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A NONPARAMETRIC METHOD FOR ASCERTAINING  

CHANGE POINTS IN REGRESSION REGIMES 

by 

ALFREDA N. ROGERS 

(Under the direction of Patricia Humphrey) 

 

Abstract 

     Of interest is the specific model called the joinpoint two regime regression or broken 

line model composed of one regression line and a horizontal ray. This is a very restricted 

but highly useful subset of the well-researched change point problem. The usual approach 

to a more general model was first presented by Quandt (1958) who found the maximum 

likelihood estimates of the slope, intercept and joinpoint by assuming that the error terms 

are generated under the usual assumptions, that is, from a normal distribution with 

constant variance and are uncorrelated. We develop a method that does not rely on this 

assumption, demonstrate its use on an example of proximity indexes of whale cow and 

calf pairs, and compare the new method to the Quandt estimates in a simulation study 

showing this new method performs adequately.  

INDEX WORDS: Maximum likelihood, Change point, Moment match  
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CHAPTER 1 

 INTRODUCTION 

     Somewhere, in the ocean, a mother whale cow has just given birth to a baby whale 

calf.  In the initial stages, one can find the cow closely monitoring her calf.  She does so 

to not only nourish the calf, but also protect it from the many dangers that the calf is too 

young and naïve to escape.  As time passes and the calf gets older, the mother 

understands that the calf needs to learn how to fend for itself.  During a time period one 

can see that the cow weans the calf slowly, but surely, so it can take its place in the 

underwater ecosystem.  But when is the best time for the mother to start weaning her 

calf?  Is there a point in time that one can expect a cow would completely wean her calf?   

 There is a natural appeal for a model that relies on a regression equation with a 

discontinuous derivative function. Thus, the volume of researchers and the totality of 

their papers number in the hundreds. An annotated bibliography by Khodadadi and 

Asgharian (2008) includes many of the papers pertinent to our research interest. Ciuperca 

(2009) has more recent citations in the introduction of his paper. The model we study is a 

small but useful subset of the “regime(d)” regression, a phrase first used by Quandt 

(1958) in economic literature, or more currently referred to as a broken-line regression 

(Gill, 2004). Our interest is in the estimation of all of the straight-line model parameters 

when exactly two regimes are assumed. The extensive literature discusses solutions 

pertaining to two or more response functions (either linear or not) defined over their 

companion independent sets (either univariate or multivariate) with connected or 

disconnected transition or change point(s), a term first appearing in the literature in the 

late 1960’s, in particular in the 1969 Dagenais paper. More recently for connected 
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transition points the term “joinpoints” is used (Ghosh, Basu and Tiwari, 2009). 

Researchers like Koul (2000) study models with either no or few assumptions about error 

terms. The error terms of the model can be assumed to be normal or non-normal and 

uncorrelated or correlated. A large number of the papers confine themselves to finding 

the number of, estimation of, and/or distribution of the change point(s) itself whereas we 

want to characterize the estimates of all the parameters of our model, a model having two 

straight-line regression equations with exactly one change point.  

Many applications (and here we mention several current ones) lend themselves to 

analysis under this type of model: quality control (Mahmoud et al., 2006), medical 

research (Yu et al., 2007), climatology (DeGaetano, 2006) and many other areas. 

Applications account for the largest percentage of the literature. The balance of the 

papers propose and/or investigate estimation and testing methods (including maximum 

likelihood, semi-parametric, non-parametric, bootstrap, Bayesian, wavelet) and their 

goodness (convergence rates, bias, consistency). We present estimation methods we have 

derived that are distribution-free and demonstrate our method with an example in the 

field of biology on a set of paired mother-calf whale data proximity indices collected and 

aggregated weekly. We first consider the parametric procedure described by Quandt 

(1958) and updated by him (Quandt, 1960; Quandt, 1972; Goldfeld and Quandt, 1972) 

since we found assurances by recently published author Gill (2004) of the stable behavior 

of these estimates for the slope, intercept, and change point for our particular model of 

interest. The Quandt method has no closed form solutions and is iterative so the process 

of finding these statistics is computer intensive but due to improvements in processing 

power it is still in use currently (DeGaetano, 2006). Although the literature offers some 
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competing approaches to the iterative Quandt method, we found that no authors consider 

a direct moment-matching scheme coupled with slope estimation via a nonparametric 

analysis. We develop such an approach and label it MMNPR. Our estimation procedure 

computes values quickly and performs in a favorable manner when compared to the 

Quandt method. 

 Through personal communication with his research colleague L. Hoffman, we are 

aware that in an extension of his work, Clark (2000) noticed that during the early stages 

there was a close proximity between the Killer Whale cow/calf dyads.   However, as time 

passed and the mother wanted the child to become more independent, there was a shift in 

positions between the two.  As the cow began to wean its calf, three notions were made: 

1) the calf changed how it positioned itself to its mother’s dorsal fin, 2) the mother started 

to move clockwise from the calf, and 3) the distance between the cow and calf started to 

increase.  Numerical and alphabetical representations for each criterion were given to 

devise a method of measuring and analyzing the data.  In this paper, we concentrate on 

the last of these phenomena, the distances.  Using the measurements, the Hinde Index 

was used and we found linear relationships in order to determine when a cow completely 

weans her calf.  The time when this phenomenon would occur would be called the change 

point. 

