time with Quotient Controller and Tracking at R=45 

Figure 6.4  Plot of Quotient Controller vs. time with Controller and Tracking at R=45 
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 To gain a better understanding of the behavior of the system, it is useful to 

examine how the quotient controller changes over time.  In Figure 6.4, it is easy to see 

that initially the value of the quotient controller is zero because the controller is not 

activated until t = 40s.  At t = 40s, we can see that the quotient controller immediately 

turns on and starts to oscillate until stability is achieved.  Once stability is achieved, the 

value of the quotient controller remains constant until the tracking integrator is turned on 

(approximately at t = 60s) and the system is destabilized.  After the system is destabilized 

by adding the tracking integrator, it quickly goes to the value that is being tracked to.  It 

is difficult to see the more detailed behavior of the quotient controller in Figure 6.4, so a 

more detailed plot showing the small changes in the quotient controller from t = 40s to t = 

60s is shown in Figure 6.5. 

Figure 6.5  Detail of Quotient Controller vs. time with Controller and Tracking at R=45 
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CHAPTER 7 

 

CONCLUSION 
 

Summary 

The single-loop thermosyphon can be used almost anywhere there is a system that 

needs to have some heat removed.  A specific example of this is in the core of nuclear 

reactors.  The single-loop thermosyphon is a very efficient method of removing heat 

because it has no internal moving parts and solely depends on the convective flow of the 

fluid within the loop to remove heat.  We have shown both analytically and through 

numerical simulation in MATLAB that for values of R within a specific range the single-

loop thermosyphon system is stable and there is a steady convective fluid flow within the 

thermosyphon loop.  Thus we have an effective means of cooling.   

The problem arose when the value of R for the system was beyond the range that 

would normally lead to steady, convective flow.  In this case, the thermosyphon system 

without a controller will behave in a chaotic manner.  By introducing the quotient 

controller, we are able to maintain a stable, convective flow well within the normally 

chaotic range of R values.  The quotient controller has two very important benefits over 

other controllers.  The first beneficial feature is that the quotient controller is inexpensive 

to implement.  For values of R that are well within the chaotic range, the value for the 

gain of the quotient controller remains small.  For example, when R=30 the value for the 

gain of the quotient controller is less than 1 (k<1).  Another benefit of the structure of the 

quotient controller is that the values of the variables that are used to describe the quotient 

controller are easily obtained from the real world system.  The only variables that are 

used to construct the quotient controller, other than the gain, k, are the horizontal and 
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vertical temperature difference of the loop.  Since the only variables used to define the 

quotient controller are temperatures that can be easily obtained from measuring the 

system, the quotient controller can be easily implemented. 

After showing that stability can be returned to the chaotic system with a relatively 

large value of R, we examined the interesting and useful feature of adding a tracking 

integrator to the system.  The tracking integrator is used to allow the system the “track” 

to a specific temperature of velocity of the fluid within the single-loop thermosyphon.  

We have shown through simulation that with the tracking integrator added to the system 

we can maintain the stability of the system and track to a specific value for values of R 

that would normally lead to a chaotic fluid flow.  Having a stable system means that there 

is a stable, convective flow within the loop, and we have an effective means of cooling.  

Future Work  

Possible future work could include applying the quotient controller and tracking 

integrator examined in this thesis to a multiple-loop system.  The research performed here 

only examined the stability of a single-loop thermosyphon.  In order to consider a 

multiple-loop thermosyphon system, we would need to include coupling terms to take 

into account the behavior of the fluid flow and heat flow at the connection between the 

individual loops. 

Other future work could include examining the non-existence of periodic orbits.  

