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INFEASIBLE FULL-NEWTON-STEP INTERIOR-POINT METHOD

FOR THE LINEAR COMPLEMENTARITY PROBLEMS

by

ANTRE’ MARQUEL DRUMMER

(Under the Direction of Goran Lesaja)

ABSTRACT

In this thesis, we present a new Infeasible Interior-Point Method (IPM) for monotone

Linear Complementarity Problem (LPC). The advantage of the method is that it

uses full Newton-steps, thus, avoiding the calculation of the step size at each itera-

tion. However, by suitable choice of parameters the iterates are forced to stay in the

neighborhood of the central path, hence, still guaranteeing the global convergence

of the method under strict feasibility assumption. The number of iterations neces-

sary to find ε-approximate solution of the problem matches the best known iteration

bounds for these types of methods. The preliminary implementation of the method

and numerical results indicate robustness and practical validity of the method.

INDEX WORDS: linear complementarity problem, interior-point method, full

Newton-step, polynomial convergence
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CHAPTER 1

INTRODUCTION

1.1 Problem

In this thesis we shall consider a Linear Complementarity Problem (LCP) in the

standard form:

f(x) = s, x ≥ 0, s ≥ 0, xT s = 0 (1.1)

where x, s ∈ Rn and f is a linear function

f(x) = Mx+ q ≥ 0

where matrix M ∈ Rn×n and q ∈ Rn are given. In other words, the objective of LCP

is to find nonegative vectors (x, s) that satisfy the linear equation s = Mx+q and are

orthogonal i.e. xT s = 0. Though the LCP is not an optimization problem, there are a

plethora of optimization problems that can be modeled as LCP directly or indirectly.

Some applications of LCP in operations research include but are not limited to game

theory, economics, and many more.

The relationship between LCP and optimization problems is very close because

Kurush-Kuhn-Tucker (KKT) optimality conditions for many optimization problems

can be formulated as LCP. We consider the connection between LCP, an example of

which will be given in Example 1 of Chapter 2, and the linear programming problem

(LP). The LP can be formulated as a maximization or minimization problem which

has the form

min cTx ≥ 0

s.t. Ax = b

x ≥ 0

(1.2)
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where c ∈ Rn, b ∈ Rm, and A ∈ Rn×n. Similar to the objective for LCP, the objective

of the LP is to find the vector x that satisfy the equations and constratints of (1.2).

1.2 A Brief Historical Overview

Some instances of the LCP can be traced back to the early 1940’s; however, larger

interest in LCP was taken in the early to mid 1960’s in conjunction with the rapid

development of theory and methods for LP.

In 1947, George Dantzig proposed a famous method, named the Simplex Method

(SM) for solving the LP. Basically, the main idea of the SM is to travel along from

vertex to vertex on the boundary of the feasible region. The method constantly

increases (or decreases) the objective function until either an optimal solution is

found or the SM concludes that such an optimal solution does not exist.

Theoretically, the algorithm could have a worse-case scenario of 2n iteration, with

n being the size of the problem, which is an exponential number. This was shown

in 1972 by Klee and Minty [8]. However, it is remarkably efficient in practice but

an exponential number of iterations is usually never observed in practice. It usually

requires O(n) iterations to solve a particular problem. There exists many resources

and excellent software for the SM.

Another great advancement in the area of solving convex optimization problems

was the ellipsoid method. This method was introduced by Nemirovsky and Yudin

[24] in 1976 and by Shor [20] in 1977. The algorithm works by encapsulating the

minimizer of a convex function in a sequence of ellipsoids whose volume decreases

at each iteration. Later Khachiyan [7] showed in 1984 that the ellipsoid method can
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be used to solve the LP in polynomial time. This was the first polynomial time

algorithm for the LP. Unfortunately, in practice, the method was far surpassed by

the SM. Nevertheless, the theoretical importance of the ellipsoid method is hard to

neglect.

In 1984, Karmarkar [6] introduced an Interior-Point Method (IPM) for LP. Kar-

markar used the efficiency of the simplex method with the theoretical advantages

of the ellipsoid method to create his efficient polynomial algorithm. The algorithm

is based on projective transformations and the use of Karmarkar’s primal potential

function. This new algorithm sparked much research, creating a new direction in

optimization - the field of IPMs. Unlike the SM, which travels from vertex to vertex

along the edges of the feasible region, the IPM follows approximately a central path

in the interior of the feasible region and reaches the optimal solution only asymptot-

ically. As a result of finding the optimal solution in this fashion, the analysis of the

IPMs become substantially more complex than that of the SM.

Since the first IPM was developed, many new and efficient IPMs for solving LP

have been created. Many researchers have proposed different interior-point methods,

which can be grouped into two different groups: potential reduction algorithms and

path-following algorithms. Each of the two groups contains algorithms based on pri-

mal, dual, or primal-dual formulations of the LP. Also, computational results show

that the primal-dual formulation is superior to either the primal or dual formula-

tion of the algorithm. We will focus on the primal-dual path-following IPMs, which

have become the standard of efficiency in practical applications. These primal-dual

methods are based on using Newton’s method in a careful and controlled manner.

Soon after the SM was developed, a similar method for solving LCP was intro-
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duced by Lemke [10]. It is a pivoting algorithm similar to the SM. Unfortunately,

Lemke’s algorithm can sometimes fail to produce a solution even if one exists. Never-

theless, Lemke’s algorithm was extremely useful. However, researchers kept searching

for other methods for the LCP. Much later, in the 1990’s, the tradition of immediate

generalizations from LP to LCP continued even more strongly in the case of the IPMs

and many efficient IPMs have been proposed for LCP.

In this thesis, we will focus on extending a class of IPMs, from LP to LCP. The

main features of this class of methods is that at each iteration a full Newton-step is

taken, i.e., it is not necessary to calculate a step size. These type of IPMs are called

Full-Newton-step IPM (FNS-IPM). They were first discussed for LP by Roos in [18].

In addition, IPMs have been generalized to solve many other important optimiza-

tion problems, such as semidefinite optimization, second order cone optimization, and

general convex optimization problems. The unified theory of IPMs for general convex

optimization problems was first developed by Nesterov and Nemirovski [15] in 1994.

The first comprehensive monograph that considers in-depth analysis of the LCP

and methods for solving it is the monograph of Cottle, Pang, and Stone [3]. More

recent results on the LCP as well as nonlinear complementarity problems and varia-

tional inequalities are contained in the monograph of Facchinei and Pang [5].



CHAPTER 2

LINEAR COMPLEMENTARITY PROBLEM

Chapter 2 shall consist of the introduction of the linear complementarity problem

(LCP). Along with the discussion and defining of the LCP, several direct applications

will also be presented and discussed.

2.1 Linear Complementarity Problem

LCP is a problem of finding a particular vector in a finite real vector space that

satisfies a system of inequalities. In mathematical terminology this means: given a

vector q ∈ Rn and a matrix M ∈ Rnxn, we want to find a pair of vectors x, s ∈ Rn

(or show such a vector does not exist) such that

s = q +Mx

x ≥ 0, s ≥ 0

xT s = 0.

(2.1)

To insure a solution exists and it is unique, a sufficient condition is that M be a

symmetric positive definite matrix. Since (x, s) ≥ 0, the complementarity equation

xT s = 0 can be written equivalently as

xs = 0,

which represents component-wise product of vectors, as follows,

xs = (x1s1, x2s2, . . . , xnsn)T . (2.2)

This product is termed as Hadamard’s product.
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The feasible region (set of feasible points) of the LCP as defined in (2.1) is given in

the following set:

F =
{

(x, s) ∈ R2n : s = Mx+ q, x ≥ 0, s ≥ 0
}
. (2.3)

Furthermore, the set of strictly feasible points of the LCP is the following set:

F0 = {(x, s) ∈ F : x > 0, s > 0} .

The solution set of the LCP is given by

F ∗ =
{

(x∗, s∗) ∈ F : x∗T s∗ = 0
}
. (2.4)

An important subset of the above solution set is a set of strict complementarity

solutions

F ∗
s = {(x∗, s∗) ∈ F∗ : x∗ + s∗ > 0} . (2.5)

We can now say that the main idea of the LCP is to find vectors x, s (a solution

of the LCP) that are both feasible and complementary. If q ≥ 0, the LCP is always

solvable with the zero vector being a trivial solution.

2.2 Classes of LCP

In general LCP is NP-complete, which means that there exists no polynomial algo-

rithms for solving it. Thus, the problem needs to be restricted to certain classes of

matrices for which a polynomial algorithm exist. We now list several such classes of

matrices M for LCP. They are as follows:

• Skew-symmetric matrices (SS):

(x ∈ Rn)(xTMx = 0). (2.6)
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• Positive semi-definite matrices (PSD):

(x ∈ Rn)(xTMx ≥ 0). (2.7)

• P -matrices: Matrices with all principal minors positive or equivalently

(0 6= x ∈ Rn)(∃i ∈ I)(xi(Mx)i > 0). (2.8)

• P0-matrices: Matrices with all principal minors nonnegative or equivalently

(0 6= x ∈ Rn)(∃i ∈ I)(xi 6= 0 and xi(Mx)i ≥ 0). (2.9)

• Sufficient matrices (SU): Matrices which are column and row sufficient

– Column sufficient matrices (CSU):

(∀x ∈ Rn)(∀i ∈ I)(xi(Mx)i ≤ 0⇒ xi(Mx)i = 0). (2.10)

– Row sufficient matrices (RSU): M is row sufficient if MT is column suffi-

cient.

• P∗(κ): Matrices such that

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0,∀x ∈ Rn,

where

I+(x) = {i : xi(Mx)i > 0} , I−(x) = {i : xi(Mx)i < 0} ,

or equivalently

xTMx ≥ −4κ
∑

i∈I+(x)

xi(Mx)i,∀x ∈ Rn, (2.11)
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Figure 2.1: Relations and examples of the classes of matrices.

and

P∗ =
⋃
κ≥0

P∗(κ). (2.12)

The relationship between some of the above classes is as follows:

SS ⊂ PSD ⊂ P∗ = SU ⊂ CS ⊂ P0, P ⊂ P∗, P ∩ SS = ∅. (2.13)

Some of these relations are obvious, like PSD = P∗(0) ⊂ P∗ or P ⊂ P∗, while others

require proof. Refer to Figure 2.1, which was first published in [9], to see a visual flow

of how these classes of matrices are related. Also, all of the above classes have the

nice property that if a matrix M belongs to one of these classes, then every principal

sub-matrix of M also belongs to the class.

In this thesis, we will assume matrix M is a positive semi-definite (PSD) ma-

trix. Though the case of positive semi definiteness is not the most general case, it is

definitely the most commonly used both in theory and practice. Hence, this is the
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reason why we will focus on this class of matrices in the thesis. The LCP with a PSD

matrix M is called monotone LCP.

2.3 Introductory Examples

LCP has many applications. Some examples of the LCP include but are by far not

limited to: the bimatrix game, optimal invariant capital stock, optimal stopping,

convex hulls in the plane, and the market equilibrium problems. Each one of the

listed problems can be reformulated into the linear complementarity problem. In the

sequel, we will describe several applications.