 The Hinde Index (Hinde, 1970) measures the “approaches” that are the narrowing 

of the distance between the pair and “leaves” which are a widening between a mother and 

child.  The Hinde Index definition is as follows:  

 

m m

m i m i

A L

A A L L
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where  = approaches of the mother,  = leaves of the mother,  = approaches of the 

infant, and   = leaves of the infant.  In the case where the total number of leaves by both 

the mother and infant is the same as the number of approaches by both mother and infant, 

this equation can be simplified.  Therefore, the Hinde Index becomes: 

 

m m m

m i m i m i

m

m i

LA L A

A A L L A A A A  

            

m m

m i
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This expression is easily interpreted since it is positive when the mother’s approaches 

exceed her leaves and negative when she leaves more than she approaches her calf. 

In other cases consider the following.  Since Am < Am+ Ai, then 0 1m

m i

A

A A
.  Using the 

same notion, 0 1m

m i

L

L L
.   Therefore we know that 1 1m m

m i

A L

A A
.   Using this 

index, one may wonder how to tell where the index should be the greatest and least.  

Table 1.1 below gives a short synopsis of what the trend should look like. 
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Table 1.1: Values of the Hinde Index for Various Levels of Whale Activity 

 

mA  iA  

im

m

AA

A
 mL  iL  

m

m i

L

L L
 m m

m i m i

A L

A A L L
 

High High 5.  High High 5.  0  

High High 5.  High Low 1  5.  

High High 5.  Low High 0  5.  

High High 5.  Low Low 5.  0  

High Low 1 High High 5.  5.  

High Low 1 High Low 1  0  

High Low 1 Low High 0  1  
High Low 1 Low Low 5.  5.  

Low High 0  High High 5.  5.  

Low High 0  High Low 1  1  
Low High 0  Low High 0  0  

Low High 0  Low Low 5.  5.  

Low Low 5.  High High 5.  0  

Low Low 5.  High Low 1  5.  

Low Low 5.  Low High 0  5.  

Low Low 5.  Low Low 5.  0  

 

Using the information in Table 1.1, the Hinde index is largest, or close to 1, when 

the mother approaches the calf more often than it leaves the calf and the calf leaves more 

often than it approaches the cow.  This also means that although the calf may be trying to 

become independent, the mother is still keeping up with her calf.  On the other hand, the 

index is smallest when the mother leaves more than she approaches her calf and the calf 

is approaching the cow more often than it leaves. This lends itself to the notion that the 

mother is trying to wean the calf to become independent, though the calf is not ready to 

go on its own. 

 Using this information, whales, as well as various other animals, are tracked for 

weeks at a time and a time versus Hinde index plot is formed.  Using the plot, one can do 

an eyeball estimate of the best fit line or lines for the data.  However, this method does 

not lend itself to a mathematical estimate of the true t0 (the change point, i.e., when one 
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can expect a whale to have weaned its calf).  However, there is another method that 

would better suit this notion. 

 We want to find a t0 for the regime.  We need a method that lends itself to finding 

true change points.  The Quandt (1958) method takes into account that one needs to 

separate the regime into two different groups.  The groups must each have at least three 

observations in order to do a regression analysis.  The approach is iterative.  Let the 

number of observations in the first group correspond to the value of t0.  For example, if 

the first group has 4 observations, then t0 = 4.  Hence, one would find the best fit line for 

the first group ( 0tt ) and for the second group (t > t0) up through the total number of 

time points T.  Using the usual regression estimates for finding standard deviations, one 

can find the standard deviation for both groups.  The standard deviations are then 

substituted into Quandt’s log likelihood function  

                            0 1 0 2( ) log 2 log ( ) log
2

T
L t T t T t  

where T = total number of observations and t0 = the number of data points in the first of 

the two groups.  The value of t0 yielding the largest value for L(t) would be considered 

the true  change point.  In our case, t0 would represent the true time point where one can 

expect the mother to have weaned her calf. 

 Quandt’s (1958) method is a good start; however, it has its flaws.  Quandt 

relies on the assumption that the data come from two separate normal distributions and 

forms the likelihood function as a product of normal probability density functions.  But 

deriving a closed form function for all five parameters (slopes, intercepts and the change 

point) presents an intractable problem.  Instead, he suggests conditioning on each 

possible change point and then evaluating L(t).  The process of dividing the sample into 
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two groups depending on the size of t0 is time consuming.  This method may be easy to 

execute when it comes to small sample sizes, but what about larger ones?  Quandt’s 

method uses the MLE (Maximum Likelihood Estimation) method for estimating a true t0.  

