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BIAS IN CLOSED POPULATION CAPTURE-RECAPTURE 

by 

CANDACE M. LYNN 

(Under the Direction of Patricia Humphrey) 

ABSTRACT 

Our primary question was the effect of departures from assumptions on population 

estimates obtained using three maximum likelihood population size estimators:  M0 (all 

individuals have the same capture probability on all occasions), Mb (behavior is affected 

by prior capture) and Mt (all individuals have the same capture probability that varies by 

occasion).  After examining the initial results and observing substantial negative bias 

(underestimates), we attempted to model the bias for M0 and Mb capture scenarios as 

these situations had consistent patterns.  The Mt scenario with its erratic behaviors was 

not modeled.  We noted that M0 and Mt performed equally well for the M0 and Mb 

captures.  Mb did better as an estimator for the Mb capture scenario than for the M0 

scenario.  The Mt estimator for Mt captures did not perform well.  Depending on actual 

capture probabilities, either of the other two estimators may give better, less biased 

results. 
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CHAPTER 1 

INTRODUCTION 

  

Scientists are involved in many studies pertaining to animals, one of which is the 

estimation of population sizes to monitor species abundance, health of ecosystems, etc.  

One of the methods that is used is mark-recapture or capture-recapture.  This method has 

been used for many years and several models have been developed.  “The earliest forms 

of the capture-recapture method were used by LaPlace in 1802 to estimate the human 

population size of France and by John Graunt to estimate the effects of the plague and the 

size of the population in England in the early 1600s” (Amstrup). The models that were 

developed later are for both closed and open populations. A closed population is one in 

which the total number of individuals is not changing through births, deaths, 

immigration, or emigration.  An open population is one that is (or could be) changing 

during the course of a study, because of any combination of births, deaths, immigration, 

or emigration. Several of the general models and some models that have recently been 

developed will be discussed in this chapter. 

 Several models have been created for closed populations.  Each model that is 

created has assumptions that should be met.  Some common assumptions for all 

population models are:   

1. Animals do not lose their marks or tags. 

2. All marks or tags are correctly recorded. 

3. Animals act independently.  
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For a closed population model an additional assumption is that the population remains 

constant over the study period (e.g., there is no immigration or emigration), although 

known removals (e.g., deaths on capture) are allowed. 

 Lincoln and Petersen were two of the earliest scientists to apply this method to 

ecology.  Petersen, along with Dahl, used the application on fish. They recognized that it 

was possible to model the fish population by marking the fish that were caught, and 

looking at the proportion of marked fish that were captured again.  Lincoln also used this 

method to estimate duck populations by looking at the bands that had been placed on the 

ducks that were captured and then released. The Lincoln-Petersen method, which is easy 

to understand, has been used for closed populations.  For this method, an initial sample, 

n1, of the animal population is taken, marked and released.  The marked portion of the 

population is  

N
n1  

Another sample, n2, is taken later, and the number of animals that are marked, m2, is 

recorded.  The proportion of marked animals in the second sample is m2/n2.  Assuming 

that the marked proportion in the sample is equal to the marked proportion in the 

population suggests that  

2

2

n
m  ≈ 

N
n1  

From this an estimate of the population size, which is known as the Lincoln-Petersen 

estimator is given by  

PN̂  = 
2

21

m
nn              
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The Lincoln-Petersen method, although simple, is subject to bias if 2m is small or zero, 

and it can overestimate the population.  Therefore this method was modified by Chapman 

in 1951 to account for the bias that is possible.  The estimator given by Chapman is 

CN̂  = 1
1

)1)(1(

2

21 −
+

++
m

nn  

Both the Lincoln-Petersen estimator and the Chapman estimator are for two sample 

models.  While these are simple, the estimates of the populations are not very accurate.  

There was a need to have other variables involved in the estimation of population sizes 

and for the sampling to take place more than twice.  “Schnabel in 1938 and Darroch in 

1958 began to extend the closed population models” (Amstrup). 

 The models developed as an extension of the Lincoln-Peterson model are referred 

to as model M0 and model Mt.  “Both of these models have the assumption of equal 

catchability, i.e. each animal has the same probability of being captured each time 

sampling takes place.  In model M0, the 0 refers to no variation in the capture probability, 

and likewise in model Mt, the t refers to variation of the capture probabilities over time” 

(Amstrup).  These models, however, are also not very accurate because of their 

assumption of equal catchability.  This assumption is very easily violated due to the 

behavior of animals.  Depending on the method of capture, animals may be either “trap 

happy” or “trap shy”.  The animal may like the bait that is being used to capture it and the 

same animal may return to the trap on many occasions to get the bait.  This means the 

animal is “trap happy”.  The other case, “trap shy”, occurs when the animal that was 

captured is unlikely to return to the trap again.  Both cases reduce the accuracy of the 

model: if the animals are “trap happy”, the ones that have been marked will return to the 

trap frequently therefore lowering the chance to trap unmarked animals and resulting in 
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an estimate that is too low, whereas, if the animals are “trap shy”, the probability 

decreases of capturing the animals that are already marked, which results in an 

overestimation of population size.  Heterogeneity is also a problem, i.e. one sex of the 

animal may be more catchable than the other, and the size of the animal can also play a 

role.  These problems with the equal catchability assumption can lead to bias in 

estimating the population size when using these models in field work.  The populations 

could be either underestimated or overestimated, depending on the reason for the 

violation.  There are some solutions to these violations. 

 Modern closed population models take into account that animals do not have the 

same capture probability.  Two types of this model are discrete-time and continuous-time 

models.  In the discrete time model animals are caught on each occasion, but the exact 

time that they are caught is not recorded; therefore the order of the capture is unknown.  

“Otis et al. (1978) considered three sources of variations in capture probabilities: time 

effects, behavioral response to capture, and individual heterogeneity due to observable 

factors.  Based on these sources of variation, Otis et al. (1978) and White et al. (1982) 

considered all possible combinations of sources, and formulated eight models” (Amstup).  

To describe the models let Pij denote the probability the ith individual is captured on the 

jth occasion.  The subscripts t, b, h, on M denote time variation, behavioral response, and 

heterogeneity, respectively.  The subscript 0 denotes the null model. The models are as 

follows: 

Model M0: Pij = p 

Model Mt: Pij = pj 

Model Mb: Pij = p until the first capture and Pij = c for any recaptures 
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Model Mtb: Pij = pj until the first capture and Pij = cj for any recaptures 

Model Mh: Pij = pi 

Model Mbh: Pij = pi until first capture and Pij = ci for any recapture 

Model Mth: Pij = piej 

Model Mtbh: Pij = pij until first capture and Pij = cij for any recapture   

Each model has weaknesses; however some of these models have been identified as 

being useful for estimating a specific type of animal.  Model Mtb has been used for some 

quail and mice populations.  “Model Mh is useful for many species such as rabbits, 

chipmunks, skunks, and grizzly bears.  Model Mbh has been useful in fisheries, and 

Model Mtbh has been selected as the most likely model for estimating the size of squirrel 

and mouse populations” (Amstrup).  Some new approaches to these models have been 

explored using numerical computation.  These include using bootstrap methods, 

improved interval estimation, maximum likelihood estimation for Model Mtb, the 

jackknife technique for Model Mbh, sample coverage approaches for Models Mh and Mth, 

and estimating equations (including maximum quasi-likelihood and martingale methods 

by Yip et al. which have simpler estimating equations that in some cases become 

equivalent to the classical).  Some other methods that have also been explored are log-

linear or generalized linear models, Bayesian methods, parametric approaches for 

modeling heterogeneity, latent class, mixture model, and nonparametric maximum 

likelihood. 

 The continuous-time model has one capture in each capture occasion and has the 

exact time of each capture recorded.  This can be useful with large animals such as 

whales.  “As in the discrete-time models, a series of eight continuous-time models can be 
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postulated depending on the sources of variability in the Poisson rates due to time, 

behavioral response, and heterogeneity.  Consider a Poisson process with parameter 

)(* tiλ , which can be intuitively interpreted as capturing animal i in a small time interval 

around time t.  The Poisson rate for model Mtbh is given by 

)(* tiλ  = 
⎩
⎨
⎧

)(
)(
t

t

i

i

αφλ
αλ

   
  recaptureany for 

capturefirst  until
. 

Here )(tα , { Nλλλ ,...,, 21 }, and φ represent the effects of time, heterogeneity, and 

behavioral response, and )(tα is an arbitrary time-varying function in (0, T)” (Amstrup). 

The eight continuous models are given below: 

 Model Mbh: set )(tα =1 in model Mtbh 

 Model Mtb: set iλ  = 1 in model Mtbh 

 Model Mth: set φ  = 1 in model Mtbh 

 Model Mh: set )(tα =1 and φ  = 1 in model Mtbh 

 Model Mb: )(tα =1, iλ  = λ  in model Mtbh 

 Model Mt: set iλ  = 1 and φ  = 1 in model Mtbh 

 Model M0: set )(tα =1, iλ  = λ and φ  = 1 in model Mtbh . 

There has been little published on these models. 

 A classic model for open populations is the Jolly-Seber model which was first 

published in 1965.  This model was influenced in development by papers published by 

Darroch in 1959 and Cormack in 1964.  “Darroch presented maximum likelihood 

estimators for the additions-only model and the deletions-only model.  Cormack 

considered survival and capture probability estimation for marked birds and derived one 
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component of the likelihood used by Jolly and Seber in their more general model” 

(Amstrup).  For the Jolly-Seber model, there are several assumptions: 

1. every animal alive in the population at a given sample time j has an equal 

    chance (pj) of being captured in that sample (equal catchability); 

2. every marked animal alive in the population at a given sample time j has an    

    equal chance of survival ( jφ ) until the next sampling occasion (implicitly  

    this assumption applies to all animals, marked and unmarked, in order to  

    estimate the survival of all animals in the population); 

3. marked animals do not lose their marks and marks are not overlooked; 

4. sampling periods are short (i.e. effectively instantaneous); and 

5. all emigration from the population is permanent.  

The Jolly-Seber model uses the maximum likelihood approach to obtain parameter 

estimates for the population size, survival probability, capture probability, the number of 

marked animals in the population, and the total number of new animals entering the 

population.  There may be some problems with the estimates of population size and 

survival rate due to the animals being “trap shy” or “trap happy” and heterogeneity.  

Problems may also exist from tag loss or from problems with the marking of animals, e.g. 

tag-induced mortality.  These can cause the results to be either positively or negatively 

biased.  In addition to practical problems, the method can get improper estimates, e.g. 

negative birth rates, survival probability greater than one, and some desired parameters 

are not estimable. Newer models have been explored to look at these issues for both the 

closed and open populations. 
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For modern open population models two classes exist.  The first is conditional and 

the second is unconditional.  In the conditional case, there are single-age models.  The 

conditional Cormack-Jolly-Seber (CJS) model is in this category.  With increased use of 

computers, additional models have been developed which can look at elements that could 

not have been easily considered earlier.  These include the reduced parameter model, 

time-specific covariates, multiple groups, effects of capture history, and individual 

covariates.  There are also multiple-age models such as Pollock’s multiple-age model, 

age 0 cohort models, and age-specific breeding models.  Reverse-time models have also 

been used to look at the recruitment process.  The Jolly-Seber (JS) model is an 

unconditional model.  A superpopulation approach and a temporal symmetry approach 

have also been developed. 

 This thesis will focus on an examination of model performance of closed 

populations under various conditions that possibly violate model assumptions.  Different 

models have different requirements for practical field work such as individual tags and 

capture histories versus batch marks which make field work easier.  The biologist (or 

demographer) must make an educated guess about which model to use in a given 

situation.  We hope to determine if one or more models are generally adequate (robust) in 

the sense of providing reasonable estimates with greater ease-of-use.  Little or no work 

has been done in this area to date.  The only paper found on the topic was by Manly, et.al. 

and pertained to the population of the northern spotted owl (1999). 
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CHAPTER 2 

MATHEMATICAL MODELS FOR CLOSED POPULATION CAPTURE- 

    RECAPTURE 

 

There are many different methods that can be used to obtain population parameter 

estimates.  For the capture-recapture method of obtaining population estimates for closed 

populations under certain assumptions, one of the methods that is used is the method of 

maximum likelihood estimation.  The likelihood function is a function which tells us the 

likelihood of the population parameter(s), given the observed data.   The maximum 

likelihood estimate(s) is the most likely value of the parameter(s) given what is observed.  

The method of maximum likelihood consists of two steps, the first of which is the 

construction of a model that states the probability of observing the data as a function of 

the unknown parameters that are of interest.    In the second step, the estimates of the 

unknown parameters are chosen to be those values that make the likelihood function from 

the first step as large as possible, i.e., the values that maximize the likelihood.  For 

models M0, Mb, and Mt in closed populations this method can be used numerically to 

estimate the value of the total population.  The maximum likelihood estimators (MLEs) 

of N̂ and p̂ are those values of N and p which maximize the function 

},|{),( pNXPpNL ij=  

or equivalently, which maximize the log of L(N,p).  The derivation of these estimators is 

described in detail by Otis, et. al. (1978).  The following are the statistics and notation 

that is used: 
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Section 2.1 Notation 
 

⎩
⎨
⎧

=
otherwise 0

joccasion on  captured i individual 1
ijX  

N = population size 

nj = the number of animals captured in the jth sample, j = 1,2,…,t,  = ∑
=

N

t
ijX

1
 

n. = the total number of captures during the study = ∑
=

t

j
jn

1
 

uj = the number of new (unmarked) animals captured in the jth sample,  j = 1,2,…,t 

Mt+1 = the number of distinct individuals caught during the experiment (recall that t is  

           fixed for a given experiment) = ∑
=

t

j
ju

1
 

Mj = the number of marked animals in the population at the time of the jth sample,  

         j = 2,3,…,t. (Note that 01 ≡M ) 

M. = sum of the Mj [does not include Mt+1] = ∑
=

t

j
jM

1

 

mj = the number of marked animals captured in the jth sample, j = 2,…,t.  Note that  

        uj = nj – mj and that m1 = 0  

m. = sum of the mj = ∑
=

t

j
jm

1

 

t = number of capture occasions 

p = probability of capture for any individual in M0, in Mb the probability of capture of an  

      unmarked individual 

c = probability of capture of a marked individual in model Mb 
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Section 2.2 Maximum Likelihood Basics in Mark-Recapture 

 Model M0 is the simplest of the models for a closed population, because there is 

no variation in capture probability.  This is comparable to the conditions of an urn 

experiment, where the urn contains a set of marbles of a given color, each of which has 

an equal probability of being picked.  A sampling scheme occurs where marbles are 

randomly selected at each sampling occasion.  At each occasion, the number of marbles 

that are “marked” and “unmarked” are recorded, and the marbles with the original color 

are replaced with another color before being returned to the urn.  This process is repeated                   

several times, and an estimation of the population (the total number of balls) is made 

based on these samples.  However this idea gives rise to a hypergeometric distribution for 

which MLEs do not exist.  Since we assume animals are independent of one another, this 

gives rise to a binomial sampling distribution (the hypergeometric does not have this 

assumption).  The probability of capturing n1 animals for the first capture occasion based 

on a binomial distribution is: 

11 )1()(
1

1
nNn pp

n
N

nL −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

For the second occasion, the likelihood conditional on the first occasion is 

222222 )1()1()|,(
2

2

2

2
222

uMNumMm pp
u

MN
pp

m
M

MmuL −−− −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

                                          = 22 )1(
2

2

2

2 nNn pp
u

MN
m
M −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

If we multiply across all capture occasions for an overall unconditional likelihood for the 

entire study we get  
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∏
=

−− −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

t

s

mMm

s

suUu

s

s ssssss pp
m
M

pp
u
U

xL
1

)1()1()(  

                                       =∏
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛t

s

nNn

s

s

s

s sss pp
m
M

u
U

1

)1(  

The product of this cannot be maximized, so we take the log of the function. 

 

 Section 2.3 Model M0 Likelihood 

In Model M0, parameterized by the parameters N and p, the relevant part of the log-

likelihood function is given by  

),1ln(.)()ln(.)(
)!(

!ln)|,(ln
1

pntNpn
MN

NpNL
t

−−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
+

X  

where ]1,0[∈p  and N∈N  = { ,...2,1, 111 ++ +++ ttt MMM }.  Given the value of N, the 

MLE )(ˆ Np of p  is given as the solution to 

0),|(ln =
∂
∂ XNpL
p

, 

which reduces to 

)(ˆ1
.

)(ˆ
.

Np
ntN

Np
n

−
−

=  . 

This results in the solution 

tN
nNp .)(ˆ =  . 

Now, the MLE oN̂  of N satisfies 

⎥⎦
⎤

⎢⎣
⎡=

∈∈
)X,|(lnmaxmax)X|)ˆ(ˆ,ˆ(ln

]1,0[
NpLNpNL

pNoo N
 

 



 23

                                                               = [ ]),|)(ˆ(lnmax XNNpL
N N∈

 

                                              =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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For a given data set, a search over N  is performed to locate the MLE oN̂ .  This value is 

then used in the calculation of the MLE pNp o ˆ)ˆ(ˆ =  via 
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The asymptotic variance of oN̂ was derived by Darroch 1959 as 
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Section 2.4 Model Mb Likelihood 

Model Mb is parameterized by the parameters N, p, and c.  The likelihood function can be 

constructed similarly to that in Section 2.2, but using c for the capture probability of 
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where N∈N  = { ,...2,1, 111 ++ +++ ttt MMM }, ]1,0[∈p , ]1,0[∈c .  The MLE ĉ  of c is 

produced by the equation 
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Solving this equation gives ĉ  = m./M.. Thus, we see that estimation of c is independent 

of the estimation of N and p.  Now, the relevant part of the log-likelihood function for 

purposes of estimating N and p is  
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Given the value of N, the MLE p̂ (N) of p is provided by the equation 
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A search over N is performed to locate the MLE bN̂ .  It is then possible to calculate the 

MLE pNp b ˆ)ˆ(ˆ =  of p via 
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The asymptotic variance of bN̂ is given by Zippin (1956) as: 

)ˆ( bNVar  = 1222 )1(])1(1[
])1(1[)1(

−−−−−
−−−

tt

tt

pptp
ppN  . 

An estimate of this variance is given by 

1222 )ˆ1(ˆ])ˆ1(1[
])ˆ1(1[)ˆ1(ˆ

)ˆ(ˆ
−−−−−

−−−
= tt

tt
b

b pptp
ppNNarV  . 

 

Section 2.5 Model Mt Likelihood 

Model Mt is parameterized by the t  + 1 parameters N, tppp ,...,, 21 . Proceeding as 

discussed previously to construct the likelihood, the relevant log-likelihood function for 

estimation of the parameters is given by 
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where N∈N = { ,...2,1, 111 ++ +++ ttt MMM }, p = { tppp ,...,, 21 }, ]1,0[∈jp  for j = 

1,2,…,t.  Given the value of N, the MLEs )(ˆ Np j  of jp  are given as the solutions to the 

system of equations 
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A search over N is performed in order to locate the MLE tN̂ . It is then possible to 

calculate the MLEs jtj pNp ˆ)ˆ(ˆ = of the jp  for j = 1,2,…,t via 

t

j
j N

n
p ˆˆ =  . 

