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ABSTRACT

The Weibull distribution is a well known and common distribution. In this thesis,

theoretical properties of weighted Weibull distributions are presented. Properties

of the non-weighted Weibull distribution are also reiterated for comparison. The

probability density functions, cumulative distribution functions, survival functions,

hazard functions and reverse hazard funtions are given for each distribution. In

addition, Glaser’s Lemma is applied to determine the behavior of the hazard functions.

The standardized moments, differential entropy, Fisher information and results based

on the likelihood function are given for each distribution as well. These results are

also shown for the Rayleigh distribution, a special case of the Weibull distribution,

and its weighted versions.
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CHAPTER 1

INTRODUCTION

The usefulness and applications of parametric distributions including Weibull, Raleigh

in various areas including reliability, renewal theory, and branching processes can be

seen in recent papers by several authors including Oluyede (2006) and in references

therein. The Weibull and inverse Weibull distributions are very useful models that

can be used to describe the degradation phenomena of mechanical components such

as pistons, crank shaft of diesel engines. These models also provide a reasonably good

fit to data on times to breakdown of an insulating fluid, subject to constant tension,

Nelson (1982).

Applications of weighted distribution to biased samples in various areas includ-

ing medicine, ecology, reliability, and branching processes can be seen in Patil and

Rao (1978), Gupta and Kirmani (1990), Gupta and Keating (1985), Oluyede (1999)

and in references therein. In a weighted distribution problem, a realization x of X

enters into the investigators record with probability proportional to a weight func-

tion W (t). The recorded x is not an observation of X, but rather an observation on

a weighted random variable XW . Thus, the focus of this thesis is weighted Weibull

(Rayleigh) distributions with weight functions w(t) = tc (which can account for cer-

tain biasedness’) and w(x) = 1
λX(x)

, where λX(x) is the hazard function of X (this

weight function yields the renewal distribution).

An introduction to the distributions mentioned above is provided in chapter 2.

The probability density functions, cumulative distribution functions, survival func-

tions, hazard functions and reverse hazard functions are given. In addition, Glaser’s

Lemma is introduced and applied to determine the behavior of the hazard functions
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for the weighted Weibull (Rayleigh) and renewal Weibull (Rayleigh) distributions.

The moments are given in chapter 3. Using these results the mean, variance,

standard deviation and coefficients of variation, skewness and kurtosis are computed.

The latter three are graphed for comparison.

Differential entropy and Fisher information are presented in chapter 4. Rigorous

calculations are provided to justify each result. Conclusions are made about the

behavior of each result with respect to the parameters.

The results on likelihood functions are given in chapter 5. The maximum like-

lihood estimates are calculated for each distribution. Likelihood ratio tests for com-

paring parent distributions and their weighted counterparts are presented along with

some test statistics.



CHAPTER 2

DISTRIBUTIONS AND PROPERTIES

2.1 Basic Notions

Suppose the distribution of a continuous random variable X has parameter set θ∗ =

{θ1, θ2, ..., θn}. Let the probability density function (pdf) and cumulative density

function (cdf) of X be given by f(x; θ∗) = f(x) and F (x; θ∗) = F (x), respectively.

The survival function of X is given by

SX(x) = P (X > x) = 1− P (X ≤ x) = 1− F (x). (2.1)

Note that SX(x) is monotonically decreasing and, if X is non-negative,∫ ∞
0

SX(x)dx = EX(X). (2.2)

The hazard function and the reverse hazard function of X are given by

λX(x) =
f(x)

SX(x)
(2.3)

and

τX(x) =
f(x)

F (x)
, (2.4)

respectively.

If λX(x) is monotonically increasing (decreasing), then the distribution of X has

a(n) increasing (decreasing) failure rate, denoted IFR (DFR). If λX(x) is constant,

then the distribution of X has a constant failure rate (CFR). Furthermore, if λX(x) is

constant and X is non-negative, then EX(X) = 1
λX(x)

. This can be seen by multiplying

both sides of equation (2.3) by SX(x) and integrating both sides over the support of X.
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If the distribution of random variable Y is the weighted distribution of (non-

negative, continuous random variable) X, with weight function w(t) > 0, then the

pdf of Y is given by

g(y; θ∗|w(t)) = g(y) =
w(y)f(y; θ∗)

EX [w(X)]
, 0 < EX [w(X)] <∞. (2.5)

The weight function w(t) = tc can account for certain biases in the underlying distri-

bution (for example, w(t) = t is used if the underlying distribution is length biased).

