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ABSTRACT

In this thesis we investigate elastic curves. These are curves with minimal bending

energy as measured by the total squared curvature functional. We show that these

can be computed by evolving curves in the direction of the negative gradient in certain

Hilbert space settings. By discretizing the curves and using numerical integration, we

compute approximate minimizers and display using computer graphics. We propose

a conjecture based on the rotation number of a curve that predicts the critical point

curves that minimize bending energy.
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CHAPTER 1

INTRODUCTION

This thesis investigates elastic curves, in particular, what happens when an elastic

wire is deformed out of shape, and released. To state this mathematically, it takes a

bit more effort. The initial problem is to find the curve of minimal bending energy

between two points in the plane. We aim to find the curve with minimum bending

energy joining these two points. As such, the main investigation is done using the

curvature-squared energy functional over a curve (γ),

E(γ) =
1

2

∫ L

0

κ2(`)d`,

where ` is the arc length parameter.

This question was first posed in 1638 by Galilieo, and revisited several times

throughout history. Most famously, however, is the work done on the problem by the

Bernoullis, James in 1691 and Daniel in 1742. Daniel Bernoulli’s approach involved

taking directional derivatives, and we again use this technique to perfrom key compu-

tations for this thesis. Euler in 1744 proposes the treatment of the problem using the

energy functional introduced earlier, and makes significant progress. [10] We mainly

follow Anders Linnér treatment of the problem in [7] and[8] , in terms of the energy

functional and expressing the directional derivatives in terms of gradients.

Among the critical points of this functional we find the curves that minimize the

bending energy. We begin the thesis by gaining familiarity with the energy functional.

We investigate E(γ) to find a representation involving the curve’s tangent angle. This

allows us deal with the problem in a familiar manner.

The problem is framed in a Hilbert space and allows us to develop an inner

product to better understand how different boundary conditions affect the problem.

We define both the spaces for each functional, as well as explictly state each solution
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for varied boundary cases. We then use the Riesz representation theorem to cleverly

use gradients to represent the directional derivatives in the inner product space. We

use the gradient to travel in the direction of the steepest descent to find the minimizers

in the final chapters. By following further work in [7], which establishes use of the

Palais-Smale condition and minimax arguments to solve the problem, we are able to

use the gradients numerically. The Palais-Smale condition guarentees existence of

critical points and is highly useful to the theory. Examples are included at the end

of this thesis.

The thesis is intended to clarify much of the work investigated in [8], as much of

the proofs and examples are difficult to follow or are incomplete. We provide proofs

that were previously omitted, make alterations to notations for clarity, and provide

new computational code and results (including graphics). A clear demonstration of

the material being presented allows for a proper understanding of a truly elegant

problem.

We propose a conjecture in Chapter 7 regarding the rotation number of an elastic

curve and the resulting curve after evolving it in the direction of the negative gradient.

We provide examples demonstrating the conjecture in Chapter 9.

Several of the references listed deal more explictly with spline theory, where this

problem is of high interest (see [1],[2],[3], and [6]). Our problem deals with simply

two points, rather than a spline which could include many points.

The thesis is organized in the following manner:

• In Chapter 2, we investigate the Bending Energy of Planar Curves by

looking at the curvature-squared energy functional and performing analysis.

• In Chapter 3, we introduce The Variational Problem that the thesis will be

attempting to better understand. Boundary conditions are introduced.
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• In Chapter 4, the Hilbert Spaces and Submanifolds of Constraints are

described to gain a framework for the machinery being used in the thesis. We

develop a Hilbert space from a cross product of Hilbert spaces to define a space

for our functional to make sense.

• In Chapter 5, we take the directional derivatives of the various functionals used

in the paper. The Calculus of Variations allows us to use powerful techniques

to better analyze the functionals at hand.

• In Chapter 6, we take the directional derivatives and find representers for them

as Gradients in our Hilbert space. These gradients allow us to later perform

computations on elastic curves by travelling in the negative gradient flow to-

wards minmizers.

• In Chapter 7, we introduce Minimax Theory and the Palais-Smale Con-

dition. This powerful condition helps us guarentee the existence of minimzers

and we discuss some basic examples here as well as give our conjecture.

• In Chapter 8, we perform Computation of Elastic Curves using the gradi-

ents from the previous sections. A description of our process is given.

• In Chapter 9, we provide Examples for the reader to gain a visual understand-

ing of the problem. These are truly remarkable and worth examining.



CHAPTER 2

BENDING ENERGY OF PLANAR CURVES

In this thesis we are interested in understanding what happens when a thin elastic

wire is deformed out of shape, and let go. The key idea is that the wire will evolve

to a configuration with less bending energy. Mathematically, the energy functional

is proportional to the total squared curvature functional (see [9]). Therefore, in this

chapter we develop the curvature-squared functional that will be used in the remainder

of this thesis. We begin with a definition of the main objects of study in this thesis,

that being smooth parametric curves.

Definition 2.1. A planar curve on [a, b] is a map

γ : [a, b] 7→ R2 : t 7→ γ(t) = (x(t), y(t)).

• The curve is k-smooth, i.e., γ ∈ Ck(I → R2), if x, y ∈ Ck(I).

• The curve is regular if the magnitude of the tangent vector |γ′(t)| is nonvan-

ishing.

• The unit tangent vector of γ is

T (t) :=
γ′(t)

|γ′(t)|
.

• The signed curvature κ := κ(γ) ∈ R : t 7→ (x(t), y(t)) is defined by

dT

d`
= κN,

where N is the unit normal vector, and ` is the arc-length parameter. This may

be positive or negative.

The following result is well-known in differential geometry:
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Lemma 2.2. The signed curvature of a planar curve γ : [a, b]→ R2 is given by

κ(t) =
γ′ × γ′′

|γ′(t)|3
=

x′y′′ − x′′y′

((x′)2 + (y′)2)3/2
.

In this thesis we assume that the curves are smooth and regular, and for such

curves it is well-known that they can be parametrized by arc length. However, in this

thesis we choose a different parametrization. First, we restrict our planar curves to

[a, b] = I := [0, 1]. Then, we define:

Definition 2.3. Let γ : I → R2 be a smooth curve, and let L be the length of the

curve. We say that the curve is parametrized proportional to arc length if

|γ′(t)| = L for all t.

We use the parameter “s” to indicate this, i.e., γ(s), and we use the notation

γ̇(s) to be derivative of the curve parametrized proportional to arc length. Note that

this definition reduces to the arc-length parametrization when |γ′(t)| ≡ 1 for all t

(i.e., L = 1). We assume from here on that our curves are maps on I = [0, 1] that are

parametrized proportional to arc length, into the plane R2.