Unfortunately, MLE may yield biased estimates when it comes to small samples.  It is a 

known fact that as the sample size increases, the need to estimate parameters is 

minimized and the biasedness of the MLE approaches zero.  Since Quandt’s method is 

best used for smaller samples, the estimated t0 would not necessarily be an accurate 

representation of the true t0.    Additionally, the method assumes the data come from an 

underlying normal distribution.  What other methods can we use that will minimize the 

error of estimating the true change point?  Can a method be developed that has less 

distributional assumptions?  Would a new method prove to be better than Quandt’s 

method?   
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CHAPTER 2 

 PIECE-WISE REGRESSSION ASSUMPTIONS 

     The model introduced by Quandt in 1958 used the assumption that when (xt,yt) are 

bivariate normal then 

0 1

2 3

( )

( )

t t

t t

E y B B x

E y B B x
 

0

0

t t

t t
   

where  = the original proximity propensity for the first regression,  = the rate of 

decrease to steady state for the first regression ,  = the original proximity of propensity 

for the second regression, and  = the rate of decrease to steady state for the second 

regression.  We will refer to these as assumption 1. 

To better understand this assumption and others to come, real data taken from 

whales in Sea World (t's and y's) shown in Table 2.1.  In this case, t = time in weeks and 

yt = index of proximity (Hinde Index).  We use data acquired from mother-calf pairs of 

Killer Whales born at one of two SeaWorld parks (California or Florida) between 1999 

and 2002.  The vagueness preserves the anonymity of the mammals (a directive from 

SeaWorld administrators).  The collection process was immense and covered a total of 

66,606 hours with observers stationed both above and below the pools viewing spatial 

relationship data every 15 minutes via the use of an instantaneous sampling technique 

(Clark and Odell, 1999).  In the initial stages after birth the mother cow closely monitors 

her calf, to nourish and protect it.  As the calf gets older, the mother encourages the calf 

to begin to fend for itself.  For illustrative use of the original Quandt method, the x's were 

generated in Microsoft Excel to represent an x value at time t.  We need to identify 

variables for use with the Quandt method.  Since we have three different variables but 
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wish to rely on simple linear regression, then we use different linear models for the 

different groupings of the ( , ) defined by the value . 

 

Table 2.1:  Actual Weekly (t) Whale Hinde Index (y) with Simulated x Values 

t x y 

1 -1.00 1.00 

2 0.25 0.50 

3 0.45 0.20 

4 1.00 0.11 

5 0.60 0.15 

6 -0.05 0.21 

7 0.04 0.16 

8 0.09 0.12 

9 0.30 0.11 

10 0.36 0.09 

11 -1.00 0.04 

12 1.00 0.29 

13 -0.60 0.00 

14 -0.05 0.11 

15 1.00 0.05 

16 0.60 0.00 

17 0.36 0.02 

18 0.12 0.15 

19 0.50 0.10 

20 0.10 0.09 

 

 

Quandt’s Method used the maximum likelihood estimate approach to inspect all L(t) for  

t = 1 to T.  There is no assumption that xi < xi+1 for i = 1, 2,…T, but a grouping of the x’s 

occurs once t0 is identified.   

In assumption 1, we need to use generated x’s versus proximity (Hinde Index).  

Table 2.2 yields the analysis given using Quandt’s method. 
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Table 2.2:  Parameter Estimates, Standard Errors, and Calculated Log Likelihood Value 

Using Quandt’s Method Under Assumption 1 

 

t0 B0 B1 B2 B3 s1 s2 L(t) 

3 0.517 -0.498 0.095 0.041 0.143 0.074 3.786 

4 0.534 -0.463 0.096 0.046 0.110 0.076 3.758 

5 0.516 -0.479 0.095 0.043 0.104 0.079 3.504 

6 0.454 -0.443 0.085 0.051 0.173 0.074 2.431 

7 0.411 -0.426 0.078 0.054 0.192 0.074 1.769 

8 0.378 -0.417 0.075 0.056 0.200 0.076 1.028 

9 0.364 -0.424 0.073 0.055 0.192 0.080 0.528 

10 0.353 -0.432 0.074 0.056 0.184 0.085 0.072 

11 0.265 -0.215 0.067 0.069 0.258 0.090 -2.098 

12 0.277 -0.171 0.066 -0.002 0.254 0.060 -1.074 

13 0.242 -0.117 0.107 -0.086 0.263 0.048 -1.182 

14 0.232 -0.113 0.107 -0.086 0.255 0.053 -2.022 

15 0.229 -0.123 0.134 -0.184 0.246 0.053 -2.437 

16 0.221 -0.134 0.121 -0.116 0.240 0.060 -3.160 

17 0.213 -0.138 0.124 -0.045 0.235 0.043 -3.187 

 

According to the table, the estimated true change point would be when = 3.  Using , 

,  ,and , the graph appears as illustrated in Figure 2.1. 

 

 

 
Figure 2.1:  Graph of the Fitted Model Using Quandt’s Method Under Assumption 1 
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For assumption 1, it is not assumed that the two regressions must join, nor does the 

second regression have to have a horizontal slope.   

For a more simple model, we assume that t serves as the x variable, i.e. we ignore 

the information provided by x, the hypothetical respiratory rate.  We now look at time 

versus proximity.  The simplified model has the assumptions 

tBByE

tBByE

t

t

32

10

)(

)(
    

0

0

tt

tt

 

and will be referred to as assumption 2. Using Table 2.1, the parameter estimates, 

standard errors, and calculated log likelihood values are shown in Table 2.3. 