A special case of a weighted distribution is the renewal distribution. The renewal

distribution occurs when w(t) = 1
λX(t)

. If Z has the renewal distribution of X, then

the pdf of Z is given by

fR

(
z; θ∗|w(t) =

1

λX(t)

)
= fR(z) =

SX(z)

EX(X)
. (2.6)

2.1.1 Useful Functions

In this section some useful functions are presented. The gamma function is given by

Γ(k) =

∫ ∞
0

tk−1e−tdt. (2.7)

Two important properties of the Gamma function are

Γ(k + 1) = kΓ(k), (2.8)

and

Γ

(
1

2

)
=
√
π. (2.9)

Denote Γ

(
j
β

+1

)
, where β is the scale parameter of the Weibull distribution (β = 2 for

the Rayleigh distribution), by Γj. The lower and upper incomplete gamma functions

are given by

γ(k, x) =

∫ x

0

tk−1e−tdt (2.10)
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and

Γ(k, x) =

∫ ∞
x

tk−1e−tdt, (2.11)

respectively. Note that Γ(k) = γ(k, x) + Γ(k, x).

The error function is given by

erf(x) =
2√
π

∫ ∞
x

etdt =
2√
π

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)
. (2.12)

A special relation of the lower incomplete gamma function and the error function is

γ

(
1

2
, x

)
=
√
πerf(x). (2.13)

Although some functions presented later (for example, the mgf of the Rayleigh dis-

tribution) can be written in terms of the error function, this thesis will not include

the error function outside of this section.

2.2 Glaser’s lemma

Lemma 2.2.1. Let f(x) be a twice differentiable probability density function of a

continuous random variable X. Define η(x) = −f ′(x)
f(x)

, where f ′(x) is the first derivative

of f(x) with respect to x. Furthermore, suppose the first derivative of η(x) exist.

1. If η′(x) < 0, for all x > 0, then the hazard function is monotonically decreasing

(DFR).

2. If η′(x) > 0, for all x > 0, then the hazard function is monotonically increasing

(IFR).

3. If there exist x0 such that η′(x) > 0, for all 0 < x < x0;, η
′(x0) = 0 and

η′(x) < 0 for all x > x0. In addition, limx→0 f(x) = 0, then the hazard function is

upside down bathtub shape (UBT).
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4. If there exist x0 such that η′(x) < 0, for all 0 < x < x0;, η
′(x0) = 0 and

η′(x) > 0 for all x > x0. In addition, limx→0 f(x) = ∞, then the hazard function is

bathtub shape (BT).

5. If η′(x) = 0, for all x > 0, then the hazard function is constant(CFR).

Note that

ηF (x) =
−f ′(x)

f(x)
= − d

dx
ln[f(x)]. (2.14)

It follows that for a weighted distribution with pdf g(y),

ηG(y) = − d

dy
ln[g(y)]

= − d

dy
ln[w(y)]− d

dy
ln[f(y)] +

d

dy
ln(EX [w(X)])

= ηW (y) + ηF (y) (2.15)

and

η′G(y) = η′W (y) + η′F (y). (2.16)

For a renewal distribution with pdf fR(z)

ηFR(z) =
− S′

X(z)

EX(X)

SX(z)
EX(X)

=
f(z)

SX(z)
= λX(z). (2.17)

2.3 Weibull Distribution

Let X have a Weibull distribution with shape parameter θ and scale parameter β (de-

noted by X ∼ Weibull(θ, β)). The probability density function (pdf) and cumulative

density function (cdf) are given by

f(x) =
β

θβ
xβ−1e−(

x
θ
)β , x ≥ 0, θ > 0, β > 0, (2.18)
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and

F (x) =

∫ x

0

β

θβ
tβ−1e−(

x
θ
)βdt = 1− e−(

x
θ
)β , x ≥ 0, α > 0, β > 0, (2.19)

respectively. It follows that the corresponding survival function, hazard and reverse

hazard functions are given by

SX(x) = 1− F (x) = e−(
x
θ
)β , (2.20)

λX(x) =
f(x)

SX
=

β

θβ
xβ−1, (2.21)

and

τX(x) =
f(x)

F (x)
=

βxβ−1

θβ(e(
x
θ
)β − 1)

, (2.22)

respectively.

By observing the fact that

λ′X(x) =
β(β − 1)

θβ
xβ−2, (2.23)

it is easy to see the following:

(1)The Weibull distribution has a DFR if β < 1.