It is common to define the tangent indicatrix to be the unit tangent curve. This

is a curve on the unit circle in our case. We parametrize the indicatrix by θ(s), the

angle to the unit tangent vector as a function of s. This defnition allows us to include

angles greater than 2π. Hence, we define the indicatrix as following:

Definition 2.4. Let γ(s) =
(
x(s), y(s)

)
be a planar curve parametrized proportional

to arc length. The tangent indicatrix of a smooth curve γ : I → R2 is the function

θ : I → R given by γ̇(s) =
(
ẋ(s), ẏ(s)

)
= Leiθ(s) := L

(
cos
(
θ(s)

)
, sin

(
θ(s)

))
, with

θ(0) ∈ [0, 2π).
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Proposition 2.5.

1. A curve is uniquely characterized by its length L, tangent indicatrix θ(s), and

starting point γ(0) on the curve. Specifically, γ(s) = γ(0) + L
∫ s

0
eiθ(s)ds.

2. The end-point gap γ(1)− γ(0) equals L
∫ 1

0
eiθ(s)ds.

3. The signed curvature of γ(s) is κ(s) = 1
L
θ̇(s).

Proof. Part (1) follows by the fundamental theorem of calculus and definition of the

indicatrix,

γ(s) = γ(0) +

∫ s

0

γ̇(s)ds = γ(0) +

∫ s

0

Leiθ(s)ds.

For part (2), we can use part (1) to get

γ(1)− γ(0) =
(
γ(0) + L

∫ 1

0

eiθ(s)ds
)
−
(
γ(0) + L

∫ 0

0

eiθ(s)ds
)

= L

∫ 1

0

eiθ(s)ds.

It remains to prove (3). It is clear to see |γ̇| is L. Taking the cross product of γ̇ and

γ̈,

γ̇ × γ̈ = L
(

cos(θ(s)), sin(θ(s))
)
× Lθ̇

(
− sin(θ(s)), cos(θ(s))

)
=
(
L cos

(
θ(s)

)
, L sin

(
θ(s)

))
×
(
− L sin

(
θ(s)

)
θ̇, L cos

(
θ(s)

)
θ̇
)

= L2 cos2
(
θ(s)

)
θ̇(s) + L2 sin2

(
θ(s)

)
θ̇(s)

= L2θ̇(s).

Therefore,

κ(s) =
γ̇ × γ̈
‖γ̇‖3 =

L2θ̇(s)

L3
=
θ̇(s)

L
=

1

L
θ̇(s).

Now that we have some tools to work with, we can define the total squared

curvature functional.



7

Definition 2.6. Let γ be a planar curve of length L with arc length parameter `. The

total squared curvature functional is

E(γ) :=
1

2

∫ L

0

κ2(`)d`.

The length penalized total squared curvature functional is

Eλ(γ) := E(γ) + λL,

with λ some fixed positive constant.

The factor 1
2

is included to simplify the variations of E and Eλ later in this thesis.

The affine term is served as a penalty for lengthy curves (to guarantee existence in

certain cases). This is discussed later in this thesis. Using the indicatrix notation, we

can write the total squared curvature functionals as follows:

Lemma 2.7. Let γ(s) be a planar curve of length L with indicatrix θ parametrized

proportional to arc length. Then,

E(θ, L) =
1

2L

∫ 1

0

θ̇2(s) ds

and

Eλ(θ, L) = E(θ, L) + λL.

Proof. We use a change of variables to obtain our desired result. We wish to change

from the variable ` to s. Observing the maps, ` : 0 → L and s : 0 → 1, we are able

to perform the change of variables by,

` = Ls

d` = Lds.
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Therefore, together with the fact κ = 1
L
θ̇(s), we show

E(γ) =
1

2

∫ L

0

κ2(`)d` =
1

2

∫ 1

0

κ2(s)Lds

=
1

2

∫ 1

0

( 1

L
θ̇(s)

)2
Lds

=
1

2

∫ 1

0

( 1

L2
θ̇2(s)

)
Lds =

1

2L

∫ 1

0

θ̇2(s)ds

= E(θ, L).

The length penalized total squared curvature functional follows as above, with the

added term outside of the intergal being unaffected by the change of variables, yielding

Eλ(θ, L) =
1

2L

∫ 1

0

θ̇2(s) ds+ λL

= E(θ, L) + λL.



CHAPTER 3

THE VARIATIONAL PROBLEM

In this thesis we are studying variational problems connected to the bending energy

functional. In particular, we are looking for minimizers and critical points, when they

exist. These depend on certain constraints (such prescribed boundary conditions)

on the curves. The following are the particular boundary conditions that we will

investigate, in terms of the tangent indicatrix:

I Set the endpoints, γ(0) = p0 , γ(1) = p1

II Use (I) and set tangent directions, γ′(0) = v0 , γ
′(1) = v1

III Special case of (II): Closed Curves, where p0 = p1, v0 = v1

The variational problems we are considering are:

Definition 3.1.

• Minimize E and Eλ over curves with constraints above.

• Find critical points of E and Eλ over curves with constraints above.

A cautionary result is the following:

Theorem 3.2. The existence of minimizers of E(θ, L) with length free to vary for

curves does not exist except in the case of a straight line segment.

Proof. If a straight line path exists, then E(γ) = 0 and is a minimizer.

If not, then suppose there exists a point, p, such that p := γ(0) = γ(1). Informally,
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any nontrivial curve traversing a path from γ(0) to γ(1) must have nonzero energy,

in this particular case. That is to say, the energy functional, E(γ) > 0. Therefore, if

such a minimizer exists, then the functional must also be nonzero.

Consider the sequence γk(t) = k
(

cos(t), sin(t)
)

+ p− (k, 0), one loop of circles of

radius k ranging from 0 ≤ t ≤ 2π. Thus the length of each circle is 2πk = L. The

curvature of each circle is κ = 1
k
. Then,

E(γk) =
1

2

∫ 2πk

0

κ2(`)d` =
1

2

∫ 1

0

κ2(s) Lds

=
1

2L

∫ 1

0

θ̇2(s)ds =
1

2L

∫ 1

0

(
L κ(s)

)2
ds

=
1

2L

∫ 1

0

L2κ(s)2ds

=
L2

2L

∫ 1

0

1

k2
ds

=
L

2k2
=

2πk

2k2
=
π

k

As k →∞ it is clear to see E(γk) = π
k
→ 0. This is a contradiction, as our sequence

converges to a solution with zero energy. However, as indicated above, no nontrivial

curve has zero energy. Thus there is no minimizer except in the case of a straight line

segment.

A remark needs to be made. Suppose we force the sequence of ever expanding circles

through two particular points, say p0 and p1, by translation of the circles. By similar

logic, the energy functional computations would yield the same result, yielding no

minimizer for a circle forced through two particular points.

The following result is known for the length penalized functional:

Theorem 3.3. The existence of minimizers of Eλ(γ) for curves with constraints of

first or second type exists.

The proof of existence can be found in [4].



CHAPTER 4

HILBERT SPACES AND SUBMANIFOLDS OF CONSTRAINTS

Definition 4.1.

