
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Fall 2009

Kernel-Based Interior-Point Algorithms for the Linear
Complementarity Problem
Jason N. Brandies

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Recommended Citation
Brandies, Jason N., "Kernel-Based Interior-Point Algorithms for the Linear Complementarity
Problem" (2009). Electronic Theses and Dissertations. 680.
https://digitalcommons.georgiasouthern.edu/etd/680

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/680?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

KERNEL-BASED INTERIOR-POINT ALGORITHMS FOR THE

LINEAR COMPLEMENTARITY PROBLEM

by

JASON N. BRANDIES

(Under the Direction of Dr. Goran Lesaja)

ABSTRACT

In this thesis, we consider the Linear Complementarity Problem (LCP), which is a

well-known mathematical problem with many practical applications. The objective of

the LCP is to find a certain vector that will satisfy a set of linear inequalities and (non-

linear) complementarity equation. A kernel-based primal-dual Interior-Point Method

(IPM) for solving LCP was introduced and analyzed. The class of kernel functions

used in this thesis is a class of so-called eligible kernel functions that are fairly gen-

eral. We have shown for a positive semi-definite matrix M , that the algorithm is

globally convergent and has very good convergence properties. For some instances of

the eligible kernel functions, the complexity of the algorithm, in terms of the number

of iterations, considered in this thesis matches the best complexity results obtained

in the literature for these types of methods. This is the main emphasis of the thesis.

The theoretical concepts were illustrated by basic implementation in MATLAB for

the classical kernel function ψ1 and for the parametric kernel function ψ10 (Table

3.3). A series of numerical tests were conducted that shows that even these basic

implementations have a potential for good performance. Better implementation and

more numerical testing would be necessary to draw more definite conclusions.

Index Words : kernel function, primal-dual, interior-point method, linear

complementarity problem

2010 Mathematics Subject Classification: 90C33, 90C51

KERNEL-BASED INTERIOR-POINT ALGORITHMS FOR THE

LINEAR COMPLEMENTARITY PROBLEM

by

JASON N. BRANDIES

B.S. in Mathematics, Georgia Southern University, 2007

A.S. in Computer Science, Coastal Georgia Community College, 2005

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in

Partial Fulfillment of the Requirement for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2009

c©2009

Jason N. Brandies

All Rights Reserved

iii

KERNEL-BASED INTERIOR-POINT ALGORITHMS FOR THE

LINEAR COMPLEMENTARITY PROBLEM

by

JASON N. BRANDIES

Major Professor: Dr. Goran Lesaja

Committee: Dr. Scott Kersey

Dr. Billur Kaymakcalan

Electronic Version Approved:

December, 2009

iv

DEDICATION

This thesis is dedicated to my entire family. My family has made my educational

dreams a reality. My family has provided me with their undying love and support

throughout my life. I would like to extend a thank you, from the bottom of my heart,

to my family. This thesis is for: Brooke, Mom, Dad, Sandy, Ashley, Grandma, Gran,

Pop, Nan, Nana, Papa, and Riley. Of course, a very special thank you to my fiancé

Brooke for putting up with me throughout this wild adventure. We have made many

great memories together and I want us to make countless more. I love you.

v

ACKNOWLEDGMENTS

First and foremost, I would like to extend my deepest gratitude to Dr. Goran Lesaja

for all of his guidance through, not only this thesis, but my entire college career at

Georgia Southern University. Dr. Lesaja has been a mentor for many years at GSU.

I would like to give a special thank you to my committee members, Dr. Scott Kersey

and Dr. Billur Kaymakcalan. I also acknowledge every member of the outstanding

faculty and staff in the Georgia Southern University Mathematical Sciences Depart-

ment. Their hard work and dedication to the study of mathematics has made, not

only this thesis, but also my educated future possible.

James ≥ Mike ≥ ǫ

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . vi

LIST OF TABLES . xi

LIST OF FIGURES . xiii

CHAPTER

1 Introduction . 1

1.1 The Problem - A Brief Overview 1

1.2 The Methods - A Brief Overview 2

2 The Linear Complementarity Problem 6

2.1 The Introductory Examples 6

2.2 The Linear Complementarity Problem 12

2.3 Alternate Formulations of the LCP 13

3 Kernel-Based Interior-Point Algorithms 19

3.1 The Central Path . 19

3.2 Main Idea of the Method 21

vii

3.3 Generic Interior-Point Primal-Dual Algorithm 27

3.4 Eligible Kernel Functions 30

4 Analysis of the Algorithm . 37

4.1 Outer Iteration: Growth Behavior of Barrier Function . . . 37

4.2 Inner Iteration: Determining the Step Size 40

4.3 Reduction of Barrier Function during Inner Iteration . . . 47

5 Complexity of the Algorithm . 51

5.1 Iteration Bounds . 51

5.2 Introduction of the Scheme 54

5.3 Several Technical Lemmas 55

5.4 Analysis of Several Eligible Kernel Functions 58

5.5 Complexity Remarks . 73

6 Numerical Results . 75

6.1 Generating a PSD M Matrix 75

6.2 Calculating the Step Size 76

6.3 Assigning Input Parameters 77

viii

6.4 Choosing Values of p and q 78

6.5 Size of the Problem . 79

6.6 Summary of Numerical Results 79

7 Conclusion . 85

APPENDIX A . 87

A.1 Main Test Code : testtrials.m 87

A.2 Step Size Bound Tests : alphatesttrials.m 93

A.3 M Generator : houseqr.m 95

A.4 Primal-Dual Algorithm for ψ1 : IPM1.m 97

A.5 Primal-Dual Algorithm for ψ10 : IPM10.m 98

A.6 Step-Size Primal-Dual Algorithm : IPMa.m 99

A.7 Newton System Solver for ψ1 : SolveSystem1.m 101

A.8 Newton System Solver for ψ10 : SolveSystem10.m 101

A.9 ψ Function Files : psi1.m, psi11.m ,psi12.m, psi10.m,
psi101.m . 102

APPENDIX B . 103

ix

B.1 100x100 Output . 103

BIBLIOGRAPHY . 107

x

LIST OF TABLES

Table Page

3.1 Generic Primal-Dual Algorithm for LCP 28

3.2 Independent Kernel Condtions . 33

3.3 Ten Kernel Functions . 36

5.1 Short and Long Step Complexity Bounds 73

6.1 Alpha Choice with Classical Alg. for θ = 0.95 and τ = 1.50 77

6.2 Size Comparison, using θ = 0.95 and τ = 1.50 79

6.3 10x10, θ = 0.95, and τ = 1.50 . 80

6.4 10x10, θ = 0.95, and τ = 1.00 . 80

6.5 10x10, θ = 0.95, and τ = 0.50 . 81

6.6 10x10, θ = 0.70, and τ = 1.50 . 81

6.7 10x10, θ = 0.70, and τ = 1.00 . 82

6.8 10x10, θ = 0.70, and τ = 0.50 . 82

xi

6.9 10x10, θ = 0.45, and τ = 1.50 . 83

6.10 10x10, θ = 0.45, and τ = 1.00 . 83

6.11 10x10, θ = 0.45, and τ = 0.50 . 84

xii

LIST OF FIGURES

Figure Page

2.1 Relations and examples of the classes of matrices. 17

3.1 Representation of the Generic Primal-Dual Algorithm for LCP. . . 29

xiii

CHAPTER 1

INTRODUCTION

1.1 The Problem - A Brief Overview

The Linear Complementarity Problem (LCP) is an important problem with rich the-

ory, numerous efficient algorithms, and a plethora of practical applications in a variety

of areas. Some instances of the LCP can be traced back to the early 1940’s; how-

ever, larger interest in LCP was taken in the early to mid 1960’s. Since then, many

publications and research have been devoted to studying this problem and its many

properties.

The LCP is not an optimization problem. However, it is closely related to op-

timization problems because Kurush-Kuhn-Tucker (KKT) optimality conditions for

many optimization problems can be formulated as the LCP. For example, KKT con-

ditions of linear and quadratic optimization problems can be formulated as LCP. In

addition there are problems that can be directly formulated as LCP. This is the rea-

son why the LCP is often considered as a problem in the mathematical programming

area with applications that include, but are not limited to economics, engineering

(game and equilibrium theory), transportation, and many other areas of operations

research.

The objective of the LCP is to find a vector in a finite real vector space that sat-

isfies a certain system of linear equations and a nonlinear complementarity equation.

In the sequel, we will explore these in more detail.

The LCP has several different formulations, including the standard, mixed, hor-

izontal, and geometric formulation. We may choose from the different formulations

2

for many different reasons, such as: efficiency, given initial conditions, or even for

certain output wanted. We may also use special types of matrices in the different

formulations. Since the general LCP is NP-complete, i.e, there exists no polynomial

algorithms for solving it, we may consider special types of the LCP problem for which

a polynomial algorithm exists.

1.2 The Methods - A Brief Overview

A Linear Programming (LP) model determines the “best” outcome in a particular

mathematical model given certain requirements. These outcomes can range from

raising profits, reducing costs, to managing network flow. The LP has vast numbers

of practical applications, in many areas. For example, company management and

economics have great use for the LP. In the modern business environment, where

efficiency and maximizing profit while minimizing costs is important, the LP is an

important mathematical tool that helps achieve these goals. That is why the LP is

one of the most important branches of optimization.

The LP can be mathematically defined as a technique for the optimization (min-

imizing or maximizing) of a linear objective function

z = c1x1 + c2x2 + c3x3 + . . .+ cnxn,

subject to a number of linear constraints of the form

ai1x1 + ai2x2 + ai3x3 + . . .+ ainxn





≥

≤

=





bi; i = 1, . . . , n

The linear constraints define the feasible region. Geometrically, the feasible region

takes the form of a polyhedral, i.e, a convex hull of a finite set of vertices (points).

3

The resulting largest (or smallest) value of the objective function is called the optimal

value. The vector

x = (x1, x2, x3, . . . , xn),

for which the optimal value is achieved is called the optimal solution.

For this mathematical model, we needed some effective methods for solving it. In

1947, George Dantzig was the first mathematician to successfully develop a method

to solving the LP. He created the Simplex Method (SM) to numerically solve the LP.

Basically, the main idea of the SM is to travel along from vertex to vertex on the

boundary of the feasible region. The method constantly increases (or decreases) the

objective function until either an optimal solution is found or the SM concludes that

such an optimal solution does not exist.

Theoretically, the algorithm could have a worse-case scenario of 2n iteration, with

n being the size of the problem, which is an exponential number. This was shown in

1972 by Klee and Minty [8]. However, on behalf of the SM, it is remarkably efficient in

practice and an exponential number of iterations has never been observed in practice.

It usually requires O(n) iterations to solve a particular problem. There exists many

resources and excellent software for the SM.

Another great advancement in the area of solving convex optimization problems

was the ellipsoid method. This method was introduced by Nemirovsky and Yudin

in 1976 [19] and by Shor in 1977 [16]. The algorithm works by encapsulating the

minimizer of a convex function in a sequence of ellipsoids whose volume decreases at

each iteration. Later Khachiyan showed in 1984 that the ellipsoid method can be used

to solve the LP in polynomial time [7]. This was the first polynomial time algorithm

for the LP. Unfortunately, in practice, the method was far surpassed by the simplex

4

method. Nevertheless, the theoretical importance of the ellipsoid method is hard to

neglect.

In 1984, Karmarkar introduced an Interior-Point Method (IPM) for LP [6]. Kar-

markar used the efficiency of the simplex method with the theoretical advantages

of the ellipsoid method to create his efficient polynomial algorithm. The algorithm

is based on projective transformations and the use of Karmarkar’s primal potential

function. This new algorithm sparked much research, creating a new direction in

optimization - the field of IPMs. Unlike the SM, which travels from vertex to vertex

along the edges of the feasible region, the IPM follows approximately a central path

in the interior of the feasible region and reaches the optimal solution only asymptot-

ically. As a result of finding the optimal solution in this fashion, the analysis of the

IPMs become substantially more complex than that of the SM.

Since the first IPM was developed, many new and efficient IPM algorithms for

solving LP have been created. Many researches have proposed different interior-

point methods, which can be grouped into two different groups: potential reduction

algorithms and path-following algorithms. Each of the two groups contains algorithms

based on primal, dual, or primal-dual formulations of the LP. Also, computational

results show that the primal-dual formulation is superior to either the primal or

dual formulation of the algorithm. We will focus on the primal-dual path-following

IPMs, which have become the standard of efficiency in practical applications. These

primal-dual methods are based on using Newton’s method in a careful and controlled

manner.

Soon after the SM was developed, a similar method for solving LCP was intro-

duced by Lemke [10]. It is a pivoting algorithm similar to the SM. Unfortunately,

5

Lemke’s algorithm can sometimes fail to produce a solution even if one exists. Never-

theless, Lemke’s algorithm was extremely useful. However, researchers kept searching

for other methods for the LCP. Much later, in the 1990’s, the ritual of immediate gen-

eralizations from LP to LCP continued even more strongly in the case of the IPMs

[9]. In this thesis, we will focus on extending a class of primal-dual IPMs, the so

called kernel-based IPMs, from LP to LCP.

In addition, IPMs have been generalized to solve many other important optimiza-

tion problems, such as semidefinite optimization, second order cone optimization, and

general convex optimization problems. The unified theory of IPMs for general convex

optimization problems was first developed by Nesterov and Nemirovski in 1994 [12].

The first comprehensive monograph that considers in-depth analysis of the LCP

and methods for solving it is the monograph of Cottle, Pang, and Stone [3]. More

recent results on the LCP as well as nonlinear complementarity problems and varia-

tional inequalities are contained in the monograph of Facchinei and Pang [4].

CHAPTER 2

THE LINEAR COMPLEMENTARITY PROBLEM

In this chapter the linear complementarity problem is introduced, defined, and dis-

cussed. Also, several direct applications of the linear complementarity problem are

presented and discussed.

2.1 The Introductory Examples

The linear complementarity problem, LCP, has many applications. Some examples of

the LCP include but are by far not limited to: the bimatrix game, optimal invariant

capital stock, optimal stopping, convex hulls in the plane, and the market equilib-

rium problems. Each one of the listed problems can be reformulated into the linear

complementarity problem. In the sequel, we will describe several applications.

Example 1: The Market Equilibrium Problem

The state of an economy where the supplies of producers and the demands of

consumers are balanced at the resulting price level is called market equilibrium . We

can use a linear programming model to describe the supply side that captures tech-

nological details of production activities for a particular market equilibrium problem.

Econometric models with commodity prices as the primary independent variables gen-

erates the market demand function. Basically, we need find vector x∗ and subsequent

vectors p∗ and r∗ such that the conditions below are satisfied for supply, demand, and

equilibrium:

7

supply conditions:

minimize cTx

subject to Ax ≥ b

Bx ≥ r∗

x ≥ 0

(2.1)

where c is the cost vector for the supply activities, x is the vector production activities.

Technological constraints on production are represented by the first condition in (2.1)

and the demand requirement constraints are represented by the second condition in

(2.1);

demand conditions:

r∗ = Q(p∗) = Dp∗ + d (2.2)

where Q(·) is the market demand function with p∗ and r∗ representing the vectors of

demand prices and quantities, respectively. Q(·) is assumed to be an affine function;

equilibrium condition:

p∗ = π∗ (2.3)

where the (dual) vector of market supply prices corresponding to the second constraint

in (2.1) is denoted by π∗.

Using Karush-Kuhn-Tucker conditions for problem (2.1), we see that a vector x∗

is an optimal solution of problem (2.1) if and only if there exists vectors v∗ and π∗

such that:

y∗ = c− ATv∗ −BTπ∗ ≥ 0, x∗ ≥ 0, (y∗)Tx∗ = 0,

u∗ = −b+ Ax∗ ≥ 0, v∗ ≥ 0, (u∗)Tv∗ = 0,

δ∗ = −r∗ +Bx∗ ≥ 0, π∗ ≥ 0, (δ∗)Tπ∗ = 0.

(2.4)

8

If for r∗, we substitute the demand function (2.2) and we use condition (2.3), then

we can see that the conditions in (2.4) gives us the linear complementarity problem

where

q =




c

−b

−d




and M =




0 −AT −BT

A 0 0

B 0 −D



. (2.5)

As it could have been seen, the Karush-Kuhn-Tucker optimization conditions of

the market equilibrium problem, and in fact the linear problem in general, can be ex-

pressed in the LCP framework. This can also be extended to quadratic programming

problems as discussed below.

Example 2: Quadratic Programming

Quadratic programming is another application of the linear complementarity

problem. It is the problem of minimizing or maximizing a quadratic function of several

variables subject to linear constraints on these variables. The quadratic program (QP)

is defined as

minimize f(x) = cTx+ 1
2
xTQx

subject to Ax ≥ b

x ≥ 0

(2.6)

where Q ∈ R
nxn is symmetric, c ∈ R

n, A ∈ R
mxn and b ∈ R

m. Note: The case where

Q = 0 gives rise to a linear program (LP). If x is a locally optimal solution of the

quadratic program (2.6), then there exists a vector y ∈ R
m such that the pair (x, y)

satisfies the Karush-Kuhn-Tucker optimality conditions

u = c+Qx− ATy ≥ 0, x ≥ 0, xTu = 0,

v = −b+ Ax ≥ 0, y ≥ 0, yTv = 0.
(2.7)

9

If Q is positive semi-definite (the objective function f(x) is convex), then the con-

ditions in (2.7) are sufficient for the vector x to be a globally optimal solution of

(2.6).

The Karush-Kuhn-Tucker conditions in (2.6) define the LCP where

q =




c

−b


 and M =



Q −AT

A 0


 . (2.8)

Note that M is not symmetric, even though Q is symmetric. However, M does have

a property known as bisymmetry. A square matrix A is bisymmetric if it can be

brought to the form

A =



G −AT

A H


 ,

where both G and H are symmetric. Also, if Q is positive semi-definite, then so is

M . In general, a square matrix M is positive semi-definite if zTMz ≥ 0 for every

vector z.

This convex quadratic programming model, in the form of (2.6), has a magnitude

of practical applications in engineering, finance, and many other areas. The size of

these practical problems can become very large. Thus, the LCP plays an important

role in the numerical solution of these problems.

The previous two examples showed the close connection of the linear complemen-

tarity problem, which is not an optimization problem, to a large class of optimization

problems. However, the linear complementarity problem may appear independently

of optimization problems, as in a direct formulation of practical problems. In the

following example, we will see how finding convex hulls in the plane gives us a direct

formulation of the LCP.

10

Example 3: Convex Hulls in the Plane

Finding the convex hull of a given set of points is a very important problem in

computational geometry. Furthermore, a special case of this problem has surfaced

where all of the points lie on a particular plane. This special case has attracted much

attention and has had several efficient algorithms developed for solving it.

Given a set (xi, yi)
n+1
i=0 of points in the plane, we want to find the extreme points

and the facets of the convex hull in the order in which they appear. We can break

this problem into two parts; first we want to find the lower collection of the given

points, then we want to find the upper collection. We will denote the lower collection

and upper collection as LC and UC, respectively. While we are trying to find the LC,

we may assume that the xi’s are distinct (for xi = xj and yi ≤ yj, then we may ignore

the point (xj,yj) without changing the LC). Thus, we assume x0 < x1 < · · · < xn+1.

Let f(x) is the point-wise maximum over all convex functions g(x) in which

g(xi) ≤ yi for all i = 0, . . . , n + 1. The function f(x) is convex and piecewise linear.

The collection of breakpoints between the pieces of linearity is a subset of (xi, yi)
n+1
i=0 .

Let ti = f(xi) and let zi = yi − ti for i = 0, . . . , n + 1, where zi represents the

vertical distance between the point (xi,yi) and the LC. We can now make several

observations: z0 = zn+1 = 0 and if (xi,yi) is a breakpoint, then ti = yi and zi = 0.