 

Table 2.3: Parameter Estimates, Standard Errors, and Calculated Log Likelihood Value 

Using Quandt’s Method Under Assumption 2 

 

t0 B0 B1 B2 B3 s1 s2 L(t) 

3 1.367 -0.400 0.171 -0.005 0.082 0.072 4.724 

4 1.195 -0.297 0.186 -0.006 0.145 0.073 3.522 

5 1.019 -0.209 0.188 -0.007 0.200 0.076 2.292 

6 0.871 -0.145 0.156 -0.005 0.231 0.077 1.454 

7 0.783 -0.113 0.135 -0.003 0.230 0.079 0.814 

8 0.724 -0.093 0.127 -0.003 0.223 0.083 0.221 

9 0.674 -0.078 0.120 -0.002 0.216 0.087 -0.346 

10 0.635 -0.067 0.127 -0.003 0.210 0.092 -0.864 

11 0.609 -0.061 0.210 -0.008 0.202 0.095 -1.146 

12 0.541 -0.045 -0.112 0.011 0.220 0.053 0.094 

13 0.534 -0.044 -0.041 0.007 0.210 0.056 -0.418 

14 0.507 -0.038 -0.247 0.018 0.207 0.050 -0.564 

15 0.492 -0.035 -0.396 0.026 0.200 0.053 -1.121 

16 0.483 -0.034 -0.206 0.016 0.194 0.060 -1.712 

17 0.470 -0.032 0.683 -0.030 0.189 0.016 -0.324 

 

We find that the estimate of  is 3.  Using , ,  ,and , the corresponding graph is 

illustrated in Figure 2.2. 
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Figure 2.2:  Graph of the Fitted Model Using Quandt’s Method Under Assumption 2 

 

 

Once again, we do not assume that the two regressions must join, nor does the second 

regression have to have a horizontal slope. 

As the calf grows older, we assume that the proximity between the mother and 

calf decreases over time.  Because of this, we expect that until a certain time, t0, there 

would be a steady decrease in proximity.  After we reach t0, there would be a steady state 

of proximity, i.e. a horizontal line, between cow and calf.  This lends itself to the next 

model, which will be referred to as assumption 3, (an even more simplified one), 

0 1

2

( )

( )

t

t

E y B Bt

E y B
 

0

0

t t

t t
 

 

In this case, we only look at t0 = 3, B0, B1, and B2.  Our graph for assumption 3 is 

illustrated using Figure 2.3. 
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Figure 2.3:  Graph of the Fitted Model Using Quandt’s Method Under Assumption 3 

 

 

Notice in the graph, the two lines are disjoint.  However, we assume that the second 

regression must have a horizontal slope, which represents the steady state.  For an 

intersection to occur, we would need to assume that for each t > t0, the expected value 

would have to be the same for each t.  Hence, our most simplified model is illustrated in 

Figure 2.4. 
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Figure 2.4:  Graph of the Fitted Model Using Quandt’s Method Under Assumption 4  

 

The model for the graph, referred to as assumption 4, would be 

0 1

0 1 0

( )

( )

t

t

E y B Bt

E y B Bt
 

0

0

t t

t t
 

With this data set, we find that all assumptions using Quandt’s method yields that the 

estimated change point would be at t0 = 3. 

Though we have estimated that in this case t0 = 3, graphically, how would it 

compare to other t0’s?  Let us use Figure 2.5, Figure 2.6, and Figure 2.7 to visualize what 

would happen. 
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Y1 = -.400t + 1.367  SSE1 = 0.007  

  Y2 = -.167   SSE2 = 0.152  L(t) = 20.857 

 

Figure 2.5:  Using Whale Hinde Indices to Show Quandt Iterations at t0=3 

 

 

 

 
Y1 = -.297t + 1.195  SSE1 = 0.042 

  Y2 = .007   SSE2 = 0.245  L(t) = 14.158 

 

Figure 2.6:  Using Whale Hinde Indices to Show Quandt Iterations at t0=4 
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  Y1 = -.209t + 1.019  SSE1 = 0.119  

  Y2 = -.026   SSE2 = 0.336  L(t) = 9.451 

 

Figure 2.7:  Using Whale Hinde Indices to Show Quandt Iterations at t0=5 

 

Notice that more of the data points are closest to the two regressions when t0 = 3.  When 

using the Quandt method, one must use the L(t) that is largest.  By comparing the L(t) to 

the sum of squared errors, one finds for this case that the largest L(t) out of the three 

possible change points has the smallest error. 

Quandt’s method assumes a normal distribution for a data set with constant 

variance and uncorrelated error terms for a data set, but real data may not conform to 

these assumptions.  Since most of the points from the data are actually captured by the 

two lines, this means that the Quandt method does a good job of finding the estimated 

change point for this data set that is assumed well behaved.  But what if there was a set in 

which most of the points do not follow the regressions because the data set is non-

normal?  Or the data has non-constant variance?  Or the data is correlated over time?  



17 

 

Other data, if not from a normal distribution, could not be modeled as a product of two 

normal probability distribution functions.    

Also, Quandt uses the largest L(t) to determine what would be the estimated 

change point.  Unfortunately, there can be more than one local maxima using the L(t).  