(2)The Weibull distribution has a CFR if β = 1.

(3)The Weibull distribution has an IFR if β > 1.

If Glaser’s Lemma is used to determine the behavior of λX(x) then

f ′(x) =
β(β − 2)

θβ
xβ−1e−(

x
θ
)β − β

θβ
xβ−1e−(

x
θ
)β β

θβ
xβ−1

= f(x)

(
β − 1

x
− β

θβ
xβ−1

)
, (2.24)

therefore,

ηF (x) =
−f ′(x)

f(x)
=

β

θβ
xβ−1 − β − 1

x
, (2.25)
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and

η′F (x) =
β(β − 1)

θβ
xβ−2 +

β − 1

x2
. (2.26)

Equation (2.26) yields the same conclusions reached before. Although Glaser’s Lemma

was unnecessary in this particular case, there are many cases in which the behavior

of the hazard function is not easily seen.

2.3.1 Rayleigh Distribution

If random variable X ∼ Rayleigh(σ), then X ∼ Weibull(
√

2σ, 2). Therefore, the

Rayleigh distribution has an IHR and the pdf, cdf, survival function, hazard function

and reversed hazard function are given by

f(x) =
xe−

1
2
( x
σ
)2

σ2
, x ≥ 0, σ > 0, (2.27)

F (x) = 1− e−
1
2
( x
σ
)2 , x ≥ 0, σ > 0, (2.28)

SX(x) = e−
1
2
( x
σ
)2 , (2.29)

λX(x) =
x

σ2
, (2.30)

and

τX(x) =
x

σ2(e
1
2
( x
σ
)2 − 1)

, (2.31)

respectively.

2.4 Weighted Weibull Distribution

Let random variable Y have a weighted Weibull distribution with shape parameter θ,

scale parameter β and weight function w(t) (denoted by Y ∼ WeibullW (θ, β;w(y))).
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If w(t) = tc, then the pdf and cdf are given by

g(y) =
β

θβ+cΓc
yc+β−1e−(

y
θ
)β , y ≥ 0, θ > 0, β > 0, (2.32)

and

G(y) =

∫ y

0

g(y)dy

=
1

Γc

∫ ( y
θ
)β

0

u
c
β e−udu

=
γ( c

β
+ 1, (y

θ
)β)

Γc
, y ≥ 0, θ > 0, β > 0, (2.33)

respectively. The survival function, hazard function and reverse hazard function are

given by

SY (y) =
Γ( c

β
+ 1, (y

θ
)β)

Γc
, (2.34)

λY (y) =
β

θβ+cΓ( c
β

+ 1, (y
θ
)β)

yc+β−1e−(
y
θ
)β (2.35)

and

τY (y) =
β

θβ+cγ( c
β

+ 1, (y
θ
)β)

yc+β−1e−(
y
θ
)β . (2.36)

respectively.

The behavior of λY (y) is not as simple to determine as λX(x). Using the fact

that

η′W (y) = − d2

dy2
ln[w(y)] =

c

y2
, (2.37)

along with (2.26) and Glaser’s Lemma results in

η′G(y) =
c

y2
+
β(β − 1)

θβ
yβ−2 +

β − 1

y2
=
c+ β − 1 + β

θβ
(β − 1)yβ

y2
. (2.38)

Setting (2.38) to zero and solving for y yields

y0 = θ

(
1− c− β
β(β − 1)

) 1
β

. (2.39)
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Equations (2.38) and (2.39) lead to the following conclusions:

(1) If c+ β ≤ 1 the distribution has a DFR.

(2) Since y < y0 implies η′G(y0) > 0 and y > y0 implies η′G(y0) < 0, the weighted

Weibull has a UBTFR if c+ β > 1 and β < 1 (see figure 1.5).

(3) If β ≥ 1 the distribution has a IFR.

2.4.1 Weighted Rayleigh distribution

Let random variable Y ∼ RayleighW (σ;w(y)), then Y ∼ WeibullW (
√

2σ, 2;w(y)).

Therefore, if w(t) = tc, the weighted Rayleigh distribution has an IHR and the pdf,

cdf, survival function, hazard function and reverse hazard function are given by

g(y) =
1

2
c
2σc+2Γc

yc+1e−
1
2
( y
σ
)2 , y ≥ 0, σ > 0, (2.40)

G(y) =
γ( c

2
+ 1, 1

2
( y
σ
)2)

Γc
, y ≥ 0, σ > 0, (2.41)

SY (y) =
Γ( c

2
+ 1, 1

2
( y
σ
)2)

Γc
, (2.42)

λY (y) =
1

2
c
2σc+2Γ( c

2
+ 1, 1

2
( y
σ
)2)
yc+1e−

1
2
( y
σ
)2 , (2.43)

and

τY (y) =
1

2
c
2σc+2γ( c

2
+ 1, 1

2
( y
σ
)2)
yc+1e−

1
2
( y
σ
)2 , (2.44)

respectively.