Also, the segment of the LC between (xi−1,ti−1) and (xi,ti) has a different slope than

the segment between (xi,ti) and (xi+1,ti+1). Since f(x) is convex, then the previous

segment must have a smaller slope than that of the latter segment. This implies that

strict inequality holds in

ti − ti−1

xi − xi−1

≤ ti+1 − ti

xi+1 − xi
. (2.9)

11

One last observation is that if zi > 0, then (xi,yi) cannot be a breakpoint of f(x).

Hence, equality holds in (2.9).

If we combine the above observations together then we can see that the vector

z = {zi}ni=1 must solve the LCP (as defined in the following section) where M ∈ R
nxn

and q ∈ R
n are defined by

qi = βi − βi−1 and mij =





αi−1 + αi if j = i,

−αi if j = i+ 1,

−αj if j = i− 1,

0 otherwise,

(2.10)

where

αi = 1
xi+1−xi

and βi = αi(yi+1 − yi) for i = 0, . . . , n.

It can be shown that the LCP, as defined above, has a unique solution. This solu-

tion gives us the quantities z = {zi}ni=1 which is the LC of the convex hull. Similarly,

the UC can also be found. So by solving two linear complementarity problems, which

both have the same matrix M , we can find the convex hull of a finite set of points

in a certain plane. Let us note that in this particular case the variable of the LCP is

denoted as z while in the next section the variable is denoted in a usual manner as x.

We have given several examples of practical problems, all of which can be reduced

to basically solving the LCP. In the next section, we will formally define and discuss

the linear complementarity problem, in more detail.

12

2.2 The Linear Complementarity Problem

The main idea of the linear complementarity problem, LCP, is to find a particular

vector in a finite real vector space that satisfies a certain system of inequalities.

Mathematically, given a vector q ∈ R
n and a matrix M ∈ R

nxn, we want to find a

vector x ∈ R
n (or to show such a vector does not exist) such that

x ≥ 0,

q +Mx ≥ 0,

xT (q +Mx) = 0.

(2.11)

By introducing a vector,

s = q +Mx, (2.12)

the above system (2.11) can be rewritten to give us this useful equivalent formulation:

s = Mx+ q,

xT s = 0,

(x, s) ≥ 0.

(2.13)

Since (x, s) ≥ 0, the complementarity equation xT s = 0 can be written equiva-

lently as

xs = 0,

which represents component-wise product of vectors, as follows,

xs = (x1s1, x2s2, . . . , xnsn)
T . (2.14)

The feasible set of points (feasible region) of the LCP as defined in (2.13) is the

following set:

F =
{
(x, s) ∈ R

2n : s = Mx+ q, x ≥ 0, s ≥ 0
}
. (2.15)

13

Furthermore, the set of strictly feasible points of the LCP is the following set:

F0 = {(x, s) ∈ F : x > 0, s > 0} .

The solution set of the LCP is given by

F ∗ =
{
(x∗, s∗) ∈ F : x∗T s∗ = 0

}
. (2.16)

An important subset of the above solution set is a set of strict complementarity

solutions

F ∗
s = {(x∗, s∗) ∈ F∗ : x∗ + s∗ > 0} . (2.17)

We can now say that the main idea of the LCP is to find a certain vector x that

is both feasible and complementary. This vector is called a solution of the LCP. The

LCP is always solvable with the zero vector being a trivial solution , if q ≥ 0.

2.3 Alternate Formulations of the LCP

In the previous section, we stated the LCP as a problem of finding a solution vector

(x, s) ∈ R
2n such that all conditions of (2.13) are satisfied. This formulation is

usually known as the standard LCP (SLCP). There are several other important LCP

formulations that are going to be discussed, such as: mixed, horizontal, and geometric

(generalized) LCP.

Next, if we consider a QP in the equality form

min 1
2
xTQx+ cTx

subject to Ax = b,

x ≥ 0,

(2.18)

14

where Q is given by an nxn symmetric matrix, A is given by an mxn matrix with

m < n, and c, b are given vectors of the corresponding dimension, then its Kurush-

Kuhn-Tucker system is of the form

Ax = b, x ≥ 0,

ATy + s−Qx = c, s ≥ 0,

xT s = 0.

(2.19)

The above system can be formulated as SLCP by removing the free variable y ∈ R
m

in the usual manner y = y+ − y− where y+, y− ∈ R
m
+ . This unfortunately results in a

large increase in problem size which is not welcomed. Also, it is very likely that the

algorithm for SLCP applied to this newly reformulated system, (2.19), will not be as

efficient because the algorithm employs the special structure of that system.

Alternatively, the system (2.19) leads to the following LCP form which is called

mixed LCP (MLCP):

M

(
x

y

)
+ q =

(
s

0

)
,

xT s = 0,

(x, s) ≥ 0,

(2.20)

where x, s ∈ R
n
+, y ∈ R

m and

M =



Q −AT

A 0


 and q =

(
c

−b

)
. (2.21)

For the system (2.19), the MLCP formulation is simpler than the SLCP formulation.

We conclude that the formulation of a problem as LCP may lead to the different

forms of LCP and restricting the LCP to only one form may have a high price for

different formulations.

15

Another formulation of the LCP is the horizontal LCP (HLCP):

Mx+Ns = q,

xT s = 0,

(x, s) ≥ 0,

(2.22)

where M,N ∈ R
nxn matrices, and q ∈ R

n.

Instead of counting on an algebraic representation, we can also focus on a geo-

metric approach by observing that

M1 =
{
(x, s) : Ax = b, ATy + s−Qx = c for some y

}
,

M2 = {(x, s) : Mx+ q = s} ,

M3 = {(x, s) : Mx+Ns = q} ,

are all instances of a linear manifold M. For any vector z∗ ∈ R
2n and any subspace

Φ ∈ R
2n, we define the linear manifold M = Φ (z∗) as

M = Φ (z∗) = z∗ + Φ = {z ∈ R
2n : z − z∗ ∈ Φ} . (2.23)

Now (2.13), (2.19), and (2.22) can all be considered as instances of the geometric

(generalized) LCP (GLCP):

Find z = (x, s) ∈ M,

such that xT s = 0,

(x, s) ≥ 0.

(2.24)

We refer to the GLCP as the pair (Φ, z∗).

In general LCP is NP-complete, which means that there exists no polynomial

algorithms for solving it. Thus, the problem needs to be restricted to certain classes

of matrices for which the polynomial algorithms exist. We now list several such classes

of matrices M for SLCP. They are as follows:

16

• Skew-symmetric matrices (SS):

(x ∈ R
n)(xTMx = 0). (2.25)

• Positive semi-definite matrices (PSD):

(x ∈ R
n)(xTMx ≥ 0). (2.26)

• P -matrices: Matrices with all principal minors positive or equivalently

(0 6= x ∈ R
n)(∃i ∈ I)(xi(Mx)i > 0). (2.27)

• P0-matrices: Matrices with all principal minors nonnegative or equivalently

(0 6= x ∈ R
n)(∃i ∈ I)(xi 6= 0 and xi(Mx)i ≥ 0). (2.28)

• Sufficient matrices (SU): Matrices which are column and row sufficient

– Column sufficient matrices (CSU):

(∀x ∈ R
n)(∀i ∈ I)(xi(Mx)i ≤ 0 ⇒ xi(Mx)i = 0). (2.29)

– Row sufficient matrices (RSU): M is row sufficient if MT is column suffi-

cient.

• P∗(κ): Matrices such that

(1 + 4κ)
∑

i∈I
+(x)

xi(Mx)i +
∑

i∈I
−(x)

xi(Mx)i ≥ 0,∀x ∈ R
n,

where

I+(x) = {i : xi(Mx)i > 0} , I−(x) = {i : xi(Mx)i < 0} ,

17

Figure 2.1: Relations and examples of the classes of matrices.

or equivalently

xTMx ≥ −4κ
∑

i∈I
+(x)

xi(Mx)i,∀x ∈ R
n, (2.30)

and

P∗ =
⋃

κ≥0

P∗(κ). (2.31)

Especially interesting, important (and nontrivial) is that the P∗ matrices are just

sufficient.

The relationship between some of the above classes is as follows:

SS ⊂ PSD ⊂ P∗ = SU ⊂ CS ⊂ P0, P ⊂ P∗, P ∩ SS = ∅. (2.32)

Some of these relations are obvious, like PSD = P∗(0) ⊂ P∗ or P ⊂ P∗, while others

require proof. Refer to Figure 2.1, which was first published in [9], to see a visual flow

of how these classes of matrices are related. Also, all of the above classes have the

18

nice property that if matrix M belongs to one of these classes, then every principal

sub-matrix of M also belongs to the class.

In this thesis, we will assume that matrix M is a positive semi-definite (PSD)

matrix. This case is not most general, but it is certainly most commonly used both in

theory and practice. Hence, this is reason why we will focus on this class of matrices

in the thesis. The SLCP with a PSD matrix M is called monotone LCP.

CHAPTER 3

KERNEL-BASED INTERIOR-POINT ALGORITHMS

The previous chapter gave us insight on the problem, which is trying to be solved.

In this chapter, we will discuss the generic IPM method for solving a monotone

LCP. This method will be based on the concept of kernel functions. First, we will

explain the concept of the central path, then convey the general outline of the generic

interior-point primal-dual method. We will also define, discuss, and expand on kernel

functions and their role in design and analysis of IPM for LCP.

3.1 The Central Path

We consider the linear complementarity problem in the standard form, SLCP, which

is finding a point (x, s) ∈ R
2n that satisfies the following conditions

Mx+ q − s = 0, (x, s) ≥ 0,

xs = 0,
(3.1)

where M ∈ R
nxn, q ∈ R

n and where xs in the last equation represents the component-

wise (Hadamard) product of the vectors x and s.

The general idea is to solve (3.1) using Newton’s method. However, Newton’s

method can “get stuck” at the complementarity equation xs = 0. Therefore, the main

idea of primal-dual interior-point methods is to replace the last equation in (3.1), the

so called complementarity equation, with the parameterized equation xs = µe, with

parameter µ > 0. So we consider the following system

Mx+ q − s = 0, (x, s) ≥ 0,

xs = µe,
(3.2)

20

where e is defined as a vector of ones of size n. By the last equation, any solution

(x, s) of (3.2) will satisfy x > 0 and s > 0. Suppose, there exits a point (x0, s0) > 0

such that

Mx0 + q − s0 = 0, (3.3)

which means that the interior of the feasible region of (3.1) is not empty. This

assumption is called the interior-point condition (IPC) of the LCP. If IPC is not

satisfied the modified LCP can be constructed so that it satisfies the IPC. From the

solution of the modified LCP, the solution of the original LCP can easily be found.

See chapter five in Kojima et al. [9]. Thus, we can, and in this thesis we will, always

assume that the IPC is satisfied.

It can be shown that for certain classes of matrices, if M has a full rank, i.e.

rank(M) = n and IPC holds, then the parameterized system (3.2) has a unique

solution, for each µ > 0 (see Lemma 4.3 in [9]). This is particularly true for positive

semi-definite matrices that we are considering in this thesis. This solution is denoted

as (x(µ), s(µ)) and we call (x(µ), s(µ)) the µ-center of (3.1). The set of µ-centers

(with µ running through all positive real numbers) gives a homotopy path, which is

called the central path of (3.1). The importance of the central path for the LP was

discovered first by Sonnevend [17] and Megiddo [13] and later generalized to LCP by

Kojima et al. [9]. The main property of the central path is that if µ → 0, then the

limit of the central path exists and since the limit points satisfy the complementarity

condition, the limit yields the optimal solutions for (3.1).

This limiting property of the central path leads to the main idea of the iterative

methods for solving (3.1): Trace the central path while reducing µ at each iteration.

Theoretically, an exact trace is wanted, but practically it is too inefficient. However,

21

it has been shown that it is only necessary to trace the central path approximately

in order to maintain favorable convergence properties of the given algorithms.

3.2 Main Idea of the Method

As discussed previously, the IPMs trace the central path approximately. The general

outline of the generic interior-point primal-dual method is discussed below. Foremost,

without loss of generality, we assume that a point (x, s) is “close” to the µ-center,

(x(µ), s(µ)) for some parameter µ > 0. Then, µ is decreased to µ+ := (1 − θ)µ, for

some θ ∈ (0, 1). Next, we redefine µ = µ+, then we solve the following Newton system

−M∆x+ ∆s = 0,

s∆x+ x∆s = µe− xs.
(3.4)

Since M has full row rank, the system (3.4) has a unique solution for any (x, s) >

0. The solution (∆x,∆s) is known as the Newton direction. By taking a step along

this search direction, we construct a new ordered pair (x+, s+) with

x+ = x+ α∆x, s+ = s+ α∆s, (3.5)

where α denotes the step size, α ∈ (0, 1), which must be chosen carefully. If needed,

we repeat the procedure until we find iterates that are in a certain neighborhood of

the µ-center (x(µ), s(µ)). Then, again, µ is reduced by the factor 1− θ and Newton’s

method is applied again targeting the new µ-center, and so on. We repeat this process

until µ is small enough, i.e. nµ ≤ ǫ, where ǫ is a small positive number. At this stage

in the algorithm, we have found ǫ-approximate solutions of (3.1).

Before formally stating the algorithm, we introduce important scaling that al-

lows generalization and introduction of kernel-based barrier functions. For any triple

22

(x, s, µ) with x > 0, s > 0 and µ > 0, we introduce the so called variance vector :

v :=

√
xs

µ
. (3.6)

Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if v = e.

The scaled search directions dx and ds are then defined as

dx :=
v∆x

x
, ds :=

v∆s

s
, (3.7)

where each of the operations are component-wise product and division.

Lemma 3.2.1. If v is defined, as in (3.6) and the search directions dx, ds are defined

as in (3.7), then the Newton system from (3.4) can be transformed into the following

system:

−M̃dx + ds = 0,

dx + ds = v−1 − v,
(3.8)

where

M̃ := DMD, D := X
1
2S− 1

2 , S := diag(s), and X := diag(x).

Proof. Recall the Newton system given in (3.4)

−M∆x+ ∆s = 0, (3.9)

s∆x+ x∆s = µe− xs. (3.10)

The scaled search directions dx,ds as defined in (3.7), can be rewritten as

∆x =
xdx

v
, ∆s =

sds

v
, (3.11)

where v is defined in (3.6).

23

By applying (3.11) to (3.10), we obtain

s
(
xdx

v

)
+ x

(
sds

v

)
= µe− xs

(
sx
v

)
dx +

(
xs
v

)
ds = µe− xs

dx + ds = v
sx

(µe− xs)

dx + ds = v−1 − v.

We have shown the transformation for (3.10) using (3.11). Next we will focus our

attention on transforming (3.9). If we apply (3.11) to (3.9), we see

−M
(
xdx

v

)
+

(
sds

v

)
= 0. (3.12)

The above equation can be transformed in the following way. First, observe that any

vector a ∈ R
n can be written as

a = [diag(a)] e,

where

diag(a) =




a1

a2

. . .

an




(3.13)

and e is a vector of all ones.

Therefore, vector xdx

v
can be written as

xdx

v
=

(
XV −1Dx

)
e

= XV −1 (Dxe) (3.14)

= XV −1dx

where

X = diag(x), V −1 = diag(v−1), Dx = diag(dx).

24

Similarly, vector sds

v
can be written as

sds

v
=

(
SV −1Dx

)
e

= SV −1 (Dse) (3.15)

= SV −1ds

where

S = diag(s), V −1 = diag(v−1), Ds = diag(ds).

Substitution of (3.14) and (3.15) into (3.12) leads to

S−1V (−MXV −1dx + SV −1ds) = 0

−S−1VMXV −1dx + ds = 0
(3.16)

The matrix S−1VMXV −1 can be simplified by observing that

V S−1 = diag
(v
s

)
= diag

(√
x

µs

)
=

1√
µ
X

1
2S− 1

2 =
1√
µ
D. (3.17)

and

XV −1 = diag
(x
v

)
= diag

(√
µx

µs

)
=

√
µX

1
2S− 1

2 =
√
µD. (3.18)

where D := X
1
2S− 1

2 , S := diag(s), and X:= diag(x).

Next, by applying (3.17) and (3.18) to (3.16), we get

− [DMD] dx + ds = 0.

If we denote M̃ := DMD, we obtain

−M̃dx + ds = 0.

Hence, the lemma is proved.

Lemma 3.2.2. If matrix M is positive semi-definite, then M̃ is also positive semi-

definite.

25

Proof. Let a ∈ R
n and M̃ be as defined above, then

aTM̃a = aT (DMD) a

=
(
aTD

)
M (Da)

= (Da)T M (Da)

≥ 0.

By assumption, we know M is positive semi-definite. Hence, by definition, M̃ is

positive semi-definite.

Note that:

dx = ds = 0 ⇔ v−1 − v = 0 ⇔ v = e.

Therefore, we see that dx = ds = 0 if and only if the pair (x, s) coincides with the µ-

center (x(µ), s(µ)). Unfortunately, dx and ds are not, in general, orthogonal vectors,

as in the LP case, which will complicate the analysis of the algorithm.

A very important observation is that the right hand side v−1 − v in the last

equation of (3.8) equals the negative gradient of the function

Ψc(v) :=
n∑

i=1

(
v2
i − 1

2
− log vi

)
, (3.19)

which can be written as,

dx + ds = −∇Ψc(v). (3.20)

This equation is known as the scaled centering equation. The scaled centering equation

basically defines the search directions. An easy verification is that ∇2Ψc(v) = diag(e+

v−2). Since this matrix is positive definite, Ψc(v) is strictly convex. We can see that

∇Ψc(e) = 0, hence Ψc(v) attains its minimal value at v = e, with Ψc(e) = 0. So, it

follows that Ψc(v) is non-negative everywhere and vanishes at v = e, which means it

26

vanishes at the µ-center (x(µ), s(µ)). Therefore, we can conclude that the µ-center

(x(µ)s(µ)) can be characterized as the minimizer of the function Ψc(v). Thus, Ψc(v)

serves as a measure of how close (x, s) is to the µ-center.

Another purpose of Ψc(v) is visible from equation (3.20) which is Ψc(v) essen-

tially determines the search direction (dx, ds). To summarize, Ψc(v) has two crucial

properties:

1. Ψc(v) determines the search direction.

2. Ψc(v) serves as a measure of closeness to the µ-center.

Hence, it basically controls the whole algorithm.

From the previous paragraph, the following important generalization follows: we

can replace Ψc(v) by any strictly convex function Ψ(v), v ∈ R
n
++, such that Ψ(v) is

minimal at v = e and Ψ(e) = 0. This new function Ψ(v) is called a scaled barrier

function. Hence, the new scaled centering equation is reformulated as

dx + ds = −∇Ψ(v). (3.21)

We still have

dx = ds = 0 ⇔ v = e⇔ x = x(µ) and s = s(µ).

Note that alternate barrier functions lead to alternate Newton directions. Likewise,

the measure of closeness to the µ-center will also be different than for Ψc(v). Thus,

the scaled Newton system is

−M̃dx + ds = 0,

dx + ds = −∇Ψ(v).
(3.22)

27

After finding dx and ds from (3.22), we can find the original directions ∆x and ∆s

from (3.7). Alternatively, ∆x and ∆s can be found directly from the following system

−M∆x+ ∆s = 0,

s∆x+ x∆s = −µv∇Ψ(v).
(3.23)

3.3 Generic Interior-Point Primal-Dual Algorithm

We can now formally describe the generic primal-dual algorithm. As we mentioned,

this algorithm follows the central path approximately. Suppose we start with (x, s)

close to µ-center, then µ is reduced to µ+ = (1 − θ)µ. Therefore, new v becomes

v+ = v√
1−θ . As a consequence, Ψ(v) changes to Ψ(v+). The inequality, Ψ(v) ≤ τ ,

means that (x, s) is in a τ -neighborhood of the µ-center (x(µ), s(µ)), where τ > 0

represents a certain threshold value. Recall that, we measure the closeness of (x, s) to

µ-center (x(µ), s(µ)) by the value of Ψ(v). However, after the θ-update, the updated

Ψ(v+) may be greater than τ , if so, we need to perform further steps to reduce Ψ(v+)

to get closer to the new µ-center, i.e, to get back to the τ -neighborhood of a new

µ-center.