Through the simulation done, we have not observed any periodic orbits.  However, we 

have not shown analytically that we will never observe periodic orbits for the single-loop 

thermosyphon with a quotient controller and tracking.  More work could be done in 

trying to prove the non-existence of periodic orbits. 
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APPENDIX A 

NOMENCLATURE 

 

b Biot number 

l     radius of single-loop thermosyphon 

u(t)    cross-sectional average velocity of fluid within the loop 

φ    polar angle  

ρ0   density of fluid at temperature T0 

p Prandtl number 

P    pressure within the loop 

g    acceleration due to gravity 

ρ(T)    density of the fluid 

fw   frictional force acting on wall of loop 

cp   specific heat at constant pressure 

T(φ ,t)  cross-sectional average temperature 

hw    heat transfer coefficient at wall of loop 

Tw(φ )  temperature distribution imposed on loop wall 

fw0    coefficient of friction at loop wall 

∆T    temperature difference (TH-TC) 

TH    constant wall temperature in lower half of loop 

TC    constant wall temperature in upper half of loop 

Cn    Fourier coefficient for vertical temperature difference 

Sn    Fourier coefficient for horizontal temperature difference 

α0    coefficient of thermal expansion 

R Rayleigh number, referring to the heat index imposed at the bottom of the loop 

T0    reference temperature  

x      represents velocity of fluid within loop 

y      represents horizontal temperature difference 

z      represents vertical temperature difference 
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APPENDIX B 

MATLAB CODE FOR SIMULATIONS 

Code for simulation of single-loop thermosyphon 

 
%Thermosyphon Simulation Main Program 
%Name: Jonathan S. Tanner 
% 
%Date: July 18, 2006 
%------------------------------------------------------------- 
%This program calls several sub-routines that perform a simulation 
%   of the behavior of a single-loop thermosyphon. 
%Variables: 
%   R -- Rayleigh number 
%   p -- Prandtl number 
%   x -- velocity of fluid inside loop 
%   y -- horizontal temperature difference 
%   z -- vertical temperature difference 
%   s -- state vector s=[x,y,z] 
%   t -- time vector 
%Functions called: 
%   rk() -- performs numerical integration using 4th-order R-K method 
 
clear all 
close all 
format short e 
 
%define the values for Prandtl and Rayleigh numbers 
p = 10; 
R = 10; 
 
%define Steady-State solutions for Lorenz eqns for Thermosyphon 
%ss=[0,0,0]; %trivial solution 
ss=[sqrt(R-1),sqrt(R-1),R-1]; 
%ss=[-sqrt(R-1),-sqrt(R-1),R-1]; 
 
%define initial conditions 
ic = [ss(1)+0.01, ss(2)+0.01, ss(3)+0.01]; 
%ic = [0.1, 0.1, 1]; 
 
%define current state vector s = [x,y,z] 
s = ic; 
 
%input values for numerical integration interations 
%maxi = input('Enter maximum number of iterations:'); 
maxi = 5000; 
%h = input('Enter value of step size for R-K method:'); 
h = 0.01; 
 
%call function to perform 4th-order Runge-Kutta method 
s = rk(maxi, h, p, R, s); 
 
%define time vector 
t = [0:h:(maxi-1)*h]'; 
 
%plot velocity vs. time 
subplot(2,2,1) 
plot(t,s(:,1)) 
title('Velcoity vs. Time') 
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xlabel('time') 
ylabel('velocity') 
 
%phase plot (velocity vs. horizontal temp difference) 
subplot(2,2,2) 
plot(s(:,1),s(:,2)) 
title('Phase plot') 
xlabel('velocity') 
ylabel('Horizontal temp. difference') 
 
%plot horizontal temp. difference 
subplot(2,2,3) 
plot(t,s(:,2)) 
title('Horizontal temp. difference vs. Time') 
xlabel('time') 
ylabel('Horizontal temp. difference') 
 
%plot vertical temp. difference 
subplot(2,2,4) 
plot(t,s(:,3)) 
title('Vertical temp. difference vs. Time') 
xlabel('time') 
ylabel('Vertical temp. difference') 

 

 

Code for simulation of single-loop thermosyphon that creates bifurcation plots 
 
%Thermosyphon Bifurcation Plot Main Program 
%Name: Jonathan S. Tanner 
% 
%Date: July 20, 2006 
%------------------------------------------------------------- 
%This program calls several sub-routines that perform a simulation 
%   of the behavior of a single-loop thermosyphon and create a  
%   bifurcation plot using the simulation data. 
%Variables: 
%   R -- Rayleigh number 
%   p -- Prandtl number 
%   x -- velocity of fluid inside loop 
%   y -- horizontal temperature difference 
%   z -- vertical temperature difference 
%   s -- state vector s=[x,y,z] 
%   t -- time vector 
%   maxi -- max number of iteration 
%   h -- step size for iterations 
%Functions called: 
%   rk() -- performs numerical integration using 4th-order R-K method 
 
clear all 
close all 
format short e 
 
%define the values for Prandtl and Rayleigh numbers 
p = 10; 
R = [2:0.5:17]; 
 