1. A nonempty set X together with a bilinear map 〈·, ·〉 : X ×X → F is an inner

product space (ips) over F if it satisfies:

• 〈x, x〉 ≥ 0 with equality iff x = 0, (positive definite)

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉, (linear)

• 〈λx, y〉 = λ〈x, y〉 for all λ ∈ R, (linear)

• 〈x, y〉 = 〈y, x〉. (Hermitian)

2. The norm on X is defined as ||x|| :=
√
〈x, x〉 .

3. A Hilbert space is a complete ips (i.e., every Cauchy sequence converges).

Lemma 4.2. Suppose that H1, . . . , Hn are Hilbert spaces with inner products 〈·, ·〉H1 , . . . , 〈·, ·〉Hn.

Then, H := H1×· · ·×Hn is a Hilbert space with inner product 〈·, ·〉H :=
∑n

i=1〈·, ·〉Hi .

Proof. It is straight forward to establish that 〈·, ·〉H is an inner product, as follows.

Let f = (f1, . . . , fn), g = (g1, . . . , gn) and h = (h1, . . . , hn) be in H. Then, we prove

the four axioms of an inner product space. We show

• 〈f, f〉H =
∑n

i=0〈fi, fi〉Hi ≥
∑n

i=0 0 = 0.

• 〈f+g, h〉H =
∑n

i=0〈fi+gi, hi〉Hi =
∑n

i=0〈fi, hi〉Hi+〈gi, hi〉Hi = 〈f, h〉H+〈g, h〉H .

• 〈λf, h〉H =
∑n

i=0〈λfi, hi〉Hi =
∑n

i=0 λ〈fi, hi〉Hi = λ
∑n

i=0〈fi, hi〉Hi = λ〈f, h〉H .

• 〈f, g〉H =
∑n

i=0〈fi, gi〉Hi =
∑n

i=0 〈gi, fi〉Hi =
∑n

i=0〈gi, fi〉Hi = 〈g, f〉H .
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The first axiom yields equality if and only if f ≡ 0. It remains to show H is complete.

Now, suppose {fk = (fk1 , . . . , f
k
n) : k = 1, 2, . . .} is a Cauchy sequence in H. This

implies {fki } are Cauchy in the Hi, for i = 1 : n. Since Hi are Hilbert spaces, they

are complete by definition. Therefore, for each i, ∃fi ∈ Hi such that, on passing to a

subsequence, we may assume limk→∞ f
k
i → fi. This immediately implies

fk → f := (f1, . . . , fn) ∈ H.

Therefore, we have shown for an arbitrary Cauchy sequences we can extract a con-

vergence subsequence. Therefore, H is complete.

The following are well-known:

Theorem 4.3.

1. Parallelogram Law: ||x+ y||2 + ||x− y||2 = 2(||x||2 + ||y||2).

2. Cauchy-Schwarz: |〈x, y〉| ≤ ||x|| ||y||.

3. (Riesz Representation) For every bounded linear functional λ on a Hilbert Space

H, there is a unique z ∈ H such that λ(x) = 〈x, z〉 for all x ∈ H. Moreover,

||λ|| = ||z||.

Now, in our thesis we require θ̇ ∈ L2(0, 1). This is simply due to the fact the

signed curvature κ of γ is given κ(s) = θ̇
L

. The energy functional can we written

using this subsitution as Eλ(γ) = 1
2L

∫ 1

0
θ̇(s)2 + λL. Thus, the largest possible space

for Eλ(γ) is the space of all absolutely continuious functions with Lebesgue square

integrable derivatives (L2(0, 1)) and the set of positive reals (λ ∈ R+). We formally

define these spaces below. Let

• H := {γ : [0, 1]→ R2, γ abs. cont and
∫ 1

0
θ̇2(s)ds <∞}.
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• Hλ := {(θ, L) ∈ H × R}.

• Λ : H × R+ → C : (θ, L) 7→ L
∫ 1

0
eiθ(s)ds− (γ(1)− γ(0))

The functional E(γ) is defined on H. The functional Eλ(γ) is defined on H ×

R+ = Hλ.



CHAPTER 5

CALCULUS OF VARIATIONS

In elementary calculus, we learn to take the derivative of functions of one or more real

variables, and show how to identify the extrema (minima and maxima) of functions,

and critical points. Suppose now that we have a function over objects other than real

variables, such as curves. The calculus of variations tells us how to identify critical

points and min/max of such functions (or better, functionals).

To understand how the calculus of variations works, we first need the concept of

a directional derivative. Let F : f 7→ R be a (smooth) functional on functions in a

linear vector space. Then, the directional derivative of F at f in the direction v is

DvF (f) :=
d

dα

∣∣∣
α=0

F (f + αv).

The variations v are themselves functions in the vector space (since the vector space is

linear). In general, when the varations are over a set (surface, manifold) of functions

S, then the variations v are functions in the tangent space to S at f .

The space H is a Hilbert space, as is the cross product Hλ = H × R. For our

application we need the variationals of the functionals

E(θ, L) =
1

2L

∫ 1

0

θ̇2(s) ds

Eλ(θ, L) = E(θ) + λL.

Let

Φ : H × R+ → R2 : (θ, L) 7→ L

∫
I

eiθ(s) =
(
L

∫
cos θ(s)ds, L

∫
sin θ(s)ds

)
Λ : H × R+ → R : (θ, L) 7→ L

∫
I

(
α1 cos θ(s) + α2 sin θ(s)ds

)
= α1a+ α2b.

for some α1, α2 ∈ R+. Then, both constraints I and II require Φ(θ, L) = (a, b) for

fixed end points. The second constraint requires fixed tangents as well.
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Proposition 5.1. Let (vθ, vL) be an admissible (linear) variation for the functionals

E(θ, L) and Eλ(θ, L) in the space of the constraints. Then,

D(vθ,vL)E(θ, L) =
1

L

∫
I

θ̇(s)v̇θ(s)ds−
vL

2L2

∫
I

θ̇(s)2ds,

D(vθ,vL)Eλ(θ, L) = D(vθ,vL)E(θ, L) + λvL,

D(vθ,vL)Φ(θ, L) =

∫
I

(vL + iLvθ(s))e
iθ(s)ds

= (

∫
I

(vL cos θ(s)− vθ(s)L sin θ(s))ds,

∫
I

(vL sin θ(s) + vθ(s)L cos θ(s))ds

D(vθ,vL)Λ(θ, L) = vL
α1a

L
+ vL

α2b

L
+ L

∫
I

(−α1 sin θ(s)vθ(s) + α2 cos θ(s)vθ(s))ds.

Proof. Let (vθ, vL) be a variation in H × R, the tangent space to H × R+. The

directional derivative of Eλ at (θ, L) in the direction (vθ, vL) is:

D(vθ,vL)Eλ(θ, L) =
d

dα

∣∣∣
α=0

Eλ(θ + αvθ, L+ αvL)

=
d

dα

∣∣∣
α=0

1

2(L+ αvL)

∫
I

(θ̇ + αv̇θ)
2ds+ λ(L+ αvL)

=
( 1

2(L+ αvL)

∫
I

2(θ̇ + αv̇θ)v̇θ ds

− vL
2(L+ αvL)2

∫
I

(θ̇ + αv̇θ)
2 ds+ λvL

)∣∣∣
α=0

=
1

L

∫
I

θ̇(s)v̇θ(s)ds−
vL

2L2

∫
I

θ̇(s)2ds+ λvL.