To accomplish this, we need to first find the direction ∆x and ∆s by solving

the Newton system (3.23). We update x and s using a chosen step size α and the

recently found search directions ∆x and ∆s, respectively. This process is repeated

until Ψ(v) ≤ τ , upon which the process begins again. We begin again by reducing

µ and updating v, and so on until we have a µ-center that is ǫ-close to the actual

solution. The generic form of the algorithm is shown in Table 3.1. In the sequel, we

will refer to it as simply the Generic Algorithm.

28

Generic Primal-Dual Algorithm for LCP

Input:

Determine input parameters:

threshold parameter τ > 0,

fixed barrier update parameter θ, 0 < θ < 1,

accuracy parameter ǫ > 0.

begin

Set (x0, s0, µ0) > 0 so that the IPC is satisfied;

while nµ ≥ ǫ do

µ := (1 − θ)µ;

v :=
√

xs
µ

;

while Ψ(v) > τ do

Calculate direction (∆x,∆s) by solving (3.23);

Calculate step size α;

Update x := x+ α∆x and s := s+ α∆s;

Update v :=
√

xs
µ

;

end do

end do

end

Table 3.1: Generic Primal-Dual Algorithm for LCP

29

x(µ)

Ψ(v) ≤ Ʈ

x(µ)

ε-neighborhoodε-approximate solution

µ-center(s)

neighborhood

central path

feasible region

optimal solution
 (µ = 0)

+

+

α∆
x

µ =µ (1-θ)µ+

v =v+

√1-θ
v+

Ψ(v) > Ʈ+

+

Ψ(v) > Ʈ

+

α
∆
x

Figure 3.1: Representation of the Generic Primal-Dual Algorithm for LCP.

30

We want to “optimize” the algorithm by minimizing the number of iterates in

the algorithm. To do this we must carefully choose the parameters τ, θ, and the step

size α. Choosing the barrier update parameter θ is very important in application

and theory. If θ is a constant number which is independent of the dimension n of

the problem, i.e. θ = O(1), then the algorithm is called a large update method. If θ

depends on the dimension n of the problem, then we call the algorithm a small update

method. In this case, θ is usually chosen to be the following: θ = O
(

1√
n

)
.

Choosing the step size, α > 0, is another key step in obtaining good convergence

properties of the algorithm. It must be set in such a way that the closeness of the

iterates to the current µ-center improves by a sufficient amount. This will be discussed

later in the text.

3.4 Eligible Kernel Functions

For the sake of this thesis, we will consider a barrier function Ψ(v) that is a separable

function with identical coordinate functions ψ(vi). Thus,

Ψ(v) =
n∑

i=1

ψ(vi), (3.24)

where ψ : (0,∞) → [0,∞), ψ(v) is twice differentiable, and it attains its minimum at

t = 1 with ψ(1) = 0. We call this univariate function ψ(t) the kernel function of the

barrier function Ψ(v).

If we consider the following particular case

ψc(t) :=
t2 − 1

2
− log t, (3.25)

then Ψ(v) = Ψc(v), as obtained in (3.19). In this case, the search direction becomes

the classical Newton direction for primal-dual methods. Notice that the term −log t

31

commands the behavior of this kernel function if t→ 0 and the term t2−1
2

commands

the behavior of the kernel function if t → ∞. We call the first term the barrier

term and the second term the growth term of the kernel function. We call the kernel

function defined in (3.25) a logarithmic kernel function.

For our purposes, we require that the general kernel function ψ be twice differ-

entiable and go to infinity if either t→ 0 or t→ ∞. Hence ψ satisfies the following

ψ′(1) = ψ(1) = 0, (3.26)

ψ′′(t) > 0, (3.27)

lim
t→0

ψ(t) = lim
t→∞

ψ(t) = ∞. (3.28)

We can easily see that (3.26) and (3.27) indicate that ψ(t) is a non-negative

strictly convex function such that ψ(t) achieves its minimum at t = 1, i.e, ψ(1) = 0.

This tells us that since ψ(t) is twice differentiable, it is completely determined by its

second derivative:

ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ) dζ dξ. (3.29)

Moreover, (3.28) tells us that ψ(t) is coercive and has the barrier property.

As mentioned in the previous section, Ψ(v) is not only used to define a search

direction, but also as a measure of closeness of the current iterates to the µ-center.

In the analysis of the algorithm, we also use the norm-based proximity measure δ(v)

defined by

δ(v) :=
1

2
‖∇Ψ(v)‖ =

1

2
‖dx + ds‖ . (3.30)

Both measures are determined by the kernel function.

To prove later complexity results we impose additional conditions on the kernel

32

functions:

tψ′′(t) + ψ′(t) > 0, t < 1, (3.31)

ψ′′′(t) < 0, t > 0, (3.32)

2ψ′′(t)2 − ψ′(t)ψ′′′(t) > 0, t < 1, (3.33)

ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt) > 0, t > 1, β > 1. (3.34)

Furthermore, we have an additional condition

tψ′′(t) − ψ′(t) > 0, t > 1. (3.35)

We list this extra condition because conditions (3.32) and (3.35) imply condition

(3.34). Condition (3.35) is introduced since it is easier to verify (3.35) than (3.34),

which is very technical. Moreover, many eligible kernel functions satisfy (3.35). Thus,

the kernel function is also eligible if it satisfies conditions (3.31)-(3.33) and (3.35).

In the following lemma, we can see that condition (3.34) is not independent from

the other conditions.

Lemma 3.4.1 (Lemma 2.2.4 in [5]). If ψ(t) satisfies (3.35) and (3.32), then ψ(t)

satisfies (3.34).

Proof. For t > 1, we consider

f(β) := ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt), β ≥ 1,

Note that f(1) = 0. Moreover,

f ′(β) = tψ′′(t)ψ′′(βt) − ψ′(t)ψ′′(βt) − βtψ′(t)ψ′′′(βt)

= ψ′′(βt)(tψ′′(t) − ψ′(t)) − βtψ′(t)ψ′′′(βt) > 0.

33

ψ(t) (3.31) (3.35) (3.32) (3.33)

t2 − t− 1 + e1−t - + + +

(t+ 2)(t− 1) − 3log t + - + +

t3 + t−3 − 2 + + - +

8t2 − 11t+ 1 + 2√
t
− 4log t + + + -

Table 3.2: Independent Kernel Condtions

The last inequality follows since ψ′′(βt) > 0, tψ′′(t) − ψ′(t) > 0, by (3.35) and

−βtψ′(t)ψ′′′(βt) > 0, since t > 1, which implies ψ′(t) > 0, and ψ′′′(βt) < 0, by

(3.32). Thus it follows that f(β) > 0 for β > 1.

Lemma 3.4.1 tells us that any kernel function satisfying conditions (3.31) - (3.33)

and condition (3.35), is an eligible kernel function. For the remainder of this thesis,

we will only consider eligible kernel functions.

Remark 3.4.2. Note that conditions (3.31), (3.35), (3.32), (3.33) are all logically

independent, however condition (3.34) is not independent of the other conditions.

In Table 3.2, that is taken from [1], we can see four kernel functions and the signs

indicate whether the particular condition is satisfied or not.

Condition (3.31) is satisfied if t ≥ 1, since then ψ′(t) ≥ 0 and condition (3.35)

is satisfied if t ≤ 1, since then ψ′(t) ≤ 0. Furthermore, an important consequence

of condition (3.32) is that ψ′′(t) is decreasing for t > 0. Note that conditions (3.31)

and (3.32) are conditions on the barrier behavior of ψ(t). Also, condition (3.35) only

deals with t ≥ 1 and thus deals with only the growth behavior of ψ(t).

The following lemma lists some of the equivalent representations of condition

(3.31).

34

Lemma 3.4.3 (Lemma 2.2.2 in [5]). Let ψ(t) be a twice differentiable function for

t > 0. Then the following three properties are equivalent:

(i) ψ
(√

t1t2
)
≤ 1

2
(ψ(t1) + ψ(t2)) , for t1, t2 > 0;

(ii) ψ′(t) + tψ′′(t) ≥ 0, t > 0;

(iii) ψ(eξ) is convex.

Proof. (iii) ⇔ (i): From the definition of convexity, we know that ψ(exp(ξ)) is convex

if and only if for any ξ1, ξ2 ∈ R, the following inequality holds

ψ

(
exp

(
1

2
(ξ1 + ξ2)

))
≤ 1

2
(ψ(exp(ξ1)) + ψ(exp(ξ2))).

Letting t1 = exp(ξ1), t2 = exp(ξ2), obviously one has t1, t2 ∈ (0,+∞), and the above

relation can be rewritten as

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)).

(iii) ⇔ (ii): The function ψ(exp(ξ)) is convex if and only if the second derivative

with respect to ξ is non-negative. This gives exp(2ξ)ψ′′(exp(ξ))+exp(ξ)ψ′(exp(ξ)) ≥

0. Substituting t = exp(ξ), one gets tψ′(t) + t2ψ′′(t) ≥ 0 which is equivalent to

ψ′(t) + tψ′′(t) ≥ 0.

The property described in Lemma 3.4.3 is called exponential convexity, or it is

also known as e-convexity. This property is essential in the analysis of primal-dual

IPMs based on kernel functions.

Below is a technical result that is needed for the sequel.

Lemma 3.4.4 (Lemma 2.2.5 in [5]). One has

tψ′(t) ≥ ψ(t), if t ≥ 1.

35

Proof. Defining g(t) := tψ′(t) − ψ(t) one has g(1) = 0 and g′(t) = tψ′′(t) ≥ 0. Hence

g(t) ≥ 0 for t ≥ 1 and the lemma follows.

The following two lemmas deal with the results of condition (3.32).

Lemma 3.4.5 (Lemma 2.5 in [1]). If the kernel function ψ(t) satisfies (3.32), then

ψ(t) > 1
2
(t− 1)ψ′(t) and ψ′(t) > (t− 1)ψ′′(t), if t > 1,

ψ(t) < 1
2
(t− 1)ψ′(t) and ψ′(t) < (t− 1)ψ′′(t), if t < 1.

(3.36)

Proof. Consider the function f(t) = 2ψ(t) − (t − 1)ψ′(t). One has f(1) = 0 and

f ′(t) = ψ′(t) − (t− 1)ψ′′(t). Hence f ′(1) = 0 and f ′′(t) = −(t− 1)ψ′′′(t). Using that

ψ′′′(t) < 0 it follows that if t > 1 then f ′′(t) > 0, whence, f ′(t) > 0 and f(t) > 0

and if t < 1 then f ′′(t) < 0, whence f ′(t) > 0 and f(t) < 0. From this the lemma

follows.

Lemma 3.4.6 (Lemma 2.6 in [1]). If the kernel function ψ(t) satisfies (3.32), then

1
2
ψ′′(t) (t− 1)2

< ψ(t) < 1
2
ψ′′(1) (t− 1)2

, if t > 1,

1
2
ψ′′(1) (t− 1)2

< ψ(t) < 1
2
ψ′′(t) (t− 1)2

, if t < 1.
(3.37)

Proof. By using Taylor’s theorem and ψ(1) = ψ′(1) = 0, we get

ψ(t) =
1

2
ψ′′(1) (t− 1)2 +

1

3!
ψ′′′(ξ) (ξ − 1)3

, (3.38)

where 1 < ξ < t if t > 1 and 1 > ξ > t if t < 1. Since ψ′′′(ξ) < 0 the second inequality

for t > 1 and the first inequality for t < 1 in the lemma follow. The remaining two

inequalities are an immediate consequence of Lemma 3.4.5.

Furthermore, there are two inverse functions related to the kernel function that

are essential to the analysis of the algorithm.

36

i Kernel functions ψi(t)

1 t2−1
2 − log t

2 t2−1
2 + t1−q−1

q(q−1) −
q−1
q

(t− 1), q > 1

3 t2−1
2 + (e−1)2

e
1

et−1 − e−1
e

4 1
2(t− 1

t
)2

5 t2−1
2 + e

1

t
−1 − 1

6 t2−1
2 −

∫ t
1 e

1

ξ
−1dξ

7 t2−1
2 + t1−q−1

q−1 , q > 1

8 t− 1 + t1−q−1
q−1 , q > 1

9 t1+p−1
1+p − log t, p ∈ [0, 1]

10 t1+p−1
1+p + t1−q−1

q−1 , p ∈ [0, 1], q > 1

Table 3.3: Ten Kernel Functions

Definition 3.4.7. Given the kernel function ψ, we define the following functions:

(i) γ : [0,∞) → [1,∞) is the inverse function of ψ(t) for t ≥ 1;

(ii) ρ : [0,∞) → (0, 1] is the inverse function of − 1
2
ψ′(t) for t ≤ 1.

(3.39)

Later, we will use the fact that γ is an increasing function, since ψ(t) is increasing

for t ≥ 1. Similarly, ρ is a decreasing function because ψ′(t) is increasing, while

−1
2
ψ′(t) is decreasing.

In Table 3.3, we list ten eligible kernel functions that are generally used for study.

CHAPTER 4

ANALYSIS OF THE ALGORITHM

In this chapter, we will discuss, in depth, the analysis of the Generic Algorithm for

solving the LCP that is described in Table 3.1. We will see how to obtain a bound

for the growth of the barrier function, during an outer iteration. We will also see how

to determine the step size during the inner iterations. Finally, we look at how the

barrier function is reduced as a result of the step size, in inner iterations.

4.1 Outer Iteration: Growth Behavior of Barrier Function

At the beginning of each outer iteration of the algorithm, we have Ψ(v) = τ , before

the update of the parameter µ by the factor of (1−θ). The µ-update causes the vector

v to be divided by the factor
√

1 − θ, with 0 < θ < 1, which leads to an increase

in the value of Ψ(v). To counter this increase, during subsequent inner iterations

Ψ(v) decreases until it surpasses the threshold value τ again. From this, we can note

that during the algorithm, the largest values of Ψ(v) occur immediately after the

µ-updates. Hence, there exists a need for an estimate for the effect of a µ-update on

the value of Ψ(v). In this section, we will do exactly that, derive such an estimate.

In other words, by defining β as

β :=
1√

1 − θ
,

we want to find an upper bound for Ψ(βv) in terms of Ψ(v). We begin with the

following lemma to help us.

Lemma 4.1.1 (Lemma 2.2.8 in [5]). Suppose that ψ(t1) = ψ(t2), with t1 ≤ 1 ≤ t2

38

and β ≥ 1. Then

ψ(βt1) ≤ ψ(βt2).

Equality holds if and only if β = 1 or t1 = t2 = 1.

Proof. Consider

f(β) := ψ(βt2) − ψ(βt1).

One has f(1) = 0 and

f ′(β) = t2ψ
′(βt2) − t1ψ(βt1).

Since ψ′′(t) ≥ 0 for all t > 0, ψ′(t) is monotonically non-decreasing. Hence ψ′(βt2) ≥

ψ′(βt1). Substitution gives

f ′(β) = t2ψ
′(βt2) − t1ψ

′(βt1) ≥ t2ψ
′(βt2) − t1ψ

′(βt2) = ψ′(βt2)(t2 − t1) ≥ 0.

The last inequality holds since t2 ≥ t1, and ψ′(t) ≥ 0 for t ≥ 1. This proves that

f(β) ≥ 0 for β ≥ 1, and hence the inequality in the lemma follows. If β = 1 then

we obviously have equality. Otherwise, if β > 1, and f(β) = 0, then the mean value

theorem implies f ′(ξ) = 0 for some ξ ∈ (1, β). But this implies ψ′(ξt2) = ψ(ξt1).

Since ψ′(t) is strictly monotonic, this implies ξt2 = ξt1, whence t2 = t1. Since also

t1 ≤ 1 ≤ t2, we obtain t2 = t1 = 1.

The following theorem gives us an upper bound for Ψ(v) after the µ-update in

terms of the inverse function of ψ(t) for t ≥ 1.

Theorem 4.1.2 (Theorem 3.2 in [1]). Let γ : [0,∞) → [1,∞) be the inverse

function of ψ(t) for t ≥ 1. Then we have for any positive vector v and any β ≥ 1:

Ψ(βv) ≤ nψ

(
βγ

(
Ψ(v)

n

))
.

39

Proof. First we consider the case where β > 1. We consider the following maximiza-

tion problem:

max
v

{Ψ(βv) : Ψ(v) = z} ,

where z is any non-negative number. The first order optimality conditions for this

problem are

βψ′(βvi) = λψ′(vi), i = 1, . . . , n, (4.1)

where λ denotes the Lagrange multiplier. Since ψ′(1) = 0 and βψ′(β) > 0, we must

have vi 6= 1 for all i. We even may assume that vi > 1 for all i. To see this, let zi

be such that ψ(vi) = zi. Given zi, this equation has two solutions: vi = v
(1)
i < 1

and vi = v
(2)
i > 1. As a consequence of Lemma (4.1.1), we have ψ(βv

(1)
i) ≤ ψ(βv

(2)
i).

Since we are maximizing Ψ(βv), it follows that we may assume vi = v
(2)
i > 1. Thus

we have shown that without loss of generality we may assume that vi > 1 for all i.

Note that then (4.1) implies βψ′(βvi) > 0 and ψ′(vi) > 0, whence also λ > 0. Now

defining g(t) according to

g(t) := ψ′(t)
ψ′(βt)

, t ≥ 1,

we deduce from (4.1) that g(vi) = β

λ
for all i. One has

g′(t) =
ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt)

(ψ′(βt))2
.

At this stage we use that ψ(t) satisfies condition (3.34). Due to this we have g′(t) > 0,

for t > 1 and β > 1. So g(t) is strict monotonically increasing. Hence it follows that

all vi’s are mutually equal. Putting vi = t > 1, for all i, we deduce from Ψ(v) = z

that nψ(t) = z. This implies t = γ(z
n
). Hence the maximal value that Ψ(v) can

attain is given by

Ψ(βte) = nψ (βt) = nψ
(
βγ
(z
n

))
= nψ

(
βγ

(
Ψ(v)

n

))
.

40

This proves the theorem if β > 1. For the case β = 1 it suffices to observe that both

sides of the inequality in the theorem are continuous in β.

Corollary 4.1.3 (Corollary 3.3 in [1]). Using the notation of Theorem 4.1.2, we

have

Ψ(βv) ≤ n

2
ψ′′(1)

(
βγ

(
Ψ(v)

n

)
− 1

)2

. (4.2)

Proof. Since β ≥ 1 and γ(Ψ(v)
n

) ≥ 1, the corollary follows from Theorem 4.1.2 by

using also Lemma 3.4.6.

Hence, as a result of Theorem 4.1.2, we have that if Ψ(v) ≤ τ and β = 1√
1−θ then

Lψ(n, θ, τ) := nψ

(
γ(τ

n
)√

1 − θ

)
(4.3)

is an upper bound for Ψ(v√
1−θ), the value of Ψ(v) after the µ-update.

4.2 Inner Iteration: Determining the Step Size

In this section, we determine a step size α which gives rise to a large decrease of Ψ(v).

At the same time, we want the step size to keep the iterations feasible, during each

inner iteration. The analysis below follows the same line of arguments that were used

in [1].

In each inner iteration, we first find the search direction (∆x,∆s) from the system

(3.23). Suppose a step size α is given, then the new iterate, (x+, s+), is calculated by

x+ = x+ α∆x, s+ = s+ α∆s.