2.5 Weibull Renewal Distribution

Let random variable Z have a Weibull renewal distribution with shape parameter θ

and scale parameter β (denoted by Z ∼ WeibullR(θ, β)). The pdf and cdf of the
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Weibull renewal distribution are given by

fR(z) =
βe−(

z
θ
)β

θΓ( 1
β
)
, z ≥ 0, θ > 0, β > 0, (2.45)

and

FR(z) =

∫ z

0

fR(t)dt

=
1

Γ( 1
β
)

∫ ( z
θ
)β

0

u
1
β
+1e−udu

=
γ( 1

β
, ( z
θ
)β)

Γ( 1
β
)

, z ≥ 0, θ > 0, β > 0, (2.46)

respectively. The survival function, hazard function and reverse hazard functions are

given by

SZ(z) =
Γ( 1

β
, ( z
θ
)β)

Γ( 1
β
)

, (2.47)

λZ(z) =
βe−(

z
θ
)β

θΓ( 1
β
, ( z
θ
)β)

, (2.48)

and

τZ(z) =
βe−(

z
θ
)β

θγ( 1
β
, ( z
θ
)β)

. (2.49)

respectively.

Based on the results from (2.17) and section 2.3 the following conclusions are

made:

(1)The Weibull renewal distribution has a DFR if β < 1.

(2)The Weibull renewal distribution has a CFR if β = 1.

(3)The Weibull renewal distribution has an IFR if β > 1.
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2.5.1 Rayleigh Renewal Distribution

If random variable Z ∼ RayleighR(σ), then Z ∼ WeibullR(
√

2σ, 2). Therefore, the

Rayleigh renewal distribution has an IHR and the pdf, cdf, survival function, hazard

function and reverse hazard function are given by

fR(z) =

√
2

π

e−
1
2
( z
σ
)2

σ
, z ≥ 0, σ > 0, (2.50)

FR(z) =
γ(1

2
, 1
2
( z
σ
)2)

√
π

, z ≥ 0, σ > 0, (2.51)

SZ(z) =
Γ(1

2
, 1
2
( z
σ
)2)

√
π

, (2.52)

λZ(z) =

√
2e−

1
2
( z
σ
)2

σΓ(1
2
, 1
2
( z
σ
)2)
, (2.53)

and

τZ(z) =

√
2e−

1
2
( z
σ
)2

σγ(1
2
, 1
2
( z
σ
)2)
, (2.54)

respectively.
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2.6 Useful Graphs

Figure 2.1: Weibull pdf with θ = 1

Figure 2.2: λX(x) with θ = 1
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Figure 2.3: Rayleigh pdf

Figure 2.4: Length biased Weibull pdf with θ = 1
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Figure 2.5: λY (y) with θ = 1

Figure 2.6: Length biased Rayleigh pdf
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Figure 2.7: Weibull renewal pdf with θ = 1

Figure 2.8: λZ(y) with θ = 1
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Figure 2.9: Rayleigh renewal pdf



CHAPTER 3

MOMENTS, MOMENT GENERATING FUNCTION IN WEIGHTED

WEIBULL DISTRIBUTION AND ITS VARIANTS

3.1 Basic Notions

Recall that the nth central moment is of random variable X is given by

µX,n = EX [(X − µX)n]. (3.1)

The coefficients of variation (CV), skewness (CS) and kurtosis (CK) are given by

CV =
σX
µX

, µX 6= 0, (3.2)

CS =
µX,3
σ3
X

, (3.3)

and

CK =
µX,4
σ4
X

, (3.4)

respectively. Kurtosis and excess kurtosis are easily mistaken for one another. In this

paper, only kurtosis is computed. However, excess kurtosis (EK) is simply given by

EK = CK − 3.

3.2 Weibull Distribution

Let X ∼ Weibull(θ, β). The moments of X are given by

E(Xk) =

∫ ∞
0

xkf(x)dx

= θk
∫ ∞
0

u
k
β
+1e−udu

= θkΓk. (3.5)
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The moment generating function (MGF) of X is given by

MX(t) = E(etx) =

∫ ∞
0

etxf(x)dx

=
∞∑
j=0

tj

j!