The asymptotic variance of tN̂ is given by Darroch (1958) as: 
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Section 2.6 Behavior of the Estimates 

 It has been previously noted and proven that estimates of the population  size are 

asymptotically unbiased (as ∞→t ), because (intuitively) if enough occasions, all 

individuals will eventually be captured.  Of more interest is behavior for a limited 

number of occasions – what is the bias (under/over estimate) if any?  It is commonly 

known in statistical circles that many MLEs are biased.  How do these models perform 

when the underlying assumptions are violated?  The latter question is the primary focus 

of the next chapter, and will be studied via simulation. 
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CHAPTER 3 

THE HOMOGENEOUS CAPTURE SCENARIO - BIAS OF ESTIMATORS 

 

Section 3.1 Model M0 Simulation Program 

 A program was written in Fortran to simulate a closed population with equal 

catchability using the binomial capture model.  All of the individuals have the same 

capture probability on all occasions and behave independently in terms of captures.  This 

program allowed us to specify the population size N and the number of repetitions of the 

simulation.  The capture probability, p, was varied from 0.1 to 0.8 and the number of 

capture occasions was varied from 3 to 10 to be able to examine the effects of the study 

parameters.  These capture probabilities were selected based on estimated probabilities 

found in the literature where recapture probabilities have been estimated as high as 88 

percent.  From the simulated capture data, maximum likelihood estimates of the 

population size and their standard errors were computed for estimators M0, Mb and Mt, as 

shown in Table 3.1.  If all three models are equivalent they should result in similar 

estimates of the population.  To analyze the simulated results, graphics were generated to 

look for patterns. 

 Figure 3.1 shows the effects of increased numbers of capture occasions for given 

values of p. We clearly see that the average estimate of population size increases with an 

increase in the number of capture occasions.  We can also see a clear negative bias in the 

average estimates with smaller capture probabilities.  In addition, model Mb tends to give 

smaller estimates than the other models until capture probabilities are sufficiently large. 

This behavior is most likely due to the fact that Mb only uses information on new 
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captures for population estimation.  M0 and Mt give essentially the same results.  For this 

capture scenario, models M0 and Mt should be equivalent; the only difference between 

the two being that Mt allows capture probabilities to vary by occasion. 

Table 3.1 Model M0 Simulation Results 
nocc p Nhat M0 SE_M0 Nhat Mb SE_Mb Nhat_Mt SE_Mt 

3 0.1 304.536 366.151 285.504 199.440 304.424 365.584
4 0.1 386.428 424.892 362.252 238.290 386.324 424.433
5 0.1 459.516 447.211 432.018 263.111 459.430 446.881
6 0.1 523.010 449.904 493.422 275.293 522.934 449.647
7 0.1 578.438 438.832 547.948 282.713 578.348 438.566
8 0.1 628.040 420.928 597.340 283.617 627.940 420.668
9 0.1 669.848 393.654 639.790 276.790 669.784 393.505

10 0.1 707.868 363.722 678.776 263.920 707.776 363.535
3 0.2 536.256 423.651 510.766 269.848 536.150 423.278
4 0.2 642.890 394.785 615.846 275.259 642.788 394.515
5 0.2 725.648 344.462 699.640 259.090 725.584 344.330
6 0.2 787.012 285.620 763.783 229.763 786.928 285.490
7 0.2 835.576 233.261 815.550 198.051 835.522 233.195
8 0.2 872.082 187.053 855.826 170.122 872.024 186.997
9 0.2 900.418 149.975 887.213 142.008 900.338 149.914

10 0.2 922.366 119.075 912.089 117.429 922.346 119.063
3 0.3 706.448 346.692 683.130 261.038 706.370 346.504
4 0.3 806.517 263.914 786.207 219.433 806.476 263.849
5 0.3 870.814 188.119 855.264 169.691 870.750 188.052
6 0.3 913.692 131.733 902.698 127.078 913.648 131.701
7 0.3 940.434 90.029 933.034 89.827 940.416 90.020
8 0.3 960.072 61.910 955.350 63.859 960.043 61.900
9 0.3 972.687 43.239 969.668 45.172 972.671 43.235

10 0.3 970.782 28.001 979.450 31.636 970.782 28.001
3 0.4 825.476 237.215 808.120 201.261 825.416 237.123
4 0.4 901.503 144.269 890.130 136.764 901.447 144.219
5 0.4 944.138 85.617 937.422 85.470 944.088 85.591
6 0.4 968.477 50.357 964.934 52.289 968.430 50.342
7 0.4 980.987 29.387 979.244 30.892 980.951 29.380
8 0.4 989.276 17.384 988.420 18.275 989.254 17.382
9 0.4 988.896 9.993 993.098 10.810 988.896 9.993

10 0.4 993.458 5.996 996.493 6.346 993.458 5.996
3 0.5 905.190 139.811 894.867 132.419 905.136 139.759
4 0.5 955.730 68.262 950.778 69.176 955.710 68.253
5 0.5 978.799 33.335 976.736 34.726 978.777 33.330
6 0.5 989.556 16.207 988.882 17.129 989.538 16.205
7 0.5 995.347 8.026 994.995 8.373 995.341 8.026
8 0.5 997.634 3.960 997.602 4.140 997.622 3.959
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nocc p Nhat M0 SE_M0 Nhat Mb SE_Mb Nhat_Mt SE_Mt 
9 0.5 997.294 1.925 999.288 2.040 997.294 1.925

10 0.5 998.229 0.967 999.655 0.992 998.229 0.967
3 0.6 954.178 70.648 949.450 72.064 954.140 70.626
4 0.6 982.773 27.243 981.350 28.791 982.745 27.237
5 0.6 993.010 10.556 992.576 10.955 992.990 10.554
6 0.6 997.044 4.128 996.936 4.244 997.036 4.128
7 0.6 999.265 1.661 999.253 1.706 999.265 1.661
8 0.6 999.229 0.658 999.258 0.643 999.229 0.658
9 0.6 998.611 0.259 999.614 0.265 998.611 0.259

10 0.6 998.853 0.103 999.857 0.106 998.853 0.103
3 0.7 981.549 28.889 980.002 30.121 981.529 28.883
4 0.7 994.796 8.352 994.497 8.742 994.794 8.352
5 0.7 998.348 2.450 998.348 2.521 998.348 2.450
6 0.7 999.177 0.730 999.258 0.730 999.177 0.730
7 0.7 999.725 0.220 999.725 0.218 999.725 0.220
8 0.7 999.926 0.066 999.926 0.067 999.926 0.066
9 0.7 999.982 0.020 999.982 0.019 999.982 0.020

10 0.7 998.985 0.006 999.990 0.006 998.985 0.006
3 0.8 994.659 8.335 994.325 8.684 994.645 8.333
4 0.8 999.269 1.641 999.235 1.688 999.269 1.641
5 0.8 999.596 0.324 999.596 0.320 999.596 0.324
6 0.8 999.922 0.064 999.922 0.063 999.922 0.064
7 0.8 999.984 0.013 999.984 0.013 999.984 0.013
8 0.8 999.994 0.003 999.994 0.003 999.994 0.003
9 0.8 1000 0.001 1000 0.001 1000 0.001

10 0.8 1000 0 1000 0 1000 0
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Figure 3.1 Model M0 Capture Occasion Effect Given Capture Probability   
                         Nhat M0              Nhat Mb              Nhat Mt 
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 Figure 3.2 shows the effects of increased values of p for given values of the 

number of capture occasions (nocc).  As p increased, the average estimates of the 

population size increased, and all the models gave essentially the same estimates.  The 

Mb estimates of the population are slightly lower for the lower values of p for all nocc 

values, as seen previously.  As nocc increased, the bias decreased, although there is still 

substantial negative bias for low values of p even with nocc large.  Essentially what is 

seen is that as nocc increases and p increases, the estimated values become very close to 

the actual population value. 

 The standard errors for M0 and Mb were also computed in the Fortran simulation 

program for model M0.  Figures 3.3 and 3.4 both show that as the number of capture 

occasions and the value of p increase, the standard errors of the estimates decrease.  With 

all estimates biased low, we are interested in what combinations of capture probability 

and number of sampling occasions will get the estimated population size close to the 

actual size.  As can be seen in the graphs, we will need at least four sampling occasions 

and a capture probability of at least 0.2 before this happens.  
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Figure 3.2 Model M0 Capture Probability Effect Given Capture Occasions      
                         Nhat M0              Nhat Mb              Nhat Mt 
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Figure 3.3 Estimated Value of M0 With Standard Errors Added and Subtracted 
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Figure 3.4 Estimated Value of Mb With Standard Errors Added and Subtracted 
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Section 3.2 Bias Modeling 

 We first reran the simulation for various values of N to determine whether the 

bias seen for N=1000 was consistent.  At all population levels examined, the model 

consistently estimated the same proportion.  To model the bias, defined as 100 minus the 

estimated percent, in terms of nocc and p, we noted that the bias was not a linear function 

of either nocc or p.  We attempted to model this with a nonlinear model that had an 

asymptote at 0 (no bias) but were unsuccessful.  In every model examined the hessian 

became singular so parameter estimates were unreliable.  Figure 3.5 shows the results 

from a regression analysis which was performed in Minitab. These results were generated 

after the data set had been trimmed.  We removed simulation cases after the MLE had 

essentially no bias (the MLE estimated at least 99 percent of the actual population) for a 

given number of captures, to reduce the weight these cases had on the regression.  The 

values that were trimmed are listed in Table 3.2. 

Table 3.2 Criteria for Data Trimming of Model M0 Results 
nocc pcap greater than or equal to

4 0.8 
5 0.7 
6 0.7 
7 0.6 
8 0.6 
9 0.6 
10 0.5 
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Figure 3.5 Regression Analysis Results for M0 bias in Model M0 
 
Regression Analysis: m0bias versus pcappct, pcapSq, nocc, nocc*pcap 
 
The regression equation is 
m0bias = 116 - 3.39 pcappct + 0.0238 pcapSq - 7.57 nocc + 0.133 nocc*pcap 
 
46 cases used 18 cases contain missing values 
 
Predictor        Coef     SE Coef          T        P 
Constant      115.971       4.912      23.61    0.000 
pcappct       -3.3863      0.2173     -15.59    0.000 
pcapSq       0.023840    0.001943      12.27    0.000 
nocc          -7.5680      0.6031     -12.55    0.000 
nocc*pca      0.13272     0.01815       7.31    0.000 
 
S = 3.849       R-Sq = 96.1%     R-Sq(adj) = 95.7% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         4     14789.6      3697.4    249.54    0.000 
Residual Error    41       607.5        14.8 
Total             45     15397.1 
 
Source       DF      Seq SS 
pcappct       1      8676.0 
pcapSq        1      2646.3 
nocc          1      2674.8 
nocc*pca      1       792.4 
 
Unusual Observations 
Obs    pcappct     m0bias         Fit      SE Fit    Residual    St Resid 
  8       80.0      0.502       6.790       2.568      -6.288       -2.19RX 
 16       80.0          *       9.840       2.714           *           * X 
 24       80.0          *      12.889       3.154           *           * X 
 31       70.0          *       6.079       2.308           *           * X 
 32       80.0          *      15.939       3.787           *           * X 
 39       70.0          *       7.802       2.931           *           * X 
 40       80.0          *      18.989       4.533           *           * X 
 46       60.0          *       1.778       2.298           *           * X 
 47       70.0          *       9.524       3.616           *           * X 
 48       80.0          *      22.039       5.344           *           * X 
 54       60.0          *       2.173       2.865           *           * X 
 55       70.0          *      11.247       4.332           *           * X 
 56       80.0          *      25.088       6.196           *           * X 
 57       10.0     29.313      22.084       1.892       7.229        2.16R  
 61       50.0          *      -3.064       2.222           *           * X 
 62       60.0          *       2.569       3.447           *           * X 
 63       70.0          *      12.969       5.067           *           * X 
 64       80.0          *      28.138       7.073           *           * X 
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 
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Figure 3.6 Residuals versus Fits for M0 bias for Model M0 

Figure 3.7 Normal Probability Plot of the Residuals for M0 bias for Model M0 
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Figure 3.8 Regression Analysis Results for Mb bias in Model M0 
 
Regression Analysis: mbbias versus pcappct, pcapSq, nocc, nocc*pcap 
 
The regression equation is 
mbbias = 120 - 3.44 pcappct + 0.0242 pcapSq - 7.60 nocc + 0.127 nocc*pcap 
 
46 cases used 18 cases contain missing values 
 
Predictor        Coef     SE Coef          T        P 
Constant      119.793       4.965      24.13    0.000 
pcappct       -3.4422      0.2196     -15.67    0.000 
pcapSq       0.024208    0.001964      12.33    0.000 
nocc          -7.5967      0.6096     -12.46    0.000 
nocc*pca      0.12697     0.01835       6.92    0.000 
 
S = 3.891       R-Sq = 96.4%     R-Sq(adj) = 96.0% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         4     16464.6      4116.1    271.84    0.000 
Residual Error    41       620.8        15.1 
Total             45     17085.4 
 
Source       DF      Seq SS 
pcappct       1      9847.8 
pcapSq        1      2913.6 
nocc          1      2977.9 
nocc*pca      1       725.2 
 
Unusual Observations 
Obs    pcappct     mbbias         Fit      SE Fit    Residual    St Resid 
  8       80.0      0.534       7.025       2.596      -6.491       -2.24RX 
 16       80.0          *       9.586       2.744           *           * X 
 24       80.0          *      12.146       3.189           *           * X 
 31       70.0          *       5.200       2.333           *           * X 
 32       80.0          *      14.707       3.829           *           * X 
 39       70.0          *       6.491       2.963           *           * X 
 40       80.0          *      17.267       4.582           *           * X 
 46       60.0          *       0.577       2.324           *           * X 
 47       70.0          *       7.782       3.655           *           * X 
 48       80.0          *      19.828       5.403           *           * X 
 54       60.0          *       0.598       2.896           *           * X 
 55       70.0          *       9.072       4.380           *           * X 
 56       80.0          *      22.389       6.264           *           * X 
 57       10.0     32.212      24.521       1.913       7.691        2.27R  
 61       50.0          *      -4.284       2.247           *           * X 
 62       60.0          *       0.619       3.484           *           * X 
 63       70.0          *      10.363       5.123           *           * X 
 64       80.0          *      24.949       7.150           *           * X 
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 
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Figure 3.9 Residuals versus Fits for Mb bias for Model M0 

 
Figure 3.10 Normal Probability Plot of the Residuals for Mb bias for Model M0 
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Table 3.3 Regression Results Examples for M0 bias in Model M0 
nocc pcappct m0bias m0bias fit

3 10 69.473 65.770
3 30 29.363 25.079
3 50 9.524 3.460
6 10 47.651 47.047
6 30 8.646 14.320
6 50 1.051 0.664
9 10 32.876 28.325
9 30 2.788 3.561
9 50 0.280 -2.132

 
 

Table 3.4 Regression Results Examples for Mb bias in Model M0 

nocc pcappct mbbias mbbias fit
3 10 71.385 68.810
3 30 31.715 26.950
3 50 10.564 4.456
6 10 50.599 49.829
6 30 9.734 15.587
6 50 1.121 0.710
9 10 35.904 30.848
9 30 3.085 4.223
9 50 0.080 -3.035

 
 
 From the regression analysis results, we first looked at the plots to determine 

whether the model that was selected was an appropriate model.  Figures 3.7 and 3.10 are 

the normal plots of the residuals for the M0 and Mb bias respectively.  Curvature in these 

plots would suggest that the model is not appropriate; however, these plots are acceptable 

since there is not much curvature.  Figures 3.6 and 3.9 are plots of the residuals versus the 

fitted values.  These plots are not random which casts doubt on the model.  However, all 

terms included make logical sense given the behavior seen in Figures 3.1 and 3.2.  From 

the regression models for M0 and Mb bias, it is noted that as probability of capture 

increases by 0.1, the bias decreases by about 3.4 percent, and as nocc increases by 1 the 

bias decreases by about 7.6 percent.    
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CHAPTER 4 

BEHAVIOR-DEPENDENT CAPTURE PROBABILITIES 

 

Section 4.1 Simulation of Mb Captures and Estimates Obtained 

A program was written in Fortran to simulate a closed population with capture 

probabilities varying by behavioral response to capture.  This program allowed us to 

specify the population size N and the number of repetitions of the simulation.  The initial 

capture probability was varied from 0.1 to 0.8, and the number of capture occasions was 

varied from 3 to 10.  In addition to these conditions, the probability of recapture was 

constrained between 0.1 and 0.8 and was varied from 0.3 below the probability of capture 

to 0.3 above the probability of capture.  The probability of recapture did not equal the 

probability of capture in any of the cases, since this would be an M0 capture model which 

was discussed in Chapter 3.  From the simulated capture data, maximum likelihood 

estimates of the population size were computed for estimators M0, Mb and Mt.  If all 

three are equivalent they should result in similar estimates of the population.  To analyze 

the simulated results, graphics were generated to look for patterns. 
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Figure 4.1 Model Mb Capture Occasion Effect for Capture Probability p = 0.1  
                         Nhat M0              Nhat Mb              Nhat Mt 
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Figure 4.2 Model Mb Capture Occasion Effect for Capture Probability p = 0.2 
                         Nhat M0              Nhat Mb              Nhat Mt 
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Figure 4.3 Model Mb Capture Occasion Effect for Capture Probability p = 0.3 
                         Nhat M0              Nhat Mb              Nhat Mt 
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Figure 4.4 Model Mb Capture Occasion Effect for Capture Probability p = 0.4 
                         Nhat M0              Nhat Mb              Nhat Mt 
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Figure 4.5 Model Mb Capture Occasion Effect for Capture Probability p = 0.5 
                         Nhat M0              Nhat Mb              Nhat Mt 
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Figure 4.6 Model Mb Capture Occasion Effect for Capture Probability p = 0.6 
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Figure 4.7 Model Mb Capture Occasion Effect for Capture Probability p = 0.7 
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Figure 4.8 Model Mb Capture Occasion Effect for Capture Probability p = 0.8 
                         Nhat M0              Nhat Mb              Nhat Mt 
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Each of the figures shows the estimates of the population for combinations of 

capture probability and recapture probability.  In most of the figures it is seen that when 

the probability of recapture is less than the probability of capture, the Mb estimates are 

lower than those of M0 and Mt, which are essentially the same.  As the probability of 

recapture becomes higher than the probability of capture, the estimates in Mb become 

higher than those of M0 and Mt.  As the probability of capture becomes higher, the 

estimates for all of the models are essentially the same, and they are very close to the 

actual population size.  For the low capture and recapture probabilities, the estimates for 

all of the models are negatively biased.  In all cases, as the number of capture occasions 

(nocc) increases, the estimates become closer to the actual population. 