41

Recall that during an inner iteration the parameter µ is fixed. Hence, after the step

in the direction (∆x,∆s) with the step size α the new v vector is given by,

v+ =

√
x+s+

µ
. (4.4)

By using some previous definitions, such as

v =
√

xs
µ
, dx = v∆x

x
, ds = v∆s

s
,

we have

x+ = x

(
e+ α

∆x

x

)
= x

(
e+ α

dx

v

)
=
x

v
(v + αdx) ,

and

s+ = s

(
e+ α

∆s

s

)
= s

(
e+ α

ds

v

)
=
s

v
(v + αds) ,

so we obtain that

v+ =
√

(v + αdx) (v + αds). (4.5)

Next, we consider the decrease of Ψ as a function of α. We define a function:

f(α) := Ψ(v+) − Ψ(v). (4.6)

The exponential convexity (e-convexity) property, which is the first property (i) in

Lemma 3.4.3 implies that

Ψ(v+) = Ψ
(√

(v + αdx) (v + αds)
)
≤ 1

2
(Ψ (v + αdx) + Ψ (v + αds)) (4.7)

If we define

f1(α) :=
1

2
(Ψ (v + αdx) + Ψ (v + αds)) − Ψ(v). (4.8)

then we have f(α) ≤ f1(α). We can see from the above inequality that f1(α) is an

upper bound of f(α). The reason for considering f1(α) instead of f(α) is that f1(α)

is a convex function in α while f(α) may not be convex. Hence, it is easier to deal

with the function f1(α).

42

In order to show that f1(α) is convex, we need to examine its second derivative.

The first derivative of f1 with respect to α is

f ′
1(α) =

1

2

n∑

i=1

(ψ′ (vi + αdxi) dxi + ψ′ (vi + αdsi) dsi)

Using (3.21) and (3.30), we get

f ′
1(0) =

1

2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ(v)2. (4.9)

If we differentiate once more, we obtain

f ′′
1 (α) =

1

2

n∑

i=1

(
ψ′′ (vi + αdxi) d

2
xi + ψ′′ (vi + αdsi) d

2
si

)
> 0, (4.10)

except in the case when dx = ds = 0. We may also note that during an inner iteration

x and s are not both at the µ-center since Ψ(v) ≥ τ > 0. Hence, we may conclude

that f1(α) is strictly convex in α. We can also note that

f(0) = f1(0) = 0.

In the following, we state several lemmas that will help obtain a suitable lower

bound on the step size α. Also, we will simplify some notation:

vmin := min(v), δ := δ(v),

where δ(v) is defined in (3.30).

The key step in the analysis are based on the effort to find an upper bound on

‖dx‖ and ‖ds‖ in terms of the proximity measure δ. The following lemma gives us

such a bound.

Lemma 4.2.1. If M̃ is positive semi-definite, then for search directions dx, ds ob-

tained in (3.7) the following upper bounds hold:

‖dx‖ ≤ 2δ and ‖ds‖ ≤ 2δ. (4.11)

43

Proof. Consider the first equation in (3.8)

−M̃dx + ds = 0.

We can rewrite the above equation as

ds = M̃dx

dTx ds = dTx

(
M̃dx

)

dTx ds = dTx M̃dx

(4.12)

By Lemma 3.2.2, we know M̃ is postive semi-definite. Hence, dTx ds ≥ 0.

Next, we observe the following

‖dx + ds‖2 = (dx + ds)
T (dx + ds)

= dTx dx + 2dTx ds + dTs ds

= ‖dx‖2 + 2dTx ds + ‖ds‖2

≥ ‖dx‖2 + ‖ds‖2
.

(4.13)

From (3.30), we see

‖dx + ds‖ = ‖∇Ψ(v)‖ = 2δ(v). (4.14)

By combining, (4.13) and (4.14), we obtain

4δ2 = ‖dx + ds‖2 ≥ ‖dx‖2 + ‖ds‖2 ≥ ‖dx‖2

So we clearly see,

‖dx‖2 ≤ 4δ2 ⇒ ‖dx‖ ≤ 2δ.

Similarly,

4δ2 = ‖dx + ds‖2 ≥ ‖dx‖2 + ‖ds‖2 ≥ ‖ds‖2

So we can also see,

‖ds‖2 ≤ 4δ2 ⇒ ‖ds‖ ≤ 2δ.

The lemma has been proved.

44

Lemma 4.2.2 (Lemma 4.1 in [1]). One has:

f ′′
1 (α) ≤ 2δ2ψ′′(vmin − 2αδ). (4.15)

Proof. We can see from Lemma 4.2.1 that ‖dx‖ ≤ 2δ and ‖ds‖ ≤ 2δ. Therefore,

vi + αdxi ≥ vmin − 2αδ, vi + αdsi ≥ vmin − 2αδ, 1 ≤ i ≤ n.

Due to (3.32), ψ′′(t) is monotonically decreasing. Therefore from (4.10) and (4.14)

we obtain

f ′′
1 (α) ≤ 1

2
ψ′′(vmin − 2αδ)

n∑

i=1

(
d2
xi + d2

si

)
= 2δ2ψ′′(vmin − 2αδ)

This proves the lemma.

Lemma 4.2.3 (Lemma 4.2 in [1]). If α satisfies the inequality

−ψ′(vmin − 2αδ) + ψ′(vmin) ≤ 2δ. (4.16)

then the following holds

f ′
1(α) ≤ 0.

Proof. We may write, using Lemma 4.2.2, and also (4.9),

f ′
1(α) = f ′

1(0) +

∫ α

0

f ′′
1 (ξ)dξ

≤ −2δ2 + 2δ2

∫ α

0

ψ′′(vmin − 2ξδ)dξ

= −2δ2 − δ

∫ α

0

ψ′′(vmin − 2ξδ)d(vmin − 2ξδ)

= −2δ2 − δ (ψ′(vmin − 2αδ) − ψ′(vmin)) .

Hence, f ′
1(α) ≤ 0 will certainly hold if α satisfies

−ψ′(vmin − 2αδ) + ψ′(vmin) ≤ 2δ,

which proves the lemma.

45

Lemma 4.2.4 (Lemma 4.3 in [1]). Let ρ denote the inverse function of the restric-

tion of −1
2
ψ′(t) to the interval (0, 1], as defined in (3.39). Then the largest step size

α that satisfies (4.16) is given by

α :=
1

2δ
(ρ (δ) − ρ (2δ)) . (4.17)

Proof. We want α such that (4.16) holds, with α as large as possible. Since ψ′′(t) is

decreasing, the derivative with respect to vmin of the expression at the left in (4.16)

(i.e. −ψ′′(vmin − 2αδ) + ψ′′(vmin)) is negative. Hence, fixing δ, the smaller vmin is,

the smaller α will be. One has

δ =
1

2
‖∇Ψ(v)‖ ≥ 1

2
|ψ′(vmin)| ≥ −1

2
ψ′(vmin).

Equality hold if and only if vmin is the only coordinate in v that differs from 1, and

vmin ≤ 1 (in which case ψ′(vmin) ≤ 0). Hence, the worst situation for the step size

occurs when vmin satisfies

−1

2
ψ′(vmin) = δ. (4.18)

The derivative with respect to α of the left expression in (4.16) equals 2δψ′′(vmin −

2αδ) ≥ 0, and hence the left hand side is increasing in α. So the largest possible value

of α satisfying (4.16), satisfies

−1

2
ψ′(vmin − 2αδ) = 2δ. (4.19)

Due to the definition of ρ, (4.18) and (4.19) can be written as

vmin = ρ(δ), vmin − 2αδ = ρ(2δ),

respectively. This implies,

α =
1

2δ
(vmin − ρ(2δ)) =

1

2δ
(ρ(δ) − ρ(2δ)),

proving the lemma.

46

Lemma 4.2.5 (Lemma 2.3.7 in [5]). Let α be as defined in Lemma 4.2.4. Then

α ≥ 1

ψ′′(ρ(2δ))
. (4.20)

Proof. By the definition of ρ ,

−ψ′(ρ(δ)) = 2δ.

Taking the derivative with respect to δ, we find

−ψ′′(ρ(δ))ρ′(δ) = 2,

which implies that

ρ′(δ) = − 2

ψ′′(ρ(δ))
< 0. (4.21)

Hence ρ is monotonically decreasing in δ. An immediate consequence of (4.17) and

(4.21) is

α =
1

2δ

∫ δ

2δ

ρ′(σ)dσ =
1

δ

∫ 2δ

δ

dσ

ψ′′(ρ(σ))
. (4.22)

The obtain a lower bound for α, we want to replace the argument of the last integral

by its minimal value. So we want to know when ψ′′(ρ(σ)) is maximal, for σ ∈ [δ, 2δ].

Due to (3.32), ψ′′ is monotonically decreasing. So ψ′′(ρ(σ)) is maximal when ρ(σ) is

minimal for σ ∈ [δ, 2δ]. Since ρ is monotonically decreasing this occurs when σ = 2δ.

Therefore

α =
1

δ

∫ 2δ

δ

dσ

ψ′′(ρ(σ))
≤ 1

δ

δ

ψ′′(ρ(2δ))
=

1

ψ′′(ρ(2δ))
,

which proves the lemma.

In the sequel, we will use the following notation:

α̃ :=
1

ψ′′(ρ(2δ))
, (4.23)

and we will use α̃ as the default step size. From Lemma 4.2.5, we can see that α ≥ α̃.

47

4.3 Reduction of Barrier Function during Inner Iteration

Using the lower bound on the step size that we previously determined, we can obtain

the results on the decrease of the barrier function. Foremost, we begin with a technical

lemma which we will use later.

Lemma 4.3.1 (Lemma A.1.3 in [5]). Let h(t) be a twice differentiable convex

function with h(0) = 0, h′(0) < 0, and let h(t) attain its (global) minimum at t∗ > 0.

If h′′(t) is increasing for t ∈ [0, t∗] then

h(t) ≤ th′(0)
2
, 0 ≤ t ≤ t∗.

Proof. Using the hypothesis of the lemma we may write

h(t) =

∫ t

0

h′(ξ)dξ

= h′(0)t+

∫ t

0

∫ ξ

0

h′′(ζ)dζdξ ≤ h′(0)t+

∫ t

0

ξh′′(ξ)dξ

= h′(0)t+

∫ t

0

ξdh′(ξ) = h′(0)t+ (ξh′(ξ))|t0 −
∫ t

0

h′(ξ)dξ

≤ h′(0)t−
∫ t

0

dh′(ξ) = h′(0)t− h(t).

This implies the lemma.

Lemma 4.3.2 (Lemma 2.3.8 in [5]). If the step size α is such that α ≤ α then

f(α) ≤ −αδ2. (4.24)

Proof. Let h(α) be defined by

h(α) := −2αδ2 + αδψ′(vmin) −
1

2
ψ(vmin) +

1

2
ψ(vmin − 2αδ).

48

Then

h(0) = f1(0) = 0, h′(0) = f ′
1(0) = −2δ2, h′′(α) = 2δ2ψ′′(vmin − 2αδ).

Due to Lemma 4.2.2, f ′′
1 (α) ≤ h′′(α). As a consequence, f ′

1(α) ≤ h′(α) and f1(α) ≤

h(α). Taking α ≤ α, with α as defined in Lemma 4.2.4, we have

h′(α) = −2δ2 + 2δ2

∫ α

0

ψ′′(vmin − 2ξδ)dξ

= −2δ2 − δ(ψ′(vmin − 2αδ) − ψ′(vmin)) ≤ 0.

Since h′′(α) is increasing in α, using Lemma 4.3.1, we may write

f1(α) ≤ h(α) ≤ 1

2
αh′(0) = −αδ2.

Since f(α) ≤ f1(α), the proof is complete.

If we combine the results of Lemma 4.2.5 and Lemma 4.3.2, we obtain

Theorem 4.3.3 (Theorem 4.6 in [1]). With α̃ being the default step size, as given

by (4.23), one has

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
. (4.25)

Lemma 4.3.4 (Lemma 4.7 in [1]). The right hand side expression in (4.25) is

monotonically decreasing in δ.

Proof. Putting t = ρ(2δ), which implies t ≤ 1, and which is equivalent to 4δ = −ψ′(t),

t is monotonically decreasing if δ increases. Hence the right hand expression in (4.25)

is monotonically decreasing in δ if and only if the function

g(t) :=
(ψ′(t))2

16ψ′′(t)

49

is monotonically decreasing for t ≤ 1. Note that g(1) = 0 and

g′(t) =
2ψ′(t)ψ′′(t)2 − ψ′(t)2ψ′′′(t)

16ψ′′(t)2
.

Hence, since ψ′(t) < 0 for t < 1, g(t) is monotonically decreasing for t ≤ 1 if and only

if

2ψ′′(t)2 − ψ′(t)ψ′′′(t) ≥ 0, t ≤ 1.

The last inequality is satisfied, due to condition (3.33). Hence the lemma is proved.

Next, we would like to show the decrease as a function of Ψ(v) instead of δ. For

this, we need a lower bound on δ(v) in terms of Ψ(v). The following lemma gives

needed structure to find this particular bound.

Lemma 4.3.5 (Lemma 4.8 in [1]). Suppose that ψ(t1) = ψ(t2), with t1 ≤ 1 ≤ t2.

Then ψ′(t1) ≤ 0 and ψ′(t2) ≥ 0, whereas

−ψ′(t1) ≥ ψ′(t2).

Proof. The lemma is obvious if t1 = 1 or t2 = 1, because then ψ(t1) = ψ(t2) = 0

implies t1 = t2 = 1. So we may assume that t1 < 1 < t2. Since ψ(t1) = ψ(t2), Lemma

3.4.5 implies:

1

2
(t1 − 1)2ψ′′(1) < ψ(t1) = ψ(t2) <

1

2
(t2 − 1)2ψ′′(1).

Hence, since ψ′′(1) > 0, it follows that t2 − 1 > 1 − t1. Using this and Lemma 3.4.5,

while assuming −ψ′(t1) < ψ′(t2), we may write

ψ(t2) >
1

2
(t2−1)ψ′(t2) >

1

2
(1−t1)ψ′(t2) > −1

2
(1−t1)ψ′(t1) =

1

2
(t1−1)ψ′(t1) > ψ(t1).

This contradiction proves the lemma.

50

Theorem 4.3.6 (Lemma 2.3.11 in [5]). One has

δ(v) ≥ 1

2
ψ′ (γ (Ψ(v))) .

Proof. The proof for this theorem can be found in [5].

Corollary 4.3.7 (Corollary 2.3.13 in [5]). One has

δ(v) ≥ Ψ(v)

2γ(Ψ(v))
.

Proof. Using Theorem 4.3.6, i.e., δ(v) ≥ 1
2
ψ′(γ(Ψ(v))), we obtain from Lemma 3.4.4

that

δ(v) ≥ 1

2
ψ′(γ(Ψ(v))) ≥ ψ(γ(Ψ(v)))

2γ(Ψ(v))
=

Ψ(v)

2γ(Ψ(v))
.

This proves the corollary.

By compiling the results of Theorem 4.25 and Theorem 4.3.6, we obtain

f(α̃) ≤ − (ψ′(γ(Ψ(v))))2

4ψ′′(ρ(ψ′(γ(Ψ(v)))))
. (4.26)

This expression shows the decrease in Ψ(v) during an inner iteration completely in

terms of ψ, its first and second derivatives, and the inverse functions ρ and γ.

CHAPTER 5

COMPLEXITY OF THE ALGORITHM

In the following section, we will calculate iteration bounds for short and long step

algorithms for several eligible kernel functions. Note that this bound will depend on

the choice of kernel function and θ. The choice of θ will lead to either a short or long

step algorithm. We will also give a scheme that streamlines the calculation process.

5.1 Iteration Bounds

We prove the following two technical lemmas that will be needed in the sequel. The

first lemma provides a result used in the proof of the second lemma.

Lemma 5.1.1 (Lemma A.1 in [1]). If α ∈ [0, 1], then

(1 + t)α ≤ 1 + αt, ∀ t ≥ −1. (5.1)

Proof. Consider the function f(t) = (1 + t)α − 1 − αt for t ≥ −1. One has f ′(t) =

α(1+ t)α−1−α and f ′′(t) = α(α−1)(t+1)α−2. Since f ′′(t) ≤ 0, f(t) is concave. Since

f ′(0) = 0, the function f is maximal at t = 0. Finally, since f(0) = 0, the lemma

follows.

Lemma 5.1.2 (Lemma A.2 in [1]). Let t0, t1, . . . , tK be a sequence of positive

numbers such that

tk+1 ≤ tk − κt1−ωk , for k = 0, 1, · · · , K − 1, (5.2)

where κ > 0 and 0 < ω ≤ 1. Then

K ≤
⌊
tω0
κω

⌋
.

52

Proof. Using (5.2), we may write

0 < tωk+1 ≤
(
tk − κt1−ωk

)ω
= tωk

(
1 − κt−ωk

)ω ≤ tωk
(
1 − κωt−ωk

)
= tωk − κω,

where the second inequality follows from (5.1). Hence, for each k, tωk ≤ tω0 − kωκ.

Taking k = K we obtain 0 < tθ0 −Kωκ, which implies the lemma.

We would like to count the number of inner iterations needed to return the

situation where Ψ(v) ≤ τ . After the update of µ to (1 − ω)µ we have, by Theorem

4.1.2 and (4.3),

Ψ(v+) ≤ Lψ(n, θ, τ) = nψ

(
γ
(
τ
n

)
√

1 − θ

)
. (5.3)

We denote the value of Ψ(v) after the µ-update as Ψ0, and the subsequent values

are denoted as Ψk, k = 1, 2, The decrease on each inner iteration is given by

(4.26). In the following section, we assume that the expression in the right hand side

expression of (4.26) satisfies

(ψ′ (γ (Ψ(v))))2

4ψ′′ (ρ (ψ′ (γ (Ψ(v)))))
≥ κΨ(v)1−ω, (5.4)

for some positive constants κ and ω, with ω ∈ (0, 1].

Lemma 5.1.3 (Lemma 5.1 in [1]). If K denotes the number of inner iterations,

we have

K ≤ Ψω
0

κω
. (5.5)

Proof. The definition of K implies ΨK−1 > τ . After K iterations, we should return

in the τ -neighborhood of the new µ-center, that is, ΨK ≤ τ . We know that by (4.26)

and (5.4) we have,

f(α̃) = Ψk+1 − Ψk

= Ψ(v+) − Ψ(v)

≤ −κΨ1−ω
k ,

53

which leads to

Ψk+1 ≤ Ψk − κΨ1−ω
k , for k = 0, 1, · · · , K − 1.

We apply Lemma 5.1.1, with tk = Ψk. This yields the desired inequality.

The previous lemma gives us an estimate for the number of inner iterations in

terms of Ψ0 and the constants κ and ω. Recall, Ψ0 is bounded above according to

(5.3).

Next, we would like to find an upper bound on the number of outer iterations,

which is represented by the number of barrier parameter updates. We provide the

following lemma for finding such a bound.

Lemma 5.1.4 (Lemma 11.17 in [15]). If the barrier parameter update µ has the

initial value µ0 and is repeatedly multiplied by (1 − θ), with 0 < θ < 1, then after at

most ⌈
1

θ
log

nµ0

ǫ

⌉
(5.6)

iterations we have nµ ≤ ǫ.

Proof. Initially, the duality gap is nµ0, and in each iteration it is reduced by the

factor (1 − θ). Hence, after k iterations the duality gap is smaller than ǫ if

(1 − θ)knµ0 ≤ ǫ.

Taking logarithms, this becomes

klog(1 − θ) + log(nµ0) ≤ logǫ.

Since −log(1 − θ) ≥ θ, this certainly holds if

kθ ≥ log(nµ0) − log(ǫ) = log
nµ0

ǫ
.

54

This implies the lemma.

Finally, we obtain an upper bound for the total number of iterations by multi-

plying the number of inner and outer iterations.