Example 1: Quadratic Programming

Quadratic programming is another application of the LCP. It is the problem of mini-

mizing or maximizing a quadratic function of several variables subject to linear con-

straints on these variables. The quadratic program (QP) is defined as

minimize f(x) = cTx+ 1
2
xTQx

subject to Ax ≥ b

x ≥ 0

(2.14)

where Q ∈ Rnxn is symmetric, c ∈ Rn, A ∈ Rmxn and b ∈ Rm. Note that the case

where Q = 0 gives rise to a linear program (LP). If x is a locally optimal solution of

the quadratic program (2.14), then there exists a vector y ∈ Rm such that the pair

(x, y) satisfies the Karush-Kuhn-Tucker optimality conditions

u = c+Qx− ATy ≥ 0, x ≥ 0, xTu = 0,

v = −b+ Ax ≥ 0, y ≥ 0, yTv = 0.
(2.15)
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If Q is positive semi-definite (the objective function f(x) is convex), then the con-

ditions in (2.15) are sufficient for the vector x to be a globally optimal solution of

(2.14).

The Karush-Kuhn-Tucker conditions in (2.14) define the LCP where

q =

 c

−b

 and M =

 Q −AT

A 0

 . (2.16)

Note that M is not symmetric, even though Q is symmetric. However, M does have

a property known as bisymmetry. A square matrix A is bisymmetric if it can be

brought to the form

A =

 G −AT

A H

 ,
where both G and H are symmetric. Also, if Q is positive semi-definite, then so is

M . In general, a square matrix M is positive semi-definite if zTMz ≥ 0 for every

vector z.

This convex quadratic programming model, in the form of (2.14), has a magni-

tude of practical applications in engineering, finance, and many other areas. The size

of these practical problems can become very large. Thus, the LCP plays an important

role in the numerical solution of these problems.

Example 2: Bimatrix games

Game theory analyzes strategic interactions in which the outcome of one’s choices

depends upon the choices of others. For a situation to be considered a game, there

must be at least two rational players who take into account one another’s actions

when formulating their own strategies. We consider a game with two players called
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player I and player II and the game consists of large number of plays. Here at each

play Player I picks one of m choices and Player II picks one of n choices. These

choices are called pure strategies. If in a certain play, Player I choose pure strategy

i and Player II chooses pure strategy j, then Player I loses Aij and Player II loses

Bij. A positive value of Aij represents a loss to Player I, while a negative value of Aij

represents a gain. Similarly for Player II and Bij. The matrices A and B are called

loss matrices, and the game is fully determined by the matrix pair (A,B).

If A + B = 0, the game is known as zero sum game and if A + B 6= 0 game is

known as bimatrix game. Player I chooses to play strategy i with probability xi such

that
∑
xi = 1, and Player II chooses to play strategy j with probability yj such that∑

yj = 1, then expected loss of Player I is xTAy and expected loss of Player II is

xTBy.

A player is changing his own strategy while the other player holds his strategy

fixed to minimize loss. i.e,

xTAy ≤ xTAy ∀x ≥ 0 eTmx = 1,

xTBy ≤ xTBy ∀y ≥ 0 eTny = 1,
(2.17)

where the vector e is a vector of ones. The objective is to find (x, y) that is called

Nash equilibrium pair. Nash equilibrium can be found using LCP as described in the

Lemma below.

Lemma 2.3.1. Suppose A,B ∈ Rm×n are positive loss matrices representing a game

Γ(A,B) and suppose that (s, t) ∈ Rm×n solves LCP(M,q), where

M =

 0 A

BT 0

 , q = −em+n ∈ Rm+n.
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Then (x, y) such that,

x = s
eTms

and y = t
eTmt

,

is an equilibrium pair of Γ(A,B).

Proof. We write LCP conditions explicitly as

0 ≤ At− em ⊥ s ≥ 0

0 ≤ BT s− en ⊥ t ≥ 0
(2.18)

from the equation (2.1) we have Mx + q = s ≥ 0 and x ≥ 0. So we can write these

inequalities as below, 0 A

BT 0


 s

t

+

 em

en

 ≥ 0,

 At

BT s

+

 em

en

 ≥ 0. (2.19)

This implies At − em ≥ 0 and BT s − en ≥ 0. Therefore t 6= 0 and s 6= 0. Then

x = s
eTms

and y = t
eTn t

well define. x ≥ 0, y ≥ 0, from the definition we have eTmx = 1

and eTny = 1. Then x and y are mixed strategies. By complementarity we have,

xT (At− em) =
sT

eTms
(At− em) = 0. (2.20)

Since x and y are mixed strategies, and from the Equation (2.20), we get the following

property.

xTAt = xT em = 1. (2.21)

So we have,

Ay − (xTAy)em = 1
eTn t

(At)− (xTAy)em

= 1
eTn t

(At− (xTAt)em)

= 1
eTn t

(At− em) from (2.21)

(2.22)
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Since At− em ≥ 0 and x ≥ 0, we have xT (Ay − (xTAy)em) ≥ 0. This implies,

xTAy ≥ (xT em)(xTAy) = xTAy (2.23)

Similarly we can prove xTBy ≥ xTBy. Hence (x, y) is a Nash equilibrium pair.

Example 3: The Market Equilibrium Problem

The state of an economy where the supplies of producers and the demands of

consumers are balanced at the resulting price level is called market equilibrium . We

can use a linear programming model to describe the supply side that captures tech-

nological details of production activities for a particular market equilibrium problem.

Econometric models with commodity prices as the primary independent variables

generates the market demand function. Basically, we need to find a vector x∗ and

subsequent vectors p∗ and r∗ such that the conditions below are satisfied for supply,

demand, and equilibrium:

Supply conditions:

minimize cTx

subject to Ax ≥ b

Bx ≥ r∗

x ≥ 0

(2.24)

where c is the cost vector for the supply activities, x is the vector production activities.

Technological constraints on production are represented by the first condition in (2.24)

and the demand requirement constraints are represented by the second condition in

(2.24);

Demand conditions:

r∗ = Q(p∗) = Dp∗ + d (2.25)
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where Q(·) is the market demand function with p∗ and r∗ representing the vectors of

demand prices and quantities, respectively. Q(·) is assumed to be an affine function;

Equilibrium condition:

p∗ = π∗ (2.26)

where the (dual) vector of market supply prices corresponding to the second constraint

in (2.24) is denoted by π∗.

Using Karush-Kuhn-Tucker conditions for problem (2.24), we see that a vector

x∗ is an optimal solution of problem (2.24) if and only if there exists vectors v∗ and

π∗ such that:

y∗ = c− ATv∗ −BTπ∗ ≥ 0, x∗ ≥ 0, (y∗)Tx∗ = 0,

u∗ = −b+ Ax∗ ≥ 0, v∗ ≥ 0, (u∗)Tv∗ = 0,

δ∗ = −r∗ +Bx∗ ≥ 0, π∗ ≥ 0, (δ∗)Tπ∗ = 0.

(2.27)

If for r∗, we substitute the demand function (2.25) and we use condition (2.26),

then we can see that the conditions in (2.27) gives us the linear complementarity

problem where

q =


c

−b

−d

 , M =


0 −AT −BT

A 0 0

B 0 −D

 . (2.28)

Observe that the matrix M in (2.28) is bisymmetric and if the matrix D is

symmetric, as it could have been seen, the Karush-Kuhn-Tucker optimization condi-

tions of the market equilibrium problem, and in fact the linear problem in general,
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can be expressed in the LCP framework. This can also be extended to quadratic

programming problems as discussed below.

maximize dTx+ 1
2
xTDx+ bTy

subject to ATy +BTx ≤ c

x ≥ 0, y ≥ 0

(2.29)

On the other hand, if D is asymmetric, then M is not bisymmetric and the connection

between the market equilibrium model and the quadratic program above fails to exist.



CHAPTER 3

LEMKE’S METHOD

In this chapter, we review a well known algorithm called Lemke’s algorithm. Lemke’s

Method, derived in 1965, is the first algorithm proposed for solving LCPs. This is a

pivoting algorithm introduced by Lemke [10] and it is a generalization of Dantzig’s

Simplex Method developed earlier for LP.

3.1 Basic Definition

We consider a LCP in the standard form as described in (2.1) Chapter 2. We denote

it here as LCP(M,q) and claim that (x, s) is feasible for LCP(M,q) if all conditions

of the following system are satisfied.

s = q +Mx

x ≥ 0, s ≥ 0.
(3.1)

Proceeding, we assume that M is a positive semidefinite (psd) matrix. For the

description of Lemke’s method for solving LCP(M,q), we introduce the following

definitions.

Definition 3.1.1.

Consider the problem LCP(M,q) (3.1).

1. A component si is called the complement of xi, and vice versa, for i = 1, 2, ..., n.

2. A pair (x, s) is complementary if x ≥ 0, s ≥ 0, and xT s = 0. (Note that a

complementary pair must satisfy xisi = 0 for i = 1, 2, ..., n.)
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3. A pair (x, s) is almost complementary if x ≥ 0, s ≥ 0, and xisi = 0 for i =

1, 2, ..., n, except for a single index j, 1 ≤ j ≤ n.

3.2 Lemke’s Method

For a positive semidefinite matrix M , Lemke’s method generates a finite sequence of

feasible, almost-complementary pairs that terminates at a complementary pair or an

unbounded ray. That is, for any feasible solution x with objective, a multiple of the

unbounded ray can be added to x to give a feasible solution with objective z-1 (or

z+1 for maximization models). Thus, if a feasible solution exists, then the optimal

objective is unbounded.

Similar to the Simplex Method, an initial pair must first be obtained, usually via

a Phase I scheme. There are different Phase I schemes depending on the particular

structure of LCP. We will describe a commonly used Phase I scheme, which requires

only one pivot.

Phase II generates a sequence of almost-complementary vector pairs. It performs

a pivot at each iteration, selecting the pivot row by means of a ratio test like that of the

Simplex Method, whose purpose is to ensure that the components of x and s remain

nonnegative throughout the procedure. Phase II finishes when the complementary

pair is found or we end up on the unbounded ray.

This outline can be summarized as follows.

Lemke’s Algorithm

Phase I: (Generates a Feasible Almost- Complementary Table).
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1. If q ≥ 0, STOP : x = 0 is a solution of LCP(M,q); that is, (x, s) = (0, q) is a

feasible complementary pair.

2. Otherwise, add the artificial variables x0 and s0 that satisfy the following rela-

tionships:

s = Mx+ ex0 + q, s0 = x0, (3.2)

where e is the vector of ones in Rn. Create the initial tableau,

x x0 1

s = M e q

s0 = 0 1 0

3. Make this tableau feasible by carrying out a Jordan exchange on the x0 column

and the row corresponding to the most negative qi.

4. Without removing the artificial variables from the tableau, proceed to Phase II.

( Phase II: Generates a Feasible Complementary or Unbounded Tableau).

1. Start with a feasible almost-complementary pair (x, s) and the corresponding

tableau in Jordan exchange form,

sI1 xJ2 1

xJ1 = HI1J1 HI1J2 hI1

sI2 = HI2J1 HI2J2 hI2

Record the variable that became nonbasic (i.e., became a column label) at the

previous iteration. At the first step, this is simply the component of s that was

exchanged with x0 during Phase I.
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2. Pivot column selection: Choose the column s corresponding to the complement

of the variable that became nonbasic at the previous pivot.