N = length(R); 
 
%define Steady-State solutions for Lorenz eqns for Thermosyphon 
%ss=[0,0,0]; %trivial solution 
ss=[sqrt(R-1),sqrt(R-1),R-1]; 
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%ss=[-sqrt(R-1),-sqrt(R-1),R-1]; 
 
%define initial conditions 
ic = [ss(1)+0.01, ss(2)+0.01, ss(3)+0.01]; 
 
for k=1:N 
    R0 = R(k); 
     
    %define current state vector s = [x,y,x] 
    s = ic; 
     
    %perform interation (numerical integration)using Runge-Kutta  
    %   4th-order method & return state vector 
    maxi = 2000; h=0.01; 
    s = rk(maxi, h, p, R0, s); 
     
    %remove transient part (take only last value of state vector) 
    s = s(maxi, :); 
     
    %perform interations using new state vector as initial condition 
    maxi = 3000; h=0.01; 
    s = rk(maxi, h, p, R0, s); 
     
     
    %find and plot peak values for x 
    subplot(3,1,1) 
    %hold on so that subsequent graphing commands add to the existing graph 
    hold on 
    for i=1:maxi-2 
        if(s(i,1)<s(i+1,1) & s(i+1,1)>s(i+2,1)) 
            %peak 
            plot(R0,s(i+1,1)) 
        %elseif(s(i,1)>s(i+1,1) & s(i+1,1)<s(i+2,1)) 
            %trough 
            %plot(R0,s(i+1,1)) 
        end 
        pause(0.01) 
    end 
     
    %find and plot peak values for y 
    subplot(3,1,2) 
    hold on 
    for i=1:maxi-2 
        if(s(i,2)<s(i+1,2) & s(i+1,2)>s(i+2,2)) 
            %peak 
            plot(R0,s(i+1,2)) 
        %elseif(s(i,2)>s(i+1,2) & s(i+1,2)<s(i+2,2)) 
            %trough 
            %plot(R0,s(i+1,2)) 
        end 
        pause(0.01) 
    end 
     
    %find and plot peak values for z 
    subplot(3,1,3) 
    hold on 
    for i=1:maxi-2 
        if(s(i,3)<s(i+1,3) & s(i+1,3)>s(i+2,3)) 
            %peak          
            plot(R0,s(i+1,3)) 
        %elseif(s(i,3)>s(i+1,3) & s(i+1,3)<s(i+2,3)) 
            %trough 
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            %plot(R0,s(i+1,3)) 
        end 
        pause(0.01) 
    end 
     
end 
 
subplot(3,1,1) 
title('Bifurcation Plot (x vs. R)') 
xlabel('R') 
ylabel('x') 
 
subplot(3,1,2) 
title('Bifurcation Plot (y vs. R)') 
xlabel('R') 
ylabel('y') 
 
subplot(3,1,3) 
title('Bifurcation Plot (z vs. R)') 
xlabel('R') 
ylabel('z') 
 
%hold off so that PLOT commands erase the previous plots 
hold off 
 

 

M-files for simulation of single-loop thermosyphon without quotient controller 
 
%M-file: rk.m 
% 
%This function performs performs numerical integration  
%   using 4th-order Runge-Kutta method. 
% 
%  rk(maxi, h, p, R, s) 
% 
%Variables: 
%   maxi-- number of interations 
%   h   -- step size 
%   p   -- Prandtl number 
%   R   -- Rayleigh number 
%   s   -- state vector s = [x,y,z] 
%Functions called: 
%   lorenz()  -- calls lorenz equation that govern thermosyphon 
 
function new_s = rk(maxi, h, p, R, s) 
 
for k=1:maxi 
     
    F1 = lorenz(s, p, R); 
    F2 = lorenz(s+h/2*F1,p,R); 
    F3 = lorenz(s+h/2*F2,p,R); 
    F4 = lorenz(s+h*F3,p,R); 
     
    s = s+h/6*(F1+2*F2+2*F3+F4); 
     
    new_s(k,1:3) = s; 
end 

 