For example, the Table 2.4 and Figure 2.8 both illustrate graphically the points (t, L(t)) 

exhibit multiple local maxima.  

 

Table 2.4: Parameter Estimates, Standard Errors, and Calculated Log Likelihood Values 

Using Quandt’s Method Under Assumption 4 

 

t0 B0 B1 sse1 sse2 L(t) 

3 1.367 -0.400 0.007 0.152 20.857 

4 1.195 -0.297 0.042 0.245 14.158 

5 1.019 -0.209 0.119 0.336 9.451 

6 0.871 -0.145 0.214 0.207 11.137 

7 0.783 -0.113 0.264 0.187 10.657 

8 0.724 -0.093 0.297 0.204 9.239 

9 0.674 -0.078 0.328 0.210 8.314 

10 0.635 -0.067 0.353 0.220 7.422 

11 0.609 -0.061 0.367 0.267 6.155 

12 0.541 -0.045 0.485 0.055 10.820 

13 0.534 -0.044 0.487 0.096 7.990 

14 0.507 -0.038 0.512 0.071 8.093 

15 0.492 -0.035 0.523 0.075 7.282 

16 0.483 -0.034 0.527 0.095 6.422 

17 0.470 -0.032 0.536 0.099 6.117 
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Figure 2.8:  Graph of Time versus Log Likelihood Function from Use of Quandt’s 

Method Under Assumption 4 

 

As one can see, there are exactly four local maxima at t0 = 3, t0 = 6, t0 =12, and t0 = 14.  

Therefore, anyone of these maximums could be mistaken for the true change point if all 

iterations are not completed. Therefore, we seek to determine a better method for 

estimating the true t0 value independent of the data distribution.   
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CHAPTER 3 

 METHODOLOGY 

One estimation method that does not rely on distributional assumptions utilizes 

moment matching in order to find the joint estimate for the slope and t0. This is 

accomplished by using the sample data to find the expected value for an unknown 

parameter.  Prior to doing so, an intuitive study of the behavior of the change point in this 

“broken-line” model led to the insight that points early in time and furthest from the 

change point were more likely to lie on the regression line rather than on the horizontal 

ray; thus we chose to make a distributional assumption about the range of the initial 

regression line (first “regime”) in that the probability that the expectation is B0 + B1t, 

 t < t0 , is proportional to the distance from the unknown actual value t0 . 

Since we are dealing with three unknowns (B0, B1, and t0), it would be nice to 

eliminate one of the unknowns from our model.   First consider the E(yt) as modeled in 

assumption 4. 
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To eliminate B0, let wt= yt+1-y1 for t=1,…,T-1.  This yields 

0

0

0

2 1 0 1 0 1 1
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We then can conclude that 

1 0

1 0 0

( ) 1,..., 1

( ) ( 1) ,..., 1

t

t

E w B t t t

E w B t t t T
   

      Most data is assumed to come from a normal distribution; however, we are not 

making the assumption that the data we use is normal.  Hence, we will conclude that wt 

has a mean of E(wt). We can see that this model has two parameters to estimate: B1 and 

t0.  It seems reasonable to assume that wt follows a distribution that is related to the 

distance from the actual change point.    

We include weights that are proportional to t0 - t.  We will use the assumption that 

when t > t0 , the probability is zero.   To determine what probability is associated with 

each time point before t0 we can discern k by knowing the sum must be 1, i.e. 

0 1

0

1 0

1
t

t

t t
k

t
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Therefore, 
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Solving the equation 0 1
1

2

t
k , we find that k = 

0

2

1t
 and, for example the 

probability associated with w1 is 
0

2

1t

0

0 0

1 2t

t t
.  Hence the expected wt, weighted by 

these probabilities 0

0 0

2
i.e.

1

t t

t t
at each time t is
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Combining this with the remaining (T - t0)’s B1(t0 - 1) yields 
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Setting 

2

1 0 02 (3 3) (1 3 )

3( 1)

B t T t T
w

T
, we then have an expression for t0 and B1.  

Hence  

2

0 0

1

(3( 1))
2 (3 3) (1 3 )

w T
t T t T

B  

or
 

                    

2

0 0

1

(3( 1))
0 2 (3 3) (1 3 )

w T
t T t T

B  

 Combining the expectations from both the regression line and the horizontal line 

in a properly weighted manner, results in this formula for the moment match.  By re-

writing the equation we do produce an estimate of B1 as a function of t0. This is helpful as 

shown in the next section because it provides a restriction on the candidates for the slope 

estimate. The slope estimate is derived via usual nonparametric regression where we 

compute all pair wise slopes and rely on the median as the best estimator, but can be 
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restricted to only a small subset of feasible values. In conducting a nonparametric 

regression procedure the number of potential estimates number 
( 1)

2

T T
since all possible 

pairs of points are examined.  Using ,w  we can also solve for B1 

 

          

1
1 0

0 0 1 0
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T T
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1 2
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3

2 3( 1) (3 1)

T

t

t

W

t T t T
 

and we are able to create a lower and upper bound for the estimate of B1 so that the sort 

needed to reveal the median of the sample slopes is conducted only on a small subset of 

the slopes generated from all possible point pairings. 