The directional derivative of E(θ, L) is the same without the last term.

For Φ, the directional derivative in the direction of (vθ, vL) is

D(vθ,vL)Φ(θ, L) =
d

dα

∣∣∣
α=0

Φ(θ + αvθ, L+ αvL)

=
d

dα

∣∣∣
α=0

(L+ αvL)

∫
I

ei(θ(s)+αvθ(s))ds

=
(
vL

∫
I

ei(θ(s)+αvθ(s))ds+ (L+ αvL)

∫
I

ivθ(s)e
i(θ(s)+αvθ(s))ds

)∣∣∣
α=0

= vL

∫
I

eiθ(s)ds+ iL

∫
I

vθ(s)e
iθ(s)ds

=

∫
I

(vL + iLvθ(s))e
iθ(s)ds.
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Then, with eiθ(s) = cos θ(s) + i sin θ(s), we get

D(vθ,vL)Φ(θ, L) =

∫
I

(vL + iLvθ(s))(cos θ(s) + i sin θ(s))

=

∫
I

(vL cos θ(s)− vθ(s)L sin θ(s)) + i(vL sin θ(s) + vθ(s)L cos θ(s))ds.

This gives the stated result.

Finally, we find the directional derivative of Λ in the direction of (vθ, vL) yields,

D(vθ,vL)Λ(θ, L) =
d

dβ

∣∣∣
β=0

Λ(θ + βvθ, L+ βvL)

=
d

dβ

∣∣∣
β=0

(L+ βvL)

∫
I

α1 cos(θ + βvθ) + α2 sin(θ + βvθ)ds

= vL

∫
I

(α1 cos(θ) + α2 sin(θ))ds+ L

∫
I

(−α1sin(θ)vθ + α2 cos(θ)vθ)ds

= vL
α1a

L
+ vL

α2b

L
+ L

∫
I

(−α1 sin θ(s)vθ(s) + α2 cos θ(s)vθ(s))ds.

The connection between the functions Φ and Λ is as follows:

Lemma 5.2. If Φ(θ, L) = (a, b), then D(vθ,vL)Φ(θ, L) = 0 if and only if D(vθ,vL)Λ(θ, L) =

0 for all α1 , α2 ∈ R.

Proof. From above,

D(vθ,vL)Φ(θ, L) = (

∫
I

(vL cos θ(s)− vθ(s)L sin θ(s))ds,

∫
I

(vL sin θ(s) + vθ(s)L cos θ(s))ds

D(vθ,vL)Λ(θ, L) = vL
α1a

L
+ vL

α2b

L
+ L

∫
I

(−α1 sin θ(s)vθ(s) + α2 cos θ(s)vθ(s))ds.

We show “⇒ ”. We use our assumption D(vθ,vL)Φ(θ, L) = 0, which implies

vLa

L
= L

∫
I

sin(θ)ds

vLb

L
= −L

∫
I

cos(θ)ds.
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Hence,

D(vθ,vL)Λ(θ, L) = vL
α1a

L
+ vL

α2b

L
− vL

α1a

L
− vL

α2b

L

=
vL
L

(
α1a+ α2b− α1a− α2b

)
= 0

Now we show “⇐ ”. Suppose D(vθ,vL)Λ(θ, L) = 0 ∀α1, α2 ∈ R+. Then,

D(vθ,vL)Λ(θ, L) = vL
α1a

L
+ vL

α2b

L
+ L

∫
I

(−α1 sin(θ)vθ + α2 cos(θ)vθ)ds = 0.

Let α1 = 1 , α2 = 0. Then,

vLa

L
− L

∫
I

sin(θ)vθds = 0.

Let α1 = 0 , α2 = 1. Then,

vLb

L
+ L

∫
I

cos(θ)vθds = 0.

These statements yield that D(vθ,vL)Φ(θ, L) = 0.

We require a theorem to gain more information regarding the surjectivity of

functionals. Recall from chapter 5

Φ(θ, L) : H × R+ → R2 : (θ, L) 7→ (L

∫
cos(θ)ds, L

∫
sin(θ)ds),

and that

DΦ(θ, L) : H × R+ → R2 : (vθ, vL)

7→ (vL

∫
cos θ(s)ds− L

∫
sin θ(s)vθds, vL

∫
sin θ(s)ds+ L

∫
cos θ(s)vθds).

Theorem 5.3. (Submersion Theorem) Suppose that for all (θ, L) ∈ M := Φ−1(a, b)

the map DΦ(θ, L) : H × R+ → R2 is onto. Then, the set M is a closed submanifold

with tangent space T(θ,L)M = kerDΦ(θ, L).
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Lemma 5.4. M := Φ−1(a, b) is a closed submanifold with tangent space T(θ,L)M =

kerDΦ(θ, L).

Proof. Let (θ, L) ∈ Φ−1(a, b). Assume boundary case I. We aim to show DΦ(θ, L) is

onto.

Let (z1, z2) ∈ R2. We need to find a vθ, vL such that

DΦ(θ, L) =

z1

z2

 .

That is, we have

vLa

L
− L

∫
I

vθ sin(θ(s))ds = z1

vLb

L
+ L

∫
I

vθ cos(θ(s))ds = z2

We need to fine a vθ such that∫
I

vθ sin(θ(s))ds = u1∫
I

vθ cos(θ(s))ds = u2

To find how to choose these vθ see Linners work in [8].

Lemma 5.5. ∇Λ(θ, L)⊥T(θ,L)M for all α1 , α2.

This is shown in [8] as well.



CHAPTER 6

GRADIENTS

Now, suppose that F (γ) = ||γ||2 = 〈γ, γ〉 in an inner product space. Then,

DvF (f) =
d

dα

∣∣∣
α=0
〈γ + αv, γ + αv〉 = 2〈v, γ〉.

This is the Euler-Lagrange equation.

Moreover, this can be written

DvF (f) = 2〈v, γ〉 = 〈∇F (f), v〉

for some gradient∇F (f). That is∇F (f) is a representation for the derivative DF (f).

By the Riesz Representation Theorem, any linear functional on the inner product

space can be represented by such a gradient.

For our problem, we identify an inner product on H × R by

〈(wθ, wL) , (vθ, vL)〉 = vθ (0)wθ (0) +
∫
I
v̇θẇθ + vLwL.

We then define the gradient of a real valued function F defined on an inner

product space by

〈∇F (x) , v〉 = DvF (x).

Thus, if we can find DEλ (γ) then we can find a representer for the gradient of Eλ.

That is, recall that if F : X → R is a functional on a Reimannian Manifold then the

gradient ∇F (x) is defined using the Reisz representation theorem ([7]). That is,

DvF (x) = 〈∇F (x), v〉 ∀x ∈ TxX.