Theorem 5.1.5. The upper bound on the total number of iterations to obtain ǫ-

approximate solution of problem (2.13) using Generic Algorithm (in Table 3.1) is

Ψω
0

θκω
log

n

ǫ
. (5.7)

Note that since Ψ0 is usually not known, we use the upper bound on Ψ0 given

by (5.3). Hence, this leads to the following upper bound on the total number of

iterations:

Ψω
0

θκω
log

n

ǫ
≤ 1

θκω

(
nψ

(
γ
(
τ
n

)
√

1 − θ

))ω

log
n

ǫ
. (5.8)

5.2 Introduction of the Scheme

The previous results can be summarized in the following way:

1. Input a kernel function ψ; an update parameter θ, 0 < θ < 1; a threshold

parameter τ ; and an accuracy parameter ǫ.

2. Solve the equation −1
2
ψ′(t) = s to get ρ(s), the inverse function of −1

2
ψ′(t), t ∈

(0, 1]. If the equation is hard to solve, derive a lower bound for ρ(s).

3. Calculate the decrease of Ψ(v) in terms of δ for the default step size α̃ from

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
.

55

4. Solve the equation ψ(t) = s to get γ(s), the inverse function of ψ(t), t ≥ 1. If

the equation is hard to solve, derive lower and upper bounds for γ(s).

5. Derive a lower bound for δ in terms of Ψ(v) by using

δ(v) ≥ 1

2
ψ′(γ(Ψ(v))).

6. Using the results of step 4 and step 5, find the positive constants κ and ω, with

ω ∈ (0, 1], such that

f(α̃) ≤ −κΨ(v)1−ω.

7. Calculate the uniform upper bound Ψ0 for Ψ(v) from

Ψ0 ≤ Lψ(n, θ, τ) = nψ

(
γ
(
τ
n

)
√

1 − θ

)
.

8. Derive an upper bound for the total number of iterations from

Ψω
0

θκω
log

n

ǫ
.

9. Set τ = O(n) and θ = Θ(1) so as to calculate an iteration bound for large

update methods, or set τ = O(1) and θ = Θ(1√
n
) so as to calculate an iteration

bound for small update methods.

At the start of each inner iteration, we have Ψ(v) ≥ τ . By Theorem 4.3.6 this implies

that δ(v) ≥ −1
2
ψ′(γ(τ)). We always assume that τ ≥ 1, and that τ is large enough

to ensure that δ(v) ≥ 1 at the start of each inner iteration.

5.3 Several Technical Lemmas

In this section, we derive some technical lemmas that will turn out to be useful in

finding upper and lower bounds in the scheme. This will especially prove useful in

56

the case where the inverse functions γ and ρ cannot be computed explicitly. In the

following lemmas, we refer to the elgible kernel functions from Table 3.3.

Lemma 5.3.1 (Lemma 2.5.1 in [5]). When ψ(t) = ψi(t) and 1 ≤ i ≤ 7, then

√
1 + 2s ≤ γ(s) ≤ 1 +

√
2s. (5.9)

Proof. The inverse function of ψ(t) for t ∈ [1,∞) is obtained by solving t from the

equation ψ(t) = s, for t ≥ 1. In almost all cases it is hard to solve this equation

explicitly. However, we can easily find a lower and upper bound for t and this suffies

for our goal. First one has

s = ψ(t) =
t2 − 1

2
+ ψb(t) ≤

t2 − 1

2
,

where ψb(t) denotes the barrier term. The inequality is due to the fact that ψb(1) = 0

and ψ′
b(t) is monotonically decreasing. It follows that

t = γ(s) ≥
√

1 + 2s.

For the second inequality we derive from (3.4.2) and ψ′′(t) ≥ 1 that

s = ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ)dζdξ ≥
∫ t

1

∫ ξ

1

dζdξ =
1

2
(t− 1)2

,

which implies

t = γ(s) ≤ 1 +
√

2s.

This completes the proof.

Lemma 5.3.2 (Lemma 2.5.2 in [5]). When ψ(t) = ψi(t) with i ∈ {8, 10}, and

q ≥ 2, then

t ≤ 1 +
√
tψ(t), t ≥ 1.

57

Proof. Defining f(t) = tψ(t) − (t− 1)2 one has f(1) = 0 and f ′(t) = ψ(t) + tψ′(t) −

2(t− 1). Hence f ′(1) = 0 and f ′′(t) = 2ψ′(t) + tψ′′(t)− 2. Since f ′′(t) = (q − 2)t−q +

ptp + 2(tp − 1) ≥ 0 for ψ8(t), and f ′′(t) = (q − 2)t−q ≥ 0 for ψ10(t), the lemma

follows.

Lemma 5.3.3 (Lemma 2.5.3 in [5]). Let 1 ≤ i ≤ 7. Then one has

Lψ(n, θ, τ) ≤ ψ′′(1)

2

(
√

2τ + θ
√
n)2

1 − θ
.

Hence, if τ = O(1) and θ = Θ
(

1√
n

)
, then Ψ0 = O (ψ′′(1)).

Proof. By Lemma 5.3.1 we have γ(s) ≤ 1 +
√

2s. Hence, also using (5.3) we have

Lψ(n, θ, τ) = nψ

(
γ
(
τ
n

)
√

1 − θ

)
≤ nψ




1 +
√

2τ
n√

1 − θ


 .

Applying Lemma 3.4.6 we obtain

Lψ(n, θ, τ) ≤ nψ′′(1)
2

(
1+
√

2τ
n√

1−θ − 1

)2

≤ nψ′′(1)
2

(
θ+
√

2τ
n√

1−θ

)2

= ψ′′(1)
2

(
√

2τ+θ
√
n)2

1−θ ,

where we also used

1 −
√

1 − θ =
θ

1 +
√

1 − θ
≤ θ. (5.10)

This proves the lemma.

Lemma 5.3.4 (Lemma 2.5.4 in [5]). Let ρ : [0,∞) → (0, 1] be the inverse function

of the restriction of −ψ′
b(t) to the interval (0, 1]. When ψ(t) = ψi(t) and 1 ≤ i ≤ 7,

then

ρ(s) ≥ ρ(1 + 2s).

58

Proof. Let t = ρ(s). Due to the definition of ρ as the inverse function of −1
2
ψ′(t) for

t ≤ 1 this means that

−2s = ψ′(t) = t+ ψ′
b(t), t ≤ 1.

Since t ≤ 1 this implies

−ψ′
b(t) = t+ 2s ≤ 1 + 2s.

Since −ψ′
b(t) is monotonically decreasing ni all seven cases, it follows from this that

t = ρ(s) ≥ ρ(1 + 2s),

proving the lemma.

5.4 Analysis of Several Eligible Kernel Functions

In this section, we will apply the scheme, described at the beginning of this chapter,

to several eligible kernel functions listed in Table 3.3.

Example 1

We consider ψ(t) = ψ1(t):

ψ(t) =
t2 − 1

2
− log(t).

Before we begin with the scheme, we will first provide the first three derivatives of ψ.

ψ′(t) t− 1
t

ψ′′(t) 1 + 1
t2

ψ′′′(t) − 2
t3

59

We will show that the imposed conditions (3.31), (3.33), (3.34) and (3.35) hold for

this particular kernel function. The left hand side of the conditions are given in the

following table.

(3.31) 2t

(3.33) 2 + 6
t2

(3.34) 2(β2−1)
βt

(3.35) 2
t

It is easy to see that the conditions are satisfied, i.e. the function is an eligible

kernel function.

We are now ready to begin with the scheme:

2. First, we want to solve the equation −1
2
ψ′(t) = s for t ∈ (0, 1], to obtain ρ(s).

By using the first derivative from above, we get the following:

−1
2

(
t− 1

t

)
= s

(
t− 1

t

)
= −2s

t2−1
t

= −2s

t2 + 2st− 1 = 0.

We can easily see that

t = −s+
√

1 + s2,

which can be written equivalently as

t = ρ(s) =
1

s+
√
s2 + 1

.

60

3. Now, we would like to calculate the decrease of Ψ(v) in terms of δ. It follows

that

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))

= − δ2

ψ′′
(

1
2δ+

√
1+4δ2

)

= − δ2

1 +
(
2δ +

√
1 + 4δ2

)2

= − δ2

2 + 8δ2 + 4δ
√

1 + 4δ2
.

Note that we have a bound on δ, i.e. δ ≥ 1. Hence, the above equation becomes

f(α̃) ≤ − 1

10 + 4
√

5
≤ − 1

19
.

4. As we will see later, step 4 is not needed.

5. Since we have δ ≥ 1, we do not need to find the bound for δ again.

6. Next, we want to find the positive constants κ and ω. We have

f(α̃) ≤ −κψ(v)1−ω,

where κ = 1
19

and ω = 1.

7. In this step, we want to find an upper bound for Ψ(v) immediately after a

µ-update. Using Lemma 5.3.3, with ψ′′(1) = 2, we obtain

Ψ0 ≤ ψ′′(1)

2

(
√

2τ + θ
√
n)2

1 − θ

≤ (
√

2τ + θ
√
n)2

1 − θ
.

8. Hence the total number of iterations is bounded above by the following

19(
√

2τ + θ
√
n)2

θ(1 − θ)
log

n

ǫ
.

61

9. For large updated methods, with τ = O(n) and θ = Θ(1), the right hand side

expression is

O(n log
n

ǫ
).

For small updated methods, with τ = O(1) and θ = Θ(1√
n
), the right hand side

expression is

O(
√
n log

n

ǫ
).

Example 2

We consider ψ(t) = ψ10(t):

ψ(t) =
tp+1 − 1

p+ 1
+
t1−q − 1

q − 1
, for p ∈ [0, 1], and q > 1.

Before we begin with the scheme, we will first provide the first three derivatives of ψ.

ψ′(t) tp − t−q

ψ′′(t) ptp−1 + qt−q−1

ψ′′′(t) −p(1 − p)tp−2 − q(q + 1)t−q−2

We will show that the imposed conditions (3.31), (3.33), (3.34) and (3.35) hold for

this particular kernel function. The left hand side of the conditions are given in the

following table.

(3.31) (p+ 1)tp + (q − 1)t−q

(3.33) p(p+1)t2p+(q2−p+4pq+p2+q)tp−q+q(q−1)t−2q

t2

(3.34) (p+q)(βp−βq)
tq+1−p

(3.35) (p− 1)tp + (q + 1)t−q

62

It is easy to see that the conditions are satisfied, i.e. the function is an eligible

kernel function. Note that we will refer to this kernel function as the new kernel

function.

We are now ready to begin with the scheme:

2. First, we want to solve the equation −1
2
ψ′(t) = s for t ∈ (0, 1], to obtain ρ(s).

By using the first derivative from above, we get the following:

−1

2

(
tp − t−q

)
= s,

or equivalently

t−q − tp = 2s, t ∈ (0, 1].

Since t ≤ 1, we have t−q = 2s+ tp ≤ 2s+ 1, which implies

t ≥ 1

(2s+ 1)
1
q

.

Hence,

ρ(s) ≥ 1

(2s+ 1)
1
q

.

3. Next, we would like to calculate the decrease of Ψ(v) in terms of δ. It follows

that

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))

= − δ2

ψ′′
(
(1 + 4δ)−

1
q

)

= − δ2

p(1
1+4δ

)
−(1−p)

q + q(1
1+4δ

)
−(1+q)

q

= − δ2

p(1 + 4δ)
1−p

q + q(1 + 4δ)
1+q

q

≤ − 1

p(1 + 4δ)
1−p

q + q(1 + 4δ)
1+q

q

.

63

Since (1 + 4δ)1−p ≤ (1 + 4δ)1+q, for p ∈ [0, 1], and q ≥ 1, it follows that

f(α̃) ≤ − 1

p(1 + 4δ)
1+q

q + q(1 + 4δ)
1+q

q

≤ − 1

(p+ q)(1 + 4δ)
1+q

q

. (5.11)

4. Now, we want to calculate the upper and lower bounds on the inverse function

t = γ(s). This means that we have to find the upper and lower bounds of t in

terms of s by using the equation s = ψ(t). We have

s =
tp+1 − 1

p+ 1
+
t1−q − 1

q − 1
, where p ∈ [0, 1] and q > 1.

First, we find the lower bound. We have, from the above equation,

tp+1 − 1

p+ 1
= s− t1−q − 1

q − 1

= s+
1 − t1−q

q − 1
.

Since 0 < 1−t1−q

q−1
< 1, we see

tp+1 − 1

p+ 1
≥ s

tp+1 − 1 ≥ s(p+ 1)

t ≥ (s(p+ 1) + 1)
1

p+1 .

Hence, we have our lower bound for γ(s).

Next, we want to find the upper bound. Again, we begin with

tp+1 − 1

p+ 1
= s+

1 − t1−q

q − 1

tp+1 − 1 = s(p+ 1) +
1 − t1−q

q − 1
(p+ 1)

tp+1 = 1 + s(p+ 1) +
p+ 1

q − 1
(1 − t1−q).

64

We see that since 0 < 1 − t1−q < 1, then

tp+1 ≤ 1 + s(p+ 1) +
p+ 1

q − 1

= s(p+ 1) +
(q − 1) + (p+ 1)

q − 1

= s(p+ 1) +
p+ q

q − 1
.

Hence, our upper bound on γ(s) is

t ≤
(
s(p+ 1) +

p+ q

q − 1

) 1
p+1

We may now write both the lower and upper bounds as follows:

(1 + (1 + p)s)
1

1+p ≤ γ(s) ≤
(

(1 + p)s+
p+ q

q − 1

) 1
1+p

. (5.12)

5. Next, by using δ(v) ≥ 1
2
ψ′(γ(Ψ(v))), we determine a lower bound for δ in terms

of Ψ(v). Since ψ′′(t) > 0 for t ≥ 1, we know that ψ′ is monotonically increasing

for t ≥ 1. Since ψ′(t) is monotonically increasing, we may replace γ(Ψ(v)) by

a smaller value. We will use the lower bound of γ(Ψ(v)) found in (5.12). We

obtain the following:

δ(v) ≥ 1

2
ψ′ (γ(Ψ(v)))

≥ 1

2
ψ′
(
(1 + (p+ 1)Ψ(v))

1
p+1

)

=
1

2

(
(1 + (p+ 1)Ψ(v))

p
p+1 − 1

(1 + (p+ 1)Ψ(v))
q

p+1

)

≥ 1

2

(
(1 + (p+ 1)Ψ(v))

p
p+1 − 1

(1 + (p+ 1)Ψ(v))
1

p+1

)

=
1

2

(
(1 + (p+ 1)Ψ(v))

p
p+1 (1 + (p+ 1)Ψ(v))

1
p+1 − 1

(1 + (p+ 1)Ψ(v))
1

p+1

)

=
1

2

(
(1 + (p+ 1)Ψ(v))

p+1
p+1 − 1

(1 + (p+ 1)Ψ(v))
1

p+1

)

=
(p+ 1)Ψ(v)

2(1 + (p+ 1)Ψ(v))
1

p+1

.

65

Then since Ψ(v) ≥ 1, we obtain

δ(v) ≥ Ψ(v)

2(1 + 2Ψ(v))
1

p+1

≥ Ψ(v)

2(3Ψ(v))
1

p+1

≥ 1

6

Ψ(v)
p+1
p+1

Ψ(v)
1

p+1

=
1

6
Ψ(v)

p
p+1 .

Therefore, we have our lower bound for δ(v).

6. In this step, we will find the positive constants κ and ω. We begin with the

right hand side expression in (5.11). Since it is monotonically decreasing in δ

and using the lower bound we found in the previous step, we obtain

f(α̃) ≤ − 1

(p+ q)(1 + 4δ)
q+1

q

≤ − Ψ(v)
2p

p+1

36(p+ q)(2
3
Ψ(v)

p
p+1 + 1)

q+1
q

. (5.13)

We can see, by observing the denominator from the above equation, that

(
2

3
Ψ(v)

p
p+1 + 1)

q+1
q ≤ (

2

3
Ψ(v)

p
p+1 + Ψ(v)

p
p+1)

q+1
q

= (
5

3
Ψ(v)

p
1+p)

q+1
q

= (
5

3
)

q+1
q Ψ(v)

p
p+1

q+1
q .

Hence, from (5.13), we have

f(α̃) ≤ − Ψ(v)
2p

p+1

36(p+ q)(5
3
)

q+1
q Ψ(v)

p
p+1

q+1
q

= −Ψ(v)
2p

p+1
− p

p+1
q+1

q

36(p+ q)(5
3
)1+ 1

q

= − Ψ(v)
p(q−1)
q(p+1)

36(p+ q)(5
3
)1+ 1

q

≤ − Ψ(v)
p(q−1)
q(p+1)

36(p+ q)(5
3
)2

= − Ψ(v)
p(q−1)
q(p+1)

100(p+ q)
.

66

Therefore, we have

Ψk+1 ≤ Ψk − κΨ1−ω
k , k = 0, 1, . . . , K − 1,

with κ = 1
100(p+q)

and ω = q+p
q(1+p)

. Note that K denotes the number of inner

iterations. Thus K is bounded above by

K ≤ 100(1 + p)qΨ
q+p

q(1+p)

0 .

7. We need to find an upper bound of Ψ0. We use Lemma 5.1.3 and ψ(t) ≤ t1+p

1+p

for t ≥ 1. Thus,

Ψ0 ≤ nψ

(
γ
(
τ
n

)
√

1 − θ

)

≤ nψ




(
(p+1)τ
n

+ p+q
q−1

) 1
p+1

√
1 − θ




≤ n




1

p+ 1




(
(p+1)τ
n

+ p+q
q−1

) 1
p+1

√
1 − θ




p+1



= n

(
(p+1)τ
n

+ p+q
q−1

(p+ 1)(1 − θ)
p+1
2

)

=

(
(p+ 1)τ + p+q

q−1
n

(p+ 1)(1 − θ)
p+1
2

)
.

8. Hence, we get an upper bound for the total number of iterations,

100(1 + p)q

θ(1 + θ)
p+q
2q

(
(1 + p)τ + q+p

q−1
n

1 + p

) p+q
q(1−p)

log
n

ǫ
.

9. For large update methods the bound becomes

O
(
qn

p+q
q(1+p) log

n

ǫ

)
,

67

and for small update methods it becomes

O
(
q
√
nn

p+q
q(1+p) log

n

ǫ

)
.

The last bound can be refined, as shown below. We can go back to step 4, and

use Lemma 5.3.2 to derive the tighter bounds for the inverse function γ of ψ(t).

4. We have that

t ≤ 1 +
√
tψ(t).

Substituting t ≤
(
(1 + p)ψ(t) + q+p

q−1

) 1
p+1

, we obtain the following

t = γ(s) ≤ 1 +
√
t+ ψ(t)

= 1 +
√
ψ(t)

√
t

≤ 1 +
√
ψ(t)

√(
(p+ 1)ψ(t) +

q + p

q − 1

) 1
p+1

≤ 1 +
√
s

(
(p+ 1)s+

q + p

q − 1

) 1
2(p+1)

68

7. Thus, we obtain the following upper bound for Ψ0:

Ψ0 ≤ nψ

(
γ(τ

n
)√

1 − θ

)

= nψ




1 +
√

τ
n

(
(p+ 1) τ

n
+ p+q

q−1

) 1
2(p+1)

√
1 − θ




≤ n




1

p+ 1




1 +
√

τ
n

(
(p+ 1) τ

n
+ p+q

q−1

) 1
2(p+1)

√
1 − θ




p+1



= n




1 +
√

τ
n

(
(p+ 1) τ

n
+ p+q

q−1

) p+1
2(p+1)

(p+ 1)(1 − θ)
p+1
2




≤ n(p+ q)

2




1 +
√

τ
n

(
(p+ 1) τ

n
+ p+q

q−1

) 1
2(p+1)

√
1 − θ

− 1




2

.