-------------------------------------------------------------------------------- 
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%M-file: lorenz.m 
% 
%This file defines function that defines Lorenz equations 
%   that govern the thermosyphon. 
% 
%   lorenz(s,p,R) 
% 
%Variables 
%   s -- state vector s = [x,y,z] 
%   p -- Prandtl number 
%   R -- Rayleigh number 
 
function sdot = lorenz(s,p,R) 
 
%define x, y, z 
x=s(1); y=s(2); z=s(3); 
 
%equation for velocity 
xp = p*(y-x); 
 
%equation for hoizontal temp. difference 
yp = R*x-y-x*z; 
 
%equation for vertical temp. difference 
zp = x*y-z; 
 
sdot = [xp,yp,zp]; 

 

Code for simulation of single-loop thermosyphon with quotient controller  
 

 
%Thermosyphon Controller Simulation Main Program 
%Name: Jonathan S. Tanner 
% 
%Date: September 7, 2006 
%------------------------------------------------------------- 
%This program calls several sub-routines that perform a simulation 
%   of the behavior of a single-loop thermosyphon with quotient controller. 
%Variables: 
%   R -- Rayleigh number 
%   p -- Prandtl number 
%   x -- velocity of fluid inside loop 
%   y -- horizontal temperature difference 
%   z -- vertical temperature difference 
%   s -- state vector s=[x,y,z] 
%   t -- time vector 
%   k -- value for gain of quotient controller 
%Functions called: 
%   rk_cont() -- performs numerical integration using 4th-order R-K method 
 
clear all 
close all 
format short e 
 
%define the values for Prandtl and Rayleigh numbers 
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p = 10; 
R = 40; 
%define value for gain of quotient controller 
%  need to add a small value to k to account for approximation error 
%  and machine accuracy 
k =((-280-2*R+sqrt(4*R^2+2400*R+56000))/80)+0.1; 
 
%define Steady-State solutions for Lorenz eqns for Thermosyphon 
%ss=[0,0,0]; %trivial solution 
ss=[sqrt(R-1),sqrt(R-1),R-1]; 
%ss=[-sqrt(R-1),-sqrt(R-1),R-1]; 
 
%define initial conditions 
ic = [ss(1)+0.01, ss(2)+0.01, ss(3)+0.01]; 
%ic = [0.1, 0.1, 1]; 
 
%define current state vector s = [x,y,z] 
s = ic; 
 
%input values for numerical integration interations 
%maxi = input('Enter maximum number of iterations:'); 
maxi = 5000; 
%h = input('Enter value of step size for R-K method:'); 
h = 0.01; 
 
%call function to perform 4th-order Runge-Kutta method 
s = rk_cont(maxi, h, p, R, s, k); 
 
%define time vector 
t = [0:h:(maxi-1)*h]'; 
 
%plot velocity vs. time 
subplot(2,2,1) 
plot(t,s(:,1)) 
title('Velcoity vs. Time') 
xlabel('time') 
ylabel('velocity') 
 
%phase plot (velocity vs. horizontal temp difference) 
subplot(2,2,2) 
plot(s(:,1),s(:,2)) 
title('Phase plot') 
xlabel('velocity') 
ylabel('Horizontal temp. difference') 
 
%plot horizontal temp. difference 
subplot(2,2,3) 
plot(t,s(:,2)) 
title('Horizontal temp. difference vs. Time') 
xlabel('time') 
ylabel('Horizontal temp. difference') 
 
%plot vertical temp. difference 
subplot(2,2,4) 
plot(t,s(:,3)) 
title('Vertical temp. difference vs. Time') 
xlabel('time') 
ylabel('Vertical temp. difference') 
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M-files for simulation of single-loop thermosyphon with quotient controller 
 