Lemma 6.1. The duBois-Reymond lemma states if f : I → R is continuous and∫
I
f(s)v̇(s)ds = 0 ∀v : I → R such that v̇ is continuous and v(0) = v(1) = 0, then f

is constant.
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Proposition 6.2. The gradient of D(vθ,vL)Eλ in H × R is

∇Eλ (vθ, vL) =
( 1

L
θ(s) + Cs+D,λ− 1

2L2

∫
I

θ̇2
)
.

For boundary case I we have,

C = 0

D =
−1

L
θ(0).

For boundary case II we have,

C =
1

L

(
θ(1)− θ(0)

)
D =

−1

L
θ(0).

Proof. Let (vθ, vL) be a variation in H×R, the tangent space to H×R+. Recall that

the directional derivative of Eλ at (θ, L) in the direction (vθ, vL) is:

D(vθ,vL)Eλ(θ, L) =
1

L

∫
I

θ̇(s)v̇θ(s)ds−
( 1

2L2

∫
I

θ̇(s)2ds+ λ
)
vL.

From here it is clear to see wL = λ− 1
2L2

∫
I
(θ̇)2.

Now if we look in the direction of (vθ, 0) ∈ H × R and use the inner product on

Hλ where ∇Eλ = (wθ, wL) we find,∫
I

ẇθ(s)v̇(s)ds+ wθ(0)vθ(0) =
1

L

∫
I

θ̇(s)v̇θds.

Assume v̇ is continuous and vθ(0) = vθ(1) = 0. We perform computations on the
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above, then apply the duBois-Reymond lemma followed by integration, yielding∫
I

ẇθ(s)v̇θ(s)ds+ wθ(0)vθ(0) =
1

L

∫
I

θ̇(s)v̇θds∫
I

(ẇθ(s)−
θ̇(s)

L
)v̇θ(s)ds = 0

⇒ẇθ(s)−
θ̇(s)

L
= C by lemma

⇒wθ(s)−
θ(s)

L
= Cs+D by integration

wθ(s) =
θ(s)

L
+ Cs+D,

where C,D ∈ R.

Thus, we have shown ∇Eλ(θ, L) = (wθ, wL). We know use the inner product once

again to show ∫
I

( θ̇(s)
L

+ C
)
v̇θ(s)ds+ wθ(0)vθ(0) =

1

L

∫
I

θ̇(s)v̇θ(s)ds

C

∫
I

v̇θ(s)ds+ wθ(0)vθ(0) = 0

C(vθ(1)− vθ(0)) + wθ(0)vθ(0) = 0

C(vθ(1)− vθ(0)) +
(θ(0)

L
+D)vθ(0) = 0

Now by choosing vθ consistent with the various boundary conditions we can determine

the constants C,D. We solve for boundary condition (I), where the endpoints are

fixed, that is γ(0) = p0, γ(1) = p1. Then vθ(0) 6= 0 yields

wθ = C(vθ(1)− vθ(0)) +
(θ(0)

L
+D)vθ(0) = 0,

which forces D = −θ(0)
L
, C = 0. resulting in wθ = 1

L

(
θ(s)−θ(0)

)
for the first boundary

case.

In the second case, the tangent directions are given γ̇(0) = v0 , γ̇(1) = v1 as well

as case (I). Then we have,

wθ = C(vθ(1)− vθ(0)) +
(θ(0)

L
+D)vθ(0) = 0,
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with vθ(0) = θ(0) , vθ(1) = θ(1) which forces D = −θ(0)
L

, C = 1
L

(
θ(1)− θ(0)

)
. Thus

we have wθ = 1
L

(θ(s)− Cs− θ(0)).

Proposition 6.3. The gradient of D(vθ,vL)Λ(θ, L) in H ×R is the following for each

boundary case:

I ∇Λ(θ, L) =
(
A(s) +

(
α2a− α1b)

(
s+ 1

)
, 1
L

(
α1a+ α2

))

II ∇Λ(θ, L) =
(
A(s)− A(1)s, 1

L

(
α1a+ α2b

))
where

A(s) =

∫ s

0

(
α1

(
y(t)− y(0)

)
− α2

(
x(t)− x(0)

))
dt.

Proof. Let (vθ, vL) be a variation in H×R, the tangent space to H×R+. Recall that

the directional derivative of Λ at (θ, L) in the direction (vθ, vL) is:

D(vθ,vL)Λ(θ, L) = vL
α1a

L
+ vL

α2b

L
+ L

∫
I

(−α1 sin θ(s)vθ(s) + α2 cos θ(s)vθ(s))ds.

=
vL
L

(α1a+ α2b) + L

∫
I

(−α1 sin(θ(s)) + α2 cos(θ(s))vθds

=
vL
L

(α1a+ α2b) + vθ(1)(α2a− α1b)

+

∫
I

(
α1(y(s)− y(0))− α2(x(s)− x(0))

)
v̇θds.

It is clear to see βL = 1
L

(α1a+ α2b).

Now if we look in the direction of (vθ, 0) ∈ H × R and use the inner product on

Hλ where ∇Λ = (βθ, βL) we find,∫
I

β̇θ(s)v̇θ(s)ds+βθ(0)vθ(0) = vθ(1)(α2a−α1b)+

∫
I

(
α1(y(s)−y(0))−α2(x(s)−x(0))

)
v̇θds.
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Now assume v̇θ is continuous and vθ(0) = vθ(1) = 0 and apply the duBois-

Reymond lemma and integration to yield, with Y, Z ∈ R,∫
I

β̇θ(s)v̇θ(s)ds+ βθ(0)vθ(0) = vθ(1)(α2a− α1b) +

∫
I

(
α1(y(s)− y(0))− α2(x(s)− x(0))

)
v̇θds.∫

I

(β̇θ(s)− A(s))v̇θds = 0

β̇θ − A(s) = Y by lemma

βθ = A(s) + Y s+ Z by integration

Thus we have shown ∇Λ(θ, L) = (βθ, βL). We now use the different boundary

conditions and the equations defining the gradients to find,∫
I

(
A(s) + Y

)
v̇θds+ βθ(0)vθ(0) = vθ(1)(α2a− α1b)− A(s)

Y

∫
I

v̇θ(s)ds+ βθ(0)vθ(0) = vθ(1)(α2a− α1b)

Y (vθ(1)− vθ(0)) + βθ(0)vθ(0)− vθ(1)(α2a− α1b) = 0

Y (vθ(1)− vθ(0)) + Zvθ(0)− vθ(1)(α2a− α1b) = 0

Now we choose vθ consistent with the various boundary conditions to find for condition

I, with vθ(0) = 0, vθ(1) 6= 0,

Y (vθ(1)− vθ(0)) + Zvθ(0)− vθ(1)(α2a− α1b) = 0

With the above conditions, this forces Y = (α2a − α1b). Allowing vθ(0) 6= 0 yields

Z = Y.