It is interesting to note that average population estimates were above the actual 

population levels about 7 percent of the time for M0 and Mt population estimators.  This 

occurred when the initial capture probability was at least 0.2 larger than the recapture 

probability (a “trap shy” situation).  The converse of this is also seen.  The lowest 

population estimates as a percent of the actual population for the M0 and Mt estimators 

are seen when recapture probabilities are much higher than initial capture probabilities (a 

“trap happy” situation).  This behavior can be partially explained in how the different 

estimators treat recaptures.  The M0 and Mt estimators focus primarily on the number of 

captured animals, whereas the Mb estimator focuses on the number of marked animals 

assumed to be in the population at the time.  Recaptures do not convey information about 

the population size for the Mb estimator. 
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Section 4.2 Bias Modeling 

 Figures 4.9 and 4.12 are the results from a regression analysis which was 

performed in Minitab to model the bias for the M0 and Mb estimators.  As in chapter 3, 

the M0 and Mt models were essentially the same, so we did not model them separately.  

The data set was trimmed prior to performing this analysis.  We removed simulation 

cases after the MLE had essentially no bias (the MLE estimated at least 99 percent of the 

actual population) for a given number of captures, to reduce the weight these cases had 

on the regression.  The values that were trimmed are listed in Table 4.1. 

Table 4.1 Criteria for Data Trimming of Model Mb Results 
nocc pcap greater than or equal to

4 0.8 
5 0.7 
6 0.7 
7 0.6 
8 0.6 
9 0.6 
10 0.5 
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Figure 4.9 Regression Analysis Results for M0 bias in Model Mb 
 
Regression Analysis: m0bias versus pcappct, pcapSq, nocc, nocc*pcap, pdiffpct 
 
The regression equation is 
m0bias = 116 - 3.45 pcappct + 0.0253 pcapSq - 7.44 nocc + 0.128 nocc*pcap 
           - 0.121 pdiffpct 
 
217 cases used 71 cases contain missing values 
 
Predictor        Coef     SE Coef          T        P 
Constant      115.824       2.588      44.76    0.000 
pcappct       -3.4522      0.1066     -32.38    0.000 
pcapSq      0.0252706   0.0009536      26.50    0.000 
nocc          -7.4427      0.3109     -23.94    0.000 
nocc*pca     0.127561    0.008682      14.69    0.000 
pdiffpct     -0.12084     0.01403      -8.62    0.000 
 
S = 3.813       R-Sq = 95.3%     R-Sq(adj) = 95.2% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         5       62852       12570    864.72    0.000 
Residual Error   211        3067          15 
Total            216       65920 
 
Source       DF      Seq SS 
pcappct       1       36039 
pcapSq        1       12385 
nocc          1       10134 
nocc*pca      1        3216 
pdiffpct      1        1079 
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Figure 4.10 Residuals versus Fits for M0 bias for Model Mb 

 
Figure 4.11 Normal Probability Plot of the Residuals for M0 bias for Model Mb 
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Figure 4.12 Regression Analysis Results for Mb bias in Model Mb 
 
Regression Analysis: mbbias versus pcappct, pcapSq, nocc, nocc*pcap 
 
The regression equation is 
mbbias = 119 - 3.42 pcappct + 0.0240 pcapSq - 7.73 nocc + 0.130 nocc*pcap 
 
217 cases used 71 cases contain missing values 
 
Predictor        Coef     SE Coef          T        P 
Constant      119.448       2.385      50.09    0.000 
pcappct      -3.41602     0.09887     -34.55    0.000 
pcapSq      0.0240015   0.0008884      27.02    0.000 
nocc          -7.7278      0.2899     -26.66    0.000 
nocc*pca     0.129714    0.008095      16.02    0.000 
 
S = 3.556       R-Sq = 95.7%     R-Sq(adj) = 95.6% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         4       60087       15022   1188.12    0.000 
Residual Error   212        2680          13 
Total            216       62767 
 
Source       DF      Seq SS 
pcappct       1       34387 
pcapSq        1       10931 
nocc          1       11522 
nocc*pca      1        3246 
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Figure 4.13 Residuals versus Fits for Mb bias for Model Mb 

 
Figure 4.14 Normal Probability Plot of the Residuals for Mb bias for Model Mb 
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Table 4.2 Regression Results Examples for M0 bias in Model Mb 
nocc pcappct rcappct pdiffpct m0bias m0bias fit 

3 10 20 -10 70.075 66.537 
3 10 30 -20 70.612 67.745 
3 10 40 -30 71.094 68.954 
5 10 20 -10 55.544 54.203 
5 10 30 -20 56.642 55.411 
5 10 40 -30 57.347 56.619 
7 10 20 -10 44.468 41.868 
7 10 30 -20 45.838 43.077 
7 10 40 -30 46.667 44.285 
9 10 20 -10 35.798 29.534 
9 10 30 -20 37.267 30.743 
9 10 40 -30 38.835 31.951 
3 30 20 10 27.986 22.946 
3 30 40 -10 30.368 25.363 
3 30 60 -30 32.110 27.780 
5 30 20 10 10.705 15.715 
5 30 40 -10 14.371 18.132 
5 30 60 -30 16.017 20.548 
7 30 20 10 3.602 8.483 
7 30 40 -10 7.075 10.900 
7 30 60 -30 8.031 13.317 
9 30 20 10 0.818 1.252 
9 30 40 -10 4.104 3.668 
9 30 60 -30 4.109 6.085 
3 50 20 30 4.658 -0.427 
3 50 30 20 6.639 0.781 
3 50 70 -20 11.154 5.615 
3 50 80 -30 11.653 6.823 
5 50 20 30 -2.910 -2.557 
5 50 30 20 -0.373 -1.348 
5 50 70 -20 2.933 3.486 
5 50 80 -30 3.015 4.694 
7 50 20 30 -3.194 -4.686 
7 50 30 20 -0.999 -3.477 
7 50 70 -20 0.763 1.356 
7 50 80 -30 0.763 2.565 
3 70 40 30 -1.065 -1.168 
3 70 50 20 0.235 0.041 
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Table 4.3 Regression Results Examples for Mb bias in Model Mb 

nocc pcappct mbbias mbbias fit 
3 10 71.368 68.396
3 30 31.734 27.059
3 50 10.541 4.924
6 10 50.740 49.104
6 30 9.843 15.550
6 50 1.102 1.198
9 10 36.024 29.812
9 30 3.049 4.041
9 50 0.084 -2.529

 
 As we did in Chapter 3, we first looked at the plots that were obtained from the 

regression analysis to determine if the model was appropriately selected.  The normal 

plots of the residuals, Figures 4.11 and 4.14, have a little curvature on the ends, but 

considering the sample size, the model selected should be appropriate.  Figures 4.10 and 

4.13 are the residuals versus the fitted values.  Again, as we saw in Chapter 3, these plots 

are not perfectly random, but all the terms that are included in the model make sense 

based on the observations made from the plots obtained from the simulated data.  From 

the regression models for M0 and Mb bias, it is noted that as probability of capture 

increases by 0.1, the bias decreases by about 3.4 percent. As nocc increases by 1, the bias 

decreases by about 7.4 percent for M0 and it decreases by about 7.7 percent for Mb.    
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CHAPTER 5 

TIME-DEPENDENT CAPTURE PROBABILITIES 

  

Three programs were written in Fortran to simulate a closed population with 

capture probabilities varying with time.  Each of the three programs was written for a 

specific number of capture occasions: three, four and five.  The programs allowed us to 

specify the population size N and the number of repetitions of the simulation.  In each 

program the probability of capture on the first occasion was varied from 0.1 to 0.8.  The 

other capture probabilities varied from 0.5 below that to 0.5 above, with all capture 

probabilities not the same, as this would be the M0 capture scenario.  From the simulated 

capture data, maximum likelihood estimates of the population size were computed for 

estimators M0, Mb and Mt.  To compare estimators for the different models, graphics 

were produced similar to those seen in Chapters 3 and 4.  However, due to the sheer 

number of possible capture probability combinations, a variety of interesting 

combinations were selected to further examine to see what, if any, patterns were present 

with capture probability changes, and how these were similar to or different from those 

already examined. 

 As stated previously, this capture scenario comes into play in several practical 

instances, including wildlife situations where capture effort is not constant across capture 

occasions, or when weather affects the availability of individuals in the population to be 

captured; in the case of human populations, this occurs when membership in one group 

(list) is less likely than in others. 
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Section 5.1 Simulation of Mt Captures for Three Capture Occasions 

 The first case that we looked at was for three capture occasions.  Graphics were 

generated from the simulated data to compare the estimated values for M0, Mb and Mt. 

Figure 5.1 shows how the different estimators behave for changing probability of capture 

on the first capture occasion for various combinations of probability of capture on the 

second and third capture occasions. 

In the first panel, we see that for three capture occasions, when the probability of 

capture is equal to 0.1 on both the second and third capture occasions, all of the 

estimators give low estimates of the population, with the Mb estimator giving the lowest 

estimates of the three.  Further note that the behavior appears linear, unlike the marked 

negative concavity seen previously.   

For probability of capture equal to 0.1 on the second capture occasion and 

probability of capture equal to 0.8 on the third capture occasion, we see that the Mt 

estimator is now giving the lowest, most biased estimate, and the Mb estimator is higher 

than the other two when the probability of capture on the first capture occasion is low.  

As the probability of capture for the first capture occasion increases, the Mb estimator 

crosses the M0 estimator.  The values for the Mb estimator then lie between those of the 

Mt and M0 estimators.   

 The graphic for the probability of capture equal to 0.3 on the second capture 

occasion and probability of capture equal to 0.8 on the third capture occasion also shows 

the Mb estimator being the highest and the Mt estimator being the lowest when the 

probability of capture on the first capture occasion is low.  We also begin to see some 

curvature for the Mb estimator; however, this curvature is opposite that seen with the 
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Figure 5.1 Selected Examples for Model Mt with Three Capture Occasions 
                         Nhat M0              Nhat Mb              Nhat Mt 
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other capture scenarios.  The same positive curvature is also seen for the Mb estimator 

when the probability of capture is equal to 0.5 on the second capture occasion and the 

probability of capture is equal to 0.6 on the third capture occasion.  For this particular 

combination, the Mb estimator gives the highest values when the capture probability on 

the first capture occasion is the lowest.  As the capture probability increases on the first 

capture occasion, the M0 and Mt estimators merge together, and the Mb estimator crosses 

these two and gives the lowest estimates at higher first occasion capture probabilities. 

The next combination that we chose to look at for three capture occasions was one 

where the probability of capture on the second capture occasion was high and the 

probability of capture on the third capture occasion was low.  The graphic clearly shows 

that for this case, the M0 estimator gives the least biased estimate as the probability of 

capture on the first capture occasion increases.  The Mb and Mt estimators give similar 

estimates, with the Mt estimator giving a slightly better estimate as the probability of 

capture on the first capture occasion increases.  A possible cause for the Mb estimator 

giving the lowest estimates for the higher capture probabilities on the first occasion is 

there are probably not many unmarks left to give it additional information on N. 

The last graph in Figure 5.1 shows how the three estimators behave when the 

probability of capture on the second capture occasion is 0.8 and the probability of capture 

on the third capture occasion is 0.6.  We see that for a lower probability of capture on the 

first capture occasion, the three estimators are slightly separated in their estimates, with 

Mb giving the highest estimate and Mt giving the lowest estimate.  As the capture 

probability on the first capture occasion becomes higher, the three estimators begin to 

merge together; however it can be seen that the Mb estimator is just slightly lower than 
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the other two.  We also noted that out of the graphics we selected, this combination has 

the initial estimates closest to the actual population of 1000 for all three of the estimators. 

 

Section 5.2 Simulation of Mt Captures for Four Capture Occasions 

 We then looked at how the estimators behaved when there were four capture 

occasions.  As we did for three capture occasions, we generated graphics to see how the 

three estimators behave on the first capture occasion for various combinations of the 

capture probability on the second, third and fourth capture occasion.  We only chose a 

select few combinations which are in Figure 5.2.  

In the first panel, we see that for four capture occasions, when the probability of 

capture is equal to 0.1 on the second, third and fourth capture occasions, all of the 

estimators again give low estimates of the population, with the Mb estimator giving the 

lowest estimates of the three.  As we saw for three capture occasions, the behavior 

appears linear, unlike the marked negative concavity seen for the models discussed in 

Chapters 3 and 4.  Also, M0 and Mt start out giving very close estimates, but as the 

capture probability increases for the first capture occasion, they begin to separate. 

We also looked at a combination of capture probabilities with the probability of 

capture being low on the second capture occasion and high on the third and fourth 

capture occasions.  In this case where the probability of capture on the second occasion is 

0.1, the probability of capture on the third occasion is 0.6 and the probability of capture 

on the fourth occasion is 0.7, we see that Mb has the highest initial estimate, and 

continues to have the highest estimate as the capture probability increases on the first 

capture occasion.  Mt gives the lowest estimates, and M0 has values between Mt and Mb.   
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Figure 5.2 Selected Examples for Model Mt with Four Capture Occasions 
                         Nhat M0              Nhat Mb              Nhat Mt 
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As the probability of capture on the first occasion reaches its highest value, Mb decreases 

and merges with M0.   

 Another combination we looked at was where the probability of capture on the 

second and fourth occasions was low and the probability of capture on the third occasion 

was high.  For this case, the probability of capture was 0.3 on the second occasion, 0.6 on 

the third occasion and 0.2 on the fourth occasion.  M0 gives the highest estimates of the 

population in this case.  When the probability of capture on the first occasion is low, Mb 

gives an estimate between the estimates of Mt and M0. However, as the probability of 

capture on the first occasion increases, Mb curves upward and gives the lowest estimates. 

 For the capture probability equal to 0.5 on the second and third capture occasions, 

and 0.4 on the fourth capture occasion, we see a similar pattern of the Mb estimate being 

concave up as the capture probability on the first occasion increases.  In this particular 

case the Mb estimator starts out giving the highest estimate, but as the probability of 

capture on the first capture occasion increases, Mb gives the lowest estimates.  We also 

note that M0 and Mt give very similar estimates for all capture probabilities on the first 

capture occasion. 

 For a high capture probability on the second capture occasion and low capture 

probabilities on the third and fourth capture occasions, we see a linear pattern similar to 

the one where the capture probabilities were low for the second, third and fourth capture 

occasions.  This is seen in the graphic where the probability of capture on the second 

occasion is equal to 0.7 and the probability of capture on the third and fourth capture 

occasions is equal to 0.1.  We see that the three estimators all give different values as the 

probability of capture on the first occasion increases, with none of the estimates crossing 
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or merging.  Mb gives the lowest estimates and M0 gives the highest estimates as the 

probability of capture on the first capture occasion increases.  Mt gives estimates that lie 

between Mb and M0. 

 The last combination that we chose to look at was for the probability of capture 

being low on the third capture occasion and high on the second and fourth capture 

occasions.  The graphic for this case has the probability of capture on the second and 

fourth capture occasions equal to 0.8 and the probability of capture on the third occasion 

equal to 0.1.  We see that the Mb estimator has positive concavity, but decreases with 

increasing first capture probability. Mb has the highest estimate at the lowest probability 

of capture on the first occasion, and then curves downward to merge with the Mt 

estimator to give the lowest estimate at the highest capture probability on the first capture 

occasion.  M0 gives the highest estimate at the highest capture probability on the first 

capture occasion.  We also note that when comparing this graphic to the other graphics 

that we chose to look at for four capture occasions, the three estimators for this 

combination of probabilities are the closest to the actual population of 1000. 

 

Section 5.3 Simulation of Mt Captures for Five Capture Occasions 

 For five capture occasions, graphics were also generated for various combinations 

of the capture probabilities for the capture occasions.  In this case our simulation 

generated 23,770 lines of data (combinations of capture probabilities); therefore there 

were a tremendous amount of combinations that could be explored.  We chose to only 

look at a select few.  Subsets were created in increments of 0.1 from the simulated data 
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by the probability of capture values on the fifth capture occasion, and graphics were 

generated from that data.  The ones that we selected to examine are seen in Figure 5.3.  

In the first panel, we once again see that when the probability of capture is low on 

all the latter capture occasions, all of the estimators give low estimates of the population, 

with the Mb estimator giving the lowest estimates of the three.  These patterns are very 

similar to those that we discussed for three and four capture occasions.  As we saw for 

three and four capture occasions, the behavior appears linear, unlike the marked negative 

concavity seen for the models discussed in chapters 3 and 4.  Also, M0 and Mt start out 

giving very close estimates, but as the capture probability increases for the first capture 

occasion, they begin to separate.  This is similar to what was seen in the first panel of 

Figure 5.2. 

 To see how the estimates behaved as the capture probabilities increased on the 

first capture occasion with a high capture probability on the fifth capture occasion and 

low capture probabilities on all other occasions, we looked at another combination.  On 

this graphic, we chose to have the capture probability equal to 0.1 on the second, third 

and fourth capture occasion and to have the capture probability equal to 0.8 on the fifth 

capture occasion.  The estimators for M0 and Mt increase relatively linearly as the capture 

probability on the first capture occasion increases, while the Mb estimator decreases and 

shows upward concavity. 

We then looked at a combination where the capture probability was high on the 

second and fourth capture occasions and low on the third and fifth capture occasions.  For 

this combination, we used 0.7 as the capture probability on the second and fourth capture 

occasion and 0.1 on the third and fifth capture occasion.  Each estimate is close to the 
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Figure 5.3 Selected Examples for Model Mt with Five Capture Occasions 
                         Nhat M0              Nhat Mb              Nhat Mt 
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actual population of 1000, with M0 giving the closest estimate for all values of pcap(1).  

The Mb estimator starts out being slightly higher than the Mt estimator when the capture 

probability on the first capture occasion is low.  As the capture probability on the first 

capture occasion increases, the Mb estimator becomes the lowest estimator.  There is no 

real change in the Mb estimates since there are more marks early; so later capture 

occasions contribute few unmarks to update N. 

 Next, we looked at a case where the capture probability was high on the third and 

fifth capture occasion and low on the second and fourth capture occasion.  For this 

combination, all of the estimators give estimates that are close to the actual population of 

1000.  Mb starts out giving the highest estimates for low capture probabilities on the first 

capture occasion, but since there are more marks late, it begins to decrease as the capture 

probability increases on the first capture occasion.  M0 gives the highest estimate for the 

highest capture probability on the first capture occasion.  It also appears that Mb merges 

with Mt at the highest capture probability on the first capture occasion. 