3. Pivot row selection: Choose the row r such that,

−hr/Hrs = min {−hi/His|His < 0}.

If all His ≥ 0, STOP: An unbounded ray has been found.

4. Carry out a Jordan exchange on element Hrs. If (x, s) is complementary, STOP:

(x, s) is a solution. Otherwise, go to Step 2.

Remarks

1. Step 2 maintains almost-complementarity by moving a component into the basis

as soon as its complement is moved out. By doing so, we ensure that for all

except one of the components, exactly one of xi and si is basic while the other

is nonbasic. Since nonbasic variables are assigned the value 0, this fact ensures

that xisi = 0 for all except one component which is the almost complementary

property. When the initial tableau of Phase II was derived from Phase I, it is

the variables s0 and x0 that violate complementarity until an optimal tableau

is found.

2. The ratio test in Step 3 follows from the same logic as in the Simplex Method.

We wish to maintain non negativity of all the components in the last column,

and so we allow the nonbasic variable in column s to increase away from zero

only until it causes one of the basic variables to become zero. This basic variable

is identified by the ratio test as the one to leave the basis in the current iteration.
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3. In practice, it is not necessary to insert the s0 row into the tableau, since s0

remains in the basis throughout and is always equal to x0.

The following important theorem assures that Lemke’s algorithm terminates at

the solution of the LCP(M,q) if M is positive semidefinite.

Theorem 3.2.1. 1. If M ∈ Rn×n is positive definite, then Lemke’s algorithm ter-

minates at the unique solution of LCP(M,q) for any q ∈ Rn.

2. If M ∈ Rn×n is positive semidefinite, then for each q ∈ Rn, Lemke’s algorithm

terminates at a solution of LCP(M,q) or at an unbounded ray. In the latter

case, the set {x|Mx+ s ≥ 0, x ≥ 0} is empty; that is, there is no feasible pair.

The proof can be found in [4].

3.3 Example

We consider a quadratic programming problem

min 1
2
x2

1 − x1x2 + 1
2
x2

2 + 4x1 − x2

s.t. x1 + x2 − 2 ≥ 0

x1, x2 ≥ 0.

(3.3)

The KKT condition of this problem are described in Example 1, Chapter 2,

(2.15) and (2.16). In this case we have

Q =

 1 −1

−1 1

 , A =

[
1 1

]
, p =

 4

−1

 , b =

[
2

]
,
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which leads to the following LCP

M =


1 −1 −1

−1 1 −1

1 1 0

 , q =


4

−1

−2

 ,

x1

x2

x3

 =


x1

x2

u1

 .

Below are the steps of Lemke’s algorithm applied to this problem.

Phase I

Step 1: According to Phase I of Lemke’s Algorithm, here we add the artificial variable

x0 that satisfy the following relationship, s = Mx+ ex0 + q, so the initial table is as

follows.

x1 x2 x3 x0 1

s1 = 1 −1 −1 1 4

s2 = −1 1 −1 1 −1

s3 = 1 1 0 1 −2

We make this table feasible by carrying out a Jordan elimination on the x0 col-

umn (pivot column, s=4) and the row corresponding to the most negative entry in the

last column (pivot row, r=3). Here s = 4 and r = 3. Since Brs = 1
Ars

and Brj =
−Arj
Ars

, Bis = Ais
Ars

and Brj = Aij −BisArj we find the entries of the second table below.

x1 x2 x3 s3 1

s1 = 0 −2 −1 1 6

s2 = −2 0 −1 1 1

x0 = −1 −1 0 1 2
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This table yields almost complementary solution x0 = 2, x1 = 0, x2 = 0, x3 = 0 and

s1 = 0, s2 = 1, s3 = 0.

Phase II

Step 2: In Phase I we obtained the following table.

x1 x2 x3 s3 1

s1 = 0 −2 −1 1 6

s2 = −2 0 −1 1 1

x0 = −1 −1 0 1 2

Since s3 became non basic at the last pivot, here we choose x3 as pivot column.

Minimum ratio test gives min
{−6
−1

= 6, −1
−1

= 1
}

= 1.

Thus pivot row is r = 2 (from minimum ratio test). When s = 3 and r = 2 we

find the entries in the third table by using the Jordan elimination. Using formulas

indicated in Step 1 we obtain the following table:

x1 x2 s2 s3 1

s1 = 2 −2 1 0 5

x3 = −2 0 −1 1 1

x0 = −1 −1 0 1 2

This table yields almost complementary solution x0 = 2, x1 = 0, x2 = 0, x3 = 1 and

s1 = 5, s2 = 0, s3 = 0.

Step 3: By continuing the same process as in Step 2 we get s = 2 and r = 3.

After performing Jordan elimination we obtain the following table.
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x1 x0 s2 s3 1

s1 = 4 2 1 −2 1

x3 = −2 0 −1 1 1

x2 = −1 −1 0 1 2

This is a final table, because it contains a solution that is fully complementary,

x0 = 0, x1 = 0, x2 = 2, x3 = 1 and s1 = 1, s2 = 0, s3 = 0. Hence, the solution of the

original problem (3.3) is x1 = 0 and x2 = 2.

Alternate Lemke Method We shall now proceed to show how Lemke’s Method

can be performed by avoiding traditional Jordan Exchanges on individual components

but entire rows and columns are updated simultaneously.

Let us consider once again, example (3.3). We know that the initial table with

artificial variable x0 included is

x1 x2 x3 x0 1

s1 = 1 −1 −1 1 4

s2 = −1 1 −1 1 −1

s3 = 1 1 0 1 −2

Now to make this table feasible:

(1) Pivot row (old) chosen by the most negative entry of the last column.

(2) Pivot element is the element of the pivot row (old) corresponding to the artificial variable,

also identifying the pivot column.

Calculations: (Pivot, Row, and Column updates)
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(3) Pivot Elementnew = 1
PivotElementold

(4) Pivot Rownew = −(PivotRowold)
PivotElementold

excluding elements corresponding to pivot column

(5) Pivot Columnnew = (PivotColumnold)
PivotElementold

(6) Rownew = Rowold − (CorrespondingP ivotElementnew)× (PivotRowold)

excluding element corresponding to pivot column

(7) Input pivot columnnew where excluded column is located.

Step 6 updates all remaining elements of the table, and below we apply the above

calculations to the given example.

(1)PivotR owold = row3 = [1 1 0 1 − 2]

(2)Pivot Elementold =1, and pivot columnold = [1 1 1]T

(3) Pivot Elementnew = 1
1

= 1

(4)Pivot Rownew = −[1 1 0 ∗ −2]
1

= [−1 − 1 0 ∗ 2] = row3new

(5) Pivot Columnnew = [1 1 1]T

1

(6) Row1new = [1 -1 -1 * 4]-(1)×[1 1 0 * -2] = [0 -2 -1 * 6]

Row2new = [-1 1 -1 * -1]-(1)×[1 1 0 * -2] = [-2 0 -1 * 1]

Once the Pivot Columnnew is input, the table is now feasible, and we have
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x1 x2 x3 s3 1

s1 = 0 −2 −1 1 6

s2 = −2 0 −1 1 1

x0 = −1 −1 0 1 2

which satisfies the almost complementary solution specified by Phase I of Lemke’s

Method. Thus we can proceed to Phase 2 where all rules of Phase 2 hold and once

again update the table by following steps 1 through 7 of (3.3). We can easily see

that the same tables will be obtained. Repeat Lemke’s phase 2 and (3.3) until a

complementary solution or unbounded ray is determined.



CHAPTER 4

INFEASIBLE FULL NEWTON-STEP INTERIOR-POINT METHOD

The purpose of this chapter is to discuss and explain the IPM method for solving a

monotone LCP. Step size calculations are not considered because this method utilizes

full-Newton-steps. In this chapter we introduce and explain the concept of the IPM

with full-Newton-steps, followed by the analysis of the convergence.

4.1 Main Idea of the Method

We consider the monotone LCP:

s = Mx+ q

x ≥ 0, s ≥ 0

xT s = 0⇔ xs = 0

(4.1)

where M ∈ Rnxn is a positive semidefinite matrix, q ∈ Rn is a vector. We say that

(x, s) is an ε-approximate solution of (4.1) if

||s−Mx− q|| ≤ ε and xT s ≤ ε (4.2)

It is easy to see but important to note that because x ≥ 0, s ≥ 0

xT s = 0⇔ xs = 0

where xs = (x1s1, ..., xnsn) represents the component-wise (Hadamard) product of

vectors x, s. The main idea of IPM is to solve the system (4.1) using Newton’s

method. However, it is well known that Newton’s method can “get stuck” at the

complementarity equation xT s = 0. In order for us to avoid this, we perturb the
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complementarity equation and consider the system:

s = Mx+ q

xs = µe
(4.3)

for some parameter µ ≥ 0. Another known fact is that for a positive definite matrix

M , (4.3) has a unique solution (x(µ), s(µ)) for each µ > 0. These (parametric)

solutions are called µ-centers and the set of all µ-centers of (4.1) is called the central

path. We can clearly see that when µ = 0, we have found the solution for (4.1).

Now, the main idea of IPM is to trace the central path by gradually reducing µ

to 0. However, tracing the central path exactly is very inefficient; it is enough to

trace it approximately, as long as the iterates are ”not too far” from µ-centers. A

clear understanding of “not too far” will be discussed more precisely later. The

above outline of the IPM implicitly requires the existence and knowledge of a strictly

feasible starting point (x0, s0), that is s0 = Mx0 + q where x0 > 0, s0 > 0. The

existence of a strictly feasible point is often called the Interior-point condition (IPC).

However, finding a strictly feasible interior-point may be as difficult as solving the

entire problem. Therefore, our goal in this thesis is to design an Infeasible IPM, this

is an IPM that can start from an infeasible point and still converge and moreover

converge relatively fast.

Let us consider an arbitrary starting point (x0, s0) > 0 such that x0s0 = µ0e for

some µ0 > 0. Most likely for this point, s0 6= Mx0 + q so we denote the residual as:

s0 −Mx0 − q = r0. (4.4)

The main idea of the infeasible IPM is to consider the corresponding perturbed

LCPν

s−Mx− q = νr0

x ≥ 0, s ≥ 0, xs = 0
(4.5)
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for any 0 < ν ≤ 1. Note that when ν = 1, (x0, s0) is a strictly feasible solution of

LCPν=1. Thus LCPν=1 satisfies the IPC. The following lemma connects feasibility of

the original LCP with feasibility of the corresponding perturbed LCPν .

Lemma 4.1.1. If the original problem (4.1) is feasible, then the perturbed problem

(4.5) is strictly feasible for ν ∈ (0, 1]

Proof. Suppose that (4.1) is feasible. Let (x̄, s̄) be a feasible solution, i.e.,

s̄ = Mx̄+ q, x̄ ≥ 0, s̄ ≥ 0.

For ν ∈ (0, 1] consider convex combinations

x = (1− ν)x̄+ νx0, s = (1− ν)s̄+ νs0.