For boundary case II, the tangent directions are given at the end points. That

is θ(0) = θ0, θ(1) = θ1. Assume βθ(0) = 0 which forces Z = 0 naturally. Assuming

βθ(1) = 0 = A(1)+Y +Z yields Y = −A(1) since Z = 0. We now have the coefficents

of βθ for our boundary cases. Thus we have found ∇Λ = (βθ, βL).
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We now turn to find the tangential part of ∇Eλ. There is a unique (α1 , α2) such

that ∇Eλ − ∇Λ is tangent which lies in the kernel of DΦ. [8] The equation is as

follows ∫
I

βθ(s)γ̇(s)ds+
βL
L

(b,−a) =

∫
I

wθ(s)γ̇(s)ds+
wL
L

(b,−a).

We now establish the following result:

Lemma 6.4. The pair α := (α1, α2) satisfies a linear system Aα = B, with fixed

length,

A =

∫I cy(s) cos(θ(s))ds −
∫
I
cx(s) cos(θ(s))ds∫

I
cy(s) sin(θ(s))ds −

∫
I
cx(s) sin(θ(s))ds

 and B =

∫I cth(s) cos(θ(s))ds∫
I
cth(s) sin(θ(s))ds

 .
For boundary conditions I, we have the entries

cx(s) =

∫ s

0

(x(t)− x(0)dt + b(s+ 1)

cy(s) =

∫ s

0

(y(t)− y(0)dt + a(s+ 1)

cth(s) = θ(s)− θ(0)

For boundary conditions II, we have the entries

cx(s) =

∫ s

0

(x(t)− x(0))dt− s
∫
I

(x(t)− x(0))dt

cy(s) =

∫ s

0

(y(t)− y(0))dt− s
∫
I

(y(t)− y(0))dt

cth(s) = θ(s)− (θ1 − θ0)s− θ0

The pair α := (α1, α2) satisfies a linear system ALα = BL, with variable length,

AL = A+
1

L2

 ab b2

−a2 −ab

 and BL = B +

 bλ
L
− b

2L3

∫
I
θ̇2(s)ds

aλ
L
− a

2L3

∫
I
θ̇2(s)ds

 .
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Proof. The (wθ, wL) and (βθ, βL) vary from boundary case to boundary case. We use

the (wθ, wL) from the proof of ∇Eλ found earlier in this chapter. Moreover, using the

first boundary condition we find ∇Λ(θ, L) = (βθ, βL) where,

βL =
1

L
(α1a+ α2b)

βθ = A(s) + (α1a− α2b)(s+ 1)

where A(s) =
∫ s

0

(
α1

(
y(t)− y(0)

)
− α2

(
x(t)− x(0)

))
dt.

This can be shown from the following equation,∫
I

βθ(s)γ
′(s)ds+

βL
L

(b,−a) =

∫
I

wθ(s)γ
′(s)ds+

wL
L

(b,−a).

We take

∫
I

βθ(s)γ
′(s)ds =

∫
I

[
α1

∫ s

0

(y(t)− y(0)dt− α2

∫ 2

0

(x(t)− x(0))dt

+ α1a(s+ 1)− α2b(s+ 1)
](
L cos(θ(s)), L sin(θ(s))

)
ds

= α1L

∫
I

[ ∫ s

0

(y(t)− y(0))dt + a(s+ 1)
](

cos(θ(s)), sin(θ(s))
)
ds

− α2L

∫
I

[ ∫ s

0

(x(t)− x(0))dt + b(s+ 1)
](

cos(θ(s), sin(θ(s))
)
ds

∫
I

wθ(s)γ
′(s)ds =

∫
I

1

L

(
θ(s)− θ(0)

)(
L cos(θ(s)), L sin(θ(s))

)
ds

=

∫
I

(
θ(s)− θ(0)

)(
cos(θ(s)), sin(θ(s))

)
ds

βL
L

(b,−a) =
1
L

(α1a+ α2b)

L
(b,−a)

= α1
ab− a2

L2
+ α2

b2 − ab
L2
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wL
L

(b,−a) =
1

L
(λ− 1

2L

∫
I

θ̇2(s)ds)(b,−a)

= (
bλ

L
,
−aλ
L

)− 1

2L3

∫
I

θ̇2(s)ds(b,−a)

Representing the above as a matrix equation yields the result. The second bound-

ary case is found using the (βθ, βL), (wθ, wL) appropirate for case II. The details are

omitted, however are quite similar to case I, with the difference shown in the presen-

tation of the lemma.



CHAPTER 7

MINIMAX THEORY AND THE PALAIS-SMALE CONDITION

In this section we show how minimax theory can be used to identify critical points

(non-min/max) of functionals, and how to establish a gradient flow for these critical

points. For this, the main tool needed is the Palais Smale condition. When this

condition holds, we can show that saddle points exists. To do so, we will apply the

mountain pass theorem of Rabinowitz-Ambrosetti. The Palais-Smale Condition

is a compactness condition. We formulate the condition in terms relating to the vari-

ational problem. We follow Linnér in [7].

Definition 7.1. A sequence {xn} is a Palais-Smale sequence if ∀ f(x), f(xn) are

uniformly bounded below and ||∇f(xn)|| → 0.

We say f satisfies the Palais-Smale condition if any Palais-Smale sequence has a

convergent subsequence.

Definition 7.2. Let Λ : X → [0,∞) be a smooth nonlinear functional on a complete

Hilbert manifold X. (Any Hilbert space H is a Hilbert manifold.) Let {xn} be a Palais-

Smale sequence. Then, the Palais-Smale Condition is satisfied if it is always true

the sequence {xn} always has a convergent subsequence.

The condition is known to be satisfied, in the context of curve-straightening,

if the domain X consists of curves of fixed length, or by adding a term to include

variable length. In both cases, the gradients converge to critical points.[7] Examples

of these are the functionals introduced in Chapter 2. Global minimizers exists in both

of these cases.

We demonstrate two examples in order to better under stand the condition.
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Example: Show that f(x) = 1
x

does NOT satisfy the Palais-Smale condition, and

that there is no minimizer.

Suppose {xn} is a Palais-Smale sequence, that is, f(xn) is uniformly bounded below

and ||∇f(xn)|| → 0. Then,

∇f(xn) = ∇ 1

xn
= − 1

x2
n

→ 0.

For the above to hold, it must be true {xn} → ∞. Thus {xn} has no convergent sub-

sequence. Therefore f(x) = 1
x

fails to satisfy the Palais-Smale condition. Therefore,

no minimizer exists.
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Now, we show an example that satisfies the Palais-Smale condition. Let g(x) =

x+ 1
x
. The graph of this function is shown below.

Similarly to the previous example, suppose g(xn) is bounded below uniformly

and let ||∇g(xn)|| → 0. Then we have

lim
n→∞

∇g(x) = 0

lim
n→∞

∇
(
x+

1

x

)
= 0

lim
n→∞

(
1− 1

x2
n

)
= 0

⇒ lim
n→∞

1

x2
n

= 1

lim
n→∞

x2
n = 1

lim
n→∞

xn = 1

Thus, by any reordering of the {xn} we have a convergent subsequence. Thus, for

any Palais-Smale sequence, g(x) satisfies the Palais-Smale Condition.
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The Palais-Smale condition is an important compactness condition. If we have

such a Palais-Smale sequence, one that attains a maximum or a minimum, it con-

verges. This allows us to travel in tragectories along the gradient. In our case we use

steepest decent, so we travel in the negative gradient direction. Secondly, that the

minimax actually yields a critical value of f .