 Next, we chose to look at the behavior of the estimators as the capture probability 

increased with increasing capture occasions.  For this graphic, we chose the capture 

probability to equal 0.2 on the second capture occasion, 0.3 on the third capture occasion, 

0.4 on the fourth capture occasion and 0.5 on the fifth capture occasion.  We see that 

when the capture probability on the first capture occasion is low, the Mb estimator gives 

the highest estimate.  We also see some positive concavity in the Mb estimator as the 

capture probability on the first capture occasion increases.  We also see that the M0 and 

Mt estimators steadily increase as the capture probability on the first capture occasion 

increases.  The Mb estimator then becomes the lowest estimator. 
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 The last combination we chose to examine was one where the capture 

probabilities decreased as the number of capture occasions increased.  For this graphic, 

we chose the capture probability to equal 0.5 on the second capture occasion, 0.4 on the 

third capture occasion, 0.3 on the fourth capture occasion, and 0.2 on the fifth occasion.  

We can clearly see that as the probability of capture increases on the first capture 

occasion, the Mb estimator gives the lowest estimates.  This can be due to the fact that a 

lot were marked early, and there were few unmarked left for later.  In this case, none of 

the estimators cross at any point.  There also appears to be some slight positive curvature 

in the Mb estimator.  The M0 estimator gives the highest estimates and the Mt estimator 

lies between the Mb and M0 estimates as the capture probability on the first capture 

occasion increases.  The Mt estimator is closer in its estimates to the M0 estimator than to 

the Mb estimator. 

 

Section 5.4 Bias Estimation in the Mt Capture Scenario 
 
 In Chapters 3 and 4, for models M0 and Mb, we attempted to model the bias for 

the estimators.  Due to the number of different patterns seen, we did not attempt to model 

the bias for the Mt model.  We also noted in Chapters 3 and 4 that for low capture 

probabilities in models M0 and Mb the population estimates were significantly biased 

low.  This same pattern holds for the Mt model.  Another observation that we made for 

model Mt is that the behavior of the Mb estimator is erratic.  In some cases it is linear, 

while in others it is concave up.  It is also seen crossing the other estimators.  It is also 

seen that the Mt estimator does not seem to really model its scenario well, whereas the 

Mb estimator usually does better.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE PROJECTS 

 

Section 6.1 Conclusions 

 We began this thesis with the purpose of looking at methods of modeling 

populations using mark-recapture methods to examine the effects of departures from the 

assumptions of the estimators.  In the introductory chapter we looked at the various 

models that are available for both open and closed populations.  We decided to focus on a 

closed population.  We looked at three of the capture models and their associated 

estimators, these being models M0, Mb and Mt.  We wanted to know whether one of these 

three models performed better than the others in estimating the population, given 

departures from the assumptions.  To try to answer this question, we began looking at the 

maximum likelihood estimators for each model.  We explored these questions through 

simulated data.  We noted that M0 and Mt performed equally well for the M0 and Mb 

captures, but Mb was the better estimator for the Mb captures.  The Mt estimator for Mt 

captures did not perform well.  Depending on actual capture probabilities, either of the 

other two estimators may give better, less biased results. 

After looking at the initial simulation results, we became interested in the bias of 

each estimator as well, since it was clear that in many cases, the population estimates 

were very low compared to the (known) population used in the simulation.  We noticed 

that the M0 and Mb scenarios always gave concave down graphs for the population 

estimates approaching the true population as an asymptote as the probability of capture 

increased or as the number of capture occasions increased.  We did not notice this 
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behavior pattern in the Mt scenario.  We did some bias modeling for the M0 and Mb 

capture scenarios, which found that probability of capture as a percent (pcappct), number 

of capture occasions (nocc), number of capture occasions times the probability of capture 

(nocc*pcap) and a quadratic function in the probability of capture (pcapSq) had good 

results in terms of r2, but analysis of the residuals indicates problems with this model.  

  

Section 6.2 Future Projects  

 There were several things that we noticed in this thesis which we believe could be 

explored in future projects.  First, the bias modeling for models M0 and Mb could be 

explored in more depth.  From what we saw in the residuals versus the fitted values 

graphics, more exploration could be done to obtain a better model (especially one that 

uses the theoretical asymptote at the actual population level).  We saw nonlinear patterns 

in this model, and the model that we fitted was not of that form.  More explorations could 

also be done for model Mt to explore its behavior in more depth.  We did not explore the 

bias for this model, since we had such a large amount of simulated data with greatly 

varied behaviors.  We also noted for model Mt that the Mt estimator did not behave as 

well as we thought it should, which could possibly suggest that the derived maximum 

likelihood estimator may not be the best estimator for this model.  Based on these future 

endeavors, adjusted estimators could be formulated to give less biased results.  
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APPENDICES 

APPENDIX A 

  FORTRAN PROGRAM FOR MODEL M0 

c program M0 simulation 
c 
c program to estimate population parameters based on actual data. 
c number of capture occasions and marks/unmarks are input for each 
c simulation estimates standard deviations of parameters. This 
c       version is for model M0 - all capture probabilities are the 
c       same each occasion for all animals. Two parameters to estimate: 
c       N and p. 
c 
c 
 character*10 outfile 
 integer*4 n, cmarks, unmarks, oldpop, totcap, nsubj(25), cm(25), 
     1   u(25), bigmdot, sumnb, nsqb, Nmin, Nmax, Nmint, Nmaxt, nsqt 
 parameter (ndim=2,mp=3,np=2) 
 real*4 xguess(2), x(2), Nave, Nsq, newp(2), maxlik, SDN, 
     1  xscale(2), p(mp,np), y(mp), Nlo, Nhi, sump, sumn, snp, likeli, 
     2  phat, pcap, phatt(25),naveb, phatb, Navet, pmint(25), pmaxt(25), 
     3 sumpt(25), psqt(25), sdpt(25), plowt(25), phit(25), pavet(25), 
     4  plow, phi 
        idum = -1 
c 
c Accept parameters for the simulation 
c 
 print 4 
4 format (' Enter the Total Population') 
 read(*,5) in 
5 format(i4) 
 print 8 
8 format(' Input the number of repetitions for simulation i4') 
  read(*,5) nrep 
  print 2 
2 format (' Enter random seed - large odd - i7') 
        read (*,6) idum 
6       format (i7) 
        print 9 
9       format (' Enter output file name (10 characters)') 
        read(*,11) outfile 
11      format (a10) 
 open (unit=10,status='unknown',file=outfile) 
        do 850 nocc=3,10 
        do 860 ipcap=1,8 
        pcap = ipcap/10. 
c 
c       Initialize Variables 
c 
        nave = 0 
        pave = 0. 
        naveb = 0 
        caveb = 0. 
        navet = 0 
        cmaxb = 0. 
        cminb = 1. 
        chi = 0. 
        sumpb = 0. 
        paveb = 0. 
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        psqb = 0. 
        pminb = 1. 
        pmaxb = 0. 
        csqb = 0. 
        nsqb = 0. 
        naveb = 0. 
        sumnb = 0. 
        nminb = 8000. 
        nmaxb = 0. 
        Nmin = 8000 
        Nmax = 0 
        Pmin = 1. 
        Pmax = 0. 
        Nmint = 8000 
        Nmaxt = 0 
        do 145 i = 1,25 
        sumpt(i) = 0. 
        pavet(i) = 0. 
        psqt(i) = 0. 
        pmint(i) = 1. 
145      pmaxt(i) = 0. 
        sumnt = 0 
        Navet = 0. 
        nsqt = 0 
c 
c simulate mark/recapture 
c 
 do 50 ijk = 1,nrep 
 do 100, j=1,nocc 
 if (j .eq. 1) unmarks = in 
c Capture Portion 
 if (j .eq. 1) then 
 mdot = 0 
 bigmdot = 0 
        acm = bnldev(pcap, unmarks, idum) 
 cmarks = nint(acm) 
 totcap = cmarks 
 cm(1) = 0 
 u(1)  = cmarks 
 unmarks = unmarks - cmarks 
 else 
 bigmdot = bigmdot + cmarks 
 acm = bnldev(pcap,cmarks,idum) 
 cm(j) = nint(acm) 
 mdot = mdot + cm(j) 
 acu = bnldev(pcap,unmarks,idum) 
 u(j)  = nint(acu) 
 cmarks = cmarks + u(j) 
 unmarks = unmarks - u(j) 
 totcap = totcap + cm(j) + u(j) 
 endif 
100 continue 
c 
c End of simulation portion.  Estimate parameters for model M0. 
c 
        nlim = 2*in 
        maxlik = 0 
        do 200 nhat = cmarks, nlim 
        likeli = alnfact(nhat,cmarks) + 
     1      totcap*log(real(totcap)) + 
     2      (nocc*nhat - totcap)*log(real(nocc*nhat - totcap)) - 
     3      nocc*nhat*log(real(nocc*nhat)) 
        if (likeli .ge. maxlik) then 
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           maxlik = likeli 
           go to 200 
        else 
           go to 250 
        endif 
200     continue 
250     continue 
       nhat = nhat - 1 
       phat = real(totcap)/real(nocc*nhat) 
c 
c          Now, compute estimates for model Mt 
c 
        nlim = 2*in 
        maxlik = 0 
        do 210 nhatt = cmarks, nlim 
        sum1 = 0 
        sum2 = 0 
        do 220 j=1, nocc 
        anj = real(u(j) + cm(j)) 
        sum1 = sum1 + anj*log(anj) 
        sum2 = sum2 + (nhatt - anj)*log(real(nhatt)-anj) 
220     continue 
        likeli = alnfact(nhatt,cmarks) + sum1 + sum2 - 
     1      nocc*nhatt*log(real(nhatt)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 210 
        else 
           go to 240 
        endif 
210     continue 
240     continue 
       nhatt = nhatt - 1 
       do 222  j=1, nocc 
222    phatt(j) = (u(j)+cm(j))/real(nhatt) 
 
c 
c          Now, compute estimates for model Mb 
c 
        nlim = 2*in 
        maxlik = 0 
        do 235 nhatb = cmarks, nlim 
        likeli = alnfact(nhatb,cmarks) + cmarks*log(real(cmarks)) + 
     1  (nocc*nhatb-bigmdot-cmarks)*log(real(nocc*nhatb-bigmdot-cmarks)) 
     2   -(nocc*nhatb-bigmdot)*log(real(nocc*nhatb-bigmdot)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 235 
        else 
           go to 245 
        endif 
235     continue 
245     continue 
       nhatb = nhatb - 1 
       phatb = real(cmarks)/real(nocc*nhatb-bigmdot) 
       chat = real(mdot)/real(bigmdot) 
c 
c      accumulate summary estimates for M0 
c 
35     format(' M0 N hat = ', i5, ' phat = ', f6.3) 
c       write (10,900) phat, nhat 
900 format ('M0 estimates P = ',f7.5,' N = ',i5) 
 if (nhat .le. Nmin) Nmin = nhat 
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 if (nhat .ge. Nmax) Nmax = nhat 
 sumn = sumn + nhat 
 nave = nave + nhat/float(nrep) 
 nsq  = nsq + nhat**2 
 if (phat .le. Pmin) Pmin = phat 
 if (phat .ge. Pmax) Pmax = phat 
 sump = sump + phat 
 Pave = Pave + phat/float(nrep) 
 Psq  = Psq + phat**2 
 Snp = snp + phat*nhat 
c 
c      accumulate summary estimates for model Mt 
c 
45      format(' N hatt = ', i5, ' phatt = ', 11(f6.3, 1x)) 
c       write (10,45) phatt, nhatt 
 if (nhatt .le. Nmint) Nmint = nhatt 
 if (nhatt .ge. Nmaxt) Nmaxt = nhatt 
 sumnt = sumnt + nhatt 
 Navet = Navet + nhatt/float(nrep) 
 Nsqt  = Nsqt + nhatt**2 
        do 29 j = 1, nocc 
 if (phatt(j) .le. pmint(j)) pmint(j) = phatt(j) 
 if (phatt(j) .ge. pmaxt(j)) pmaxt(j) = phatt(j) 
 sumpt(j) = sumpt(j) + phatt(j) 
 pavet(j) = pavet(j) + phatt(j)/float(nrep) 
29 psqt(j)  = psqt(j) + phatt(j)**2 
c Snpt = snpt + phatt*nhatt 
c 
c      accumulate summary estimates for model Mb 
c 
55     format(' N hatb = ', i5, ' phatb = ',f6.3, ' chat = ',f6.3) 
c       write (10,55) nhatb, phatb, chat 
 if (nhatb .le. nminb) nminb = nhatb 
 if (nhatb .ge. nmaxb) nmaxb = nhatb 
 sumnb = sumnb + nhatb 
 naveb = naveb + real(nhatb)/real(nrep) 
 nsqb  = nsqb + nhatb**2 
 if (phatb .le. pminb) pminb = phatb 
 if (phatb .ge. pmaxb) pmaxb = phatb 
 sumpb = sumpb + phatb 
 paveb = paveb + phatb/float(nrep) 
 psqb  = psqb + phatb**2 
 Snpb = snpb + phatb*real(nhatb) 
        if (chat .le. Cminb) Cminb = chat 
 if (chat .ge. Cmaxb) Cmaxb = chat 
 sumc = sumc + chat 
 caveb = caveb + chat/float(nrep) 
 csqb  = csqb + chat**2 
 sncb = sncb + chat*nhatb 
 
50     continue 
        arep = float(nrep) 
c 
c       Wrap up for M0 
c 
 SDN = sqrt((Nsq - arep*Nave**2)/(arep - 1.0)) 
 SdP = sqrt((Psq - arep *Pave**2)/(arep - 1.0)) 
 sdn0 = Nave*((1-pave)**(-nocc)-nocc*(1-pave)**(-1)+nocc-1)**(-1) 
 Nlo = nave - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = nave + 1.96*SDN 
 plow   = pave - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
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 phi = pave + 1.96*SdP 
 cornp = (snp - (sumn*sump)/arep)/( 
     1  (nsq -sumn**2/arep)*(psq-sump**2/arep))**.5 
c 
c       Do wrap up for Mt and Mb 
c 
c       Wrap up for Mt 
c 
 SdNt = ((real(Nsqt) - arep*Navet**2)/(arep - 1.0))**.5 
 Nlo = navet - 1.96*SDNt 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = navet + 1.96*SDNt 
 phatprod = 1. 
        pinvsum = 0. 
 do 49 j = 1,nocc 
        sdpt(j) = ((psqt(j) - arep *pavet(j)**2)/(arep - 1.0))**.5 
 plowt(j) = pavet(j) - 1.96*sdpt(j) 
 if (plowt(j) .le. 0.0) plowt(j) = 0.0 
 phit(j) = pavet(j) + 1.96*sdpt(j) 
 phatprod = (1 - pavet(j))*phatprod 
 pinvsum = pinvsum + (1-pavet(j))**(-1) 
49      continue 
        sdnt = navet*(1/phatprod + nocc - 1 - pinvsum)**(-1) 
c 
c       Wrap up for Mb 
c 
 SDNb = ((nsqb - sumnb**2/arep)/(arep - 1.0))**.5 
 if (SDN .le. 0.000000001) SDN = 0. 
 print *, SDN 
 SdP = ((psqb - arep*paveb**2)/(arep - 1.0))**.5 
 SdC = ((csqb - arep*caveb**2)/(arep - 1.0))**.5 
        sdnb =(naveb*(1-paveb)**nocc*(1-(1-paveb)**nocc))/(((1-(1-paveb) 
     1    **nocc)**2)-nocc**2*paveb**2*(1-paveb)**(nocc-1)) 
 Nlo = naveb - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = naveb + 1.96*SDN 
 plow = paveb - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
 phi = paveb + 1.96*SdP 
 cornp = (1/(real(nocc)-1))*(snpb - (sumnb*sumpb)/arep)/( 
     1  (nsqb -sumnb**2/arep)*(psqb-sumpb**2/arep))**.5 
        clow   = caveb - 1.96*SdC 
 if (clow .le. 0.0) clow = 0.0 
 chi = caveb + 1.96*SdC 
 cornc = (1/(real(nocc)-1))*(sncb - (sumnb*sumc)/arep)/( 
     1  (nsqb - sumnb**2/arep)*(csqb-sumc**2/arep))**.5 
        write(10,840) nocc, pcap, nave, sdn0, pave, naveb, sdnb, paveb, 
     1    caveb, navet, sdnt, (pavet(j), j=1,nocc) 
840     format(i2,1x,f4.2, 19(1x,f8.3)) 
860 continue 
850 continue 
        print 101 
101     format(' Finished') 
 close(unit=10) 
       end 
         
        Function alnfact(nhat,cmarks) 
c 
c       Function to compute ln((Nhat)!/(Nhat-cmarks)!) 
c 
        integer cmarks 
        afact=0.0 
        bfact = 0.0 
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        do 1 j = 1,nhat 
        afact = afact + log(real(j)) 
1       continue 
        ik = nhat - cmarks 
        Do 2 j = 1,ik 
2       bfact = bfact + log(real(ik)) 
        alnfact = afact - bfact 
        return 
        end 
c 
 FUNCTION ran1(idum) 
c 
c       Function used by Binomal random variate function 
c 
 INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV 
 REAL ran1,AM,EPS,RNMX 
 PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836, 
     1  NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS) 
 INTEGER j,k,iv(NTAB),iy 
 SAVE iv,iy 
 DATA iv /NTAB*0/, iy /0/ 
c if (idum.le.0.or.iy.eq.0) then 
c idum=max(-idum,1) 
 do 11 j=NTAB+8,1,-1 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 if (j.le.NTAB) iv(j)=idum 
11 continue 
 iy=iv(1) 
c endif 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 j=1+iy/NDIV 
 iy=iv(j) 
 iv(j)=idum 
 ran1=min(AM*iy,RNMX) 
 return 
 END 
C   (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 
 FUNCTION bnldev(pp,n,idum) 
C       Subroutine to generate binomial rancom observations for capture 
C        simulation 
C 
 INTEGER idum,n 
 REAL*4 bnldev,pp,PI 
C    USES gammln,ran1 
 PARAMETER (PI=3.141592654) 
 INTEGER j,nold 
 REAL am,em,en,g,oldg,p,pc,pclog,plog,pold,sq,t,y,gammln,ran1 
 SAVE nold,pold,pc,plog,pclog,en,oldg 
 DATA nold /-1/, pold /-1./ 
 if(pp.le.0.5)then 
 p=pp 
 else 
 p=1.-pp 
 endif 
 am=n*p 
 if (n.lt.25)then 
 bnldev=0. 
 do 11 j=1,n 
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 if(ran1(idum).lt.p)bnldev=bnldev+1. 
11 continue 
 else if (am.lt.1.) then 
 g=exp(-am) 
 t=1. 
 do 12 j=0,n 
 t=t*ran1(idum) 
 if (t.lt.g) goto 1 
12 continue 
 j=n 
1 bnldev=j 
 else 
 if (n.ne.nold) then 
 en=n 
 oldg=gammln(en+1.) 
 nold=n 
 endif 
 if (p.ne.pold) then 
 pc=1.-p 
 plog=log(p) 
 pclog=log(pc) 
 pold=p 
 endif 
 sq=sqrt(2.*am*pc) 
2 y=tan(PI*ran1(idum)) 
 em=sq*y+am 
 if (em.lt.0..or.em.ge.en+1.) goto 2 
 em=int(em) 
 t=1.2*sq*(1.+y**2)*exp(oldg-gammln(em+1.)-gammln(en-em+1.)  
     1    +em*plog+(en-em)*pclog) 
 if (ran1(idum).gt.t) goto 2 
 bnldev=em 
 endif 
 if (p.ne.pp) bnldev=n-bnldev 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 FUNCTION gammln(xx) 
c 
c       Function used by Amoeba routine 
c 
 REAL gammln,xx 
 INTEGER j 
 DOUBLE PRECISION ser,stp,tmp,x,y,cof(6) 
 SAVE cof,stp 
 DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, 
     1  24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, 
     2  -.5395239384953d-5,2.5066282746310005d0/ 
 x=xx 
 y=x 
 tmp=x+5.5d0 
 tmp=(x+0.5d0)*log(tmp)-tmp 
 ser=1.000000000190015d0 
 do 11 j=1,6 
 y=y+1.d0 
 ser=ser+cof(j)/y 
11 continue 
 gammln=tmp+log(stp*ser/x) 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
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APPENDIX B 
 