To conduct a non-parametric regression, the slopes of all possible pairings of 

points slopes are found and the following bounds are used.    For T > 14, the interval 

needed to compare all slopes is 

 
1 2

3( 1) 24( 1)

6 1 (3 1)

T T
B

T T
 

The median of the slopes that are within the interval is used as the estimate for the 

parameter B1.  Using the equation above, we are now able to calculate t0 after finding a 

good estimate for B1 and calculating .w  
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CHAPTER 4 

MAIN RESULTS 

We will illustrate the MMNPR using the Sea World data set.  Referring back to Table 

2.1, we needed to find all possible pairs of slopes and find the interval for the most 

influential slopes. Since there are 20 points in the data set, then 20C2 =
20!

(20 2)!2!
= 190.  

Below in Table 4.1, the chart of the 190 slopes that were found using Excel.  SAS was 

used to find the feasible interval based on bounds developed from the equations in 

Chapter 3.  In this case, there are 10 slopes (which are highlighted) within the interval      

–.45 < B1 < –0.11376.  
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The median of the 10 slopes is -0.20375.  We use this value as the slope B1 and use 

1

1

T

t

t

W  = -16.5 to calculate the corresponding t0 from the equation   

 
1

1
1 2

0 0

3

2 3( 1) (3 1)

T

t

t

W

t T t T
 

      2

0 0

3( 16.5)
.20375

2 3(21) (61)t t  

          
2

0 0242.945 2 63 61t t
 

        2

0 00 2 63 303.945t t  

 

Using the quadratic formula and using the smaller root inside [3, 17], we get t0 = 5.947.  

For reporting, we have elected to truncate this to the integer value of 5.  Therefore we 

have estimated t0 and B1 and with moment matching, we would use the average of the y’s 

to find B0. 

 

 

 

 

 

Along with calculating it by hand, a SAS program was used to find all of the values.  

Table 4.2 shows what values were calculated for both Quandt’s method and the MMNPR 

method. 

 

Table 4.2:  SAS Values for Quandt and MMNPR Values 

 

B0 B1 t0q MMNPB0 MMNPB1 MMNPt0 

1.36667 -0.400 3.000 1.237 -0.204 5.000 

 

0

0 1 0 0 1 0

1

( ) ( )( )
t

t

t T t t

y
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Figure 4.1 below is a visual comparison of the results using the Quandt and MMNPR 

methods. 

 

 
 

Figure 4.1:  Graph of Quandt Method versus MMNPR Method 

 

 

In this case, Quandt looks to have done a better job of estimating parameters, resulting in 

regressions having more points closer to the lines.  However, we must remember that this 

sample was a small sample size and this only one case.  If we investigate different sample 

sizes and many more replications, we may observe different results. Using a SAS 

program, the following Table 4.3 was the output comparing Quandt’s method to the 

MMNPR method. 

 

 

 

 

 

 

 

 

 

Table 4.3:  SAS Generated Values for Parameters for Quandt and MMNPR Methods 
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Simulation runs (k=250) comparing Quandt MLE to the MNPR estimates 

 
CASE 1 2 3 4 5 6 7 8 
N 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 
t0 5.00 5.00 5.00 5.00 10.00 10.00 10.00 10.00 

0 0.90 0.90 0.50 0.50 0.90 0.90 0.50 0.50 

1 -0.20 -0.20 -0.20 -0.20 -0.10 -0.10 -0.10 -0.10 

0.05 0.03 0.05 0.03 0.03 0.02 0.03 0.02 

MLE-t0 
4.992 

(.237) 
4.996 

(.063) 
5.020 

(.228) 
5.000 

(.000) 
9.984 

(.390) 
9.960 

(.196) 
9.996 

(.375) 
9.980 

(.166) 

MLE- 0 
0.900 

(.051) 
0.901 

(.032) 
0.495 

(.054) 
0.500 

(.031) 
0.901 

(.022) 
0.901 

(.013) 
0.501 

(.021) 
0.501 

(.014) 

MLE- 1 
-0.201 

(.050) 
-0.200 

(.010) 
-0.199 

(.017) 
-0.200 

(.009) 
-0.100 

(.004) 
-0.100 

(.002) 
-0.100 

(.004) 
-0.100 

(.002) 
MMNPR- 
t0 

6.224 

(.645) 
5.956 

(.450) 
6.280 

(.596) 
5.940 

(.421) 
10.556 

(.664) 
10.896 

(.557) 
10.620 

(.661) 
10.932 

(.552) 
MMNPR-

0 
0.891 

(.059) 
0.896 

(.038) 
0.489 

(.065) 
0.494 

(.040) 
0.983 

(.041) 
0.986 

(.026) 
0.589 

(.040) 
0.588 

(.029) 
MMNPR-

1 
-0.156 

(.017) 
-0.162 

(.013) 
-0.154 

(.017) 
-0.162 

(.013) 
-0.104 

(.004) 
-0.102 

(.002) 
-0.104 

(.004) 
-0.102 

(.003) 