%M-file: rk_cont.m 
% 
%This function performs numerical integration  
%   using 4th-order Runge-Kutta method. 
% 
%  rk_cont(maxi, h, p, R, s, k) 
% 
%Variables: 
%   maxi-- number of interations 
%   h   -- step size 
%   p   -- Prandtl number 
%   R   -- Rayleigh number 
%   s   -- state vector s = [x,y,z] 
%   k   -- gain factor for quotient controller 
%Functions called: 
%   lorenz_cont()  -- calls lorenz equations that govern thermosyphon 
 
function new_s = rk_cont(maxi, h, p, R, s, k) 
 
for n=1:maxi 
     
%turn on the controller after a set number of iterations 
if n>(maxi/5) 
    gain = k; 
else 
    gain = 0; 
end 
     
    F1 = lorenz_cont(s, p, R, gain); 
    F2 = lorenz_cont(s+h/2*F1,p,R, gain); 
    F3 = lorenz_cont(s+h/2*F2,p,R,gain); 
    F4 = lorenz_cont(s+h*F3,p,R,gain); 
     
    s = s+h/6*(F1+2*F2+2*F3+F4); 
     
    new_s(n,1:3) = s; 
end 

 

------------------------------------------------------------------------- 

 
%M-file: lorenz_cont.m 
% 
%This file defines function that defines Lorenz equations 
%   that govern the thermosyphon. 
% 
%   lorenz_cont(s,p,R, k) 
% 
%Variables 
%   s -- state vector s = [x,y,z] 
%   p -- Prandtl number 
%   R -- Rayleigh number 
%   k -- gain factor for quotient controller 
%   u -- quotient contoller 
 
function sdot = lorenz_cont(s,p,R,k) 
 
%define x, y,z 
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x=s(1); y=s(2); z=s(3); 
 
%equation for velocity 
xp = p*(y-x); 
 
%equation for quotient controller 
u = -k*y^2/z; 
 
%equation for hoizontal temp. difference 
yp = (R+u)*x-y-x*z; 
 
%equation for vertical temp. difference 
zp = x*y-z; 
 
sdot = [xp,yp,zp]; 
 

 

Code for simulation of single-loop thermosyphon with tracking  
 
% Date 02/6/2007 
% Global stability of controlling Lorenz equations 
% Special controll structure: u=-ky^2/z 
% tracking an input signal, e.g. a step input.  A new DE is incorporated into the system: 
% wdot=y-yr 
% new controller: u=-ky^2/z-P(y-yr)-Lw(y-yr), here Lw acts like an integrator (PI-controller) 
 clear all 
 close all 
 format short e 
 P=10; % Prandtel number 
 R=45;  % Rayleigh number 
 b=1;  % Biot number nominal value is 8/3 
 ss=[0,0,0];  % steady states 
% ss=[sqrt(b*(R-1)),sqrt(b*(R-1)),R-1];  % Steady states 
% ss=[-sqrt(b*(R-1)),-sqrt(b*(R-1)),R-1];  % Steady states 
 
 
 Gain1=4;  % the gain for the quotient controller 
 Gain2=3;  % the gain for the integrator 
 
 T=0.01;  % simulation step size 
 startc=40;  % when to activate the controller (in seconds) 
  
 Sindx1=startc/T;      % start to stabilize the system 
 Sindx2=(startc+20)/T; % start to track the input 
  
 loops=15000;   %  simulation steps 
% Initial=[ss(1)-6,ss(2)+8,ss(3)+5]; % initial conditions 
 
% Initial=[-10 11.4444476274911766 12];    % WOW WOW WOW, what is the limit!!!!! 
        Initial=[5 13 7 0];  % the fourth state is the integrator  
 
% Initial=[.1,.1,.5]; 
 u=0;  % control input 
 state=Initial; 
 stdata1=state(2); % record the y-output (can also record other states) 
 stdata2=state(3); % record the z-output 
 Cinput=u;        % record the control signal 
  
 beta=0; 
 target=13.54;  % input signal to track 
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 para=[P,R,b,beta,Gain1,Gain2,target];  % fourth element is beta=1 means activate tracking 
controller 
 rec_state=Initial; 
 for k=1:loops 
       if k>=Sindx1 & k<Sindx2 
      u=-Gain1*state(2)^2/state(3);   % control input u=-k(y^2/z)      
     end 
     
     if k>=Sindx2 
   beta=1;  
  para(4)=beta;  % fourth element is beta=1 means activate tracking controller 
        u=-Gain1*state(2)^2/state(3);   % control input u=-k(y^2/z) 
        end 
         