  FORTAN PROGRAM FOR MODEL Mb 
 

c program Mb simulation 
c 
c program to estimate population parameters based on actual data. 
c number of capture occasions and marks/unmarks are input for each 
c simulation estimates standard deviations of parameters. This 
c       version is for model M0 - all capture probabilities are the 
c       same each occasion for all animals. Two parameters to estimate: 
c       N and p. 
c 
c 
 character*10 outfile 
 integer*4 n, cmarks, unmarks, oldpop, totcap, nsubj(25), cm(25), 
     1   u(25), bigmdot, sumnb, nsqb, Nmin, Nmax, Nmint, Nmaxt, nsqt 
c 
c      np = number of parameters to estimate 
c      mp = number of parameters + 1 
c      matrix p holds initial values and is used in the estimating 
c      routine 
c 
 parameter (ndim=2,mp=3,np=2) 
 real*4 xguess(2), x(2), Nave, Nsq, newp(2), maxlik, 
     1  xscale(2), p(mp,np), y(mp), Nlo, Nhi, sump, sumn, snp, likeli, 
     2  phat, pcap, phatt(25),naveb, phatb, Navet, pmint(25), pmaxt(25), 
     3 sumpt(25), psqt(25), sdpt(25), plowt(25), phit(25), pavet(25), 
     4  plow, phi 
c 
c Accept parameters for the simulation 
c 
 print 4 
4 format (' Enter the Total Population') 
 read(*,5) in 
5 format(i4) 
 print 8 
8 format(' Input the number of repetitions for simulation i4') 
  read(*,5) nrep 
  print 2 
2 format (' Enter random seed - large odd i7') 
        read(*,6) idum 
6       format (i7) 
        print 9 
9       format (' Enter output file name (10 characters)') 
        read(*,11) outfile 
11      format (a10) 
 open (unit=10,status='unknown',file=outfile) 
        do 850 nocc=3,10 
        do 860 ipcap=1,8 
        do 870 idiff = -3, 3 
        ircap = ipcap+idiff 
        if(ircap.lt.1) go to 870 
        if(ircap.gt.8) go to 870 
        if(ircap.eq.ipcap) go to 870 
        rcap=ircap/10. 
        pcap = ipcap/10. 
c 
c       Initialize Variables 
c 
        nave = 0 
        pave = 0. 
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        naveb = 0 
        caveb = 0. 
        navet = 0 
        cmaxb = 0. 
        cminb = 1. 
        chi = 0. 
        sumpb = 0. 
        paveb = 0. 
        psqb = 0. 
        pminb = 1. 
        pmaxb = 0. 
        csqb = 0. 
        nsqb = 0. 
        naveb = 0. 
        sumnb = 0. 
        nminb = 8000. 
        nmaxb = 0. 
        Nmin = 8000 
        Nmax = 0 
        Pmin = 1. 
        Pmax = 0. 
        Nmint = 8000 
        Nmaxt = 0 
        do 145 i = 1,25 
        sumpt(i) = 0. 
        pavet(i) = 0. 
        psqt(i) = 0. 
        pmint(i) = 1. 
145      pmaxt(i) = 0. 
        sumnt = 0 
        Navet = 0. 
        nsqt = 0 
c 
c simulate mark/recapture 
c 
 do 50 ijk = 1,nrep 
 do 100, j=1,nocc 
 if (j .eq. 1) unmarks = in 
c Capture Portion 
 if (j .eq. 1) then 
 mdot = 0 
 bigmdot = 0 
        acm = bnldev(pcap, unmarks, idum) 
 cmarks = nint(acm) 
 totcap = cmarks 
 cm(1) = 0 
 u(1)  = cmarks 
 unmarks = unmarks - cmarks 
 else 
 bigmdot = bigmdot + cmarks 
 acm = bnldev(rcap,cmarks,idum) 
 cm(j) = nint(acm) 
 mdot = mdot + cm(j) 
 acu = bnldev(pcap,unmarks,idum) 
 u(j)  = nint(acu) 
 cmarks = cmarks + u(j) 
 unmarks = unmarks - u(j) 
 totcap = totcap + cm(j) + u(j) 
 endif 
100 continue 
c       print *, totcap, cmarks 
c print 901, (u(i),i=1,10) 
c print 901, (cm(i), i=1,10) 
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901 format (1x,10(1x,i4.0)) 
c 
c End of simulation portion.  Estimate parameters for model M0. 
c 
        nlim = 2*in 
        maxlik = 0 
        do 200 nhat = cmarks, nlim 
        likeli = alnfact(nhat,cmarks) + 
     1      totcap*log(real(totcap)) + 
     2      (nocc*nhat - totcap)*log(real(nocc*nhat - totcap)) - 
     3      nocc*nhat*log(real(nocc*nhat)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 200 
        else 
           go to 250 
        endif 
200     continue 
250     continue 
       nhat = nhat - 1 
       phat = real(totcap)/real(nocc*nhat) 
c 
c          Now, compute estimates for model Mt 
c 
        nlim = 2*in 
        maxlik = 0 
        do 210 nhatt = cmarks, nlim 
        sum1 = 0 
        sum2 = 0 
        do 220 j=1, nocc 
        anj = real(u(j) + cm(j)) 
        sum1 = sum1 + anj*log(anj) 
        sum2 = sum2 + (nhatt - anj)*log(real(nhatt)-anj) 
220     continue 
        likeli = alnfact(nhatt,cmarks) + sum1 + sum2 - 
     1      nocc*nhatt*log(real(nhatt)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 210 
        else 
           go to 240 
        endif 
210     continue 
240     continue 
       nhatt = nhatt - 1 
       do 222  j=1, nocc 
222    phatt(j) = (u(j)+cm(j))/real(nhatt) 
 
c 
c          Now, compute estimates for model Mb 
c 
        nlim = 2*in 
        maxlik = 0 
        do 235 nhatb = cmarks, nlim 
        likeli = alnfact(nhatb,cmarks) + cmarks*log(real(cmarks)) + 
     1  (nocc*nhatb-bigmdot-cmarks)*log(real(nocc*nhatb-bigmdot-cmarks)) 
     2   -(nocc*nhatb-bigmdot)*log(real(nocc*nhatb-bigmdot)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 235 
        else 
           go to 245 
        endif 
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235     continue 
245     continue 
       nhatb = nhatb - 1 
       phatb = real(cmarks)/real(nocc*nhatb-bigmdot) 
       chat = real(mdot)/real(bigmdot) 
c 
c      print estimates for M0 
c 
35     format(' M0 N hat = ', i5, ' phat = ', f6.3) 
c       write (10,900) phat, nhat 
900 format ('M0 estimates P = ',f7.5,' N = ',i5) 
 if (nhat .le. Nmin) Nmin = nhat 
 if (nhat .ge. Nmax) Nmax = nhat 
 sumn = sumn + nhat 
 nave = nave + nhat/float(nrep) 
 nsq  = nsq + nhat**2 
 if (phat .le. Pmin) Pmin = phat 
 if (phat .ge. Pmax) Pmax = phat 
 sump = sump + phat 
 Pave = Pave + phat/float(nrep) 
 Psq  = Psq + phat**2 
 Snp = snp + phat*nhat 
c 
c      print estimates for model Mt 
c 
        print 45, nhatt, (phatt(i), i=1,nocc) 
45      format(' N hatt = ', i5, ' phatt = ', 11(f6.3, 1x)) 
c       write (10,45) phatt, nhatt 
 if (nhatt .le. Nmint) Nmint = nhatt 
 if (nhatt .ge. Nmaxt) Nmaxt = nhatt 
 sumnt = sumnt + nhatt 
 Navet = Navet + nhatt/float(nrep) 
 Nsqt  = Nsqt + nhatt**2 
        do 29 j = 1, nocc 
 if (phatt(j) .le. pmint(j)) pmint(j) = phatt(j) 
 if (phatt(j) .ge. pmaxt(j)) pmaxt(j) = phatt(j) 
 sumpt(j) = sumpt(j) + phatt(j) 
 pavet(j) = pavet(j) + phatt(j)/float(nrep) 
29 psqt(j)  = psqt(j) + phatt(j)**2 
c Snpt = snpt + phatt*nhatt 
c 
c      print estimates for model Mb 
c 
c        print 55, nhatb, phatb, chat 
55     format(' N hatb = ', i5, ' phatb = ',f6.3, ' chat = ',f6.3) 
c       write (10,55) nhatb, phatb, chat 
 if (nhatb .le. nminb) nminb = nhatb 
 if (nhatb .ge. nmaxb) nmaxb = nhatb 
 sumnb = sumnb + nhatb 
 naveb = naveb + real(nhatb)/real(nrep) 
 nsqb  = nsqb + nhatb**2 
 if (phatb .le. pminb) pminb = phatb 
 if (phatb .ge. pmaxb) pmaxb = phatb 
 sumpb = sumpb + phatb 
 paveb = paveb + phatb/float(nrep) 
 psqb  = psqb + phatb**2 
 Snpb = snpb + phatb*real(nhatb) 
        if (chat .le. Cminb) Cminb = chat 
 if (chat .ge. Cmaxb) Cmaxb = chat 
 sumc = sumc + chat 
 caveb = caveb + chat/float(nrep) 
 csqb  = csqb + chat**2 
 sncb = sncb + chat*nhatb 
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50     continue 
        arep = float(nrep) 
c 
c       Wrap up for M0 
c 
c        write(10,503) 
503     format(///, '                     Summary for Simulation', //) 
 SDN = sqrt((Nsq - arep*Nave**2)/(arep - 1.0)) 
 SdP = sqrt((Psq - arep *Pave**2)/(arep - 1.0)) 
 Nlo = nave - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = nave + 1.96*SDN 
 plow   = pave - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
 phi = pave + 1.96*SdP 
 cornp = (snp - (sumn*sump)/arep)/( 
     1  (nsq -sumn**2/arep)*(psq-sump**2/arep))**.5 
c print 31, nave, SdN, Nlo, Nhi 
31 format( 'M0 Nhat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c print 33, Pave, SdP, Plow, phi 
33 format( 'M0 P hat= ',f7.3, ' sd(P) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c print 34, cornp 
34 format ('M0 corr n,p = ',f9.4) 
c write (10,31) nave, SdN, Nlo, Nhi 
c write (10,52) Nmin, Nmax 
c write (10,33) Pave, SdP, Plow, phi 
c write (10,58) Pmin, Pmax 
c 
c       Do wrap up for Mt and Mb 
c 
c       Wrap up for Mt 
c 
 SdNt = ((Nsqt - arep*Navet**2)/(arep - 1.0))**.5 
 Nlo = navet - 1.96*SDNt 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = navet + 1.96*SDNt 
c print 41, nave, SdN, Nlo, Nhi 
41 format( 'Mt Nhat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c      write (10,41) navet, SdNt, Nlo, Nhi 
c write(10,52) Nmint, Nmaxt 
 do 49 j = 1,nocc 
        sdpt(j) = ((psqt(j) - arep *pavet(j)**2)/(arep - 1.0))**.5 
 plowt(j) = pavet(j) - 1.96*sdpt(j) 
 if (plowt(j) .le. 0.0) plowt(j) = 0.0 
 phit(j) = pavet(j) + 1.96*sdpt(j) 
c cornp = (snp - (sumn*sump)/arep)/( 
c    1  (nsq -sumn**2/arep)*(psq-sump**2/arep))**.5 
c print 43, j, pavet(j), sdpt(j), plowt(j), phit(j) 
43 format( 'Mt P hat(',i2,')= ',f9.4, ' sd(P) = ',f9.4, 
     1  ' Low 95% = ',f9.4,' Hi 95% = ', f9.4) 
c       print 58, pmint(j), pmaxt(j) 
c print 44, cornp 
44 format ('Mt corr n,p = ',f9.4) 
c write (10,43) j, pavet(j), sdpt(j), plowt(j), phit(j) 
c write (10,58) pmint(j), pmaxt(j) 
49      continue 
c 
c       Wrap up for Mb 
c 
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 SDN = ((nsqb - arep*naveb**2)/(arep - 1.0))**.5 
 SdP = ((psqb - arep*paveb**2)/(arep - 1.0))**.5 
 SdC = ((csqb - arep*caveb**2)/(arep - 1.0))**.5 
 Nlo = naveb - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = naveb + 1.96*SDN 
 plow = paveb - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
 phi = paveb + 1.96*SdP 
 cornp = (snpb - (sumnb*sumpb)/arep)/( 
     1  (nsqb -sumnb**2/arep)*(psqb-sumpb**2/arep))**.5 
        clow   = caveb - 1.96*SdC 
 if (clow .le. 0.0) clow = 0.0 
 chi = caveb + 1.96*SdC 
 cornc = (sncb - (sumnb*sumc)/arep)/( 
     1  (nsqb -sumnb**2/arep)*(csqb-sumc**2/arep))**.5 
c print 51, naveb, SdN, Nlo, Nhi 
51 format( 'Mb N hat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c print 53, Paveb, SdP, Plow, phi 
53 format( 'Mb P hat= ',f9.4, ' sd(P) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c        print 56, caveb, SdC, clow, chi 
56 format( 'Mb C hat= ',f9.4, ' sd(C) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c write (10,51) naveb, SdN, Nlo, Nhi 
c write (10,52) nminb, nmaxb 
52      format (' Min = ', i5, ' Max = ', i5) 
c write (10,53) Paveb, SdP, plow, phi 
c write (10,58) pminb, pmaxb 
58      format(' Min = ', f9.5, ' Max = ', f9.5) 
c write (10,56) caveb, SdC, clow, chi 
c write (10, 58) cminb, cmaxb 
c write (10,57) cornp, cornc 
57      format( 'Mb corr (n,p) = ', f8.5, ' corr(n,c) = ', f8.5) 
c 
        write(10,840) nocc, pcap, rcap, nave, pave, naveb, paveb, caveb, 
     1    navet,(pavet(j), j=1,nocc) 
840     format(i2,1x,f4.2,1x,f4.2, 16(1x,f8.3)) 
870     continue 
860 continue 
850 continue 
 close(unit=10,disp='keep') 
       end 
         
        Function alnfact(nhat,cmarks) 
c 
c       Function to compute ln((Nhat)!/(Nhat-cmarks)!) 
c 
        integer cmarks 
        afact=0.0 
        bfact = 0.0 
        do 1 j = 1,nhat 
        afact = afact + log(real(j)) 
1       continue 
        ik = nhat - cmarks 
        Do 2 j = 1,ik 
2       bfact = bfact + log(real(ik)) 
        alnfact = afact - bfact 
        return 
        end 
c 
 FUNCTION ran1(idum) 
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c 
c       Function used by Binomal random variate function 
c 
 INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV 
 REAL ran1,AM,EPS,RNMX 
 PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836, 
     1  NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS) 
 INTEGER j,k,iv(NTAB),iy 
 SAVE iv,iy 
 DATA iv /NTAB*0/, iy /0/ 
c if (idum.le.0.or.iy.eq.0) then 
c idum=max(-idum,1) 
 do 11 j=NTAB+8,1,-1 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 if (j.le.NTAB) iv(j)=idum 
11 continue 
 iy=iv(1) 
c endif 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 j=1+iy/NDIV 
 iy=iv(j) 
 iv(j)=idum 
 ran1=min(AM*iy,RNMX) 
 return 
 END 
C   (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 
 FUNCTION bnldev(pp,n,idum) 
C       Subroutine to generate binomial rancom observations for capture 
C        simulation 
C 
 INTEGER idum,n 
 REAL*4 bnldev,pp,PI 
C    USES gammln,ran1 
 PARAMETER (PI=3.141592654) 
 INTEGER j,nold 
 REAL am,em,en,g,oldg,p,pc,pclog,plog,pold,sq,t,y,gammln,ran1 
 SAVE nold,pold,pc,plog,pclog,en,oldg 
 DATA nold /-1/, pold /-1./ 
 if(pp.le.0.5)then 
 p=pp 
 else 
 p=1.-pp 
 endif 
 am=n*p 
 if (n.lt.25)then 
 bnldev=0. 
 do 11 j=1,n 
 if(ran1(idum).lt.p)bnldev=bnldev+1. 
11 continue 
 else if (am.lt.1.) then 
 g=exp(-am) 
 t=1. 
 do 12 j=0,n 
 t=t*ran1(idum) 
 if (t.lt.g) goto 1 
12 continue 
 j=n 
1 bnldev=j 
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 else 
 if (n.ne.nold) then 
 en=n 
 oldg=gammln(en+1.) 
 nold=n 
 endif 
 if (p.ne.pold) then 
 pc=1.-p 
 plog=log(p) 
 pclog=log(pc) 
 pold=p 
 endif 
 sq=sqrt(2.*am*pc) 
2 y=tan(PI*ran1(idum)) 
 em=sq*y+am 
 if (em.lt.0..or.em.ge.en+1.) goto 2 
 em=int(em) 
 t=1.2*sq*(1.+y**2)*exp(oldg-gammln(em+1.)-gammln(en-em+1.)  
     1    +em*plog+(en-em)*pclog) 
 if (ran1(idum).gt.t) goto 2 
 bnldev=em 
 endif 
 if (p.ne.pp) bnldev=n-bnldev 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 FUNCTION gammln(xx) 
c 
c       Function used by Amoeba routine 
c 
 REAL gammln,xx 
 INTEGER j 
 DOUBLE PRECISION ser,stp,tmp,x,y,cof(6) 
 SAVE cof,stp 
 DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, 
     1  24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, 
     2  -.5395239384953d-5,2.5066282746310005d0/ 
 x=xx 
 y=x 
 tmp=x+5.5d0 
 tmp=(x+0.5d0)*log(tmp)-tmp 
 ser=1.000000000190015d0 
 do 11 j=1,6 
 y=y+1.d0 
 ser=ser+cof(j)/y 
11 continue 
 gammln=tmp+log(stp*ser/x) 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
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APPENDIX C 
 