Next, by using 1 −
√

1 − θ ≤ θ, from (5.10), we get

Ψ0 =
n(p+ q)

2




1 +
√

τ
n

(
(p+ 1) τ

n
+ p+q

q−1

) 1
2(p+1) −

√
1 − θ

√
1 − θ




2

≤ n(p+ q)

2




√
τ
n

(
(p+ 1) τ

n
+ p+q

q−1

) 1
2(p+1)

+ θ
√

1 − θ




2

=
n(p+ q)

2(1 − θ)

(√
τ

n

(
(p+ 1)

τ

n
+
p+ q

q − 1

) 1
2(p+1)

+ θ

)2

≤ (p+ q)

2(1 − θ)

(
τ

(
(p+ 1)

τ

n
+
p+ q

q − 1

) 1
2(p+1)

+ θ
√
n

)2

.

8. Hence, the total number of iterations is bounded above by

100(p+ 1)q

θ



(

p+ q

2(1 − θ)

)(
τ

(
(p+ 1)

τ

n
+
p+ q

q − 1

) 1
2(p+1)

+ θ
√
n

)2



(p+q)
q(p+1)

log
n

ǫ
.

69

Since p+q
q(p+1)

≤ 1 for all p ∈ [0, 1] and q ≥ 2, then the bound can be updated to

the following

50q(p+ 1)(p+ q)

θ(1 − θ)

(
τ

(
(p+ 1)

τ

n
+
p+ q

q − 1

) 1
2(p+1)

+ θ
√
n

)2

log
n

ǫ
.

9. For small update methods and p ∈ [0, 1], the right hand side expression is

O
(
q2
√
n log

n

ǫ

)
.

Example 3

We consider ψ(t) = ψ6(t):

ψ(t) =
t2 − 1

2
−
∫ t

1

e
1
ξ
−1
dξ.

Before we begin with the scheme, we will first provide the first three derivatives of ψ.

ψ′(t) t− e
1
t
−1

ψ′′(t) 1 + e
1
t −1

t2

ψ′′′(t) −1+2t
t4
e

1
t
−1

We will show that conditions (3.31), (3.33) and (3.35) hold for this particular kernel

function. The left hand side of the conditions are given in the following table.

(3.31) 2t+ 1−t
t
e

1
t
−1

(3.33) 1
t4

(
2
(
1 + e

1
t
−1
)2

+ (1 + 2t)
(
t− e

1
t
−1
)
e

1
t
−1

)

(3.35) 1+t
t
e

1
t
−1

70

It is easy to see that the conditions are satisfied, i.e. the function is an eligible

kernel function.

We are now ready to begin with the scheme:

2. The inverse function of −ψ′
b(t) = e

1
t
−1 is given by ρ(s) = 1

1+log(s)
. Hence, by

Lemma 5.3.4, we have

ρ(s) ≥ 1

1 + log(1 + 2s)
.

3. We want to calculate the decrease of Ψ(v) in terms of δ. It follows that

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))

≤ − δ2

ψ′′
(

1
1+log(1+4δ)

)

= −δ2


1 +

e

(
1

(1
1+log(1+4δ))

−1

)

(
1

1+log(1+4δ)

)2




−1

(5.14)

= − δ2

(1 + log(1 + 4δ))2 (e1+log(1+4δ)−1)

= − δ2

1 + (1 + 4δ)(1 + log(1 + 4δ))2
.

4. Next, we would like to calculate the upper and lower bounds on the inverse

function t = γ(s). By Lemma 5.3.1 the inverse function of ψ(t) for t ∈ [1,∞)

satisfies
√

1 + 2s ≤ γ(s) ≤ 1 +
√

2s.

Also, we have that

γ (Ψ(v)) ≥
√

1 + 2Ψ(v).

71

5. Using that δ(v) ≥ 1
2
ψ′(γ(Ψ(v))), we determine a lower bound for δ in terms of

Ψ(v). We obtain

δ(v) ≥ 1

2
ψ′ (γ(Ψ(v)))

≥ 1

2

(√
1 + 2Ψ(v)

)

≥ 1

2

(√
1 + 2Ψ − e

1√
1+2Ψ

−1
)
.

Since 1√
1+2Ψ(v)

− 1 < 0, we see that

δ(v) ≥ 1

2

(√
1 + 2Ψ − 1

)

=
(
√

1 + 2Ψ(v) − 1)(
√

1 + 2Ψ(v) + 1)

2(
√

1 + 2Ψ(v) + 1)

=
Ψ

1 +
√

1 + 2Ψ
.

6. We want to find the positive constants κ and ω. We begin with the right hand

side expression in (5.14). Using the lower bound of δ(v) found in the previous

step, we obtain the following:

f(α̃) ≤ − δ2

1 + (1 + log(1 + 4δ))2(1 + 4δ)

≤ −

(
Ψ(v)

1+
√

1+2Ψ(v)

)2

1 + (1 + log(1 + 4δ))2(1 + 4δ)
.

Since 1 ≤
√

Ψ(v) ≤ Ψ(v) and
√

Ψ(v) ≤ 1 +
√

1 + 2Ψ(v) ≤ 3
√

Ψ(v), we obtain

f(α̃) ≤ −

(
Ψ(v)

3
√

Ψ(v)

)2

1 + (1 + log(1 + 4δ))2(1 + 4δ)

≤ −

(
Ψ(v)

1
2

)2

9 (1 + (1 + log(1 + 4δ))2(1 + 4δ))

≤ − Ψ(v)

9 (2(1 + 4δ)(1 + log(1 + 4δ))2)
.

72

Since 1 + 4δ ≤
√

Ψ(v) + 4
√

Ψ(v) = 5
√

Ψ(v) and Ψ0(v) ≥ Ψ(v) ≥ τ ≥ 1, we

have

f(α̃) ≤ − Ψ(v)

90
√

Ψ(v)(1 + log(1 + 4
√

Ψ(v)))2

≤ − Ψ(v)
1
2

90(1 + log(1 + 4
√

Ψ(v)))2

≤ − Ψ(v)
1
2

90(1 + log(1 + 4
√

Ψ0(v)))2
.

Thus, it follows that

Ψk+1 ≤ Ψk − κΨ1−ω
k , k = 0, 1, . . . , K − 1,

with κ = 1

90(1+log(1+4
√

Ψ0(v)))2
, and ω = 1

2
. As before, K denotes the number of

inner iterations. Hence the number K of inner iterations is bounded above by

the following:

K ≤ Ψω
0

κω
= 180(1 + log(1 + 4

√
Ψ0(v)))

2Ψ0(v)
1
2 . (5.15)

7. Next, we need to find an upper bound of Ψ0. Using Lemma (5.3.3), with

ψ′′(1) = 2, we see

Ψ0 ≤
ψ′′(1)

2

(
√

2τ + θ
√
n)2

(1 − θ)
=

(
√

2τ + θ
√
n)2

(1 − θ)
.

By using substitution in (5.15), we obtain

K ≤ 180


1 + log


1 + 4

√
(
√

2τ + θ
√
n)2

(1 − θ)






2(
(
√

2τ + θ
√
n)2

(1 − θ)

) 1
2

≤ 180

(
1 + log

(
1 +

4(
√

2τ + θ
√
n)√

1 − θ

))2(√
2τ + θ

√
n√

1 − θ

)
.

8. Hence, the upper bound for the total number of iterations is given by

180

(
1 + log

(
1 +

4(
√

2τ + θ
√
n)√

1 − θ

))2(√
2τ + θ

√
n√

1 − θ

)
log

n

ǫ
.

73

9. For large update methods the bound becomes

O
(√

n(log(n))2 log
n

ǫ

)
,

and for small update methods it becomes

O
(√

n log
n

ǫ

)
.

5.5 Complexity Remarks

In the previous section, we calculated iteration bounds for several eligible kernel

functions that are summarized in the table below.

Function Short Step Long Step

θ = O(1
√

n
), τ = O(1) θ = O(1), τ = O(n)

ψ1 = t2−1

2
− log(t) O(

√
nlog n

ǫ
) O(nlog n

ǫ
)

ψ10 = t1+p
−1

1+p
+ t1−q

−1

q−1
O(q2

√
nlog n

ǫ
) O(qn

p+q

q(1+p) log n
ǫ
)

ψ6 = t2−1

2
−
∫ t

1
e

1
ξ
−1dξ O(

√
nlog n

ǫ
) O(

√
n(logn)2log n

ǫ
)

Table 5.1: Short and Long Step Complexity Bounds

We observe that short step methods give basically the same complexity. Long

step methods have significant differences in complexity bounds. In the case when

p = 1 and q = log(n), the complexity of the long step method for ψ10 becomes

O(
√
nlog(n)log

n

ǫ
),

which matches the best known complexity for the large step IPM. Short step meth-

ods have better theoretical complexity but behave much worse in practice. Long step

methods have worse theoretical complexity but behave much better in practice. This

74

discrepancy is well known in theory of IPM. One of the main reasons for the intro-

duction of the eligible kernel functions was to improve theoretical complexity of the

long step IPM.

CHAPTER 6

NUMERICAL RESULTS

In this chapter, The Generic Algorithm, as given in Table 3.1, is implemented in

MATLAB for the classical logarithmic kernel function ψ1 and for the parametric kernel

function ψ10. We summarize the results of the numerical tests for our implementation

of the algorithm. There is a brief explanation of how the positive semidefinite matrix

M matrix is generated. We will explain the reasoning of how and why the step size

α was particularly chosen as a version of the minimum ratio test, rather than the

theoretical bound. We will also analyze the effects of choosing certain values of p and

q for the parametric kernel function ψ10. Finally, we will discuss how different values

τ and θ to affect the behavior of the algorithm. The testing was averaged for one-

thousand tests, where each test includes the running of the classical IPM based on the

classical kernel function ψ1 and the “new” IPM algorithm based on the parametric

kernel function ψ10 using all variations of given parameters.

6.1 Generating a PSD M Matrix

In this thesis, we considered a positive semi-definite matrix M (PSD). For general

effectiveness of evaluation, our program first generates a random vector A of size n.

We then created matrix B as the diagonal matrix from A. Then matrix B is input

into a Householder QR factorization algorithm (A.2), which produces the matrices Q

and R. From this we create a new M matrix, which is defined as

M = QTBQ.

We can see that M is guaranteed to be positive semi-definite from Householder QR

factorization.

76

This new M matrix is an nxn diagonal with each diagonal element being one of

the eigenvalues of the matrix. This particular formulation of M provides computa-

tionally faster results within the inner iterations, where solving the Newton system is

performed. Considering the dense semidefinite matrices would not change the conclu-

sions but would slow down the calculations and therefore were not considered. Note

that for each of the trials performed, the identical M matrix was used to find solutions

for the classical IPM and the new IPM. When a new test begins, a new PSD matrix

M is generated and used.

6.2 Calculating the Step Size

Calculating the step size, α, is a very important process in the IPM. Using the

scheme given in Chapter 6, we calculate the theoretical bound for the step size.

This theoretical step size guarantees convergence but in practice it yields unfavorable

results. Thus, we opted for a version of the minimum ratio test, which theoretically

does not guarantee convergence, but generally works very well in practice.

The step size is chosen such that the positivity of x and s are preserved after

their updates. We denote αmax as the maximum step size until one of the variables

reaches 0. Hence,

αmax = max {α ≥ 0 : xk + αdx ≥ 0, sk + αds ≥ 0} .

In the program, we calculate αmax as the following:

αmax(primal) = min

{
− xi

(dx)i
: (dx)i < 0, i = 1, . . . , n

}
,

αmax(dual) = min

{
− si

(ds)i
: (ds)i < 0, i = 1, . . . , n

}
,

αmax = min
{
αmax(primal), αmax(dual)

}
.

77

Size Alpha Choice Avg. Outer Avg. Inner Avg. CPU

10x10 Min Ratio 7 38 1.1707493e-03

10x10 Bounded 7 318 5.1859645e-03

100x100 Min Ratio 8 67 3.8338912e-03

100x100 Bounded 8 2204 6.3664592e-02

Table 6.1: Alpha Choice with Classical Alg. for θ = 0.95 and τ = 1.50

Since all variables must remain positive, we set

α = min {1, ναmax} ,

where ν ∈ (0, 1).

Table 6.1 clearly shows a significant reduction of the number of iterations by

using the minimum ratio test instead of the theoretical step size. Note that any data

testing from this point forward uses the minimum ratio test as the default step size.

6.3 Assigning Input Parameters

Another key step in the numerical testing is the choice of input parameters, namely

θ and τ . From the Generic Algorithm, in Table 3.1, we know that θ represents

the fixed barrier update parameter and τ represents a threshold parameter for the

neighborhood size. These two parameters can substantially change the effectiveness

of the algorithms, so choosing them insightfully is keen.

We begin with the update parameter, θ. For numerical testing, we varied θ as

θ = {0.95, 0.70, 0.45}. As we can see in Tables 6.3 - 6.11, assigning an aggressive

theta, i.e. θ = 0.95 or θ = 0.90, gives the best results for the number of iterations

and the CPU times. As θ → 0, the number of iterations and CPU time increase

78

drastically. Eventually, when θ is close to 0, the complementarity condition (3.1) fails

and we are forced to chose another θ. Also, for 0.95 < θ < 1 there was minimal

change in the number of iterations and CPU times.

Next, we discuses choosing the threshold neighborhood parameter, τ . For numer-

ical testing, we varied τ as τ = {1.50, 1.00, 0.50}. Results favored τ ≈ 1.5. If τ > 1.5,

then the number of iterations and the CPU times remained basically unchanged for

all variations of θ. As τ → 1, the number of iterations and the CPU time slowly

increased.

We conclude that for θ = 0.95 and τ ≈ 1.5, the number of iterations and CPU

times give the best results.

6.4 Choosing Values of p and q

As we have seen in Example 2 in Chapter 6, the parametric kernel function ψ10

is dependent on the choice of parameters p and q. We have the restrictions that

p ∈ [0, 1] and q > 1. For testing, we varied p and q such that p = {1.00, 0.50, 0} and

q =
{
1.1, 1

2
log(n), 2

}
. The results are listed in Tables 6.3 - 6.11.

We note that p has a greater effect on the number of iterations and CPU time. It

seems that when p→ 1, we obtain the best results. On the other hand, the choice of

q has limited effect on either number of iterations or CPU time. As p→ 0, the effect

of q increases. On the other hand, as p → 2, the effect of q decreases. Regardless of

the value of p, we have q ≈ 2 as the best value. Note that if q >> 2, then the results

do not vary much or at all from q ≈ 2.

79

6.5 Size of the Problem

The results listen in Tables 6.3 - 6.11, consider matrices M of size 10x10. However,

the observation discussed above remains the same although the total number of iter-

ations and CPU times increases. We refer to Table 6.2. The details of the numerical

testing can be found in the Appendix.

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1)

10x10 7 38 1.1781826e-03

100x100 8 66 3.3573118e-03

400x400 8 72 4.8974455e-02

New (Ex. 2)

p = 1 q = 2

10x10 7 37 1.1699593e-03

100x100 8 68 3.3921420e-03

400x400 8 87 7.4341221e-02

Table 6.2: Size Comparison, using θ = 0.95 and τ = 1.50

6.6 Summary of Numerical Results

This section includes all of the results from numerical testing for the 10x10 matrices.

The data has been summarized into tables, each of which represent the testing for

particular parameters θ and τ .

80

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1) 7 38 1.1781826e-03

New (Ex. 2)

p = 1 q = 1.1 7 38 1.2739439e-03

q = 1

2
log(n) 7 38 1.2518298e-03

q=2 7 37 1.1699593e-03

p = 0.5 q = 1.1 7 109 3.6327258e-03

q = 1

2
log(n) 7 107 3.6163204e-03

q = 2 7 95 3.1560050e-03

p = 0 q = 1.1 7 277 9.7894558e-03

q = 1

2
log(n) 7 275 9.7421903e-03

q = 2 7 229 7.9720329e-03

Table 6.3: 10x10, θ = 0.95, and τ = 1.50

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1) 7 40 1.1866316e-03

New (Ex. 2)

p = 1 q = 1.1 7 39 1.2804327e-03

q = 1

2
log(n) 7 39 1.2749560e-03

q = 2 7 37 1.1766186e-03

p = 0.5 q = 1.1 7 109 3.5946404e-03

q = 1

2
log(n) 7 108 3.5594126e-03

q = 2 7 95 3.0650855e-03

p = 0 q = 1.1 7 267 9.0728374e-03

q = 1

2
log(n) 7 260 8.8747501e-03

q = 2 7 210 7.0380544e-03

Table 6.4: 10x10, θ = 0.95, and τ = 1.00

81

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1) 7 44 1.2566194e-03

New (Ex. 2)

p = 1 q = 1.1 7 42 1.3482595e-03

q = 1

2
log(n) 7 42 1.3385351e-03

q = 2 7 40 1.2241807e-03

p = 0.5 q = 1.1 7 112 3.6192852e-03

q = 1

2
log(n) 7 110 3.5843564e-03

q = 2 7 95 3.0168458e-03

p = 0 q = 1.1 7 254 8.2529216e-03

q = 1

2
log(n) 7 248 8.0858721e-03

q = 2 7 198 6.3271093e-03

Table 6.5: 10x10, θ = 0.95, and τ = 0.50

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1) 15 113 1.8925094e-03

New (Ex. 2)

p = 1 q = 1.1 15 113 2.0663405e-03

q = 1

2
log(n) 15 114 2.0596193e-03

q = 2 15 113 1.9769997e-03

p = 0.5 q = 1.1 15 200 3.4284957e-03

q = 1

2
log(n) 15 197 3.3871744e-03

q = 2 15 163 2.7369191e-03

p = 0 q = 1.1 15 400 6.3703423e-03

q = 1

2
log(n) 15 388 6.1679001e-03

q = 2 15 297 4.9362982e-03

Table 6.6: 10x10, θ = 0.70, and τ = 1.50

82

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1) 15 116 1.9165180e-03

New (Ex. 2)

p = 1 q = 1.1 15 115 2.1010919e-03

q = 1

2
log(n) 15 116 2.0959718e-03

q = 2 15 115 2.0192143e-03

p = 0.5 q = 1.1 15 211 3.5010942e-03

q = 1

2
log(n) 15 209 3.4851345e-03

q = 2 15 166 2.7595096e-03

p = 0 q = 1.1 15 403 6.2753436e-03

q = 1

2
log(n) 15 391 6.1028770e-03

q = 2 15 284 4.4973310e-03

Table 6.7: 10x10, θ = 0.70, and τ = 1.00

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1) 15 124 1.9858573e-03

New (Ex. 2)

p = 1 q = 1.1 15 122 2.1569292e-03

q = 1

2
log(n) 15 122 2.1503614e-03

q = 2 15 123 2.0806743e-03

p = 0.5 q = 1.1 15 224 3.6439707e-03

q = 1

2
log(n) 15 219 3.5712820e-03

q = 2 15 186 2.9310942e-03

p = 0 q = 1.1 15 421 6.4398217e-03

q = 1

2
log(n) 15 406 6.2483806e-03

q = 2 15 284 4.2733957e-03

Table 6.8: 10x10, θ = 0.70, and τ = 0.50

83

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1) 28 360 3.4357949e-03

New (Ex. 2)

p = 1 q = 1.1 28 361 3.7553539e-03

q = 1

2
log(n) 28 361 3.7695443e-03

q = 2 28 369 3.6099402e-03

p = 0.5 q = 1.1 28 373 3.9148508e-03

q = 1

2
log(n) 28 371 3.8952529e-03

q = 2 28 371 3.7543344e-03

p = 0 q = 1.1 28 684 6.3069938e-03

q = 1

2
log(n) 28 662 6.1120600e-03

q = 2 28 470 4.4385748e-03

Table 6.9: 10x10, θ = 0.45, and τ = 1.50

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1) 28 378 3.4566270e-03

New (Ex. 2)

p = 1 q = 1.1 28 378 3.7766377e-03

q = 1

2
log(n) 28 376 3.7693849e-03

q = 2 28 375 3.6139315e-03

p = 0.5 q = 1.1 28 396 4.0213644e-03

q = 1

2
log(n) 28 389 3.9832340e-03

q = 2 28 378 3.7564657e-03

p = 0 q = 1.1 28 703 6.3953198e-03

q = 1

2
log(n) 28 702 6.3912497e-03

q = 2 28 479 4.3836347e-03

Table 6.10: 10x10, θ = 0.45, and τ = 1.00

84

Algorithm Used Avg Outer Avg Inner Avg CPU Time

Classical (Ex. 1) 28 378 3.4193476e-03

New (Ex. 2)

p = 1 q = 1.1 28 378 3.7338356e-03

q = 1

2
log(n) 28 378 3.7340061e-03

q = 2 28 378 3.5833424e-03

p = 0.5 q = 1.1 28 465 4.4334947e-03

q = 1

2
log(n) 28 443 4.2742547e-03

q = 2 28 378 3.7157530e-03

p = 0 q = 1.1 28 780 6.7857580e-03

q = 1

2
log(n) 28 737 6.4707788e-03

q = 2 28 517 4.5454239e-03

Table 6.11: 10x10, θ = 0.45, and τ = 0.50

CHAPTER 7

CONCLUSION

In this thesis, we consider the linear complementarity problem (LCP). The LCP is

observed in many practical problems such as the market equilibrium problem. It is

also a framework in which some theoretical problems can be formulated such as a

geometrical problem of finding a convex hull of a finite number of points in the plane.