For the functional Eλ(θ, L), Linnér has established the following result:

Proposition 7.3. ([7], Proposition 3.2) Let S be one of our constraint manifolds.

Suppose that (θn, Ln) is a sequence in S such that both Eλ(θn, Ln) and Ln are bounded.

Assume that ∇Eλ(θn, Ln) converges in H×R, but not necessarily to zero. Then there

is a subsequence of (θn, Ln) which converges in S. In particular, it follows that if the

lenth is bounded then the Palais-Smale condition is satisfied.

Now that we have an understanding of the Palais-Smale Condition, we can in-

troduce the mountain pass theorem. A powerful theorem regarding crictical points.

Definition 7.4. For some Λ ∈ H, the Mountain Pass Theorem assumes the

following,

1. Λ : H → R, H a Hilbert space

2. Λ ∈ C1(H,R) and Λ′ is lipschitz continuous on bounded subsets of H

3. Λ satisfies the Palais-Smale condition

4. ∃ r, a ∈ R+ such that Λ[x] ≥ a if ||x|| = r

5. ∃v ∈ H with ||v|| > r such that Λ[v] ≤ 0

If the above holds, then we define a set Γ = {g ∈ C[0, 1] : g(0) = 0, g(1) = v} and

let

c = inf
g∈Γ

max
0≤t≤1

Λ[g(t)],
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then the theorem yields that c is a critical value of Λ.

Using a minimax theorem (not the mountain pass theorem), it was shown in [5]

that there exist (unstable) critical points of saddle point type for Eλ. An example of

this is provided in the final chapter of this thesis.

We now provide a conjecture regarding the evolution of elastic curves and the

rotation number of the intital curve.

Definition 7.5. The rotation index, k, of a closed curve in the plane is an integer

representing the total number of times that curve travels in complete counterclockwise

rotations.

The total curvature fuctional is defined to be TK(γ) =
∫ b
a
κ(`)d`.

Lemma 7.6. Where k is the rotation index of a curve γ, we have the following,

TK(γ) =

∫ b

a

κ(s)ds = 2πk.

Proof. We have ` : 0→ L where L is the length of the curve and s : 0→ 1. Thus we

have ` = Ls and d` = Lds. Thus, together with the fact κ(s) = θ̇(s)
L
, we have

TK(γ) =

∫ L

0

κ(`)d` =

∫ 1

0

κ(s)Lds

=

∫ 1

0

θ̇(s)

L
Lds

=

∫ 1

0

θ̇(s)ds

= θ(1)− θ(0) = 2πk

Lemma 7.7 (Conjecture). Let γ be a smooth, regular, closed curve over the functional

E or Eλ with rotation index k. Then, the curve will evolve to,
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(a) A single cover of figure 8 with k = 0 (when stable)

(b) k coverings of a circle when k 6= 0.

Note the rotation number of the original curve has its orientation preserved over

the evolution. Examples of this can be found in chapter 9. These examples allow the

reader to clearly see the conjecture demonstrated.



CHAPTER 8

COMPUTATION OF ELASTIC CURVES

To compute the minimizers (or more generally, the critical points) we evolve the curve

in the direction of steepest descent. This is the so-called negative gradient flow. It

is therefore important to know that if one evolves in the direction of the negative

gradient, then the adherent points exist. This is established by the Palais-Smale

condition for Eλ(θ, L), as discussed in the previous chapter, which was proved in [7].

The variables are the tangent indicatrix θ(s) and the length L. In Section 6 we

computed that gradients ∇Eλ(θ, L) = (wθ, wL) and ∇Λ(θ, L) = (βθ, βL) of the energy

functionals. This gives the steepest descent step

θ(s) = θ(s) + h(βθ(s)− wθ(s))

L = L+ h(βL − wL),

were h is a step length along which to evolve our curve. In practice, the step length

is set to h = 1, and reduced as needed for each curve we are evolving. This steepest

descent is equivalent to taking an Euler step for the differential equation along a

trajectory. I.e., if θu and Lu depend on the parameter u along the trajectory, then dθu
du

(s)

dLu
du

(s)

 = h
(
∇Λu(θu, Lu)(s)−∇Eλ(θu, Lu)(s)

)

In the future, we may consider adaptive step lengths h, and apply Runge-Kutta’s

method for solving initial value problems.

Due to the Palais-Smale condition, the gradient descent method will produce

critical points (the limits exist) in our infinite dimensional Hilbert Spaces. Unfortu-

nately, curves in an infinite dimensional space are not really computatable, except in

some simple cases when characterizations happen to reduce to something simple. Our
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strategy is therefore to discretize the problem. To do so, we evaluate the initial curve

γ(s) and it’s indicatrix θ(s) at a large number of points (refinement). This gives us

x(si), y(si) and θ(si) at these points si. We then approximate the derivatives by finite

differences (we use a non-uniform central difference). and the integrals by numerical

integration (currently, we use Matlab’s built-in functions trapz() and cumtrapz()).

The Matlab code for solving this includes the following functions m-files1.

%Sample script to evolve a curve (the figure 8 with loop):
clf, clear all, format compact, hold off
ax = [-.5 3.5 -1.5 1.5];
bx1=[0 0 1 2 2]; bx2=[2 2 1.5 1.5 2 2]; bx3 = [2 2 1 0 0];
by1=[0 -1 0 1 0]; by2=[0 -.5 -.5 .5 .5 0]; by3 = [0 -1 0 1 0];
t = linspace(0,1,2000); x1 = bval(bx1,t,0); y1 = bval(by1,t,0);
t = linspace(0,1,2000); x2 = bval(bx2,t,0); y2 = bval(by2,t,0);
t = linspace(0,1,2001); x3 = bval(bx3,t,0); y3 = bval(by3,t,0);
x = [x1, x2(2:end-1), x3(1:end)];
y = [y1, y2(2:end-1), y3(1:end)];
t = linspace(0,1,length(x));
len=1; %variable length
type=3; %closed curve
lambda = 1;
p = [x(1), y(1)];
hh = geth(t);
[t,th,L,x,y] = reparametrize (t,hh,x,y);
hh = geth(t);
a = x(end)-x(1);
b = y(end)-y(1);
subplot(121); plot(x,y,’r’); axis square, axis equal, axis off
inc = .25; %Euler Step
for i=2:500
[th,L,x,y] = evolve(t,hh,th,L,lambda,p,a,b,inc,len,type);

end
subplot(122); plot(x,y,’r’); axis square, axis equal, axis off

function [x,y] = evalcurve(t,th,L,p)
x = p(1) + L*cumtrapz(t,cos(th));
y = p(2) + L*cumtrapz(t,sin(th));