  FORTRAN PROGRAM FOR MODEL Mt WITH THREE CAPTURE 
OCCASIONS 

 

c program Mt simulation 
c 
c program to estimate population parameters based on actual data. 
c number of capture occasions and marks/unmarks are input for each 
c simulation estimates standard deviations of parameters. This 
c       version is for model M0 - all capture probabilities are the 
c       same each occasion for all animals. Two parameters to estimate: 
c       N and p. 
c 
c 
 character*10 outfile 
 integer*4 n, cmarks, unmarks, oldpop, totcap, nsubj(25), cm(25), 
     1   u(25), bigmdot, sumnb, nsqb, Nmin, Nmax, Nmint, Nmaxt, nsqt 
c 
c      np = number of parameters to estimate 
c      mp = number of parameters + 1 
c      matrix p holds initial values and is used in the estimating 
c      routine 
c 
 parameter (ndim=2,mp=3,np=2) 
 real*4 xguess(2), x(2), Nave, Nsq, newp(2), maxlik, 
     1  xscale(2), p(mp,np), y(mp), Nlo, Nhi, sump, sumn, snp, likeli, 
     2  phat, pcap, phatt(25),naveb, phatb, Navet, pmint(25), pmaxt(25), 
     3 sumpt(25), psqt(25), sdpt(25), plowt(25), phit(25), pavet(25), 
     4  plow, phi, pcapt(10) 
c 
c Accept parameters for the simulation 
c 
 print 4 
4 format (' Enter the Total Population') 
 read(*,5) in 
5 format(i4) 
 print 8 
8 format(' Input the number of repetitions for simulation i4') 
  read(*,5) nrep 
  print 2 
2 format (' Enter random seed - large odd i7') 
        read(*,6) idum 
6       format (i7) 
        print 9 
9       format (' Enter output file name (10 characters)') 
        read(*,11) outfile 
11      format (a10) 
 open (unit=10,status='unknown',file=outfile) 
        nocc=3 
        do 860 ipcap=1,8 
        do 865 ip2 = -5,5 
        do 870 ip3 = -5,5 
        nocc = 3 
        pcapt(1) = ipcap/10. 
        pcapt(2)=(ipcap + ip2)/10. 
        if(pcapt(2).lt.0.1) go to 865 
        if(pcapt(2).gt. 0.8) go to 865 
        pcapt(3)=(ipcap + ip3)/10. 
        if(pcapt(3).lt.0.1) go to 870 
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        if(pcapt(3).gt. 0.8) go to 870 
        if(pcapt(1) .eq.pcapt(2) .and. pcapt(1) .eq.pcapt(3)) go to 870 
c 
c       Initialize Variables 
c 
        nave = 0 
        Nsq = 0 
        pave = 0. 
        naveb = 0 
        caveb = 0. 
        navet = 0 
        cmaxb = 0. 
        cminb = 1. 
        chi = 0. 
        sumpb = 0. 
        paveb = 0. 
        psqb = 0. 
        pminb = 1. 
        pmaxb = 0. 
        csqb = 0. 
        nsqb = 0. 
        naveb = 0. 
        sumnb = 0. 
        nminb = 8000. 
        nmaxb = 0. 
        Nmin = 8000 
        Nmax = 0 
        Pmin = 1. 
        Pmax = 0. 
        Nmint = 8000 
        Nmaxt = 0 
        do 145 i = 1,25 
        sumpt(i) = 0. 
        pavet(i) = 0. 
        psqt(i) = 0. 
        pmint(i) = 1. 
145      pmaxt(i) = 0. 
        sumnt = 0 
        Navet = 0. 
        nsqt = 0 
c 
c simulate mark/recapture 
c 
 do 50 ijk = 1,nrep 
 do 100, j=1,nocc 
 if (j .eq. 1) unmarks = in 
c Capture Portion 
 if (j .eq. 1) then 
 mdot = 0 
 bigmdot = 0 
        acm = bnldev(pcapt(1), unmarks, idum) 
 cmarks = nint(acm) 
 totcap = cmarks 
 cm(1) = 0 
 u(1)  = cmarks 
 unmarks = unmarks - cmarks 
 else 
 bigmdot = bigmdot + cmarks 
 acm = bnldev(pcapt(j),cmarks,idum) 
 cm(j) = nint(acm) 
 mdot = mdot + cm(j) 
 acu = bnldev(pcapt(j),unmarks,idum) 
 u(j)  = nint(acu) 
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 cmarks = cmarks + u(j) 
 unmarks = unmarks - u(j) 
 totcap = totcap + cm(j) + u(j) 
 endif 
100 continue 
c       print *, totcap, cmarks 
c print 901, (u(i),i=1,10) 
c print 901, (cm(i), i=1,10) 
901 format (1x,10(1x,i4.0)) 
c 
c End of simulation portion.  Estimate parameters for model M0. 
c 
        nlim = 2*in 
        maxlik = 0 
        do 200 nhat = cmarks, nlim 
        likeli = alnfact(nhat,cmarks) + 
     1      totcap*log(real(totcap)) + 
     2      (nocc*nhat - totcap)*log(real(nocc*nhat - totcap)) - 
     3      nocc*nhat*log(real(nocc*nhat)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 200 
        else 
           go to 250 
        endif 
200     continue 
250     continue 
       nhat = nhat - 1 
       phat = real(totcap)/real(nocc*nhat) 
c 
c          Now, compute estimates for model Mt 
c 
        nlim = 2*in 
        maxlik = 0 
        do 210 nhatt = cmarks, nlim 
        sum1 = 0 
        sum2 = 0 
        do 220 j=1, nocc 
        anj = real(u(j) + cm(j)) 
        sum1 = sum1 + anj*log(anj) 
        sum2 = sum2 + (nhatt - anj)*log(real(nhatt)-anj) 
220     continue 
        likeli = alnfact(nhatt,cmarks) + sum1 + sum2 - 
     1      nocc*nhatt*log(real(nhatt)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 210 
        else 
           go to 240 
        endif 
210     continue 
240     continue 
       nhatt = nhatt - 1 
       do 222  j=1, nocc 
222    phatt(j) = (u(j)+cm(j))/real(nhatt) 
 
c 
c          Now, compute estimates for model Mb 
c 
        nlim = 2*in 
        maxlik = 0 
        do 235 nhatb = cmarks, nlim 
        likeli = alnfact(nhatb,cmarks) + cmarks*log(real(cmarks)) + 
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     1  (nocc*nhatb-bigmdot-cmarks)*log(real(nocc*nhatb-bigmdot-cmarks)) 
     2   -(nocc*nhatb-bigmdot)*log(real(nocc*nhatb-bigmdot)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 235 
        else 
           go to 245 
        endif 
235     continue 
245     continue 
       nhatb = nhatb - 1 
       phatb = real(cmarks)/real(nocc*nhatb-bigmdot) 
       chat = real(mdot)/real(bigmdot) 
c 
c      print estimates for M0 
c 
35     format(' M0 N hat = ', i5, ' phat = ', f6.3) 
c       write (10,900) phat, nhat 
900 format ('M0 estimates P = ',f7.5,' N = ',i5) 
 if (nhat .le. Nmin) Nmin = nhat 
 if (nhat .ge. Nmax) Nmax = nhat 
 sumn = sumn + nhat 
 nave = nave + nhat/float(nrep) 
 nsq  = nsq + nhat**2 
 if (phat .le. Pmin) Pmin = phat 
 if (phat .ge. Pmax) Pmax = phat 
 sump = sump + phat 
 Pave = Pave + phat/float(nrep) 
 Psq  = Psq + phat**2 
 Snp = snp + phat*nhat 
c 
c      print estimates for model Mt 
c 
c        print 45, nhatt, (phatt(i), i=1,nocc) 
45      format(' N hatt = ', i5, ' phatt = ', 11(f6.3, 1x)) 
c       write (10,45) phatt, nhatt 
 if (nhatt .le. Nmint) Nmint = nhatt 
 if (nhatt .ge. Nmaxt) Nmaxt = nhatt 
 sumnt = sumnt + nhatt 
 Navet = Navet + nhatt/float(nrep) 
 Nsqt  = Nsqt + nhatt**2 
        do 29 j = 1, nocc 
 if (phatt(j) .le. pmint(j)) pmint(j) = phatt(j) 
 if (phatt(j) .ge. pmaxt(j)) pmaxt(j) = phatt(j) 
 sumpt(j) = sumpt(j) + phatt(j) 
 pavet(j) = pavet(j) + phatt(j)/float(nrep) 
29 psqt(j)  = psqt(j) + phatt(j)**2 
c Snpt = snpt + phatt*nhatt 
c 
c      print estimates for model Mb 
c 
c        print 55, nhatb, phatb, chat 
55     format(' N hatb = ', i5, ' phatb = ',f6.3, ' chat = ',f6.3) 
c       write (10,55) nhatb, phatb, chat 
 if (nhatb .le. nminb) nminb = nhatb 
 if (nhatb .ge. nmaxb) nmaxb = nhatb 
 sumnb = sumnb + nhatb 
 naveb = naveb + real(nhatb)/real(nrep) 
 nsqb  = nsqb + nhatb**2 
 if (phatb .le. pminb) pminb = phatb 
 if (phatb .ge. pmaxb) pmaxb = phatb 
 sumpb = sumpb + phatb 
 paveb = paveb + phatb/float(nrep) 
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 psqb  = psqb + phatb**2 
 Snpb = snpb + phatb*real(nhatb) 
        if (chat .le. Cminb) Cminb = chat 
 if (chat .ge. Cmaxb) Cmaxb = chat 
 sumc = sumc + chat 
 caveb = caveb + chat/float(nrep) 
 csqb  = csqb + chat**2 
 sncb = sncb + chat*nhatb 
 
50     continue 
        arep = float(nrep) 
c 
c       Wrap up for M0 
c 
c        write(10,503) 
503     format(///, '                     Summary for Simulation', //) 
 SDN = sqrt((Nsq - arep*Nave**2)/(arep - 1.0)) 
 SdP = sqrt((Psq - arep *Pave**2)/(arep - 1.0)) 
 Nlo = nave - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = nave + 1.96*SDN 
 plow   = pave - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
 phi = pave + 1.96*SdP 
 cornp = (snp - (sumn*sump)/arep)/( 
     1  (nsq -sumn**2/arep)*(psq-sump**2/arep))**.5 
c print 31, nave, SdN, Nlo, Nhi 
31 format( 'M0 Nhat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c print 33, Pave, SdP, Plow, phi 
33 format( 'M0 P hat= ',f7.3, ' sd(P) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c print 34, cornp 
34 format ('M0 corr n,p = ',f9.4) 
c write (10,31) nave, SdN, Nlo, Nhi 
c write (10,52) Nmin, Nmax 
c write (10,33) Pave, SdP, Plow, phi 
c write (10,58) Pmin, Pmax 
c 
c       Do wrap up for Mt and Mb 
c 
c       Wrap up for Mt 
c 
 SdNt = ((Nsqt - arep*Navet**2)/(arep - 1.0))**.5 
 Nlo = navet - 1.96*SDNt 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = navet + 1.96*SDNt 
c print 41, nave, SdN, Nlo, Nhi 
41 format( 'Mt Nhat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c      write (10,41) navet, SdNt, Nlo, Nhi 
c write(10,52) Nmint, Nmaxt 
 do 49 j = 1,nocc 
        sdpt(j) = ((psqt(j) - arep *pavet(j)**2)/(arep - 1.0))**.5 
 plowt(j) = pavet(j) - 1.96*sdpt(j) 
 if (plowt(j) .le. 0.0) plowt(j) = 0.0 
 phit(j) = pavet(j) + 1.96*sdpt(j) 
c cornp = (snp - (sumn*sump)/arep)/( 
c    1  (nsq -sumn**2/arep)*(psq-sump**2/arep))**.5 
c print 43, j, pavet(j), sdpt(j), plowt(j), phit(j) 
43 format( 'Mt P hat(',i2,')= ',f9.4, ' sd(P) = ',f9.4, 
     1  ' Low 95% = ',f9.4,' Hi 95% = ', f9.4) 
c       print 58, pmint(j), pmaxt(j) 
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c print 44, cornp 
44 format ('Mt corr n,p = ',f9.4) 
c write (10,43) j, pavet(j), sdpt(j), plowt(j), phit(j) 
c write (10,58) pmint(j), pmaxt(j) 
49      continue 
c 
c       Wrap up for Mb 
c 
 SDNb = ((nsqb - arep*naveb**2)/(arep - 1.0))**.5 
 SdP = ((psqb - arep*paveb**2)/(arep - 1.0))**.5 
 SdC = ((csqb - arep*caveb**2)/(arep - 1.0))**.5 
 Nlo = naveb - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = naveb + 1.96*SDN 
 plow = paveb - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
 phi = paveb + 1.96*SdP 
 cornp = (snpb - (sumnb*sumpb)/arep)/( 
     1  (nsqb -sumnb**2/arep)*(psqb-sumpb**2/arep))**.5 
        clow   = caveb - 1.96*SdC 
 if (clow .le. 0.0) clow = 0.0 
 chi = caveb + 1.96*SdC 
 cornc = (sncb - (sumnb*sumc)/arep)/( 
     1  (nsqb -sumnb**2/arep)*(csqb-sumc**2/arep))**.5 
c print 51, naveb, SdN, Nlo, Nhi 
51 format( 'Mb N hat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c print 53, Paveb, SdP, Plow, phi 
53 format( 'Mb P hat= ',f9.4, ' sd(P) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c        print 56, caveb, SdC, clow, chi 
56 format( 'Mb C hat= ',f9.4, ' sd(C) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c write (10,51) naveb, SdN, Nlo, Nhi 
c write (10,52) nminb, nmaxb 
52      format (' Min = ', i5, ' Max = ', i5) 
c write (10,53) Paveb, SdP, plow, phi 
c write (10,58) pminb, pmaxb 
58      format(' Min = ', f9.5, ' Max = ', f9.5) 
c write (10,56) caveb, SdC, clow, chi 
c write (10, 58) cminb, cmaxb 
c write (10,57) cornp, cornc 
57      format( 'Mb corr (n,p) = ', f8.5, ' corr(n,c) = ', f8.5) 
c 
        write(10,840) nocc, (pcapt(k), k=1,nocc), nave, SDN, pave, 
     1    naveb, SDNb, paveb, caveb, navet, SdNt, (pavet(j), j=1,nocc) 
840     format(i2, 18(1x,f8.3)) 
870     continue 
865     continue 
860 continue 
850 continue 
        print 75 
75      format (' Finished!') 
 close(unit=10,disp='keep') 
       end 
         
        Function alnfact(nhat,cmarks) 
c 
c       Function to compute ln((Nhat)!/(Nhat-cmarks)!) 
c 
        integer cmarks 
        afact=0.0 
        bfact = 0.0 
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        do 1 j = 1,nhat 
        afact = afact + log(real(j)) 
1       continue 
        ik = nhat - cmarks 
        Do 2 j = 1,ik 
2       bfact = bfact + log(real(ik)) 
        alnfact = afact - bfact 
        return 
        end 
c 
 FUNCTION ran1(idum) 
c 
c       Function used by Binomal random variate function 
c 
 INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV 
 REAL ran1,AM,EPS,RNMX 
 PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836, 
     1  NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS) 
 INTEGER j,k,iv(NTAB),iy 
 SAVE iv,iy 
 DATA iv /NTAB*0/, iy /0/ 
c if (idum.le.0.or.iy.eq.0) then 
c idum=max(-idum,1) 
 do 11 j=NTAB+8,1,-1 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 if (j.le.NTAB) iv(j)=idum 
11 continue 
 iy=iv(1) 
c endif 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 j=1+iy/NDIV 
 iy=iv(j) 
 iv(j)=idum 
 ran1=min(AM*iy,RNMX) 
 return 
 END 
C   (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 
 FUNCTION bnldev(pp,n,idum) 
C       Subroutine to generate binomial rancom observations for capture 
C        simulation 
C 
 INTEGER idum,n 
 REAL*4 bnldev,pp,PI 
C    USES gammln,ran1 
 PARAMETER (PI=3.141592654) 
 INTEGER j,nold 
 REAL am,em,en,g,oldg,p,pc,pclog,plog,pold,sq,t,y,gammln,ran1 
 SAVE nold,pold,pc,plog,pclog,en,oldg 
 DATA nold /-1/, pold /-1./ 
 if(pp.le.0.5)then 
 p=pp 
 else 
 p=1.-pp 
 endif 
 am=n*p 
 if (n.lt.25)then 
 bnldev=0. 
 do 11 j=1,n 



 98

 if(ran1(idum).lt.p)bnldev=bnldev+1. 
11 continue 
 else if (am.lt.1.) then 
 g=exp(-am) 
 t=1. 
 do 12 j=0,n 
 t=t*ran1(idum) 
 if (t.lt.g) goto 1 
12 continue 
 j=n 
1 bnldev=j 
 else 
 if (n.ne.nold) then 
 en=n 
 oldg=gammln(en+1.) 
 nold=n 
 endif 
 if (p.ne.pold) then 
 pc=1.-p 
 plog=log(p) 
 pclog=log(pc) 
 pold=p 
 endif 
 sq=sqrt(2.*am*pc) 
2 y=tan(PI*ran1(idum)) 
 em=sq*y+am 
 if (em.lt.0..or.em.ge.en+1.) goto 2 
 em=int(em) 
 t=1.2*sq*(1.+y**2)*exp(oldg-gammln(em+1.)-gammln(en-em+1.)  
     1    +em*plog+(en-em)*pclog) 
 if (ran1(idum).gt.t) goto 2 
 bnldev=em 
 endif 
 if (p.ne.pp) bnldev=n-bnldev 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 FUNCTION gammln(xx) 
c 
c       Function used by Amoeba routine 
c 
 REAL gammln,xx 
 INTEGER j 
 DOUBLE PRECISION ser,stp,tmp,x,y,cof(6) 
 SAVE cof,stp 
 DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, 
     1  24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, 
     2  -.5395239384953d-5,2.5066282746310005d0/ 
 x=xx 
 y=x 
 tmp=x+5.5d0 
 tmp=(x+0.5d0)*log(tmp)-tmp 
 ser=1.000000000190015d0 
 do 11 j=1,6 
 y=y+1.d0 
 ser=ser+cof(j)/y 
11 continue 
 gammln=tmp+log(stp*ser/x) 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
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APPENDIX D 
 