Note that x, s > 0 because x̄, s̄ ≥ 0 and x0, s0 > 0 and ν > 0. We have

s−Mx− q = M((1− ν)x̄+ νx0) + q − ((1− ν)s̄+ νs0)

= (1− ν)Mx̄+ νMx0 + q − (1− ν)s̄− νs0

= (1− ν)(Mx̄− s̄) + ν(Mx0 − s0) + q

= (1− ν)(Mx̄+ q − s̄− q) + ν(Mx0 + q − s0 − q) + q

= (1− ν)(−q) + ν(r0 − q) + q

= (1− ν)(−q) + ν(−q) + ν(r0) + q

= (−q)(1− ν + ν) + νr0 + q

= −q + q + νr0

= νr0.

Thus (x, s) is strictly feasible for (4.5).

It is worth mentioning that LCPν → LCP as ν → 0. Similarly, as for LCP (4.1),

the perturbed problem LCPν (4.5) can be solved using IPM which would require
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solving the system

s−Mx− q = νr0

xs = µ+e

using Newton method. IfM is p.s.d. this system has unique solutions (x(µ, ν), s(µ, ν))

of µ-centers for LCPν , which are also called (µ, ν)-centers. As before they form a

central path for LCPν .

We seek not to find an exact solution of LCPν yet our goal is to locate an ε-

approximate solution of the original problem LCP. That is achieved by finding an

approximate solution (x, s) “close” to the (µ, ν)-center for a certain µ. Next, we si-

multaneously reduce the values of µ and ν for a certain parameter θ ∈ [0, 1], called

the barrier parameter, i.e.,

µ+ = (1− θ)µ

ν+ = (1− θ)ν

As ν → 0 and µ → 0 we will obtain an ε-approximate solution of the original LCP.

Since the initial µ is µ = µ0 and the initial ν is ν = 1, µ and ν are connected as

follows:

ν = µ
µ0
. (4.6)

The variance vector defines the closeness of (x, s) to the µ-center and is denoted

as follows, v =
√

xs
µ

. One can easily see that if (x, s) is a µ-center, which means that

xs = µe, it immediately follows that v = e. Now, we define closeness (x, s) to the

µ-center as δ(x, s;µ) = δ(v) = 1
2
||v − v−1||, here we notice that

δ(v) = 0⇔ v = e⇔ (x, s) is a µ-center.

As seen in figure 4.1 to obtain an approximate solution (x+, s+) in LCPν+ that

is close to the µ+-center, we perform one feasibility step and a few centering steps
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Figure 4.1: IIPM Graphical Representation

starting from the approximate solution (x, s) in LCPν close to µ-center. The feasibility

step will assure that we obtained a solution (xf , sf ) that is strictly feasible for LCPν+

but may not be sufficiently close to the µ+-center. Therefore, a single iteration consists

of one feasibility step followed by several centering steps. In what follows we first

describe the details of the feasibility step.
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4.2 Feasibility Step

Let x, s be an approximate solution of LCPν+ that is known. Our goal is to find a

strictly feasible solution of LCPν+ . Thus we want to approximately solve LCPν+ (4.5)

using one iteration of Newton Method that will find the search direction ∆fx,∆fs.

We re-write (4.5) in the form:

F (x, s) =

 Mx+ q − s− νr0

xs− µ+e

 = 0 (4.7)

When we apply Newton method to (4.7) it yields:

∇F

 ∆fx

∆fs

 = −F (x, s) (4.8)

where F is the Jacobian of F . The above system is equivalent to the following system:

M∆fx−∆fs = θνr0,

s∆fx+ x∆fs = (1− θ)µe− xs.
(4.9)

Once the Newton directions ∆fx,∆fs are known, the feasible solution is obtained by

performing a full-Newton update, i.e,

xf = x+ ∆fx

sf = s+ ∆fs

We want to be assured that xf , sf is strictly feasible and moreover, δ(xf , sf ;µ+) < 1√
2
.

4.3 Centering Step

Once (xf , sf ) is obtained, we seek to obtain a solution (x, s) that is closer to µ+-

center than 1√
2
, that is we want to find (x, s) such that δ(xf , sf ;µ+) ≤ τ for some
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“small” τ > 0. This is achieved by performing a few centering steps within LCPν+

without moving to new LCPν+ denoted as LCPν++ . Since we stay in LCPν+ we are

not changing ν+ nor µ+ and therefore we can call ν+ and µ+ simply ν and µ. So they

are named in this manner:

ν ← ν+ , µ← µ+

Also, xf , sf can be called x, s and this is the starting point for our centering steps.

Since xf , sf is strictly feasible we have

Mxf + q − sf = 0 (4.10)

or because of renaming just

Mx+ q − s = 0 (4.11)

Once we have a strictly feasible solution, feasibility of the centering steps of the IPM

is maintained. Thus one centering step consist of solving the system

Mx+ q − s = 0

xs = µe
(4.12)

using Newton’s method. The “centering” Newton direction is found by solving the

following system

M∆cx−∆cs = 0

S∆cx+X∆cs = µe− xs
(4.13)

Then the new centering solution is obtained by taking a full Newton-step

xc = x+ ∆cx

sc = s+ ∆cs

We will show that (xc, sc) is closer to µ-center than (x, s), actually we will show that

proximity to the µ-center is reduced quadratically. This outline is summarized in the

following algorithm.
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Infeasible Full Newton-step Interior-Point Algorithm for LCP

Input:

Determine input parameters:

threshold parameter τ > 0,

fixed barrier update parameter θ, 0 < θ < 1,

accuracy parameter ε > 0.

begin

Set µ0 = ζP ζD, ζP > 0 and ζD > 0

x0s0 = µ0e

ν = 1

while max(xT s, ||s−Mx− q||) ≥ ε do

Feasibility Step

Calculate direction (∆fx,∆fs) by solving (4.9);

Update x := x+ ∆x and s := s+ ∆s;

Update v :=
√

xs
µ

;

Calculate: δ(v) = 1
2
||v − v−1||;

µ := (1− θ)µ;

ν := (1− θ)ν;

Centering Step

while δ(v) > τ do

Calculate original direction (∆x,∆s) by solving (4.13);

Update x := x+ ∆x and s := s+ ∆s;

Update v :=
√

xs
µ

;

end do

end do

end

Table 4.1: Infeasible Full Newton-step Interior-Point Algorithm for LCP



CHAPTER 5

ANALYSIS OF THE ALGORITHM

This purpose of this chapter is to analyze convergence and to estimate the number

of iterations needed to find an ε-approximate solution of LCP. We start out with the

analysis of the feasibility step, followed by the analysis of the centering steps, and

conclude with overall number of iterations.

5.1 Feasibility Step

Let us recall from Chapter 4 the system (4.9) for the feasible step.

M∆fx−∆fs = θνr0,

s∆fx+ x∆fs = (1− θ)µe− xs.
(5.1)

In order to analyze the above system it is useful to transform it into an equivalent

system using the following scaled directions.

v :=

√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
(5.2)

Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if v = e.

Substitution of (5.2) into the above system yields

M xdx
v
− sds

v
= θνr0

S xdx
v

+X sds
v

= (1− θ)µe− xs
(5.3)

Writing system (5.3) in matrix form we have:

MV −1Xdx− SV −1ds = θνr0 (5.4)

SV −1Xdx+XV −1ds = (1− θ)µe− xs, (5.5)
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where

X = diag(x), V −1 = diag(v−1), Dx = diag(dx)

S = diag(s), V = diag(v), Ds = diag(ds).

Left multiplication of (5.4) by S−1V yields:

S−1V (MV −1Xdx)− S−1V (ds) = (S−1V )(θνr0)

S−1MXdx − ds = θνS−1V r0

S−1/2X1/2MS−1/2X1/2dx − ds = θνS−1X1/2S1µ−1/2r0

(5.6)

Let D := S−1/2X1/2, therefore the third equation in (5.6) is written as

MDdx − ds = θνDµ−1/2r0. (5.7)

Let M̃ := DMD therefore (5.8) is written as

M̃dx − ds = θνDµ−1/2r0. (5.8)

If we left multiply (5.5) by S−1X−1V we obtain

S−1X−1V (SXV −1dx +XSV −1ds) = S−1X−1V [(1− θ)µe− xs]

dx + ds = X−1S−1V [(l − θ)µe− xs]

dx + ds = µ
xs

√
xs
µ

(1− θ)e−X−1S−1XSV

dx + ds =
√

µ
xs

(1− θ)e− v

dx + ds = (1− θ)v−1 − v.

Thus, system (5.3) transforms into the following system

M̃dx − ds = θν 1√
µ
Dr0

dx + ds = (1− θ)v−1 − v
(5.9)

Recall that after the feasibility step,

xf = x+ ∆fx, sf = s+ ∆fs.
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where ∆fx, ∆fs are calculated from system (5.1). We want to guarantee that xf > 0,

sf > 0, so our goal is to find the condition that will guarantee strict feasibility of

xf , sf . Recall that we start with (x, s;µ) such that δ(x, s;µ) < τ . We reduce µ to

µ+ = (1− θ)µ. Now , using v :=
√

xs
µ
, dfx := v∆fx

x
, dfs := v∆f s

s
we obtain

xfsf = xs+ (x∆fx+ s∆fs) + ∆fx∆fs

= xs+ (1− θ)µe− xs+ ∆fx∆fs

= (1− θ)µe+ ∆fx∆fs

= (1− θ)µe+ xs
v2
dfxd

f
s

= (1− θ)µe+ xs
xs
µ
dfxd

f
s

= (1− θ)µe+ µdfxd
f
s ,

(5.10)

which implies

(vf )2 = xf sf

µ+

= (1−θ)e+dfxdfs
(1−θ)

µ
µ

= e+ dfxd
f
s

1−θ ,

(5.11)

or equivalently

(v f )2
i = 1 +

dfxid
f
si

1−θ . (5.12)

Lemma 5.1.1. Iterates (xf , sf ) are strictly feasible if and only if (1−θ)e+dfxd
f
s > 0.

Proof. (:⇒) If xfand sf are both positive then (1− θ)e+ dxds > 0

(⇐:)

let

x0 = x, s0 = s

x1 = x+ ∆fx

s1 = s+ ∆fs
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therefore, x0s0 > 0. We need to show x1 and s1 are nonnegative if xαsα is positive

for all α ∈ (0, 1).

xαsα = (x+ α∆fx)(s+ α∆fs)

= xs+ xα∆fs+ sα∆fx+ α2∆fx∆fs

= xs+ α(x∆fx+ s∆fs) + α2∆fx∆fs

= xs+ α((1− θ)µe− xs) + α2∆fx∆fs

= xs+ α(1− θ)µe− αxs+ α2µdfxd
f
s

= xs+ αµe− αθµe− αxs+ α2µdfxd
f
s

= xs(1− α) + αµe(1− θ) + α2dfxd
f
s

= µ[(1− α)v2 + αe(1− θ) + α2dfxd
f
s ]

Suppose (1− θ)e+ dfxd
f
s > 0 then dfxd

f
s > −(1− θ)e. Substitution yields

xαsα > µ[(1− α)v2 + αe(1− θ) + α2(1− θ)e]

= µ[(1− α)v2 + αe− αeθ − α2e+ α2θe]

= µ[(1− α)v2 + αe(1− α)− αeθ(1− α)]

= µ(1− α)[v2 + αe− αeθ]

= µ(1− α)[v2 + α(1− θ)e].

Since v2, e > 0 this implies xαsα > 0 for α ∈ [0, 1). Therefore none of the entries of

xα and sα vanish for α ∈ [0, 1). Since x0, s0 > 0, this implies that xα > 0 and sα > 0

for α ∈ [0, 1). So by continuity the vectors x1 and s1 cannot have negative entries.