However, its importance mostly stems from the fact that optimality conditions of

many important optimization problems, such as linear and quadratic programing

problems, can be formulated as LCP.

We consider LCP in the standard form, although there exist other formulations

(see Section 2.3). Also, different classes of matrix M can be considered. However,

we concentrated on the class of positive semi-definite matrices because most practical

applications and theoretical results involve this class of matrices.

The method used to solve the LCP is a kernel-based interior-point method (IPM).

Kernel functions and their importance in the design and analysis of the IPM are

discussed in Chapter 3. In this thesis, we consider a class of eligible kernel functions

that is fairly general and includes the classical kernel function ψ1 (Table 3.3) and

recently considered class of self-regular functions [14]. The kernel functions were

introduced with the intention to improve theoretical and practical performance of

IPMs. The main emphasis of the thesis is the convergence analysis of the Generic

Algorithm described in Table 3.1.

We have shown that the algorithm is globally convergent and provided a unified

scheme (see Chapter 6) to calculate the upper bound on the total number of iterations

for different kernel functions. In addition, we illustrated the process by providing

86

detailed calculations for several specific eligible kernel functions (see Examples in

Chapter 6). We managed to obtain the best know complexity bounds for certain

values of parameters of the parametric kernel function ψ10.

The theoretical concepts were illustrated by basic implementation in MATLAB

for the classical kernel function ψ1 and for the parametric kernel function ψ10, which

involves parameters p and q. Both functions are listed in Table 3.3. A series of

numerical tests were conducted showing that even these basic implementations have

a potential for a good performance. The results indicate that an aggressive choice

of values for parameter θ and τ , in the Generic Algorithm in Table 3.1, lead to a

faster convergence. The same is the case if the version of minimum ratio test is

used as a choice for the step size instead of the theoretical bound. Also, the choice

of parameter p has a greater effect than the choice of q. A better implementation

and more numerical testing would be necessary to draw more definite conclusions.

However, that was not the main focus of the thesis.

87

APPENDIX A

MATLAB Code

The following contains all implemented MATLAB code.

A.1 Main Test Code : testtrials.m

The following is the code used to test and output the results from implementing the
IPM algorithm using ψ1 and ψ10, where values of τ, θ, p, and q were used.

%This code creates z trials of both the classical method and the new methods where the user specifies n and z.

clear

clc

format long

%We first start with a size n and the number of test trials z.

z = 1000;

n = 100;

epsilon = 10^-6;

%outputs all output from the command window to a txt file

diary output10.txt

diary on

%Initial theta and tau, during the inner loop below tau is reduced by 0.5

%and similarly, theta is reduced by .25 each outer iteration

theta = .75;

%Input parameters, which may be changed to vary result speed and accuracy

for r = 1:3

tau = 1.5;

for b = 1:3

for l = 1:z

%Generate z random M matrices that are all nxn, then stored in the 3-D C matrix.

%Using n, we generate a diagonal matrix of size n, with random entries.

A = rand([n,1]);

B = diag(A);

%Use Householder QR Factorization to decompose B

[Q,R] = houseqr(B);

%We create a positive definite matrix M from matrix Q we found from QR method

%It is then stored in the 3D Matrix C

C(:,:,l) = Q*B*Q’;

end

88

%Runs the IPM algorithm, z times, to get an average cpu time. For each

%loop, we will use another Positive definite matrix out of our C matrix.

for k = 1:z

%For each test trial, we choose the set random matrix stored in the 3 Dimensional

%C matrix

M = C(:,:,k);

%Runs and times Interior-Point Algorithm for the 1st Kernel Function

[i1,xx1,ss1,inner1,time1]=IPM1(M,epsilon,tau,theta,n);

time1p(k) = time1;

outerit1(k) = i1;

innerit1(k) = inner1;

%Runs and times Interior-Point Algorithm for the 10th Kernel Function

%Input parameters, for psi_10,

%%%%% p = 1 %%%%%%%% q varies

p1=1;

q1=1.1;

[i10,xx10_1,ss10_1,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p1,q1);

time10_aa(k) = time10;

outerit10_aa(k) = i10;

innerit10_aa(k) = inner10;

p2=1;

q2=2;

[i10,xx10_2,ss10_2,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p2,q2);

time10_ab(k) = time10;

outerit10_ab(k) = i10;

innerit10_ab(k) = inner10;

p3=1;

q3=.5*log(n);

[i10,xx10_3,ss10_3,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p3,q3);

time10_ac(k) = time10;

outerit10_ac(k) = i10;

innerit10_ac(k) = inner10;

%%%%% p = .5 %%%%%%%% q varies

p4=.5;

q4=1.1;

[i10,xx10_4,ss10_4,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p4,q4);

time10_ba(k) = time10;

outerit10_ba(k) = i10;

innerit10_ba(k) = inner10;

p5=.5;

q5=2;

[i10,xx10_5,ss10_5,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p5,q5);

time10_bb(k) = time10;

89

outerit10_bb(k) = i10;

innerit10_bb(k) = inner10;

p6=.5;

q6=.5*log(n);

[i10,xx10_6,ss10_6,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p6,q6);

time10_bc(k) = time10;

outerit10_bc(k) = i10;

innerit10_bc(k) = inner10;

%%%%% p = 0 %%%%%%%% q varies

p10=0;

q10=1.1;

[i10,xx10_10,ss10_10,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p10,q10);

time10_da(k) = time10;

outerit10_da(k) = i10;

innerit10_da(k) = inner10;

p11=0;

q11=2;

[i10,xx10_11,ss10_11,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p11,q11);

time10_db(k) = time10;

outerit10_db(k) = i10;

innerit10_db(k) = inner10;

p12=0;

q12=.5*log(n);

[i10,xx10_12,ss10_12,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p12,q12);

time10_dc(k) = time10;

outerit10_dc(k) = i10;

innerit10_dc(k) = inner10;

end

avgtime1 = sum(time1p)/(z);

avgtime10aa = sum(time10_aa)/(z);

avgtime10ab = sum(time10_ab)/(z);

avgtime10ac = sum(time10_ac)/(z);

avgtime10ba = sum(time10_ba)/(z);

avgtime10bb = sum(time10_bb)/(z);

avgtime10bc = sum(time10_bc)/(z);

avgtime10da = sum(time10_da)/(z);

avgtime10db = sum(time10_db)/(z);

avgtime10dc = sum(time10_dc)/(z);

avgi1 = sum(outerit1)/z;

avgi10aa = sum(outerit10_aa)/z;

avgi10ab = sum(outerit10_ab)/z;

avgi10ac = sum(outerit10_ac)/z;

avgi10ba = sum(outerit10_ba)/z;

avgi10bb = sum(outerit10_bb)/z;

avgi10bc = sum(outerit10_bc)/z;

avgi10da = sum(outerit10_da)/z;

avgi10db = sum(outerit10_db)/z;

90

avgi10dc = sum(outerit10_dc)/z;

avginner1 = sum(innerit1)/z;

avginner10aa = sum(innerit10_aa)/z;

avginner10ab = sum(innerit10_ab)/z;

avginner10ac = sum(innerit10_ac)/z;

avginner10ba = sum(innerit10_ba)/z;

avginner10bb = sum(innerit10_bb)/z;

avginner10bc = sum(innerit10_bc)/z;

avginner10da = sum(innerit10_da)/z;

avginner10db = sum(innerit10_db)/z;

avginner10dc = sum(innerit10_dc)/z;

%Prints tables for results from above

fprintf(’ %d Test Trials \n’, z)

fprintf(’ theta = %1.2f and tau = %1.2f \n’, theta, tau)

fprintf(’ For psi1(v) \n’)

fprintf(’-- \n’)

fprintf(’-- \n’)

fprintf(’ Size | Avg CPU time | Avg Outer | Avg Inner \n’)

fprintf(’__________|__________________|_______________|_____________\n’)

fprintf(’ %dx%d %10.7d %4.0f %4.0f \n’,n,n,avgtime1,avgi1,avginner1)

fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for u = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, u, outerit1(u), innerit1(u), time1p(u))

%end

fprintf(’\n’)

fprintf(’** \n’)

fprintf(’\n’)

fprintf(’ For psi10(v) \n’)

fprintf(’-- \n’)

fprintf(’-- \n’)

fprintf(’ Size | p | q | Avg CPU time | Avg Outer | Avg Inner \n’)

fprintf(’__________|_____|_____|________________________|_______________|_____________\n’)

fprintf(’ %dx%d %1.1f %1.1f %10.7d %4.0f %4.0f \n’,n,n, p1, q1, avgtime10aa, avgi10aa, avginner10aa)

%fprintf(’--- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit10_aa(j), innerit10_aa(j), time10_aa(j))

%end

%fprintf(’\n’)

%fprintf(’** \n’)

%fprintf(’\n’)

%fprintf(’-- \n’)

%fprintf(’ Size | p | q | Avg CPU time | Avg Outer | Avg Inner \n’)

%fprintf(’__________|_____|_____|________________________|_______________|_____________\n’)

91

fprintf(’ %dx%d %1.1f %1.1f %10.7d %4.0f %4.0f \n’,n,n, p2, q2, avgtime10ab, avgi10ab, avginner10ab)

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit10_ab(j), innerit10_ab(j), time10_ab(j))

%end

%fprintf(’\n’)

%fprintf(’** \n’)

%fprintf(’\n’)

%fprintf(’-- \n’)

%fprintf(’ Size | p | q | Avg CPU time | Avg Outer | Avg Inner \n’)

%fprintf(’__________|_____|_____|________________________|_______________|_____________\n’)

fprintf(’ %dx%d %1.1f %1.1f %10.7d %4.0f %4.0f \n’,n,n, p3, q3, avgtime10ac, avgi10ac, avginner10ac)

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit10_ac(j), innerit10_ac(j), time10_ac(j))

%end

%fprintf(’\n’)

%fprintf(’*** \n’)

%fprintf(’\n’)

%fprintf(’-- \n’)

%fprintf(’ Size | p | q | Avg CPU time | Avg Outer | Avg Inner \n’)

%fprintf(’__________|_____|_____|________________________|_______________|_____________\n’)

fprintf(’ %dx%d %1.1f %1.1f %10.7d %4.0f %4.0f \n’,n,n, p4, q4, avgtime10ba, avgi10ba, avginner10ba)

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit10_ba(j), innerit10_ba(j), time10_ba(j))

%end

%fprintf(’\n’)

%fprintf(’** \n’)

%fprintf(’\n’)

%fprintf(’-- \n’)

%fprintf(’ Size | p | q | Avg CPU time | Avg Outer | Avg Inner \n’)

%fprintf(’__________|_____|_____|________________________|_______________|_____________\n’)

fprintf(’ %dx%d %1.1f %1.1f %10.7d %4.0f %4.0f \n’,n,n, p5, q5, avgtime10bb, avgi10bb, avginner10bb)

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit10_bb(j), innerit10_bb(j), time10_bb(j))

%end

92

%fprintf(’\n’)

%fprintf(’** \n’)

%fprintf(’\n’)

%fprintf(’-- \n’)

%fprintf(’ Size | p | q | Avg CPU time | Avg Outer | Avg Inner \n’)

%fprintf(’__________|_____|_____|________________________|_______________|_____________\n’)

fprintf(’ %dx%d %1.1f %1.1f %10.7d %4.0f %4.0f \n’,n,n, p6, q6, avgtime10bc, avgi10bc, avginner10bc)

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit10_bc(j), innerit10_bc(j), time10_bc(j))

%end

%fprintf(’\n’)

%fprintf(’** \n’)

%fprintf(’\n’)

%fprintf(’-- \n’)

%fprintf(’ Size | p | q | Avg CPU time | Avg Outer | Avg Inner \n’)

%fprintf(’__________|_____|_____|________________________|_______________|_____________\n’)

fprintf(’ %dx%d %1.1f %1.1f %10.7d %4.0f %4.0f \n’,n,n, p10, q10, avgtime10da, avgi10da, avginner10da)

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit10_da(j), innerit10_da(j), time10_da(j))

%end

%fprintf(’\n’)

%fprintf(’*** \n’)

%fprintf(’\n’)

%fprintf(’-- \n’)

%fprintf(’ Size | p | q | Avg CPU time | Avg Outer | Avg Inner \n’)

%fprintf(’__________|_____|_____|________________________|_______________|_____________\n’)

fprintf(’ %dx%d %1.1f %1.1f %10.7d %4.0f %4.0f \n’,n,n, p11, q11, avgtime10db, avgi10db, avginner10db)

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit10_db(j), innerit10_db(j), time10_db(j))

%end

%fprintf(’\n’)

%fprintf(’** \n’)

%fprintf(’\n’)

%fprintf(’-- \n’)

%fprintf(’ Size | p | q | Avg CPU time | Avg Outer | Avg Inner \n’)

%fprintf(’__________|_____|_____|________________________|_______________|_____________\n’)

fprintf(’ %dx%d %1.1f %1.1f %10.7d %4.0f %4.0f \n’,n,n, p12, q12, avgtime10dc, avgi10dc, avginner10dc)

93

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit10_dc(j), innerit10_dc(j), time10_dc(j))

%end

fprintf(’\n’)

fprintf(’*** \n’)

fprintf(’*** \n’)

fprintf(’\n’)

%reduces tau by set value 0.50

tau = tau - 0.5;

end

%reduces theta by set value 0.25

theta = theta - 0.25;

end

diary off

A.2 Step Size Bound Tests : alphatesttrials.m

The following is the code used to test different bounds for selecting step size, α. It is
an adapted form of the above code.

clear

clc

format long

%We first start with a size n and the numerber of test trials z.

z = 1000;

n = 100;

%Input parameters, which may be changed to vary result speed and accuracy

theta = .95;

tau = 1.5;

epsilon = 10^-6;

diary ALPHATEST100.txt

diary on

%Runs the IPM algorithm, z times, to get an average cpu time. For each

%loop, we will generate another Positive definite matrix of the same size.

for k = 1:z

%For algorithm beta testing, we use the seed command to fix one particular

%random matrix, during numerical analysis, we comment this out to generate

%a new random matrix during each trial.

%rand(’seed’,10);

94

%Using n, we generate a diagonal matrix of size n, with random entries.

A = rand([n,1]);

B = diag(A);

%Use Householder QR Factorization to decompose B

[Q,R] = houseqr(B);

%We create a positive definite matrix M from matrix Q we found from QR method

M = Q*B*Q’;

%Runs and times Interior-Point Algorithm for the 1st Kernel Function

%minRatioTest for alpha

[i1,xx1,ss1,inner1,time1]=IPM1(M,epsilon,tau,theta,n);

time1p(k) = time1;

outerit1(k) = i1;

innerit1(k) = inner1;

%Runs and times Interior-Point Algorithm for the 1st Kernel Function

%bound for alpha

[i1,xx1_1,ss1_1,inner1,time1]=IPM1a(M,epsilon,tau,theta,n);

time1_a(k) = time1;

outerit1_a(k) = i1;

innerit1_a(k) = inner1;

end

avgtime1 = sum(time1p)/(z);

avgtime1a = sum(time1_a)/(z);

avgi1 = sum(outerit1)/z;

avgi1a = sum(outerit1_a)/z;

avginner1 = sum(innerit1)/z;

avginner1a = sum(innerit1_a)/z;

fprintf(’ For psi1(v) using alpha as min ratio \n’)

fprintf(’-- \n’)

fprintf(’-- \n’)

fprintf(’ Size | Avg CPU time | Avg Outer | Avg Inner \n’)

fprintf(’__________|__________________|_______________|_____________\n’)

fprintf(’ %dx%d %10.7d %4.0f %4.0f \n’,n,n,avgtime1,avgi1,avginner1)

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for u = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, u, outerit1(u), innerit1(u), time1p(u))

%end

%fprintf(’\n’)

%fprintf(’** \n’)

%fprintf(’\n’)

fprintf(’ For psi1(v) using alpha bounded \n’)

95

fprintf(’--- \n’)

fprintf(’--- \n’)

fprintf(’ Size | Avg CPU time | Avg Outer | Avg Inner \n’)

fprintf(’__________|__________________|_______________|_____________\n’)

fprintf(’ %dx%d %10.7d %4.0f %4.0f \n’,n,n,avgtime1a,avgi1a,avginner1a)

%fprintf(’-- \n’)

%fprintf(’\n Test No. | Inner It. | Outer It. | CPU Time \n’)

%fprintf(’__________|___________|___________|____________________\n’)

%for j = 1:z

% fprintf(’ %4d %4d %4d %10.7d \n’, j, outerit1_a(j), innerit1_a(j), time1_a(j))

%end

%fprintf(’\n’)

%fprintf(’** \n’)

%fprintf(’\n’)

diary off

A.3 M Generator : houseqr.m

The code below is an adaptation of Householder QR factorization; it was used in the
process of generating a PSD M matrix.

%This function performs Householder QR factorization of a m by n matrix A

%variables:

%A -- given inital matrix

%m,n -- size of A matrix

function [Q,R]=houseqr(A)

[m,n]=size(A);

Q=eye(m);

for k=1:min(m-1,n)

c=norm(A(k:m,k),2)*sign(A(k,k));

v=A(k:m,k);

v(1)=A(k,k)+c;

a=2/(v’*v);

A(k:m,k)=-c*eye(m-k+1,1);

for j=k+1:n

A(k:m,j)=A(k:m,j)-a*(v’*A(k:m,j))*v;

end

for j=1:m

Q(k:m,j)=Q(k:m,j)-a*(v’*Q(k:m,j))*v;

end

end

R=A;

Q=Q’;

96

%This program restructures A so that in the end of the algorithm the

%initial A matrix is made to be the R matrix. We also had to add the

%stipulation of the sign of c, so that we avoid cancelation.

97

A.4 Primal-Dual Algorithm for ψ1 : IPM1.m

This program was used as the primal-dual algorithm for ψ1.