  FORTRAN PROGRAM FOR MODEL Mt WITH FOUR CAPTURE 
OCCASIONS 

 
c program Mt simulation 
c 
c program to estimate population parameters based on actual data. 
c number of capture occasions and marks/unmarks are input for each 
c simulation estimates standard deviations of parameters. This 
c       version is for model M0 - all capture probabilities are the 
c       same each occasion for all animals. Two parameters to estimate: 
c       N and p. 
c 
c 
 character*10 outfile 
 integer*4 n, cmarks, unmarks, oldpop, totcap, nsubj(25), cm(25), 
     1   u(25), bigmdot, sumnb, nsqb, Nmin, Nmax, Nmint, Nmaxt, nsqt 
c 
c      np = number of parameters to estimate 
c      mp = number of parameters + 1 
c      matrix p holds initial values and is used in the estimating 
c      routine 
c 
 parameter (ndim=2,mp=3,np=2) 
 real*4 xguess(2), x(2), Nave, Nsq, newp(2), maxlik, 
     1  xscale(2), p(mp,np), y(mp), Nlo, Nhi, sump, sumn, snp, likeli, 
     2  phat, pcap, phatt(25),naveb, phatb, Navet, pmint(25), pmaxt(25), 
     3 sumpt(25), psqt(25), sdpt(25), plowt(25), phit(25), pavet(25), 
     4  plow, phi, pcapt(10) 
c 
c Accept parameters for the simulation 
c 
 print 4 
4 format (' Enter the Total Population') 
 read(*,5) in 
5 format(i4) 
 print 8 
8 format(' Input the number of repetitions for simulation i4') 
  read(*,5) nrep 
  print 2 
2 format (' Enter random seed - large odd i7') 
        read(*,6) idum 
6       format (i7) 
        print 9 
9       format (' Enter output file name (10 characters)') 
        read(*,11) outfile 
11      format (a10) 
 open (unit=10,status='unknown',file=outfile) 
        nocc=4 
        do 860 ipcap=1,8 
        do 865 ip2 = -5,5 
        do 870 ip3 = -5,5 
        do 875 ip4 = -5,5 
        print 999, ipcap 
999     format (' pcap1 = ', i2) 
        nocc = 4 
        pcapt(1) = ipcap/10. 
        pcapt(2)=(ipcap + ip2)/10. 
        if(pcapt(2).lt.0.1) go to 865 
        if(pcapt(2).gt. 0.8) go to 865 
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        pcapt(3)=(ipcap + ip3)/10. 
        if(pcapt(3).lt.0.1) go to 870 
        if(pcapt(3).gt. 0.8) go to 870 
        pcapt(4)=(ipcap + ip4)/10. 
        if(pcapt(4).lt.0.1) go to 875 
        if(pcapt(4).gt. 0.8) go to 875 
        if(pcapt(1).eq.pcapt(2) .and. pcapt(1).eq.pcapt(3) .and. 
     1   pcapt(1).eq.pcapt(4)) go to 875 
c 
c       Initialize Variables 
c 
        nave = 0 
        Nsq = 0 
        pave = 0. 
        naveb = 0 
        caveb = 0. 
        navet = 0 
        cmaxb = 0. 
        cminb = 1. 
        chi = 0. 
        sumpb = 0. 
        paveb = 0. 
        psqb = 0. 
        pminb = 1. 
        pmaxb = 0. 
        csqb = 0. 
        nsqb = 0. 
        naveb = 0. 
        sumnb = 0. 
        nminb = 8000. 
        nmaxb = 0. 
        Nmin = 8000 
        Nmax = 0 
        Pmin = 1. 
        Pmax = 0. 
        Nmint = 8000 
        Nmaxt = 0 
        do 145 i = 1,25 
        sumpt(i) = 0. 
        pavet(i) = 0. 
        psqt(i) = 0. 
        pmint(i) = 1. 
145      pmaxt(i) = 0. 
        sumnt = 0 
        Navet = 0. 
        nsqt = 0 
c 
c simulate mark/recapture 
c 
 do 50 ijk = 1,nrep 
 do 100, j=1,nocc 
 if (j .eq. 1) unmarks = in 
c Capture Portion 
 if (j .eq. 1) then 
 mdot = 0 
 bigmdot = 0 
        acm = bnldev(pcapt(1), unmarks, idum) 
 cmarks = nint(acm) 
 totcap = cmarks 
 cm(1) = 0 
 u(1)  = cmarks 
 unmarks = unmarks - cmarks 
 else 
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 bigmdot = bigmdot + cmarks 
 acm = bnldev(pcapt(j),cmarks,idum) 
 cm(j) = nint(acm) 
 mdot = mdot + cm(j) 
 acu = bnldev(pcapt(j),unmarks,idum) 
 u(j)  = nint(acu) 
 cmarks = cmarks + u(j) 
 unmarks = unmarks - u(j) 
 totcap = totcap + cm(j) + u(j) 
 endif 
100 continue 
c       print *, totcap, cmarks 
c print 901, (u(i),i=1,10) 
c print 901, (cm(i), i=1,10) 
901 format (1x,10(1x,i4.0)) 
c 
c End of simulation portion.  Estimate parameters for model M0. 
c 
        nlim = 2*in 
        maxlik = 0 
        do 200 nhat = cmarks, nlim 
        likeli = alnfact(nhat,cmarks) + 
     1      totcap*log(real(totcap)) + 
     2      (nocc*nhat - totcap)*log(real(nocc*nhat - totcap)) - 
     3      nocc*nhat*log(real(nocc*nhat)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 200 
        else 
           go to 250 
        endif 
200     continue 
250     continue 
       nhat = nhat - 1 
       phat = real(totcap)/real(nocc*nhat) 
c 
c          Now, compute estimates for model Mt 
c 
        nlim = 2*in 
        maxlik = 0 
        do 210 nhatt = cmarks, nlim 
        sum1 = 0 
        sum2 = 0 
        do 220 j=1, nocc 
        anj = real(u(j) + cm(j)) 
        sum1 = sum1 + anj*log(anj) 
        sum2 = sum2 + (nhatt - anj)*log(real(nhatt)-anj) 
220     continue 
        likeli = alnfact(nhatt,cmarks) + sum1 + sum2 - 
     1      nocc*nhatt*log(real(nhatt)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 210 
        else 
           go to 240 
        endif 
210     continue 
240     continue 
       nhatt = nhatt - 1 
       do 222  j=1, nocc 
222    phatt(j) = (u(j)+cm(j))/real(nhatt) 
 
c 
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c          Now, compute estimates for model Mb 
c 
        nlim = 2*in 
        maxlik = 0 
        do 235 nhatb = cmarks, nlim 
        likeli = alnfact(nhatb,cmarks) + cmarks*log(real(cmarks)) + 
     1  (nocc*nhatb-bigmdot-cmarks)*log(real(nocc*nhatb-bigmdot-cmarks)) 
     2   -(nocc*nhatb-bigmdot)*log(real(nocc*nhatb-bigmdot)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 235 
        else 
           go to 245 
        endif 
235     continue 
245     continue 
       nhatb = nhatb - 1 
       phatb = real(cmarks)/real(nocc*nhatb-bigmdot) 
       chat = real(mdot)/real(bigmdot) 
c 
c      print estimates for M0 
c 
35     format(' M0 N hat = ', i5, ' phat = ', f6.3) 
c       write (10,900) phat, nhat 
900 format ('M0 estimates P = ',f7.5,' N = ',i5) 
 if (nhat .le. Nmin) Nmin = nhat 
 if (nhat .ge. Nmax) Nmax = nhat 
 sumn = sumn + nhat 
 nave = nave + nhat/float(nrep) 
 nsq  = nsq + nhat**2 
 if (phat .le. Pmin) Pmin = phat 
 if (phat .ge. Pmax) Pmax = phat 
 sump = sump + phat 
 Pave = Pave + phat/float(nrep) 
 Psq  = Psq + phat**2 
 Snp = snp + phat*nhat 
c 
c      print estimates for model Mt 
c 
c        print 45, nhatt, (phatt(i), i=1,nocc) 
45      format(' N hatt = ', i5, ' phatt = ', 11(f6.3, 1x)) 
c       write (10,45) phatt, nhatt 
 if (nhatt .le. Nmint) Nmint = nhatt 
 if (nhatt .ge. Nmaxt) Nmaxt = nhatt 
 sumnt = sumnt + nhatt 
 Navet = Navet + nhatt/float(nrep) 
 Nsqt  = Nsqt + nhatt**2 
        do 29 j = 1, nocc 
 if (phatt(j) .le. pmint(j)) pmint(j) = phatt(j) 
 if (phatt(j) .ge. pmaxt(j)) pmaxt(j) = phatt(j) 
 sumpt(j) = sumpt(j) + phatt(j) 
 pavet(j) = pavet(j) + phatt(j)/float(nrep) 
29 psqt(j)  = psqt(j) + phatt(j)**2 
c Snpt = snpt + phatt*nhatt 
c 
c      print estimates for model Mb 
c 
c        print 55, nhatb, phatb, chat 
55     format(' N hatb = ', i5, ' phatb = ',f6.3, ' chat = ',f6.3) 
c       write (10,55) nhatb, phatb, chat 
 if (nhatb .le. nminb) nminb = nhatb 
 if (nhatb .ge. nmaxb) nmaxb = nhatb 
 sumnb = sumnb + nhatb 
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 naveb = naveb + real(nhatb)/real(nrep) 
 nsqb  = nsqb + nhatb**2 
 if (phatb .le. pminb) pminb = phatb 
 if (phatb .ge. pmaxb) pmaxb = phatb 
 sumpb = sumpb + phatb 
 paveb = paveb + phatb/float(nrep) 
 psqb  = psqb + phatb**2 
 Snpb = snpb + phatb*real(nhatb) 
        if (chat .le. Cminb) Cminb = chat 
 if (chat .ge. Cmaxb) Cmaxb = chat 
 sumc = sumc + chat 
 caveb = caveb + chat/float(nrep) 
 csqb  = csqb + chat**2 
 sncb = sncb + chat*nhatb 
 
50     continue 
        arep = float(nrep) 
c 
c       Wrap up for M0 
c 
c        write(10,503) 
503     format(///, '                     Summary for Simulation', //) 
 SDN = sqrt((Nsq - arep*Nave**2)/(arep - 1.0)) 
 SdP = sqrt((Psq - arep *Pave**2)/(arep - 1.0)) 
 Nlo = nave - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = nave + 1.96*SDN 
 plow   = pave - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
 phi = pave + 1.96*SdP 
 cornp = (snp - (sumn*sump)/arep)/( 
     1  (nsq -sumn**2/arep)*(psq-sump**2/arep))**.5 
c print 31, nave, SdN, Nlo, Nhi 
31 format( 'M0 Nhat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c print 33, Pave, SdP, Plow, phi 
33 format( 'M0 P hat= ',f7.3, ' sd(P) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c print 34, cornp 
34 format ('M0 corr n,p = ',f9.4) 
c write (10,31) nave, SdN, Nlo, Nhi 
c write (10,52) Nmin, Nmax 
c write (10,33) Pave, SdP, Plow, phi 
c write (10,58) Pmin, Pmax 
c 
c       Do wrap up for Mt and Mb 
c 
c       Wrap up for Mt 
c 
 SdNt = ((Nsqt - arep*Navet**2)/(arep - 1.0))**.5 
 Nlo = navet - 1.96*SDNt 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = navet + 1.96*SDNt 
c print 41, nave, SdN, Nlo, Nhi 
41 format( 'Mt Nhat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c      write (10,41) navet, SdNt, Nlo, Nhi 
c write(10,52) Nmint, Nmaxt 
 do 49 j = 1,nocc 
        sdpt(j) = ((psqt(j) - arep *pavet(j)**2)/(arep - 1.0))**.5 
 plowt(j) = pavet(j) - 1.96*sdpt(j) 
 if (plowt(j) .le. 0.0) plowt(j) = 0.0 
 phit(j) = pavet(j) + 1.96*sdpt(j) 
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c cornp = (snp - (sumn*sump)/arep)/( 
c    1  (nsq -sumn**2/arep)*(psq-sump**2/arep))**.5 
c print 43, j, pavet(j), sdpt(j), plowt(j), phit(j) 
43 format( 'Mt P hat(',i2,')= ',f9.4, ' sd(P) = ',f9.4, 
     1  ' Low 95% = ',f9.4,' Hi 95% = ', f9.4) 
c       print 58, pmint(j), pmaxt(j) 
c print 44, cornp 
44 format ('Mt corr n,p = ',f9.4) 
c write (10,43) j, pavet(j), sdpt(j), plowt(j), phit(j) 
c write (10,58) pmint(j), pmaxt(j) 
49      continue 
c 
c       Wrap up for Mb 
c 
 SDNb = ((nsqb - arep*naveb**2)/(arep - 1.0))**.5 
 SdP = ((psqb - arep*paveb**2)/(arep - 1.0))**.5 
 SdC = ((csqb - arep*caveb**2)/(arep - 1.0))**.5 
 Nlo = naveb - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = naveb + 1.96*SDN 
 plow = paveb - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
 phi = paveb + 1.96*SdP 
 cornp = (snpb - (sumnb*sumpb)/arep)/( 
     1  (nsqb -sumnb**2/arep)*(psqb-sumpb**2/arep))**.5 
        clow   = caveb - 1.96*SdC 
 if (clow .le. 0.0) clow = 0.0 
 chi = caveb + 1.96*SdC 
 cornc = (sncb - (sumnb*sumc)/arep)/( 
     1  (nsqb -sumnb**2/arep)*(csqb-sumc**2/arep))**.5 
c print 51, naveb, SdN, Nlo, Nhi 
51 format( 'Mb N hat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c print 53, Paveb, SdP, Plow, phi 
53 format( 'Mb P hat= ',f9.4, ' sd(P) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c        print 56, caveb, SdC, clow, chi 
56 format( 'Mb C hat= ',f9.4, ' sd(C) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c write (10,51) naveb, SdN, Nlo, Nhi 
c write (10,52) nminb, nmaxb 
52      format (' Min = ', i5, ' Max = ', i5) 
c write (10,53) Paveb, SdP, plow, phi 
c write (10,58) pminb, pmaxb 
58      format(' Min = ', f9.5, ' Max = ', f9.5) 
c write (10,56) caveb, SdC, clow, chi 
c write (10, 58) cminb, cmaxb 
c write (10,57) cornp, cornc 
57      format( 'Mb corr (n,p) = ', f8.5, ' corr(n,c) = ', f8.5) 
c 
        write(10,840) nocc, (pcapt(k), k=1,nocc), nave, SDN, pave, 
     1    naveb, SDNb, paveb, caveb, navet, SdNt, (pavet(j), j=1,nocc) 
840     format(i2, 18(1x,f8.3)) 
875     continue 
870     continue 
865     continue 
860 continue 
850 continue 
        print 75 
75      format (' Finished!') 
 close(unit=10,disp='keep') 
       end 
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        Function alnfact(nhat,cmarks) 
c 
c       Function to compute ln((Nhat)!/(Nhat-cmarks)!) 
c 
        integer cmarks 
        afact=0.0 
        bfact = 0.0 
        do 1 j = 1,nhat 
        afact = afact + log(real(j)) 
1       continue 
        ik = nhat - cmarks 
        Do 2 j = 1,ik 
2       bfact = bfact + log(real(ik)) 
        alnfact = afact - bfact 
        return 
        end 
c 
 FUNCTION ran1(idum) 
c 
c       Function used by Binomal random variate function 
c 
 INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV 
 REAL ran1,AM,EPS,RNMX 
 PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836, 
     1  NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS) 
 INTEGER j,k,iv(NTAB),iy 
 SAVE iv,iy 
 DATA iv /NTAB*0/, iy /0/ 
c if (idum.le.0.or.iy.eq.0) then 
c idum=max(-idum,1) 
 do 11 j=NTAB+8,1,-1 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 if (j.le.NTAB) iv(j)=idum 
11 continue 
 iy=iv(1) 
c endif 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 j=1+iy/NDIV 
 iy=iv(j) 
 iv(j)=idum 
 ran1=min(AM*iy,RNMX) 
 return 
 END 
C   (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 
 FUNCTION bnldev(pp,n,idum) 
C       Subroutine to generate binomial rancom observations for capture 
C        simulation 
C 
 INTEGER idum,n 
 REAL*4 bnldev,pp,PI 
C    USES gammln,ran1 
 PARAMETER (PI=3.141592654) 
 INTEGER j,nold 
 REAL am,em,en,g,oldg,p,pc,pclog,plog,pold,sq,t,y,gammln,ran1 
 SAVE nold,pold,pc,plog,pclog,en,oldg 
 DATA nold /-1/, pold /-1./ 
 if(pp.le.0.5)then 
 p=pp 
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 else 
 p=1.-pp 
 endif 
 am=n*p 
 if (n.lt.25)then 
 bnldev=0. 
 do 11 j=1,n 
 if(ran1(idum).lt.p)bnldev=bnldev+1. 
11 continue 
 else if (am.lt.1.) then 
 g=exp(-am) 
 t=1. 
 do 12 j=0,n 
 t=t*ran1(idum) 
 if (t.lt.g) goto 1 
12 continue 
 j=n 
1 bnldev=j 
 else 
 if (n.ne.nold) then 
 en=n 
 oldg=gammln(en+1.) 
 nold=n 
 endif 
 if (p.ne.pold) then 
 pc=1.-p 
 plog=log(p) 
 pclog=log(pc) 
 pold=p 
 endif 
 sq=sqrt(2.*am*pc) 
2 y=tan(PI*ran1(idum)) 
 em=sq*y+am 
 if (em.lt.0..or.em.ge.en+1.) goto 2 
 em=int(em) 
 t=1.2*sq*(1.+y**2)*exp(oldg-gammln(em+1.)-gammln(en-em+1.)  
     1    +em*plog+(en-em)*pclog) 
 if (ran1(idum).gt.t) goto 2 
 bnldev=em 
 endif 
 if (p.ne.pp) bnldev=n-bnldev 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 FUNCTION gammln(xx) 
c 
c       Function used by Amoeba routine 
c 
 REAL gammln,xx 
 INTEGER j 
 DOUBLE PRECISION ser,stp,tmp,x,y,cof(6) 
 SAVE cof,stp 
 DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, 
     1  24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, 
     2  -.5395239384953d-5,2.5066282746310005d0/ 
 x=xx 
 y=x 
 tmp=x+5.5d0 
 tmp=(x+0.5d0)*log(tmp)-tmp 
 ser=1.000000000190015d0 
 do 11 j=1,6 
 y=y+1.d0 
 ser=ser+cof(j)/y 
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11 continue 
 gammln=tmp+log(stp*ser/x) 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
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APPENDIX E 
 