∫ ∞
0

xjf(x)dx

=
∞∑
j=0

tj

j!
θjΓj. (3.6)

The mean, variance and standard deviation are given by

µX = θΓ1, (3.7)

σ2
X = θ2(Γ2 − Γ2

1), (3.8)

and

σX = θ
√

Γ2 − Γ2
1, (3.9)

respectively.

The coefficients of variation, skewness and kurtosis are given by

CV =

√
Γ2 − Γ2

1

Γ1

, (3.10)

CS =
Γ3 − 3Γ2Γ1 + 2Γ3

1

(Γ2 − Γ2
1)

3
2

, (3.11)

and

CK =
Γ4 − 4Γ3Γ1 + 6Γ2Γ

2
1 − 3Γ4

1

(Γ2 − Γ2
1)

2
, (3.12)

respectively.

3.2.1 Rayleigh Distribution

Let X ∼ Rayleigh(σ). The moments of X are given by

E(Xk) = 2
k
2σkΓk. (3.13)
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The MGF of X is given by

MX(t) =
∞∑
j=0

2
j
2σjΓj. (3.14)

The mean, variance and standard deviation are given by

µX = σ

√
2π

2
, (3.15)

σ2
X = σ2

(
2− π

2

)
, (3.16)

and

σX = σ

√(
2− π

2

)
, (3.17)

respectively.

The coefficients of variation, skewness and kurtosis are given by

CV = 2

√
1

π
− 1

4
≈ 0.5227, (3.18)

CS =
2
√
π(π − 3)

(4− π)
3
2

≈ 0.6311, (3.19)

and

CK =
32− 3π2

(4− π)2
≈ 3.2451, (3.20)

respectively.

3.3 Weighted Weibull Distribution

Let random variable Y have the weighted distribution of random variable X. If X

and Y have pdfs f(x) and g(y|w(y) = yc), respectively, then

EY (Y k) =

∫ ∞
0

ykg(y)dy

=
1

EX(Xc)

∫ ∞
0

yk+cf(y)dy

=
EX(Xc+k)

EX(Xc)
. (3.21)
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Therefore, if Y ∼ WeibullW (θ, β|w(t) = tc), then the moments of Y are given by

EY (Y k) = θk
Γc+k
Γc

. (3.22)

The MGF of Y is given by

MY (t) =
1

Γc

∞∑
j=0

tj

j!
θkΓc+j. (3.23)

The mean, variance and standard deviation are given by

µY = θ
Γc+1

Γc
, (3.24)

σ2
Y =

(
θ

Γc

)2

(Γc+2Γc − Γ2
c+1), (3.25)

and

σY =
θ

Γc

√
(Γc+2Γc − Γ2

c+1), (3.26)

respectively.

The coefficients of variation, skewness and kurtosis are given by

CV =

√
Γc+2Γc − Γ2

c+1

Γc+1

, (3.27)

CS =
Γc+3Γ

2
c − 3Γc+2Γc+1Γc + 2Γ3

c+1

(Γc+2Γc − Γ2
c+1)

3
2

, (3.28)

and

CK =
Γc+4Γ

3
c − 4Γc+3Γc+1Γ

2
c + 6Γc+2Γ

2
c+1Γc − 3Γ4

c+1

(Γc+2Γc − Γ2
c+1)

2
, (3.29)

respectively.

3.3.1 Weighted Rayleigh Distribution

If Y has a weighted Rayleigh distribution, then the equations for the moments, MGF,

mean, variance, standard deviation, CV, CS and CK are the same as equations (3.21-

29), respectively, setting θ =
√

2σ and β = 2. If Y has a length bias Rayleigh
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distribution ( Y ∼ RayleighW (σ|w(t) = t)), then the moments of Y are given by

EY (Y k) = 2σk
√

2k

π
Γk+1. (3.30)

The MGF of Y is given by

MY (t) =
2√
π

∞∑
j=0

2
j
2σjΓj+1. (3.31)

The mean, variance and standard deviation are given by

µY = 2σ

√
2

π
, (3.32)

σ2
Y = σ2

(
3− 8

π

)
, (3.33)

and

σY = σ

√
3− 8

π
, (3.34)

respectively.