CASE 9 10 11 12 13 14 15 16 
N 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 
t0 10.00 10.00 10.00 10.00 15.00 15.00 15.00 15.00 

0 0.90 0.90 0.50 0.50 0.90 0.90 0.50 0.50 

1 -0.10 -0.10 -0.10 -0.10 -0.07 -0.07 -0.07 -0.07 

0.03 0.02 0.03 0.02 0.02 0.01 0.02 0.01 

MLE-t0 
10.004 

(.304) 
9.992 

(.089) 
9.996 

(.304) 
9.996 

(.110) 
14.980 

(.290) 
15.000 

(.000) 
14.992 

(.297) 
15.000 

(.000) 

MLE- 0 
0.899 

(.021) 
0.901 

(.014) 
0.502 

(.022) 
0.500 

(.013) 
0.900 

(.011) 
0.900 

(.006) 
0.501 

(.011) 
0.500 

(.006) 

MLE- 1 
-0.100 

(.004) 
-0.100 

(.002) 
-0.100 

(.003) 
-0.100 

(.002) 
-0.070 

(.001) 
-0.070 

(.001) 
-0.070 

(.001) 
-0.070 

(.001) 
MMNPR- 
t0 

10.932 

(.646) 
10.764 

(.503) 
10.916 

(.571) 
10.784 

(.492) 
16.900 

(.729) 
17.660 

(.546) 
16.796 

(.762) 
17.644 

(.578) 
MMNPR-

0 
0.948 

(.036) 
0.946 

(.025) 
0.550 

(.036) 
0.550 

(.022) 
1.003 

(.027) 
1.009 

(.016) 
0.602 

(.029) 
0.609 

(.017) 
MMNPR-

1 
-0.095 

(.004) 
-0.096 

(.002) 
-0.095 

(.004) 
-0.096 

(.002) 
-0.072 

(.002) 
-0.071 

(.001) 
-0.072 

(.002) 
-0.071 

(.001) 

 

 

These simulations are based on 250 runs each.  The values in the table are the 

means with their standard deviations in parenthesis.  Cases 1-8 are based on sample sizes 

of 20 and cases 9-16 are based on sample sizes of 30.  With the usual normal error 
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regression assumptions, when comparing the values for Quandt’s method (MLE) to the 

MMNPR method, one finds that both are accurate at estimating the true change point 

slope and intercept.  The MMNPR’s estimate of t0 tends to be larger than the true value of 

t0.  However, the MMNPR is within 2.5 standard deviations from the true value of t0.  

Another advantage of using the MMNPR method is its speed.  When running a computer 

program to find the needed values, Quandt’s method takes 2 CPU seconds per 

replication; the MMNPR uses 1/10 CPU seconds.   
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CHAPTER 5 

CONCLUSION 

We have developed a good quick method to find the parameter estimates for the 

intercept, slope, and change point in the broken line regression model.  We illustrated its 

use by modeling data from mother and calf whale proximity data, comparing our 

estimates to estimators generated by Quandt (1958).  We were able to detect a change in 

the pairs behavior around week 5 (with our MMNPR method) and week 3 with Quandt’s 

method. 

This discovery would indicate that need for early bonding due to nursing declines 

quite rapidly in Killer Whales.  Additionally, we wanted to gain insight into whether our 

quick MMNPR method was computationally adequate and so we compared our method 

to the Quandt MLE method.  We expected the Quandt method to be superior since our 

simulations were set up to mimic the assumptions he used to derive his estimators.  Yet, 

the MMNPR performed adequately.  Our simulations reveal a repeated small over-

estimation of the location of the change point that needs investigation. Further research 

will involve simulations and include cases where the error terms for the broken line 

regression are not well behaved. Additionally, we will devise testing procedures and look 

at their performance under null and alternative hypotheses as suggested in Gregoire and 

Hamrouni (2002).  
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APPENDIX A 

SAS code 

/* When using this program please reference via the following citation: 

  Hoffman, L.L., Knofczynski, G., Clark, S., Rogers, A., Hudson, J., King, H., and Reiss, 

E. 2009. A Nonparametric Method for the 

  Estimation of All Parameters in the Joinpoint Two Regime Regression Model.  In JSM 

Proceedings, Alexandria, VA: American Statistical  

  Association. 

*/ 

data onehinde; 

input time index; 

cards; 

1 1 

2 .5 

3 .2 

4 .11 

5 .15 

6 .21 

7 .16 

8 .12 

9 .11 

10 .09 

11 .04 
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12 .29 

13 0 

14 .11 

15 .05 

16 0 

17 .02 

18 .15 

19 .1 

20 .09 

; 

%let n=20; 

data allruns; 

/* creating the macro to fit first and second line */ 

%macro regreg; 

/* grabs the first &j set of points */ 

data first; 

set onehinde; 

if _n_ gt &j then delete; 

/* grabs the second &j set of points */ 

data second; 

set onehinde; 

if _n_ le &j then delete; 