  FORTRAN PROGRAM FOR MODEL Mt WITH FIVE CAPTURE OCCASIONS 
 

c program Mt simulation 
c 
c program to estimate population parameters based on actual data. 
c number of capture occasions and marks/unmarks are input for each 
c simulation estimates standard deviations of parameters. This 
c       version is for model M0 - all capture probabilities are the 
c       same each occasion for all animals. Two parameters to estimate: 
c       N and p. 
c 
c 
 character*10 outfile 
 integer*4 n, cmarks, unmarks, oldpop, totcap, nsubj(25), cm(25), 
     1   u(25), bigmdot, sumnb, nsqb, Nmin, Nmax, Nmint, Nmaxt, nsqt 
c 
c      np = number of parameters to estimate 
c      mp = number of parameters + 1 
c      matrix p holds initial values and is used in the estimating 
c      routine 
c 
 parameter (ndim=2,mp=3,np=2) 
 real*4 xguess(2), x(2), Nave, Nsq, newp(2), maxlik, 
     1  xscale(2), p(mp,np), y(mp), Nlo, Nhi, sump, sumn, snp, likeli, 
     2  phat, pcap, phatt(25),naveb, phatb, Navet, pmint(25), pmaxt(25), 
     3 sumpt(25), psqt(25), sdpt(25), plowt(25), phit(25), pavet(25), 
     4  plow, phi, pcapt(10) 
c 
c Accept parameters for the simulation 
c 
 print 4 
4 format (' Enter the Total Population') 
 read(*,5) in 
5 format(i4) 
 print 8 
8 format(' Input the number of repetitions for simulation i4') 
  read(*,5) nrep 
  print 2 
2 format (' Enter random seed - large odd i7') 
        read(*,6) idum 
6       format (i7) 
        print 9 
9       format (' Enter output file name (10 characters)') 
        read(*,11) outfile 
11      format (a10) 
 open (unit=10,status='unknown',file=outfile) 
        nocc=4 
        do 860 ipcap=1,8 
         print 999, ipcap 
999     format (' pcap1 = ', i2) 
        do 865 ip2 = -5,5 
        do 870 ip3 = -5,5 
        do 875 ip4 = -5,5 
        do 880 ip5 = -5,5 
        nocc = 5 
        pcapt(1) = ipcap/10. 
        pcapt(2)=(ipcap + ip2)/10. 
        if(pcapt(2).lt.0.1) go to 865 
        if(pcapt(2).gt. 0.8) go to 865 
        pcapt(3)=(ipcap + ip3)/10. 
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        if(pcapt(3).lt. 0.1) go to 870 
        if(pcapt(3).gt. 0.8) go to 870 
        pcapt(4)=(ipcap + ip4)/10. 
        if(pcapt(4).lt. 0.1) go to 875 
        if(pcapt(4).gt. 0.8) go to 875 
        pcapt(5)=(ipcap + ip5)/10. 
        if(pcapt(5).lt.0.1) go to 880 
        if(pcapt(5).gt. 0.8) go to 880 
        if(pcapt(1).eq.pcapt(2) .and. pcapt(1).eq.pcapt(3) .and. 
     1   pcapt(1).eq.pcapt(4).and. pcapt(1).eq.pcapt(5)) go to 880 
c 
c       Initialize Variables 
c 
        nave = 0 
        Nsq = 0 
        pave = 0. 
        naveb = 0 
        caveb = 0. 
        navet = 0 
        cmaxb = 0. 
        cminb = 1. 
        chi = 0. 
        sumpb = 0. 
        paveb = 0. 
        psqb = 0. 
        pminb = 1. 
        pmaxb = 0. 
        csqb = 0. 
        nsqb = 0. 
        naveb = 0. 
        sumnb = 0. 
        nminb = 8000. 
        nmaxb = 0. 
        Nmin = 8000 
        Nmax = 0 
        Pmin = 1. 
        Pmax = 0. 
        Nmint = 8000 
        Nmaxt = 0 
        do 145 i = 1,25 
        sumpt(i) = 0. 
        pavet(i) = 0. 
        psqt(i) = 0. 
        pmint(i) = 1. 
145      pmaxt(i) = 0. 
        sumnt = 0 
        Navet = 0. 
        nsqt = 0 
c 
c simulate mark/recapture 
c 
 do 50 ijk = 1,nrep 
 do 100, j=1,nocc 
 if (j .eq. 1) unmarks = in 
c Capture Portion 
 if (j .eq. 1) then 
 mdot = 0 
 bigmdot = 0 
        acm = bnldev(pcapt(1), unmarks, idum) 
 cmarks = nint(acm) 
 totcap = cmarks 
 cm(1) = 0 
 u(1)  = cmarks 



 110

 unmarks = unmarks - cmarks 
 else 
 bigmdot = bigmdot + cmarks 
 acm = bnldev(pcapt(j),cmarks,idum) 
 cm(j) = nint(acm) 
 mdot = mdot + cm(j) 
 acu = bnldev(pcapt(j),unmarks,idum) 
 u(j)  = nint(acu) 
 cmarks = cmarks + u(j) 
 unmarks = unmarks - u(j) 
 totcap = totcap + cm(j) + u(j) 
 endif 
100 continue 
c       print *, totcap, cmarks 
c print 901, (u(i),i=1,10) 
c print 901, (cm(i), i=1,10) 
901 format (1x,10(1x,i4.0)) 
c 
c End of simulation portion.  Estimate parameters for model M0. 
c 
        nlim = 2*in 
        maxlik = 0 
        do 200 nhat = cmarks, nlim 
        likeli = alnfact(nhat,cmarks) + 
     1      totcap*log(real(totcap)) + 
     2      (nocc*nhat - totcap)*log(real(nocc*nhat - totcap)) - 
     3      nocc*nhat*log(real(nocc*nhat)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 200 
        else 
           go to 250 
        endif 
200     continue 
250     continue 
       nhat = nhat - 1 
       phat = real(totcap)/real(nocc*nhat) 
c 
c          Now, compute estimates for model Mt 
c 
        nlim = 2*in 
        maxlik = 0 
        do 210 nhatt = cmarks, nlim 
        sum1 = 0 
        sum2 = 0 
        do 220 j=1, nocc 
        anj = real(u(j) + cm(j)) 
        sum1 = sum1 + anj*log(anj) 
        sum2 = sum2 + (nhatt - anj)*log(real(nhatt)-anj) 
220     continue 
        likeli = alnfact(nhatt,cmarks) + sum1 + sum2 - 
     1      nocc*nhatt*log(real(nhatt)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 210 
        else 
           go to 240 
        endif 
210     continue 
240     continue 
       nhatt = nhatt - 1 
       do 222  j=1, nocc 
222    phatt(j) = (u(j)+cm(j))/real(nhatt) 
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c 
c          Now, compute estimates for model Mb 
c 
        nlim = 2*in 
        maxlik = 0 
        do 235 nhatb = cmarks, nlim 
        likeli = alnfact(nhatb,cmarks) + cmarks*log(real(cmarks)) + 
     1  (nocc*nhatb-bigmdot-cmarks)*log(real(nocc*nhatb-bigmdot-cmarks)) 
     2   -(nocc*nhatb-bigmdot)*log(real(nocc*nhatb-bigmdot)) 
        if (likeli .ge. maxlik) then 
           maxlik = likeli 
           go to 235 
        else 
           go to 245 
        endif 
235     continue 
245     continue 
       nhatb = nhatb - 1 
       phatb = real(cmarks)/real(nocc*nhatb-bigmdot) 
       chat = real(mdot)/real(bigmdot) 
c 
c      print estimates for M0 
c 
35     format(' M0 N hat = ', i5, ' phat = ', f6.3) 
c       write (10,900) phat, nhat 
900 format ('M0 estimates P = ',f7.5,' N = ',i5) 
 if (nhat .le. Nmin) Nmin = nhat 
 if (nhat .ge. Nmax) Nmax = nhat 
 sumn = sumn + nhat 
 nave = nave + nhat/float(nrep) 
 nsq  = nsq + nhat**2 
 if (phat .le. Pmin) Pmin = phat 
 if (phat .ge. Pmax) Pmax = phat 
 sump = sump + phat 
 Pave = Pave + phat/float(nrep) 
 Psq  = Psq + phat**2 
 Snp = snp + phat*nhat 
c 
c      print estimates for model Mt 
c 
c        print 45, nhatt, (phatt(i), i=1,nocc) 
45      format(' N hatt = ', i5, ' phatt = ', 11(f6.3, 1x)) 
c       write (10,45) phatt, nhatt 
 if (nhatt .le. Nmint) Nmint = nhatt 
 if (nhatt .ge. Nmaxt) Nmaxt = nhatt 
 sumnt = sumnt + nhatt 
 Navet = Navet + nhatt/float(nrep) 
 Nsqt  = Nsqt + nhatt**2 
        do 29 j = 1, nocc 
 if (phatt(j) .le. pmint(j)) pmint(j) = phatt(j) 
 if (phatt(j) .ge. pmaxt(j)) pmaxt(j) = phatt(j) 
 sumpt(j) = sumpt(j) + phatt(j) 
 pavet(j) = pavet(j) + phatt(j)/float(nrep) 
29 psqt(j)  = psqt(j) + phatt(j)**2 
c Snpt = snpt + phatt*nhatt 
c 
c      print estimates for model Mb 
c 
c        print 55, nhatb, phatb, chat 
55     format(' N hatb = ', i5, ' phatb = ',f6.3, ' chat = ',f6.3) 
c       write (10,55) nhatb, phatb, chat 
 if (nhatb .le. nminb) nminb = nhatb 
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 if (nhatb .ge. nmaxb) nmaxb = nhatb 
 sumnb = sumnb + nhatb 
 naveb = naveb + real(nhatb)/real(nrep) 
 nsqb  = nsqb + nhatb**2 
 if (phatb .le. pminb) pminb = phatb 
 if (phatb .ge. pmaxb) pmaxb = phatb 
 sumpb = sumpb + phatb 
 paveb = paveb + phatb/float(nrep) 
 psqb  = psqb + phatb**2 
 Snpb = snpb + phatb*real(nhatb) 
        if (chat .le. Cminb) Cminb = chat 
 if (chat .ge. Cmaxb) Cmaxb = chat 
 sumc = sumc + chat 
 caveb = caveb + chat/float(nrep) 
 csqb  = csqb + chat**2 
 sncb = sncb + chat*nhatb 
 
50     continue 
        arep = float(nrep) 
c 
c       Wrap up for M0 
c 
c        write(10,503) 
503     format(///, '                     Summary for Simulation', //) 
 SDN = sqrt((Nsq - arep*Nave**2)/(arep - 1.0)) 
 SdP = sqrt((Psq - arep *Pave**2)/(arep - 1.0)) 
 Nlo = nave - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = nave + 1.96*SDN 
 plow   = pave - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
 phi = pave + 1.96*SdP 
 cornp = (snp - (sumn*sump)/arep)/( 
     1  (nsq -sumn**2/arep)*(psq-sump**2/arep))**.5 
c print 31, nave, SdN, Nlo, Nhi 
31 format( 'M0 Nhat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c print 33, Pave, SdP, Plow, phi 
33 format( 'M0 P hat= ',f7.3, ' sd(P) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c print 34, cornp 
34 format ('M0 corr n,p = ',f9.4) 
c write (10,31) nave, SdN, Nlo, Nhi 
c write (10,52) Nmin, Nmax 
c write (10,33) Pave, SdP, Plow, phi 
c write (10,58) Pmin, Pmax 
c 
c       Do wrap up for Mt and Mb 
c 
c       Wrap up for Mt 
c 
 SdNt = ((Nsqt - arep*Navet**2)/(arep - 1.0))**.5 
 Nlo = navet - 1.96*SDNt 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = navet + 1.96*SDNt 
c print 41, nave, SdN, Nlo, Nhi 
41 format( 'Mt Nhat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c      write (10,41) navet, SdNt, Nlo, Nhi 
c write(10,52) Nmint, Nmaxt 
 do 49 j = 1,nocc 
        sdpt(j) = ((psqt(j) - arep *pavet(j)**2)/(arep - 1.0))**.5 
 plowt(j) = pavet(j) - 1.96*sdpt(j) 
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 if (plowt(j) .le. 0.0) plowt(j) = 0.0 
 phit(j) = pavet(j) + 1.96*sdpt(j) 
c cornp = (snp - (sumn*sump)/arep)/( 
c    1  (nsq -sumn**2/arep)*(psq-sump**2/arep))**.5 
c print 43, j, pavet(j), sdpt(j), plowt(j), phit(j) 
43 format( 'Mt P hat(',i2,')= ',f9.4, ' sd(P) = ',f9.4, 
     1  ' Low 95% = ',f9.4,' Hi 95% = ', f9.4) 
c       print 58, pmint(j), pmaxt(j) 
c print 44, cornp 
44 format ('Mt corr n,p = ',f9.4) 
c write (10,43) j, pavet(j), sdpt(j), plowt(j), phit(j) 
c write (10,58) pmint(j), pmaxt(j) 
49      continue 
c 
c       Wrap up for Mb 
c 
 SDNb = ((nsqb - arep*naveb**2)/(arep - 1.0))**.5 
 SdP = ((psqb - arep*paveb**2)/(arep - 1.0))**.5 
 SdC = ((csqb - arep*caveb**2)/(arep - 1.0))**.5 
 Nlo = naveb - 1.96*SDN 
 if (Nlo .le. 0.0) Nlo = 0.0 
 Nhi = naveb + 1.96*SDN 
 plow = paveb - 1.96*SdP 
 if (plow .le. 0.0) plow = 0.0 
 phi = paveb + 1.96*SdP 
 cornp = (snpb - (sumnb*sumpb)/arep)/( 
     1  (nsqb -sumnb**2/arep)*(psqb-sumpb**2/arep))**.5 
        clow   = caveb - 1.96*SdC 
 if (clow .le. 0.0) clow = 0.0 
 chi = caveb + 1.96*SdC 
 cornc = (sncb - (sumnb*sumc)/arep)/( 
     1  (nsqb -sumnb**2/arep)*(csqb-sumc**2/arep))**.5 
c print 51, naveb, SdN, Nlo, Nhi 
51 format( 'Mb N hat= ',f8.3, ' sd(N) = ',f8.4,' Low 95% = ',f7.3, 
     1 ' Hi 95% = ', f8.3) 
c print 53, Paveb, SdP, Plow, phi 
53 format( 'Mb P hat= ',f9.4, ' sd(P) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c        print 56, caveb, SdC, clow, chi 
56 format( 'Mb C hat= ',f9.4, ' sd(C) = ',f8.4,' Low 95% = ',f7.3, 
     1  ' Hi 95% = ', f10.3) 
c write (10,51) naveb, SdN, Nlo, Nhi 
c write (10,52) nminb, nmaxb 
52      format (' Min = ', i5, ' Max = ', i5) 
c write (10,53) Paveb, SdP, plow, phi 
c write (10,58) pminb, pmaxb 
58      format(' Min = ', f9.5, ' Max = ', f9.5) 
c write (10,56) caveb, SdC, clow, chi 
c write (10, 58) cminb, cmaxb 
c write (10,57) cornp, cornc 
57      format( 'Mb corr (n,p) = ', f8.5, ' corr(n,c) = ', f8.5) 
c 
        write(10,840) nocc, (pcapt(k), k=1,nocc), nave, SDN, pave, 
     1    naveb, SDNb, paveb, caveb, navet, SdNt, (pavet(j), j=1,nocc) 
840     format(i2, 19(1x,f8.3)) 
880     continue 
875     continue 
870     continue 
865     continue 
860 continue 
850 continue 
        print 75 
75      format (' Finished!') 
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 close(unit=10,disp='keep') 
       end 
         
        Function alnfact(nhat,cmarks) 
c 
c       Function to compute ln((Nhat)!/(Nhat-cmarks)!) 
c 
        integer cmarks 
        afact=0.0 
        bfact = 0.0 
        do 1 j = 1,nhat 
        afact = afact + log(real(j)) 
1       continue 
        ik = nhat - cmarks 
        Do 2 j = 1,ik 
2       bfact = bfact + log(real(ik)) 
        alnfact = afact - bfact 
        return 
        end 
c 
 FUNCTION ran1(idum) 
c 
c       Function used by Binomal random variate function 
c 
 INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV 
 REAL ran1,AM,EPS,RNMX 
 PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836, 
     1  NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS) 
 INTEGER j,k,iv(NTAB),iy 
 SAVE iv,iy 
 DATA iv /NTAB*0/, iy /0/ 
c if (idum.le.0.or.iy.eq.0) then 
c idum=max(-idum,1) 
 do 11 j=NTAB+8,1,-1 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 if (j.le.NTAB) iv(j)=idum 
11 continue 
 iy=iv(1) 
c endif 
 k=idum/IQ 
 idum=IA*(idum-k*IQ)-IR*k 
 if (idum.lt.0) idum=idum+IM 
 j=1+iy/NDIV 
 iy=iv(j) 
 iv(j)=idum 
 ran1=min(AM*iy,RNMX) 
 return 
 END 
C   (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 
 FUNCTION bnldev(pp,n,idum) 
C       Subroutine to generate binomial rancom observations for capture 
C        simulation 
C 
 INTEGER idum,n 
 REAL*4 bnldev,pp,PI 
C    USES gammln,ran1 
 PARAMETER (PI=3.141592654) 
 INTEGER j,nold 
 REAL am,em,en,g,oldg,p,pc,pclog,plog,pold,sq,t,y,gammln,ran1 
 SAVE nold,pold,pc,plog,pclog,en,oldg 
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 DATA nold /-1/, pold /-1./ 
 if(pp.le.0.5)then 
 p=pp 
 else 
 p=1.-pp 
 endif 
 am=n*p 
 if (n.lt.25)then 
 bnldev=0. 
 do 11 j=1,n 
 if(ran1(idum).lt.p)bnldev=bnldev+1. 
11 continue 
 else if (am.lt.1.) then 
 g=exp(-am) 
 t=1. 
 do 12 j=0,n 
 t=t*ran1(idum) 
 if (t.lt.g) goto 1 
12 continue 
 j=n 
1 bnldev=j 
 else 
 if (n.ne.nold) then 
 en=n 
 oldg=gammln(en+1.) 
 nold=n 
 endif 
 if (p.ne.pold) then 
 pc=1.-p 
 plog=log(p) 
 pclog=log(pc) 
 pold=p 
 endif 
 sq=sqrt(2.*am*pc) 
2 y=tan(PI*ran1(idum)) 
 em=sq*y+am 
 if (em.lt.0..or.em.ge.en+1.) goto 2 
 em=int(em) 
 t=1.2*sq*(1.+y**2)*exp(oldg-gammln(em+1.)-gammln(en-em+1.)  
     1    +em*plog+(en-em)*pclog) 
 if (ran1(idum).gt.t) goto 2 
 bnldev=em 
 endif 
 if (p.ne.pp) bnldev=n-bnldev 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
 FUNCTION gammln(xx) 
c 
c       Function used by Amoeba routine 
c 
 REAL gammln,xx 
 INTEGER j 
 DOUBLE PRECISION ser,stp,tmp,x,y,cof(6) 
 SAVE cof,stp 
 DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, 
     1  24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, 
     2  -.5395239384953d-5,2.5066282746310005d0/ 
 x=xx 
 y=x 
 tmp=x+5.5d0 
 tmp=(x+0.5d0)*log(tmp)-tmp 
 ser=1.000000000190015d0 



 116

 do 11 j=1,6 
 y=y+1.d0 
 ser=ser+cof(j)/y 
11 continue 
 gammln=tmp+log(stp*ser/x) 
 return 
 END 
C  (C) Copr. 1986-92 Numerical Recipes Software 0Q-815='. 
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