Assuming (1− θ)e+ dxds > 0. Similarly xαsα > µ[(1−α)v2 +αe(1− θ) +α2(1− θ)e]

implies x1s1 > 0; therefore by continuity x1 and s1 must be positive.

Lemma 5.1.2. (xf , sf ) are strictly feasible if ||dfxdfs ||∞ < 1− θ
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Proof. By Lemma 5.1.1 (xf , sf ) is strictly feasible if and only if

(1− θ)e+ dfxd
f
s > 0

(1− θ) + dfxid
f
si

> 0

dfxid
f
si

> −(1− θ).

Given the definiton of∞-norm,
∥∥dfxdfs∥∥∞ = max

{∣∣dfxidfsi∣∣ : i = 1, ..., n
}

the assump-

tion
∥∥dfxdfs∥∥∞ < 1− θ can be written as

∥∥dfxidfsi∥∥ < 1− θ or equivalently

−(1− θ) < dfxid
f
si
< (1− θ).

The left inequality above can be written as dfxid
f
si

+ (1− θ) > 0 for any i or

dfxd
f
s (1− θ)e > 0.

By Lemma (5.1.1) this implies that (xf , sf ) is strictly feasible.

Now we seek to find conditions that would lead to the required upper-bound for

δ(xf , sf ;µ+) ≤ 1√
2
.

Lemma 5.1.3. If
∥∥dfxdfs∥∥∞ < 1− θ then 4δ2(vf ) ≤ ‖dfxdfs‖2

1−‖dfxdfs‖∞
.

Proof. Recall that

δ(vf ) = δ(xf , sf , µ+)

= 1
2

∥∥vf − (vf )−1
∥∥

Then we have

4δ2(vf ) = 4(1
4
||vf − (vf )−1||2)

= ||vf − (vf )−1||2

=
∑n

i=1(vfi − 1

vfi
)2

=
∑n

i=1(vfi )2 − 2 + ( 1

vfi
)2

=
∑n

i=1(1 +
dfxid

f
si

1−θ + 1

1+
d
f
xi
d
f
si

1−θ

− 2),
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where the last equality is obtained using (5.12).

Let us denote zi :=
dfxid

f
si

1−θ ; therefore, we have

∑n
i=1(1 + zi + 1

1+zi
− 2) =

∑n
i=1(zi + 1

1+zi
− 1)

=
∑n

i=1( zi(1+zi)+1
1+zi

− 1)

=
∑n

i=1(
z2i +zi+1

1+zi
− 1)

=
∑n

i=1(
z2i

1+zi
)

(5.13)

Now zi ≤ |zi| and zi ≥ − |zi|. So |zi| ≤ ‖zi‖∞ this implies

1− |zi| ≥ 1− ‖zi‖∞

1 + zi ≥ 1− |zi| .

Therefore,

1

1 + zi
≥ 1

1− zi
≥ 1

1 + zi∞
. (5.14)

By substituting (5.14) into (5.13) we get

δ2(vf ) ≤
∑n

i=1(
z2i

1−|zi|)

≤
∑n

i=1(
z2i

1−|zi|∞
)

= 1
1−‖zi‖∞

(‖z‖2
2)

=
(‖z‖22)

1−‖zi‖∞

=

∥∥∥∥∥ dfxidfsi1−θ

∥∥∥∥∥
2

2

1−

∥∥∥∥∥ dfxidfsi1−θ

∥∥∥∥∥
∞

(5.15)

Norm Facts

We introduce the following known facts about the norms to assist us in the analysis
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of the feasibility step. ∥∥dfxdfs∥∥∞ ≤
∥∥dfxdfs∥∥

≤
∥∥dfx∥∥∥∥dfs∥∥

≤ 1
2
(
∥∥dfx∥∥2

+
∥∥dfs∥∥2

)

(5.16)

Where ‖‖ represents the 2-norm. Using (5.16), the last equation of (5.15) can be

written as

4δ2(vf ) ≤
1
4

‖dfx‖2+‖dfs‖2
1−θ

2

1− 1
2

‖dfx‖2+‖dfs‖2
1−θ

Recall that we want δ(vf ) ≤ 1√
2

which implies 4δ2(vf ) ≤ 2. Using Lemma 5.1.3 this

will be satisfied if

1
4

‖dfx‖2+‖dfs‖2
1−θ

2

1− 1
2

‖dfx‖2+‖dfs‖2
1−θ

≤ 2. (5.17)

This implies that

1
2
||dfx||2+||dfs ||2

1−θ ≤ 1 (5.18)

However, we should not forget that Lemma 5.1.3 must hold, and therefore (5.18)

holds if
∥∥dxds

1−θ

∥∥
∞
< 1. So the problem of finding conditions for δ(vf ) ≤ 1√

2
to hold

reduces to finding an upper bound on

∥∥dfx∥∥2
+
∥∥dfs∥∥2

. (5.19)

To assist us in finding this bound, we have the following condition:
∥∥dfxdfs∥∥∞ < 1− θ

⇒ ‖dfxdfs‖
1−θ < 1

⇒ 1
2

‖dfx‖2+‖dfs‖2
1−θ ≤ 1

The question we ask ourselves now is “how do we find the upper bound for
∥∥dfx∥∥2

+∥∥dfs∥∥2
?” In order to do so we need the following lemma.
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Lemma 5.1.4. Given a system

M̃u− z = ã, u+ z = b̃ (5.20)

the following hold

(1) Du = (1 +DMD)−1(a+ b), Dz = (b−Du)

(2) ‖Du‖ ≤ ‖a+ b‖

(3) ‖Du‖2 + ‖Dz‖2 ≤ ‖b‖2 + 2 ‖a+ b‖ ‖a‖ .

where D, b, a, and M̃ are defined as follows:

D := S−1/2X1/2, b := Db̃, a := Dã and M̃ := DMD.

Proof. Left multiply both equations in (5.20) by D which gives us

DMDDu−Dz = a

Du+DZ = b,
(5.21)

and by adding the 2 above equations we deduce equation (1) of Lemma 5.1.4. Since

the matrix I+DMD is positive definite, inequality (2) of Lemma 5.1.4 follows. From

(5.21) and by using Cauchy-Schwartz inequality and inequality (2) of Lemma 5.1.4

and the positive semidefiniteness of DMD we have

‖Du‖2 + ‖Dz‖2 = ‖Du+Dz‖2 − 2(Du)TDz

= ‖b‖2 − 2(Du)T (DMDDu− a)

= ‖b‖2 − 2(Du)TDMDDu+ 2(Du)Ta

≤ ‖b‖2 + 2 ‖Du‖ ‖a‖

≤ ‖b‖2 + 2 ‖a+ b‖ ‖a‖
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We will apply the above lemma to the system (5.9)

M̃dfx − dfs = θνDr0 1√
µ

dfx + dfs = (1− θ)v−1 − v.

Let

ã : = D(θνDr0 1
µ
) = D2(θνr0 1

µ
)

b̃ : = D((1− θ)v−1 − v)

u : = dfx

z : = dfs .

Then system (5.9) transforms to system (5.20). Substituting into equation (3)

of Lemma 5.1.4 we have∥∥Ddfx∥∥2
+
∥∥Ddfs∥∥ ≤ ‖D[(1− θ)v−1 − v]‖2

+ 2
∥∥∥D2(θνr0 1√

µ
+D((1− θ)v−1 − v)

∥∥∥∥∥∥D2θνr0 1√
µ

∥∥∥ (5.22)

Using norm properties, we have that

∥∥Ddfx∥∥ ≤ ‖D‖∥∥dfx∥∥ ,
∥∥Ddfs∥∥ ≤ ‖D‖∥∥dfs∥∥∥∥∥D2νr0 1√

µ

∥∥∥ ≤ ‖D‖2 ‖θνr0‖ 1√
µ

(5.23)

‖D[(1− θ)v−1 − v]‖ ≤ ‖D‖
∥∥∥(θνr0 1√

µ

∥∥∥
where ‖D‖ represents a matrix norm. Thus∥∥Ddfx∥∥2

+
∥∥Ddfs∥∥2 ≤ ‖D‖2

(∥∥|dfx∥∥2
+
∥∥dfs∥∥2

)
(5.24)

Using inequalities (5.23) and (5.24), inequality (5.22) becomes

‖D‖2
(∥∥|dfx∥∥2

+
∥∥dfs∥∥2

)
≤ ‖D‖2 ‖[(1− θ)v−1 − v‖2

+ 2
(∥∥∥Dθνr0 1√

µ

∥∥∥+ ‖(1− θ)v−1 − v‖
)∥∥∥Dθνr0 1√

µ

∥∥∥
(5.25)
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Cancelling ‖D‖2 we get

∥∥|dfx∥∥2
+
∥∥dfs∥∥2 ≤ ‖(1− θ)v−1 − v‖2

+ 2
(∥∥∥Dθνr0 1√

µ

∥∥∥+ ‖(1− θ)v−1 − v‖
)∥∥∥Dθνr0 1√

µ

∥∥∥ . (5.26)

We now seek an upper bound for ∥∥θνDr0
∥∥ (5.27)

and ∥∥(1− θ)v−1 − v
∥∥ . (5.28)

First we give a bound for (5.27). We have∥∥∥ θν√
µ
Dr0

∥∥∥ = θν√
µ
‖Dr0‖

= θν√
µ

∥∥X1/2S−1/2r0
∥∥

= θν√
µ

∥∥√x
s
r0
∥∥ , → ν = µ

µ0

≤ θ√
µ
µ
µ0

∥∥√x
s
r0
∥∥

1

= θ
µ0

√
µ
∥∥√x

s
r0
∥∥

1

= θ
µ0

∥∥√µx
s
r0
∥∥

1

= θ
µ0

∥∥√ µ
xs
xr0
∥∥

1
→
∣∣∣ 1
vi
xir

0
i

∣∣∣ ≤ 1
vmin
|xir0

i | ≤ 1
vmin
|r0
i | |x0

i |

= θ
µ0

1
vmin
‖xr0‖1

therefore ∥∥∥ θν√
µ
Dr0

∥∥∥ ≤ θ
µ0

1
vmin
‖r0‖∞ ‖x‖1 . (5.29)
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Since we assumed x0 = ζpe and s0 = ζde we have that µ0 = ζpζd. We can choose

ζp and ζd such that ‖x0‖∞ ≤ ζp and ‖s0‖∞ ≤ ζd. Then we have

r0 = s0 −Mx0 − q

= ζde− ζpMe− q

= ζd

(
e− ζp

ζd
Me− 1

ζd
q
)

‖r0‖∞ = ζd

∥∥∥e− ζp
ζd
Me− 1

ζd
q
∥∥∥
∞

≤ ζd

(
1 + 1

ζd
ζp ‖Me‖∞ + 1

ζd
‖q‖∞

)
.

By assuming max {‖sα‖∞ , ‖Me‖∞ , ‖q‖∞} ≤ ζd the last inequality above becomes

‖r0‖∞ ≤ ζd(1 + 1 + 1) = 3ζd.