/* quandt approach */ 
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/* regression on first &j points to find SSE and b0 and b1 */ 

proc glm data=first; 

model index=time; output out=quandt1 p=yhat r=yresid; 

data qvals1; 

set quandt1; 

retain b10 b0 b1 sse1 sse2; 

if _n_=1 then do; b10=yhat; sse1=0;end; 

if _n_=2 then do; b1=yhat-b10; b0=b10-b1; end; 

sse2=sse1+yresid*yresid; 

sse1=sse2; 

sseI=sse2; 

if _n_ ne &j then delete; 

data clnqv1; 

set qvals1; 

keep b0 b1 sseI; 

proc print; 

/* finding SSE of the last points on horizontal line */ 

data qvals2; 

merge second clnqv1; 

retain bhorz sse1 sse2; 

if _n_=1 then do; sse1=0; bhorz=b0+b1*(&j); end; 

sse2=sse1+(index-bhorz)* (index-bhorz); 

sse1=sse2; 
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sseII=sse2; 

if _n_ ne &jend then delete; 

data clnqv2; 

set qvals2; 

keep bhorz sseII; 

proc print; 

/* creating a dataset with all possible &j divisions */ 

data meshqval; 

merge clnqv1 clnqv2; 

data allruns; 

set allruns meshqval; 

data results; 

set allruns; 

if _n_ = 1 then delete; 

ssetot=sseI+sseII; 

/*find likelihood value */ 

Lt=-(&n)*log(sqrt(2*3.1415962))-(_n_+1)*log(sqrt(sseI/(_n_+1))) 

  -(&n-(_n_+1))*log(sqrt(sseII/(&n-(_n_+1))))-(&n/2);  

t0q=_n_+1; 

proc print; 

/* keeping only the answers from largest Lt */ 

proc sort data=results; by descending Lt ;  

data quntparm; set results; if _n_ > 1 then delete; 
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/* keeping the estimates */ 

data qntcln; 

set quntparm; 

keep b0 b1 t0q; 

%mend regreg; 

/* this is the loop over &j from 3 to n-3 */ 

%macro loop; 

%let nend = &n - 3;  

%do j=3 %to &nend;  

%let jend=&n - &j;  

%regreg; 

%end; 

%mend loop; 

%loop; 

/* MMNPR approach */ 

/* finding sum of w's  */ 

data prestats; 

set onehinde; 

array yyval(50); 

retain sum y1 yyval; 

if _n_=1 then y1=index; 

%let m=_n_; 

if _n_=1 then sum=0; 
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sum=sum+(index-y1); 

yyval(&m)=index; 

output; 

/* nonparametric estimation of b1 slope by creating all  

possible slopes and only saving those within feasible bounds */  

data stats; 

set prestats; 

array yyval(50); 

array sloper(2500); 

retain sloper loopcount; 

if _n_ eq &n then loopcount=0; 

if _n_ eq &n then do; 

  do iclr=1 to 2500; 

  sloper(iclr)=99999; 

  end; 

 end; 

if _n_<&n then delete; 

/* calculating bounds */ 

maxb=8*(3*sum)/((3*&n-1)*(3*&n-1)); 

minb=(3*sum)/(6*&n-10); 

midb=(3*sum)/((&n-4)*(&n+7)); 

put 'key values sum= ' sum ' minb = ' minb  

  ' midb = ' midb ' maxb = ' maxb; 
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/* calculating slopes */ 

kkk=1;endn=&n-1; 

do k=1 to endn; 

kkbeg=k+1;  

do kk=kkbeg to &n;  

   sloper(kkk)=(yyval(kk)-yyval(k))/(kk-k);  

   loopcount=loopcount+1; 

   if sloper(kkk)>minb & sloper(kkk)<maxb then 

   if sloper(kkk)>minb & sloper(kkk)<maxb then kkk=kkk+1; 

end; 

end; 

sloper(kkk)=99999; 

output; 

/* finding nonmissing slopes */ 

data sortslop; 

set stats; 

array sloper(2500); 

keep slopcand; 

do k=1 to 2500; 

 if sloper(k) ne 99999 then slopcand=sloper(k); 

 if sloper(k) ne 99999 then output; 

end; 

/* finding median etc. of slopes */ 
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proc print; 

proc means mean median min max q1 q3 n var data=sortslop;  

   output out=slopeout median=med; 

/* singling out sum of w's from previous data */ 

data feedft0; 

set prestats; 

if _n_ ne &n then delete; 

/* making a dataset with sum of w's and median slope in it  

to calculate t0 */ 

data findt0; 

merge slopeout feedft0; 

retain med sum; 

ourt0 = (.25*(3.*med*&n+3.*med+sqrt(9.*med*med*&n*&n 

    -6.*med*med*&n+med*med-24.*med*sum)))/med; 

ourb1=med; 

output; 

data findb0; 

set findt0; 

ourb0=((sum+&n*y1)-(.5*med*ourt0*(ourt0+1))-(&n*med*ourt0) 

   +(med*ourt0*ourt0))/&n; 

output; 

/* keeping the estimates */ 

data ourscln; 
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set findb0; 

keep ourb0 ourb1 ourt0; 

data twoests; 

merge qntcln ourscln; 

data twoest2; 

merge qvals2 twoests ; 

keep b0 b1 t0q ourb1 ourb0 ourt0 ourt0r; 

ourt0r=floor(ourt0); output; 

proc print; 

run; 
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