%This function solves the IPM using the classical psi function

function [i1,xx1,ss1,inner1,time1]=IPM1(M,epsilon,tau,theta,n)

i=1;

in=0;

clear x s v mu xx1 ss1 dx ds inds indx

% x, s are initialized as a vector of ones.

x=ones(n,1);

s=ones(n,1);

mu=1;

v = zeros(n,1);

xx1 = zeros(n,n);

ss1 = zeros(n,n);

in1 = zeros(100*n,1);

%We initialize variables xx, ss, mu2 to keep a record of the results of

%x, s, and mu in each outer iteration, respectively.

xx1(i,:)=x;

ss1(i,:)=s;

tic;

%Outer Loop

while n*mu > epsilon

i = i+1;

mu=(1-theta)*mu;

v=sqrt(x.*s./mu);

%Inner Loop

while sum(psi1(v)) > tau

%Solves the Newton system

[dx,ds]=SolveSystem1(M,x,s,mu,v);

%Chooses alpha based on the minimum ratio test.

inds=find(ds<0);

indx=find(dx<0);

alpha=min(abs([1;theta*s(inds)./ds(inds);theta*x(indx)./dx(indx)]));

%Update x, s, and v

x=x+alpha*dx;

s=s+alpha*ds;

v=sqrt(x.*s./mu);

in = in + 1;

end

%When inner loop finishes we are left with a final value of x,s,

%and mu for the current iterate.

xx1(i,:)=x’;

ss1(i,:)=s’;

in1(i) = in;

98

%This loop prevents an infinite loop

if i>1000

fprintf(’Algorithm fails to terminate. Try different values

for tau and theta.’)

break;

end

end

%Checks the complementarity condition (x’*s=0) for the final resulting

%values of x,s when the algorithm terminates. If condition is out of

%tolerance, then user is warned.

comp = x’*s;

if comp > 10^-2

fprintf(’The complementarity condition is too large, choose different input

values for theta and/or tau!’)

end

time1=toc;

inner1=sum(in1);

i1=i;

end

A.5 Primal-Dual Algorithm for ψ10 : IPM10.m

This program was used as the primal-dual algorithm for ψ10.

%This function solves the IPM using the new psi function

function [i10,xx10,ss10,inner10,time10]=IPM10(M,epsilon,tau,theta,n,p,q)

i=1;

in=0;

clear x s v mu xx10 ss10 dx ds inds indx

% x, s are initialized as a vector of ones.

x=ones(n,1);

s=ones(n,1);

mu=1;

xx10 = zeros(n,n);

ss10 = zeros(n,n);

in10 = zeros(100*n,1);

v = zeros(n,1);

%We initialize variables xx, ss, mu2 to keep a record of the results of

%x, s, and mu in each outer iteration, respectively.

xx10(i,:)=x;

ss10(i,:)=s;

tic;

%Outer Loop

while n*mu > epsilon

99

i = i+1;

mu=(1-theta)*mu;

v=sqrt(x.*s./mu);

%Inner Loop

while sum(psi10(v,p,q)) > tau

%Solves the

[dx,ds]=SolveSystem10(M,x,s,mu,v,p,q);

%Chooses alpha based on the minimum ratio test.

inds=find(ds<0);

indx=find(dx<0);

alpha=min(abs([1;theta*s(inds)./ds(inds);theta*x(indx)./dx(indx)]));

%Update x, s, and v

x=x+alpha*dx;

s=s+alpha*ds;

v=sqrt(x.*s./mu);

in = in + 1;

end

%When inner loop finishes we are left with a final value of x,s,

%and mu for the current iterate.

xx10(i,:)=x’;

ss10(i,:)=s’;

in10(i) = in;

%This loop prevents an infinite loop

if i>1000

fprintf(’Algorithm fails to terminate. Try different values for tau and theta.’)

break;

end

end

%Checks the complementarity condition (x’*s=0) for the final resulting

%values of x,s when the algorithm terminates. If condition is out of

%tolerance, then user is warned.

comp = x’*s;

if comp > 10^-2

fprintf(’The complementarity condition is too large, choose different input

values for theta and/or tau!’)

end

time10=toc;

inner10=sum(in10);

i10=i;

end

A.6 Step-Size Primal-Dual Algorithm : IPMa.m

This Primal-Dual Algorithm was adapted for use in the test trials for determining
efficiency of different step-sizes.

100

%This function solves the IPM using the classical psi function

%BUT alpha is chosen by its bound!

function [i1,xx1,ss1,inner1,time1]=IPM1a(M,epsilon,tau,theta,n)

i=1;

in=0;

clear x s v mu xx1 ss1 dx ds inds indx

% x, s are initialized as a vector of ones.

x=ones(n,1);

s=ones(n,1);

mu=1;

v = zeros(n,1);

xx1 = zeros(n,n);

ss1 = zeros(n,n);

in1 = zeros(100*n,1);

%We initialize variables xx, ss, mu2 to keep a record of the results of

%x, s, and mu in each outer iteration, respectively.

xx1(i,:)=x;

ss1(i,:)=s;

tic;

%Outer Loop

while n*mu > epsilon

i = i+1;

mu=(1-theta)*mu;

v=sqrt(x.*s./mu);

%Inner Loop

while sum(psi1(v)) > tau

%Solves the Newton system

[dx,ds]=SolveSystem1(M,x,s,mu,v);

%This is a bound for alpha

delta = .5*norm(dx+ds,2);

alpha = 1/(psi1_2((1/(2*delta+sqrt(1+4*delta^2)))));

%Update x, s, and v

x=x+alpha*dx;

s=s+alpha*ds;

v=sqrt(x.*s./mu);

in = in + 1;

end

%When inner loop finishes we are left with a final value of x,s,

%and mu for the current iterate.

xx1(i,:)=x’;

ss1(i,:)=s’;

in1(i) = in;

%This loop prevents an infinite loop

if i>1000

fprintf(’Algorithm fails to terminate. Try different values

for tau and theta.’)

break;

end

101

end

%Checks the complementarity condition (x’*s=0) for the final resulting

%values of x,s when the algorithm terminates. If condition is out of

%tolerance, then user is warned.

comp = x’*s;

if comp > 10^-2

fprintf(’The complementarity condition is too large, choose different

input values for theta and/or tau!’)

end

time1=toc;

inner1=sum(in1);

i1=i;

end

A.7 Newton System Solver for ψ1 : SolveSystem1.m

The following code was used specifically for ψ1 to solve the Newton system given in
(3.23).

function [dx,ds]=SolveSystem1(M,x,s,mu,v)

% This function solves the following system

% -M*dx + ds = 0

% s*dx + x*ds = - mu*v*gradient(Psi(v))

%

%where gradient(v)=psi1_1(v)

X=diag(x);

S=diag(s);

% We see since, ds = M*dx, then we have that

% (S+X*M)dx = r

% Mtilda*dx = r

Mtilda = S + X.*M;

r = -mu.*v.*psi1_1(v);

% Hence, we solve the following to solve the system:

dx = Mtilda\r;

ds = M*dx;

end

A.8 Newton System Solver for ψ10 : SolveSystem10.m

The following code was used specifically for ψ10 to solve the Newton system given in
(3.23).

function [dx,ds]=SolveSystem10(M,x,s,mu,v,p,q)

102

% This function solves the following system

% -M*dx + ds = 0

% s*dx + x*ds = - mu*v*gradient(Psi(v))

%

%where gradient(v)=psi10_1(v)

X=diag(x);

S=diag(s);

% We see since, ds = M*dx, then we have that

% (S+X*M)dx = r

% Mtilda*dx = r

Mtilda = S + X.*M;

r = -mu.*v.*psi10_1(v,p,q);

% Hence, we solve the following to solve the system:

dx = Mtilda\r;

ds = M*dx;

end

A.9 ψ Function Files : psi1.m, psi11.m ,psi12.m, psi10.m, psi101.m

%function file for the classical kernel function (psi1.m)

function y = psi1(v)

y = (v.^2-1)./2 -log(v);

%first derivative for the classical kernel function (psi1_1.m)

function y = psi1_1(v)

y = v - 1./v;

%this function is the second derivative for the classical kernel function

function y = psi1_2(v)

y = 1 + 1./v.^2;

%function file for the new kernel function (psi10.m)

function y = psi10(v,p,q)

y = (v.^(1+p)-1)./(1+p) + (v.^(1-q)-1)./(q-1);

%function file for the first derivative for the new kernel function (psi10_1.m)

function y = psi10_1(v,p,q)

y = v.^p - v.^(-q);

103

APPENDIX B

MATLAB Output

The output for the 10x10 tests were placed into concise tables in Chapter 7.

Below we provide the entire output of our tests with problems of the size 100x100.

B.1 100x100 Output

1000 Test Trials \ theta = 0.95 and tau = 1.50

For psi1(v)

--

Size | Avg CPU time | Avg Outer | Avg Inner

__________|__________________|_______________|_____________

100x100 3.3573118e-03 8 66

--

For psi10(v)

--

Size | p | q | Avg CPU time | Avg Outer | Avg Inner

__________|_____|_____|________________________|_______________|_____________

100x100 1.0 1.1 4.0775980e-03 8 66

100x100 1.0 2.0 3.3921420e-03 8 68

100x100 1.0 2.3 4.6125026e-03 8 82

100x100 0.5 1.1 1.1335552e-02 8 160

100x100 0.5 2.0 8.2885870e-03 8 132

100x100 0.5 2.3 9.3813821e-03 8 128

100x100 0.0 1.1 2.2376523e-02 8 340

100x100 0.0 2.0 1.6947724e-02 8 273

100x100 0.0 2.3 1.9629687e-02 8 264

1000 Test Trials \ theta = 0.95 and tau = 1.00

For psi1(v)

--

Size | Avg CPU time | Avg Outer | Avg Inner

__________|__________________|_______________|_____________

100x100 3.3835071e-03 8 67

--

For psi10(v)

--

Size | p | q | Avg CPU time | Avg Outer | Avg Inner

__________|_____|_____|________________________|_______________|_____________

100x100 1.0 1.1 4.0985234e-03 8 67

100x100 1.0 2.0 3.4764623e-03 8 70

100x100 1.0 2.3 4.8655830e-03 8 87

100x100 0.5 1.1 1.1522834e-02 8 163

100x100 0.5 2.0 8.2047270e-03 8 132

100x100 0.5 2.3 9.2830872e-03 8 128

104

100x100 0.0 1.1 2.2100840e-02 8 342

100x100 0.0 2.0 1.5401373e-02 8 260

100x100 0.0 2.3 1.8439248e-02 8 257

1000 Test Trials \ theta = 0.95 and tau = 0.50

For psi1(v)

--

Size | Avg CPU time | Avg Outer | Avg Inner

__________|__________________|_______________|_____________

100x100 3.5095046e-03 8 70

--

For psi10(v)

--

Size | p | q | Avg CPU time | Avg Outer | Avg Inner

__________|_____|_____|________________________|_______________|_____________

100x100 1.0 1.1 4.2749197e-03 8 69

100x100 1.0 2.0 3.9661317e-03 8 84

100x100 1.0 2.3 5.7096255e-03 8 106

100x100 0.5 1.1 1.2077167e-02 8 168

100x100 0.5 2.0 8.1892895e-03 8 133

100x100 0.5 2.3 9.2105366e-03 8 130

100x100 0.0 1.1 2.2410064e-02 8 348

100x100 0.0 2.0 1.4352666e-02 8 254

100x100 0.0 2.3 1.6830090e-02 8 247

1000 Test Trials \ theta = 0.70 and tau = 1.50

For psi1(v)

--

Size | Avg CPU time | Avg Outer | Avg Inner

__________|__________________|_______________|_____________

100x100 5.2362389e-03 17 193

--

For psi10(v)

--

Size | p | q | Avg CPU time | Avg Outer | Avg Inner

__________|_____|_____|________________________|_______________|_____________

100x100 1.0 1.1 6.4808110e-03 17 193

100x100 1.0 2.0 5.2432047e-03 17 186

100x100 1.0 2.3 6.3071416e-03 17 185

100x100 0.5 1.1 1.3155406e-02 17 363

100x100 0.5 2.0 8.9075779e-03 17 272

100x100 0.5 2.3 1.0404918e-02 17 272

100x100 0.0 1.1 2.0037951e-02 17 621

100x100 0.0 2.0 1.1483201e-02 17 408

100x100 0.0 2.3 1.2133882e-02 17 372

1000 Test Trials \ theta = 0.70 and tau = 1.00

For psi1(v)

--

Size | Avg CPU time | Avg Outer | Avg Inner

__________|__________________|_______________|_____________

100x100 5.1536775e-03 17 204

--

105

For psi10(v)

--

Size | p | q | Avg CPU time | Avg Outer | Avg Inner

__________|_____|_____|________________________|_______________|_____________

100x100 1.0 1.1 6.3529403e-03 17 204

100x100 1.0 2.0 5.2127181e-03 17 199

100x100 1.0 2.3 6.2482600e-03 17 196

100x100 0.5 1.1 1.4259951e-02 17 408

100x100 0.5 2.0 8.5343369e-03 17 272

100x100 0.5 2.3 9.9658893e-03 17 272

100x100 0.0 1.1 2.0764084e-02 17 664

100x100 0.0 2.0 1.1004421e-02 17 408

100x100 0.0 2.3 1.2354002e-02 17 394

1000 Test Trials \ theta = 0.70 and tau = 0.50

For psi1(v)

--

Size | Avg CPU time | Avg Outer | Avg Inner

__________|__________________|_______________|_____________

100x100 5.4036479e-03 17 218

--

For psi10(v)

--

Size | p | q | Avg CPU time | Avg Outer | Avg Inner

__________|_____|_____|________________________|_______________|_____________

100x100 1.0 1.1 6.6931856e-03 17 217

100x100 1.0 2.0 5.4881685e-03 17 213

100x100 1.0 2.3 7.5225191e-03 17 269

100x100 0.5 1.1 1.4308512e-02 17 408

100x100 0.5 2.0 8.5710937e-03 17 272

100x100 0.5 2.3 1.0003543e-02 17 272

100x100 0.0 1.1 2.1116726e-02 17 680

100x100 0.0 2.0 1.1037940e-02 17 408

100x100 0.0 2.3 1.3134756e-02 17 408

1000 Test Trials \ theta = 0.45 and tau = 1.50

For psi1(v)

--

Size | Avg CPU time | Avg Outer | Avg Inner

__________|__________________|_______________|_____________

100x100 7.6501109e-03 32 496

--

For psi10(v)

--

Size | p | q | Avg CPU time | Avg Outer | Avg Inner

__________|_____|_____|________________________|_______________|_____________

100x100 1.0 1.1 9.5997407e-03 32 496

100x100 1.0 2.0 7.9044264e-03 32 496

100x100 1.0 2.3 9.6376067e-03 32 496

100x100 0.5 1.1 1.5504239e-02 32 786

100x100 0.5 2.0 9.2780011e-03 32 496

100x100 0.5 2.3 1.1081671e-02 32 498

100x100 0.0 1.1 2.1819398e-02 32 1277

106

100x100 0.0 2.0 1.1883117e-02 32 800

100x100 0.0 2.3 1.3573008e-02 32 736

1000 Test Trials \ theta = 0.45 and tau = 1.00

For psi1(v)

--

Size | Avg CPU time | Avg Outer | Avg Inner

__________|__________________|_______________|_____________

100x100 7.6315791e-03 32 496

--

For psi10(v)

--

Size | p | q | Avg CPU time | Avg Outer | Avg Inner

__________|_____|_____|________________________|_______________|_____________

100x100 1.0 1.1 9.5355533e-03 32 496

100x100 1.0 2.0 7.8837769e-03 32 496

100x100 1.0 2.3 9.9525437e-03 32 496

100x100 0.5 1.1 1.9180187e-02 32 992

100x100 0.5 2.0 9.2532009e-03 32 496

100x100 0.5 2.3 1.1087260e-02 32 500

100x100 0.0 1.1 2.4916900e-02 32 1457

100x100 0.0 2.0 1.4627533e-02 32 992

100x100 0.0 2.3 1.3732071e-02 32 751

1000 Test Trials \ theta = 0.45 and tau = 0.50

For psi1(v)

--

Size | Avg CPU time | Avg Outer | Avg Inner

__________|__________________|_______________|_____________

100x100 7.5091278e-03 32 496

--

For psi10(v)

--

Size | p | q | Avg CPU time | Avg Outer | Avg Inner

__________|_____|_____|________________________|_______________|_____________

100x100 1.0 1.1 9.3971434e-03 32 496

100x100 1.0 2.0 7.7380353e-03 32 496

100x100 1.0 2.3 9.4625936e-03 32 497

100x100 0.5 1.1 1.8870816e-02 32 992

100x100 0.5 2.0 9.1642285e-03 32 497

100x100 0.5 2.3 1.1079987e-02 32 516

100x100 0.0 1.1 2.4794242e-02 32 1488

100x100 0.0 2.0 1.4412400e-02 32 992

100x100 0.0 2.3 1.6202923e-02 32 964

107

BIBLIOGRAPHY

[1] Bai Y., Ghami M. El, Roos C., A Comparative Study of Kernel Functions for
Primal-Dual Interior-Point Algorithms in Linear Optimization, SIAM Journal
on Optimization, Vol. 15, No. 1, (2004).

[2] Bai Y., Lesaja G., Roos C., Wang G., Ghami M. El, A Class of Large and Small
Update Primal-Dual Interior-Point Algorithms for Linear Optimization, Journal
of Optimization Theory and Applications, Vol. 138, No. 3, pp. 341-359, (2008).

[3] Cottle R., Pang J., Stone R., The Linear Complementarity Problem, Academic
Press, Inc., Boston, (1992).

[4] Facchinei F., Pang J.S., Finite-Dimensional Variational Inequalities and Com-
plementarity Problems, Springer, New York, (2003)

[5] Ghami M. El, New Primal-dual Interior-point Methods Based on Kernel Func-
tions, PhD dissertation, Delft University of Technology, Netherlands, (2005).

[6] Karmarkar N., A New Polynomial Time Algorithm for Linear Programming,
Combinatorica, Vol 4, No. 4, (1984).

[7] Khachiyan L.G., A Polynomial Algorithm in Linear Programming, Soviet Math-
ematics Doklady, 20, pp. 373-395 (1984).

[8] Klee V. and Minty G.J., How Good is the Simplex Algorithm? Inequalities, III,
pp. 159-175, Academic Press, New York, NY, (1972).

[9] Kojima M., Megiddo N., Noma T., Yoshise A., A Unified Approach to Interior
Point Algorithms for Linear Complementarity Problems, Springer-Verlag, Berlin,
Germany (1991).

[10] Lemke C.E., Bimatrix Equilibrium Points and Mathematical Programming, Man-
agement Science II, pp. 681-689, (1965).

[11] Lesaja G., Introducing Interior-Point Methods for Introductory Operations Re-
search Courses and/or Linear Programming Courses, Open Operational Research
Journal, Vol. 3, pp. 1-12, (2009).

108

[12] Nesterov Y., Nemirovski A., Interior-Point Polynomial Algorithms in Convex
Programming, SIAM Studies in Applied Mathematics, Philadelphia, PA, (1994).

[13] Megiddo N., Pathways to the Optimal Set in Linear Programming, Progress in
Mathematical Programming: Interior Point and Related Methods, pp. 131-158,
Springer, New York, (1989).

[14] Peng J.S., Roos C., Terlak T., Self-Regularity: A New Paradigm for Primal-Dual
Interior-Point Algorithms, Princeton University Press, (2002)

[15] Roos C., Terlaky T., Vial J.P., Theory and Algorithms for Linear Optimization,
John Wiley and Sons, Chichester, UK (1997).

[16] Shor N.Z., Cut-off Method with Space Extension in Convex Programming Prob-
lems, Cybernetics 13, pp. 94-96, (1977).

[17] Sonnevend G., An “analytic center” for polyhedrons and new classes of global
algorithms for linear (smooth, convex) programming, System Modeling and Opti-
mization. Proceedings of the 12th IFIP-Conference, Budapest, Hungary, Septem-
ber 1985. Lecture Notes in Control and Information Sciences, vol. 84, pp. 866-876.
Springer, Berlin (1986).

[18] Wright S., Primal-Dual Interior-Point Methods, SIAM Publishing, Philadelphia,
PA (1997).

[19] Nemirovski A., Yudin D.B., Informational Complexity and Effective Methods of
Solution for Convex Extremal Problems, Ekonomika i Matematicheshie Metody
12 (in Russian), pp. 357-369, (1976).

	Kernel-Based Interior-Point Algorithms for the Linear Complementarity Problem
	Recommended Citation

	E:/THESIS/brandies_thesis/thesis.dvi