Thus, (5.29) becomes ∥∥∥ θν√
µ
Dr0

∥∥∥ ≤ θ
µ0

1
vmin

3ζd ‖x‖1

= θ
ζpζd

1
vmin

3ζd ‖x‖1 = 3θ
ζp

‖x‖1
vmin

. (5.30)

Now, we give an upper bound for (5.28). We have

‖(1− θ) v−1 − v‖2
= ‖(1− θ)v−1‖2 − 2(1− θ)(v−1)T (v) + ‖v‖2

= (1− θ)2 ‖v−1‖2 − 2(1− θ)n+ ‖v‖2

= (1− θ)2 ‖v−1‖2 − 2n+ ‖v‖2 + 2nθ

≤ ‖v−1‖2 − 2n+ ‖v‖2 + 2θn

= ‖v−1 − v‖2
+ 2θn

= 4δ2(v) + 2θn (5.31)

Thus

‖(1− θ) v−1 − v‖ =
√

4δ2(v) + 2θn.
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By substituting equations (5.30) and (5.31) into (5.25) we get

∥∥dfx∥∥2
+
∥∥dfs∥∥2 ≤ (4δ2(v) + 2θn) + 2

(
3θ
ζp

‖x‖1
vmin

+
√

4δ2(v) + 2θn
)

3θ
ζp

‖x‖1
vmin

. (5.32)

Next, we need an upper bound on ‖x‖1 and a lower bound on vmin. This is given in

the lemma below.

Lemma 5.1.5.

(1) q−1(δ) ≤ vi ≤ q(δ)

(2) ‖x‖1 ≤ (2 + q(δ))nζp, ‖s‖1 ≤ (2 + q(δ))nζp

where

q(δ) = δ +
√
δ2 + 1.

Proof. Since vi is positive for each i, we have

−2δvi ≤ 1− v2
i ≤ 2δvi

This implies

v2
i − 2δvi − 1 ≤ 0 ≤ v2

i + 2δvi − 1

Rewriting this, we have

(vi − δ)2 − 1− δ2 ≤ (vi + δ)2 − 1− δ2

we obtain

(vi − δ)2 ≤ 1 + δ2 ≤ (vi + δ)2,

which implies

vi − δ ≤ |vi − δ| ≤
√

1 + δ2 ≤ vi + δ.

Thus we arrive at

−δ +
√

1 + δ2 ≤ vi ≤ δ +
√

1 + δ2 = q(δ).
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For the expression on the left-hand side we write

−δ +
√

1 + δ2 = 1
δ+
√

1+δ2
= 1

q(δ)

thus proving number (1) of the above lemma. To prove (2), since x, s, x∗ and s∗ are

positive, it implies that sTx∗ + xT s∗ is positive. Therefore,

(s0)Tx+ (x0)T s ≤ v(x0)T s0 + xT s
v

+ (1− v)((s0)Tx∗ + (x0)T s∗)

since x0 = ζpe, s
0 = ζDe, ‖x∗‖∞ ≤ ζp and ‖s∗‖∞ ≤ ζD, we have

(s0)Tx∗ + (x0)T s∗ ≤ ζP (eT s0) + ζD(eTx0) = 2nζP ζD.

Also (x0)T s0 = nζP ζD. Hence we get

(s0)Tx+ (x0)T s ≤ xT s
v

+ 2nζpζD − vnζpζD

≤ xT s
v

+ 2nζpζD

= µ(eT v2)
v

+ 2nζpζD

= ζpζD(eTv2) + 2nζpζD,

where the last equality follows because of v = µ
µ0

and µ0 = ζpζD. Now,

ζpζD(eTv2) + 2nζpζD = ζpζD(eTv2 + 2n)

= ζpζD(
∑
v2
i + 2n)

≤ ζpζD(
∑
q2(δ) + 2n)

= ζpζD(q2(δ)
∑

1 + 2n)

= ζpζD(q2(δ)n+ 2n)

= ζpζDn(q2(δ) + 2).

Therefore, (s0)Tx + (x0)T s ≤ (q(δ)2 + 2)nζpζD. Since x0, s0, x and s are positive we

obtain

(s0)Tx ≤ (q2(δ) + 2)nζpζD

(x0)Tx ≤ (q2(δ) + 2)nζpζD.
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Moreover, since x0 = ζpe and s0 = ζDe, we obtain

‖x‖1 ≤ (q2(δ) + 2)nζp

‖s‖1 ≤ (q2(δ) + 2)nζp,

thus part (2) is proven, which concludes the proof of the lemma.

Using Lemma 5.1.5, (5.32) becomes∥∥dfx∥∥2
+
∥∥dfs∥∥2

≤ (4δ2 + 2θn) + 18θ2

ζ2p

‖x‖21
v2min

+ 6θ
ζp

√
4δ2 + 2θn

‖x‖1
vmin

= (4δ2 + 2θn) + 18θ2

ζ2p

(
(2 + q(δ))2n2ζ2

p )q2(δ) + 6θ
ζp

√
4δ2 + 2θn(2 + q(δ))nζpq(δ)

)
= (4δ2 + 2θn) + 18θ2n2(2 + q(δ))2q2(δ) + 6θn

√
4δ2 + 2θn(2 + q(δ))q(δ)

Therefore, ∥∥dfx∥∥2
+
∥∥dfs∥∥2

≤ (4δ2 + 2θn) + (18θ2n2(2 + q(δ))2q2(δ) + 6θn
√

4δ2 + 2θn(2 + q(δ))q(δ).

(5.33)

We want δ(vf ) ≤ 1√
2

this implies that 4δ2(vf ) ≤ 2. From (5.17) we have

δ2(vf ) ≤
1
4

‖dfx‖2+‖dfs‖2
1−θ

2

1− 1
2

‖dfx‖2+‖dfs‖2
1−θ

 ≤ 2. (5.34)

Let us set u :=
‖dfx‖2+‖dfs‖2

1−θ then we have

1
4
u2 ≤ 2(1− 1

2
u)

1
4
u2 ≤ 2− u

1
4
u2 + u− 2 ≤ 0

u2 + 4u− 8 ≤ 0
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Solving for u, we have

u1,2 = −4±
√

16+32
2

= −2±
√

12

∼= 1.46.

Hence, we only choose the positive u-value. Thus, if u :=
‖dfx‖2+‖dfs‖2

1−θ ≤ 1.46, then

inequality (5.34) holds. The condition was also that (5.34) holds if
∥∥dfxdfs∥∥∞ ≤ 1− θ

which implies

⇒ ‖dfxdfs‖
1−θ ≤ 1

⇒ 1
2

‖dfx‖2+‖dfs‖2
1−θ ≤ 1

⇒ ‖dfx‖2+‖dfs‖2
1−θ ≤ 2.

Thus both conditions are satisfied, and we have

∥∥dfx∥∥2
+
∥∥dfs∥∥2 ≤ 1.46(1− θ) . (5.35)

Combining equations (5.33) and (5.35) we get

(4δ2 + 2θn) + 18θ2n2(2 + q(δ))2q2(δ) + 6θn
√

4δ2 + 2θn(2 + q(δ))q(δ) ≤ 1.46(1− θ).

(5.36)

We know that old δ(x, s;µ) ≤ τ ≤ 1√
2
. We also see that q(δ) = δ +

√
δ2 + 1 is

increasing in δ and therefore the entire left side of equation (5.37) is increasing in δ.

If we call (2 + q(δ))q(δ) = q̄, we have

4δ2 + 2θn+ 18q̄2n2θ2 + 6q̄nθ
√

4δ2 + 2θn ≤ 1.46(1− θ). (5.37)

Finally, we have to find τ and θ such that (5.37) is satisfied. The following table gives

the answer. Explanations of tabular solutions: psoln represents the solution of the left

inequality of (5.37) and fsoln represents the solution of the right inequality of (5.37).

The statement “f is less than p” implies that the θ parameter failed the inequality

(5.37) for the specified τ value.
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τ 1
8

1
4

1
2

θ psoln fsoln psoln fsoln psoln fsoln

1
10n

1.0621274 1.314 f is less than p f is less than p

1
12n

0.8520225 1.3383333 1.3134135 1.3383333 f is less than p

1
14n

0.7124501 1.3557143 1.1303083 1.3557143 f is less than p

Tab.1, Choice of Parameters τ, θ

Thus, τ = 1
4

and θ = 1
12n

are the best chosen parameters that satisfy inequality (5.37)

for any n, although practically for n ≥ 2.

The above discussion can be summarized in the following theorem.

Theorem 5.1.6. Let θ = 1
12n

, τ = 1
4
, and (x, s, µ) be the starting iteration with

δ(x, s, µ) = δ. Then after the feasibility step, we obtain (xf , sf ) that are strictly

feasible for Pv+ and δ(xf , sf , µ+) < 1√
2
.

5.2 Centering Step

After the feasibility step we have (xf , sf ) feasible for LCPν+ such that δ(xf , sf ;µ+) <

1√
2
. Our next goal is to perform several centering steps to get sufficiently close to the

µ+-center of the LCPν+ . Since (xf , sf ;µ+) is the starting iteration we denote them

as (x, s;µ) respectively and we denote δ(xf , sf , ;µ+) as δ. To obtain our centering

directon, we use the following system:

M∆x−∆s = 0

S∆x+X∆s = µe− xs.
(5.38)

Also, recall that

v =
√

xs
µ
, ∆x = xdx

v
, ∆s = sds

v
(5.39)
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Then (5.38) becomes

M̃dx− ds = 0

Sdx+Xds = v−1 − v.
(5.40)

Before we continue the analysis we give several helpful equations and inequalities.

Helpful Equations and Inequalities

From Chapter 4, we have that M̃dx = ds. Since M̃ is positive semi-definite, we can

write dxTds = dxTM̃dx ≥ 0, so dxTds ≥ 0. Let pv = dx+ ds and qv = dx− ds then

‖pv‖2 − ‖qv‖2 = pTv pv − qTv qv

= (dx+ ds)T (dx+ ds)− (dx− ds)T (dx− ds)

= 4dxTds.

(5.41)

Since dxTds ≥ 0, we conclude that ‖pv‖2 ≥ ‖qv‖2. Furthermore, we can write

dxTds ≤ 1
4
‖pv‖2

= 1
4
‖dx+ ds‖2

= δ2.

(5.42)

Therefore we have

0 ≤ dxTds ≤ δ2. (5.43)

From the equation (5.41) we get

‖pv‖2 − ‖qv‖2 = 4dxTds

‖qv‖2 = ‖pv‖2 − 4dxTds

≤ ‖pv‖2 , since dxTds ≥ 0

= ‖dx+ ds‖2

= 4δ2.

(5.44)
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Now we consider p2
v − q2

v :

p2
v − q2

v = (dx− ds)2 − (dx+ ds)2

= 4dxds

dxds = 1
4
(p2
v − q2

v)

|dxds| = 1
4
|(p2

v − q2
v)| .

(5.45)

Case I : p2
v − q2

v ≥ 0. Given that p2
v − q2

v ≤ p2
v it follows that

|dxds| = 1
4
|p2
v − q2

v |

= 1
4
(p2
v − q2

v)

≤ 1
4
p2
v

= 1
4
|pv|2 .

(5.46)

Case II : p2
v − q2

v ≤ 0. This implies q2
v − p2

v ≥ 0, i.e. |p2
v − q2

v | ≤ q2
v .

|dxds| = 1
4
|p2
v − q2

v |

≤ 1
4
|qv|2 .