1The Matlab code is the intellectual property of Scott Kersey
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function lmda = getlambda(t,hh,th,dth,x,y,a,b,L,lambda,len,type)
% len==0 fixed length, len ~= 0, variable length
% type==1 (fixed end points)
% type==2 (fixed end points and tangents)
% type==3 (closed with fixed end points and tangents)
A = []; B=[];
switch type
case 1
ctx = cumtrapz(t,x-x(1)) + a*(t+1);
cty = cumtrapz(t,y-y(1)) + b*(t+1);
tth = th-th(1);

case 2
case 3
ctx = cumtrapz(t,x-x(1))-t*trapz(t,x-x(1));
cty = cumtrapz(t,y-y(1))-t*trapz(t,y-y(1));
tth = th-t*(th(end)-th(1))-th(1);

end
A(1,1) = L*trapz(t,cty.*cos(th));
A(1,2) = -L*trapz(t,ctx.*cos(th));
A(2,1) = L*trapz(t,cty.*sin(th));
A(2,2) = -L*trapz(t,ctx.*sin(th));
B(1) = trapz(t,tth.*cos(th));
B(2) = trapz(t,tth.*sin(th));

if len ~= 0
A(1,1) = A(1,1) + a*b/L^2; A(1,2) = A(1,2) + b^2/L^2;
A(2,1) = A(2,1) - a^2/L^2; A(2,2) = A(2,2) - a*b/L^2;
B(1) = B(1) + lambda*b/L - b*trapz(t,dth.^2)/(2*L^3);
B(2) = B(2) - lambda*a/L + a*trapz(t,dth.^2)/(2*L^3);

end
lmda = A \ B’;
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function [t,th,L,x,y] = reparametrize (t,hh,x,y)
dx = diff(x); dy = diff(y);
L = sum(sqrt(dx.*dx + dy.*dy)); %get length
t = cumtrapz(t,[0,sqrt(dx.*dx + dy.*dy)]); t = t/t(end);
ddx = []; ddy = [];
ddx(1) = dx(1); ddy(1) = dy(1);
h = diff(t);
for i=2:length(t)-1
ddx(i) = (h(i)*dx(i-1) + h(i-1)*dx(i)) / (h(i)+h(i-1));
ddy(i) = (h(i)*dy(i-1) + h(i-1)*dy(i)) / (h(i)+h(i-1));

end
ddx(1) = (h(1)*dx(end)+h(end)*dx(1))/(h(1)+h(end));
ddy(1) = (h(1)*dy(end)+h(end)*dy(1))/(h(1)+h(end));
ddx(end+1) = dx(1); ddy(end+1) = dy(1);
dx = ddx; dy = ddy;
th = atan2(dy,dx);
dth = th(2:end)-th(1:end-1);
idth = find(abs(dth) > pi/2);
for i=1:length(idth)
k = idth(i);
if th(k)>0 dth(k) = th(k) + th(k+1);
else dth(k) = -th(k) - th(k+1); end

end
th = [th(1), th(1) + cumsum(dth)];
[x,y] = evalcurve(t,hh,th,L,[x(1), y(1)]);
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function [th,L,x,y] = evolve(t,hh,th,L,lambda,p,a,b,inc,len,type)
%len == 0 for fixed length, otherwise variable length
[x,y] = evalcurve(t,hh,th,L,p);
dth = diff(th)./diff(t);
dth = [dth(1), (dth(1:end-1) + dth(2:end))/2, dth(end)];
lmda = getlambda(t,hh,th,dth,x,y,a,b,L,lambda,len,type);
A = lmda(1)*cumtrapz(t,y-y(1)) ...

- lmda(2)*cumtrapz(t,x-x(1));
switch type
case 1
alphaTh = (th - th(1))/L;
betaTh = A + (lmda(1)*b-lmda(2)*a)*(t+1);

case 3
alphaTh = (th -(th(end)-th(1))*t- th(1))/L;
betaTh = A - A(end)*t;

end
Dth = betaTh - alphaTh;
th = th + Dth*inc;
if len ~= 0
alphaL = lambda - trapz(t,dth.^2) / (2*L^2);
betaL = (lmda(1)*a + lmda(2)*b)/L;
DL = betaL-alphaL;
L = L + DL*inc;

end
[x,y] = evalcurve(t,hh,th,L,p);



CHAPTER 9

EXAMPLES

The circle is a stable critical point for Eλ(θ, L) with free length. As λ is increased,

more penalty is placed on the length component of the functional, and the circle is

correspondingly smaller. In this example, a distorted ellipse is shown to evolve to a

circle. The examples also show the effect of increasing λ.

It is known (see [5]) that the multiple coverings of the ‘figure eight’ (leminiscate)

are unstable critical points for E(θ, L) with fixed length, while one covering is stable.

In Figure 9.4, the original curve is a slighty deformed double cover of the leminiscate,

which evolves to a single cover of the leminiscate, i.e., a stable configuration.

In Figure 9.1 we have a Polynomial curve in B-form, fixed length. The curve

attains what is similar to a section of a circle. In Figure 9.2 a deformed ellipse

of fixed length is evolved. Note the conjecture is satisfied in this example, almost

trivially. A variable length case is shown in Figure 9.3. Figure 9.5 is to confirm the

conjecture for k = 0. Figures 9.6 and 9.7 are shown to validate the conjecture. The

image in Figure 9.8 is a figure eight shape with an extra loop inside the curve. In

Figure 9.9 we have a double loop. These curves evolve into the stable curves predicted

by the conjecture.
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Figure 9.1: Polynomial Curve in B-form, Fixed Length
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Figure 9.2: Deformed Ellipse, Fixed Length
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Figure 9.3: Deformed Ellipse, Variable Length
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Figure 9.4: Double Figure Eight, Fixed Length

Figure 9.5: Figure Eight
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Figure 9.6: Triple Loop Figure Eight

Figure 9.7: Quad Loop Figure Eight
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Figure 9.8: Figure Eight With Loop
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Figure 9.9: Figure Eight With Double Loops



CHAPTER 10

CONCLUSION

In this thesis, we sought out to clarify many details from the literature. By clarifying

these details, we aim to make the material more accessable to future problem solvers.

These clarifications come from both notational changes and inclusion of many proofs

considered to be “obvious.” We have left little to the reader, only referring the reader

to proofs inappropriate for the thesis, or are not novel.

We provide MATLAB code which is not previously found in the literature. This

code allows for the evolution of curves into their minimal bending energy solutions.

These MATLAB scripts allowed for the development of the graphics seen in this

thesis. Several of the examples are never-before-seen in this context.

The next step would be to examine different boundary conditions. A proper

treatment of the problem in three dimensions is needed. Defining a tangent indicatrix

becomes bothersome in this case, and requires attention. This problem has been

attempted in the framework of a spline. Further work can surely be done on the

subject from the viewpoint of a spline. Expanding the applications of critical point

theory is highly desired, and would be attempted in this thesis given more time. Also,

proof of the conjecture is desired.
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