      
         
     state=csimlor2(state,para,u,T); 
     stdata1=[stdata1;state(2)]; % record the y-output (can also record other states) 
     stdata2=[stdata2;state(3)]; % record the z-output 
      
     Cinput=[Cinput;u]; 
     rec_state=[rec_state;state]; 
 end 
 time=[0:T:loops*T]; 
 figure(1) 
 subplot(3,1,1) 
 plot(time,stdata1) 
 title('Time responses of y&z-output of Lorenz equations') 
 ylabel('Y') 
 subplot(3,1,2) 
 plot(time,stdata2) 
 ylabel('Z') 
 subplot(3,1,3) 
 plot(time,Cinput) 
 title('Time response of a Quotient controller u=-k(y^2/z)') 
 ylabel('Control u') 
    
   x=rec_state(:,1); 
   y=rec_state(:,2); 
   z=rec_state(:,3); 
    
   figure(2) 
   plot3(x,y,z,'r-') 
 

M-files for simulation of single-loop thermosyphon with quotient controller 
 
% Date 02/06/2007 
% This function is set up for the system of ODEs 
% for the Lorenz system.   All system 
% parameters are defined within these function. 
% 
% Note:  the input data is  a matrix, the  ith row  
% represent the  ith loop,  and the Three elements 
% in  the  ith row represent Velocity, Cosine, and 
% Sine  coefficients  of the temperature variable. 
% The  output  of this function  is  also a matrix 
% which has the same structure as the input matrix 
% with entries  as  the  derivatives  of the state 
% variables. 
 
 



59 

 

 function Sdot=clorsys2(State,para,u) 
% System parameters 
 P=para(1);  % Prandtle number 
 R=para(2);  % Rayleigh number 
 b=para(3);  % Biot number 
        beta=para(4); 
 gain1=para(5); 
 gain2=para(6); 
 yr=para(7); 
  
 X=State(1);   Y=State(2);   Z=State(3);  W=State(4); 
 tracku_I=-gain1*W;            % integrator 
 tracku_p=-gain2*beta*(Y-yr);  % proportional control 
  
% *************************************************** 
 Xdot=-P*X+P*Y;  % the ODEs or state equations 
 Ydot=(R+u+tracku_p+tracku_I)*X-X*Z-Y; 
 Zdot=-b*Z+X*Y; 
 Wdot=beta*(Y-yr); 
% *************************************************** 
 Sdot=[Xdot,Ydot,Zdot,Wdot]; 
 
------------------------------------------------------------------------------------------------------------------- 
% Date 08/13/99 
% This function is used to  perform   numerical  integration 
% of the ODE.  Normally, we use one   function   sample  and 
% one or more  than  one  derivative  samples.     The input  
% matrix should follow the format:   the size of  the matrix  
% is 3 by M, the three rows, the data represent Velocity,Cosine,  
% and Sine coefficients of the temperature  variable.   In  each 
% row, the first column is the function sample, and the rest  
% of the columns are the derivative samples. 
% We can use linear prediction  schemes  with  correctors or 
% modifiers. 
% 
% Note: the derivative samples should be   arranged from the 
%       oldest to the latest. Then they will be conversed in 
%       this subroutine. 
% 
% Note: the simulation stepsize is given  as an input parameter 
%  
% Note: the output is a single vector with the predicted values 
%       of the states 
 
 
 
 function Newst=csimlor2(State,para,u,T) 
% 4th order Runge-Kutta method 
 K1=clorsys2(State,para,u); 
 K2=clorsys2(State+T/2*K1,para,u); 
 K3=clorsys2(State+T/2*K2,para,u); 
 K4=clorsys2(State+T*K3,para,u); 

        Newst=State+T/6*(K1+2*K2+2*K3+K4);    
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APPENDIX C 

MAPLE OUTPUT FOR STABILITY ANALYSIS 

clear all variables 

>  

>  

>  
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>  

>  
 

>  
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>   

>  
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>  

 

define steady-state values of x, y, z, w 

>  

 

 

 

 

>  
 

>  

 

>  

 

>  

 

>  
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clear variables 

>  

 

 

 

define value for d to make system with integrator stable 

>  

 

define values for k and yr 

>  

 

 

>  
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clear value of d 

>  
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