(5.47)

Thus,

maxi |dxidsi| ≤ 1
4

max
{
|pv|2 , |qv|2

}
,

which leads to

maxi |dxidsi| = ‖dxds‖∞ ≤
1
4

max
{
‖pv‖2 , ‖qv‖2}

Therefore, from equation (5.44) we have,

‖dxds‖∞ ≤ δ2. (5.48)
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Next, we have

‖dxds‖2 = (dxds)T (dxds)

= (dx1ds1)2 + (dx2ds2)2 + ....+ (dxndsn)2

≤ (dx1ds1 + dx2ds2 + ....+ dxndsn)2

= (dxTds)2

≤ δ4.

(5.49)

Hence, ‖dxds‖ ≤ δ2.

Now, we can easily obtain similar inequalities for ∆x and ∆s:

∆xT∆s = (xv−1dx)T (sv−1ds)

= (dx
√

x
s

√
µ)T (ds

√
s
x

√
µ)

= µ(dx
√

x
s
)T (ds

√
s
x
)

= µdxTds

≤ µδ2,

(5.50)

‖∆x∆s‖∞ = maxi |∆xi∆si|

= maxi |µdxidsi|

= µmaxi |dxidsi|

= µ ‖dxds‖∞

≤ µδ2,

(5.51)

‖∆x∆s‖2 =
∑n

i=1(∆xi∆si)
2

=
∑n

i=1 µ
2(dxidsi)

2

= µ2
∑n

i=1(dxidsi)
2

= µ2 ‖dxds‖2 ,

‖∆x∆s‖ = µ ‖dxds‖

≤ µδ2.

(5.52)
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Continuing with the analysis we have that the new centering iterate is x+ =

x+ ∆x and s+ = s+ ∆s. Then,

x+s+ = (x+ ∆x)(s+ ∆s)

= xs+ x∆s+ s∆x+ ∆x∆s

= xs+ (µe− xs) + ∆x∆s

= µe+ ∆x∆s.

(5.53)

using equation (5.39) we have

x+s+ = µe+ xdx
v

sds
v

= µe+ µdxds

= µ(e+ dxds).

(5.54)

Lemma 5.2.1. (x+)T s+ ≤ µ(n+ δ2)

Proof. We have

(x+)T s+ = eT (x+s+)

= eT (x+ ∆x)(s+ ∆s)

= eT (µe+ ∆x∆s)

= µeT e+ eT∆x∆s

= µn+ ∆xT∆s

≤ µn+ µδ2

= µ(n+ δ2).

(5.55)

The immediate consequence is the following corollary.

Corollary 5.2.2.

‖v‖2 ≤ n+ δ2.



54

Proof. We have

‖v‖2 = vTv

= (
√

xs
µ

)T (
√

xs
µ

)

= 1
µ
(x1s1 + x2s2 + ....+ xnsn)

≤ 1
µ
(µ(n+ δ2))

= n+ δ2.

(5.56)

We know the initial iterate of the centering step is feasible because the requirement of

the feasibility step is to get strictly feasible iterates for the full Newton step; therefore,

e+ dxds ≥ 0 or strictly feasible when e+ dxds > 0. Also from the feasibility step we

know δ < 1√
2
< 1.

Lemma 5.2.3. If δ < 1, then x+ and s+ are positive, i.e., they are strictly feasible

and δ(x+, s+, µ) ≤ δ2

2
√

1−δ2 .

Proof. Let δ+ = δ(x+, s+, µ) and v+ =
√

x+s+

µ
. Since δ(v) = 1

2
‖v−1 − v‖, we have

δ+ = 1
2
‖(v+)−1 − v+‖

= 1
2
‖(v+)−1(e− (v+)2)‖ .

(5.57)

From (5.53) we have x+s+ = µ(e + dxds), and v+ becomes v+ =
√
e+ dxds. By

substituting this value into the equation (5.57) we get
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2δ+ =
∥∥(
√
e+ dxds)−1 − (e− e− dxds)

∥∥
=
∥∥∥ dxds√

e+dxds

∥∥∥
≤ ‖dxds‖
‖√e+dxds‖

≤ ‖dxds‖√
1−‖dxds‖∞

≤ δ2√
1−δ2 .

(5.58)

Thus,

δ+ ≤ δ2

2
√

1− δ2

Corollary 5.2.4. If δ(x, s, µ) ≤ 1√
2

then δ(x+, s+, µ) ≤ δ2(x, s, µ).

Proof. From Lemma 5.2.3 we have

δ(x+, s+, µ) ≤ δ2(x,s,µ)

2
√

1−δ2(x,s,µ)

≤ δ2(x,s,µ)

2
√

1− 1
2

= δ2(x,s,µ)√
2

≤ δ2(x, s, µ),

(5.59)

which proves the corollary.

Corollary 5.2.4 actually indicates that we have quadratic convergence if the iterates

are sufficiently close to the µ center.

To determine the necessary number of centering steps, we use the fact that

δ(x+, s+;µ) ≤ δ2, and we continue with centering steps until δ(x+, s+;µ) ≤ τ = 1
4
.



56

How many do we need? Let k denote the number of centering steps. Then we have

δ2k ≤ 2−2

log δ2k ≤ log 2−2

2k log δ ≤ −2 log 2

2k log 1√
2
≤ −2 log 2

−k log 2 ≤ −2 log 2

k ≥ 2

(5.60)

Therefore, we require only two centering steps per each feasibility step. Thus, all the

iterates of the algorithm are guaranteed to be in the same neighborhood (τ = 1
4
) of

the central path. This leads to the following estimate on the number of iterations to

obtain ε-approximate solution of the LCP.

Theorem 5.2.5. If θ = 1
12n

, µ0 = ζP ζD, and τ = 1
4

then the Infeasible Full Newton-

step IPM requires at most 12nlog 33(x0)T (s0)
32ε

iterations to obtain ε-approximate solution

of LCP(M,q) or equivalently O(n log n
ε
) iterations.

Proof. At the start of the algorithm, the duality gap has a certain value and in each

iteration the duality gap is reduced by the factor 1 − θ. The duality gap can be

transformed as follows

xTk sk ≤ µk(n+ δ2)

≤ µk(n+ 1
16

)

= (1− θ)kµ0(n+ 1
16

)

= (1− θ)kζP ζD(n+ 1
16

)

≤ ζP ζD(n+ 1
32
n)

≤ (1− θ)k(x0)T (s0)33
32
≤ ε
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This is satisfied if

log[(1− θ)k(x0)T (s0)33
32

] ≤ log ε

log(1− θ)k + log(x0)T (s0) + log 33
32
≤ log ε

log(1− θ)k ≤ log ε− log(x0)T (s0)− log 33
32

k log(1− θ) ≤ log ε− log(x0)T (s0)− log 33
32

−k log(1− θ) ≥ − log ε+ log(x0)T (s0) + log 33
32

since −log(1− θ) ≥ θ, we have

kθ ≥ log
(x0)T (s0) 33

32

ε

k ≥ 1
θ

log
(x0)T (s0) 33

32

ε

k ≥ 1
1

12n

log
(x0)T (s0) 33

32

ε

k ≥ 12n log 33(x0)T (s0)
32ε

concludes the number of iterations needed for the feasibility step. Since we need

two centering steps per each feasibility step, the total number of iterations needed is

k ≥ 2 × 12n log 33(x0)T (s0)
32ε

which equals 24n log 33(x0)T (s0)
32ε

. It is easy to see that the

number of iterations are O(n log n
ε
).



CHAPTER 6

NUMERICAL RESULTS

In this chapter, the Infeasible Full Newton-step interior-Point Algorithm for LCP,

as given in Table 4.1, is implemented in MATLAB. We performed numerical tests

of our implementation of the algorithm for a set of problems of various dimensions.

Some problems were generated “by hand” and others were randomly generated. The

summary of results is given in tables below. Note that for all tables below, excluding

table 2, ζP = 1 and ζD = 1.

6.1 Generating Sample Problems

Generating Matrix M

Before we go into the numerical data, we briefly describe how the test problems

were generated. The first group of problems were manually generated. The PSD

matrices of the problems were generated by using “rand” function as described below.

A = rand(k, n), where 1 ≤ k ≤ n

M = ATA.

Starting points and initial conditions

To initiate the progress we first choose x0 and s0 as vectors of ones. We also

examine the more general case x0 = ζP e, s
0 = ζDe for some parameter ζp, ζD > 0. For

our first testing, we set ζP = 1 and ζD = 1, and we take the set of parameters τ = 1
4

and θ = 1
12n

as required by the algorithm in order to guarantee convergence. After

the test for ζ ′s of the same value, we test different ζ values to show the efficiency of

the algorithm converging from different (feasible/infeasible) starting points.



59

Parameters

As will be shown, several sets of parameters were tested. We take action on

a τ -neighborhood (τ = 1
4
) and more aggressive reduction of µ-parameter at each

iteration, by taking the barrier parameter to be a fixed value independent of the size

of the problem (θ = 1√
12n

). In this case we can not guarantee convergence, however,

in most instances the algorithm still converges.

Finally, we try a wider τ -neighborhood (τ = 1
3
) and more aggressive reduction

of µ-parameter at each iteration, by taking the barrier parameter to be a fixed value

independent of the size of the problem (θ = 1√
6n

). This case again, does not guarantee

convergence, however, in most instances the algorithm still converges.

6.2 Summary of Numerical Results

We generated 9 test problems. Two of them were generated manually (denoted as

EH) with dimensions up to n = 5 and seven were randomly generated (denoted ER)

with dimensions up to n = 200. This set of test problems were solved with the

following set of parameters.

1. τ = 1
4

and θ = 1
12n

,

2. τ = 1
4

and θ = 1√
12n

,

3. τ = 1
3

and θ = 1√
6n

The number of iterations as well as CPU time (CPU time in seconds) for each case

are listed in the tables below.
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Problem Size CPUtime Iterations

EH1 3× 3 1.9912e−2 374

ER2 3× 3 1.6756e−2 366

EH3 5× 5 2.102e−2 644

ER4 5× 5 2.4774e−2 709

ER5 5× 5 2.5357e−2 714

ER6 10× 10 7.082e−2 1609

ER7 50× 50 1.919146 10559

ER8 100× 100 12.953707 23197

ER9 200× 200 139.182232 50548

Tab.1, θ = 1
12n
, τ = 1

4

To further show the efficiency of the algorithm, we also tested example EH1 with

different µ starting point values, where again µ = ζP ζD. Hence we have the following:

Problem ζP ζD Size CPUtime Iterations

EH1 2 3 3× 3 2.4180e−2 430

EH1 7 15 3× 3 2.7318e−2 532

EH1 100 48 3× 3 3.2984e−2 667

Tab.2, θ = 1
12n
, τ = 1

4

Table 2 shows us that no matter where our starting point is, rather it be feasible

or infeasible, the IIPM Algorithm will converge on these problems. The number of

iterations slightly increase; however, the algorithm converged to the same solution.

Note: We would also like to point out that the solution of EH1 obtained using our

IPM matches the solution obtained from using the classical Lemke’s algorithm. This
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is a strong indicator of the correctness of our implementation of IIPM.

In the Table 3 below we fixed the barrier update parameter θ for all the examples

and we did not change the threshold parameter. So τ = 1
4

and θ = 1√
12n

. Though this

update of θ = 1√
12n

does not guarantee convergence, if it converges, the convergence

is much faster.

Problem Size CPUtime Iterations

EH1 3× 3 4.471e−3 58

ER2 5× 5 3.102e−3 83

ER3 5× 5 6.087e−3 86

ER4 10× 10 8.689e−3 144

ER5 50× 50 8.9837e−2 423

ER6 100× 100 3.73567e−1 661

ER7 200× 200 2.949483 1023

Tab.3, θ = 1√
12n
, τ = 1

4

Although the convergence is not guaranteed, we see that the algorithm still con-

verges for all test problems, and that there is a significant reduction of CPU time as

well.

In the Table 4 below we increase both the threshold parameter and the barrier

update parameter. So τ = 1
3

and θ = 1√
6n

.
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Problem Size CPUtime Iterations

EH1 3× 3 5.816e−3 57

ER2 3× 3 4.642e−3 39

ER3 5× 5 5.082e−3 59

ER4 10× 10 7.377e−3 98

ER5 50× 50 9.1837e−2 297

ER6 100× 100 2.65103e−1 464

ER7 200× 200 2.089771 720

Tab.4, θ = 1√
6n
, τ = 1

3

The increase in the paramaters θ and τ leads to a further reduction of iterations

and CPU time. Even this preliminary implementation shows that the method is

computationally competitive with IPM methods that require calculation of a step size

and very often feasbility condition for the starting point. Both of these conditions

are not required here.



CHAPTER 7

CONCLUSION

In this thesis, we consider the Monotone Linear Complementarity Problem (LCP)

defined by (2.1) with positive semidefinite matrix. Although LCP is not an optimiza-

tion problem, it is closely related to many important optimization problems and it

has many important applications.

The LCP problem can be solved using classical simplex-type (pivoting) Lemke’s

algorithm that is described in Chapter 3. However in the last two decades a new class

of Newton-type IPM have been developed and successfully applied to solve LCP.

We propose a new IPM to solve the Monotone LCP. The algorithm is given in

Table 4.1 in Chapter 4. There are two main features of the IPM. First is that there

is no calculation of a step-size, i.e., we use full Newton step at each iteration. The

second feature is that we can start from any point. This point may or may not

be feasible, and that is why we call the algorithm Infeasible Full-Newton-Step IPM

(IIMP). We show that the convergence of the algorithm is guaranteed by appropriate

choice of parameters θ (barrier parameter) and τ (threshold parameter). We prove

that if θ = 1
12n

and τ = 1
4

then the iteration bound is O(n log n
ε
) which matches the

best known iteration bound for these types of methods. This convergence analysis is

the emphasis of the thesis and it is provided in Chapter 5.

If θ depends on n such as in our algorithm, θ = O( 1
n
), then the algorithm call a

short-step algorithm. If θ is independent of n such as θ = O(1), then the algorithm

is called a long-step algorithm. In our method, in order to prove convergence result,

parameter θ depends on n, therefore the method is a short-step algorithm.

Furthermore, in Chapter 6 we also provided an initial implementation of the
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method and tested it on a small set of test problems of various dimensions and var-

ious starting points. Several sets of parameters were tested in the implementation

of the algorithm. First we set the parameter to be τ = 1
4

and θ = 1
12n

as required

by the algorithm in order to guarantee convergence. Next, we maintained all pa-

rameters and changed the starting position by changing the starting points. Lastly,

we tried a wider τ -neighborhood, θ = 1√
6n

, τ = 1
3

and this yielded more aggressive

reductions of µ-parameter at each iteration and quicker convergence;(the number of

itererations reduced significantly) however, in general, convergence in this case may

not be achieved.

The results we obtained show that the method converges for all test problems

even in the case when choice of parameters does not theoretically guarantee conver-

gence. Now, the initial implementation although not sophisticated still show promis-

ing results. Even more importantly, the fact that convergence was reached no matter

the starting point shows the robustness of the algorithm. Though the number of

iterations increased somewhat with respect to greater infeasible starting points, the

increase in CPU time was minimal. Overall, the proposed algorithm is both theoret-

ically and practically promising.
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APPENDIX A

MATLAB Codes

The following is the listing of the main program of the Infeasible Full Newton

Step IPM for LCP. The input data is generated either randomly or manually. The

results are yield by using the subroutine IPMtre.m which implements the Algorithm

to solve the problem.

A.1 Main Program : mainIPM.m

%program Thesis

clc

clear;

tic

epsilon=10^-4;

%The following Load commands inputs the data to be

%calculated by hand.

% load M.txt

% load q.txt

% For the Matrices generated by using random generater (for the second set of examples)

%choose n>=2

A = rand(k,n);

%k is in the interval [1,n]

%We create a positive semidefinite matrix M from matrix A

M = A’A;

n=length(M);

q=rand(n,1);

eig(M);

% theta=1/(12*n);

% theta=1/sqrt(12*n);

theta=1/sqrt(6*n);

% tau=1/4

tau=1/3;

[x s] = IPMtre(M,n,epsilon,theta,tau,q);

toc
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A.2 IIPM Algorithm : IPMtre.m

function [x,s]= IPMtre(M,n,epsilon,theta,tau,q)

zetap=1;

zetad=1;

x=(zetap)*ones(n,1);

s=(zetad)*ones(n,1);

mu=(zetap)*(zetad);

nu=1;

%outer loop

r=(-M*x-q+s);

count1=0;

count2=0;

ru=nu*r;

while max(x’*s,norm(ru))>=epsilon

count1=count1+1;

v=sqrt(x.*s./mu);

X = diag(x);

S = diag(s);

Dx = (S+ X*M)\( X*theta*nu*r + (1-theta)*mu*ones(n,1) -X*S*ones(n,1));

Ds = M*Dx - theta*nu*r;

x=x+Dx;

s=s+Ds;

mu=(1-theta)*mu;

nu=(1-theta)*nu;

v=sqrt(x.*s./mu);

delta=norm(v.^(-1) - v)/2;

ru=nu*r;

%inner loop

count2=0;

while delta >= tau

count2=count2+1;

Dx = (S+ X*M)\(mu*ones(n,1)-X*S*ones(n,1));

Ds = M*Dx ;

x=x+Dx;

s=s+Ds ;

v=sqrt(x.*s./mu);

delta=0.5*norm(v-v.^(-1));

end
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end

count1

count2

end
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APPENDIX B

MATLAB Output

Below we provide the entire output for Example 3.3.

B.1 Output of EH1

% Mathlab output of the example describe in both Lemke’s method and the Infeasible IPM

count1 =

374

count2 =

0

x =

0.0000

2.0000

1.0000

s =

1.0000

0.0000

0.0000

Elapsed time is 0.019912 seconds.



69

BIBLIOGRAPHY

[1] Bai Y., Roos C., A New Class of Polynomial Interior-Point Algorithms for Linear
Complementarity Problems, Pacific Journal of Optimization, Vol. 4, No. 1, (2008).

[2] Bai Y., Lesaja G., Roos C., Wang G., Ghami M. El, A Class of Large and Small
Update Primal-Dual Interior-Point Algorithms for Linear Optimization, Journal
of Optimization Theory and Applications, Vol. 138, No. 3, pp. 341-359, (2008).

[3] Cottle R., Pang J., Stone R., The Linear Complementarity Problem, Academic
Press, Inc., Boston, (1992).

[4] Cottle and Dantzig (1968), Complementary pivot theory of mathematical pro-
gramming, Linear Algebra and Its Applications 1.

[5] Facchinei F., Pang J.S., Finite-Dimensional Variational Inequalities and Com-
plementarity Problems, Springer, New York, (2003)

[6] Karmarkar N., A New Polynomial Time Algorithm for Linear Programming,
Combinatorica, Vol 4, No. 4, (1984).

[7] Khachiyan L.G., A Polynomial Algorithm in Linear Programming, Soviet Math-
ematics Doklady, 20, pp. 373-395 (1984).

[8] Klee V. and Minty G.J., How Good is the Simplex Algorithm? Inequalities, III,
pp. 159-175, Academic Press, New York, NY, (1972).

[9] Kojima M., Megiddo N., Noma T., Yoshise A., A Unified Approach to Interior
Point Algorithms for Linear Complementarity Problems, Springer-Verlag, Berlin,
Germany (1991).

[10] Lemke C.E., Bimatrix Equilibrium Points and Mathematical Programming, Man-
agement Science II, pp. 681-689, (1965).

[11] Lesaja G., Introducing Interior-Point Methods for Introductory Operations Re-
search Courses and/or Linear Programming Courses, Open Operational Research
Journal, Vol. 3, pp. 1-12, (2009).



70

[12] G. Lesaja and C. Roos. Unified analysis of kernel-based interior-point methods
for P∗(κ)-LCP. SIAM Journal on Optimization, 20(6): 3014-3039, 2010.

[13] Lesaja G., Mansouri H., Roos C.,Zangiabadi M., Full-Newton-Step Interior-point
Methods for Linear Optimization Based on Locally Self-Concordant Barrier Func-
tions, Mathematical Programming, accepted, (2010).

[14] Mansouri H., Full-Newton-Step Interior-point Methods for conic Optimization,
Ph.D. Thesis, TU Delft, Netherland, (2008).

[15] Nesterov Y., Nemirovski A., Interior-Point Polynomial Algorithms in Convex
Programming, SIAM Studies in Applied Mathematics, Philadelphia, PA, (1994).

[16] Megiddo N., Pathways to the Optimal Set in Linear Programming, Progress in
Mathematical Programming: Interior Point and Related Methods, pp. 131-158,
Springer, New York, (1989).

[17] Peng J.S., Roos C., Terlak T., Self-Regularity: A New Paradigm for Primal-Dual
Interior-Point Algorithms, Princeton University Press, (2002)

[18] Roos C., A Full-Newton Step O(n) Infeasible Interior-Point Algorithm for Linear
Optimization, SIAM Journal on Optimization, 16(6): 1110-1136, 2006.

[19] Roos C., Terlaky T., Vial J.P., Theory and Algorithms for Linear Optimization,
John Wiley and Sons, Chichester, UK (1997).

[20] Shor N.Z., Cut-off Method with Space Extension in Convex Programming Prob-
lems, Cybernetics 13, pp. 94-96, (1977).

[21] Sonnevend G., An “analytic center” for polyhedrons and new classes of global
algorithms for linear (smooth, convex) programming, System Modeling and Opti-
mization. Proceedings of the 12th IFIP-Conference, Budapest, Hungary, Septem-
ber 1985. Lecture Notes in Control and Information Sciences, vol. 84, pp. 866-876.
Springer, Berlin (1986).

[22] Wright S., Primal-Dual Interior-Point Methods, SIAM Publishing, Philadelphia,
PA (1997).

[23] Wright S., Ferris M., Mangasarian O., Linear Programming with MATLAB,
SIAM, Series on Optimization, (2007).



71

[24] Nemirovski A., Yudin D.B., Informational Complexity and Effective Methods of
Solution for Convex Extremal Problems, Ekonomika i Matematicheshie Metody
12 (in Russian), pp. 357-369, (1976).


	Infeasible Full-Newton-Step Interior-Point Method for the Linear Complementarity Problems
	Recommended Citation

	tmp.1374240943.pdf.YpN9B