The coefficients of variation, skewness and kurtosis are given by

CV =

√
3

8
π − 1 ≈ 0.4220, (3.35)

CS =
√

2

(
32− 10π

(3π − 8)
3
2

)
≈ 0.4857, (3.36)

and

CK =
15π2 + 16π − 192

(3π − 8)2
≈ 3.1081, (3.37)

respectively.
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3.4 Weibull Renewal Distribution

Let random variable Z have the renewal distribution of random variable X. If X and

Z have pdfs f(x) and fR(z), respectively, then

EZ(Zk) =

∫ ∞
0

zkr(z)dz

=
1

EX(X)

∫ ∞
0

zkSX(z)dz

=
1

EX(X)

(
zk+1

k + 1
SX(z)|∞z=0 +

∫ ∞
0

zk+1

k + 1
fX(z)dz

)
=

EX(Xk+1)

(k + 1)EX(X)
. (3.38)

Therefore, if Z ∼ WeibullR(θ, β), then the moments of Z are given by

EZ(Zk) = θk
Γ(k+1

β
)

Γ( 1
β
)
. (3.39)

The MGF of Z is given by

MZ(t) =
1

β

∞∑
j=0

θjΓ

(
j + 1

β

)
. (3.40)

The mean, variance and standard deviation are given by

µZ = θ
Γ( 2

β
)

Γ( 1
β
)
, (3.41)

σ2
Z =

(
θ

Γ( 1
β
)

)2[
Γ

(
3

β

)
Γ

(
1

β

)
− Γ2

(
2

β

)]
, (3.42)

and

σZ =

(
θ

Γ( 1
β
)

)√
Γ

(
3

β

)
Γ

(
1

β

)
− Γ2

(
2

β

)
, (3.43)

respectively.

The coefficients of variation, skewness and kurtosis are given by

CV =

√
Γ( 3

β
)Γ( 1

β
)− Γ2( 2

β
)

Γ( 2
β
)

, (3.44)
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CS =
Γ( 4

β
)Γ2( 1

β
)− 3Γ( 3

β
)Γ( 2

β
)Γ( 1

β
) + 2Γ3( 2

β
)

(Γ( 3
β
)Γ( 1

β
)− Γ2( 2

β
))

3
2

, (3.45)

and

CK =
Γ( 5

β
)Γ3( 1

β
)− 4Γ( 4

β
)Γ( 2

β
)Γ2( 1

β
) + 6Γ( 3

β
)Γ2( 2

β
)Γ( 1

β
)− 3Γ4( 2

β
)

(Γ( 3
β
)Γ( 1

β
)− Γ2( 2

β
))2

, (3.46)

respectively.

3.4.1 Rayleigh Renewal Distribution

Let Z ∼ RayleighR(σ). The moments of Z are given by

EZ(Zk) =

√
2k

π
σkΓ

(
k + 1

2

)
. (3.47)

The MGF of Z is

MZ(t) =
1√
π

∞∑
i=0

2
j
2 θjΓ

(
j + 1

2

)
. (3.48)

The mean, variance and standard deviation are given by

µZ =

√
2

π
σ, (3.49)

σ2
Z = σ2

(
1− 2

π

)
, (3.50)

and

σZ = σ

√
1− 2

π
, (3.51)

respectively.

The coefficients of variation, skewness and kurtosis are given by

CV =

√
π

2
− 1 ≈ 0.7055, (3.52)

CS =
√

2

(
4− π

(π − 2)
3
2

)
≈ 0.9953, (3.53)
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and

CK =
3π2 − 4π − 12

(π − 2)2
≈ 3.8692, (3.54)

respectively.

3.5 Useful Graphs

Figure 3.1: CV
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Figure 3.2: CS

Figure 3.3: CK



CHAPTER 4

ENTROPY AND INFORMATION

4.1 Basic notions

In this chapter (differential) entropy and Fisher Information (FI) are computed for the

Weibull (Rayleigh) distribution and its weighted and renewal versions. The entropy

of a random variable measures its uncertainty. The FI measures the amount of infor-

mation that random variable carries about the distribution’s unknown parameter(s).

The formal definitions for entropy and FI are given below:

Definition 4.1.1. Let the distribution of random variable X have pdf f(x). The

entropy of X is given by

h(X) = −EX(ln[f(X)]) = −
∫ ∞
−∞

ln[f(x)]f(x)dx (4.1)

Definition 4.1.2. The Fisher Information of a continuous distribution (satisfying

standard regularity conditions) with parameter θ and pdf f(x) is given by

IX(θ) = −EX
(
d2

dθ2
ln[f(X)]

)
. (4.2)

If the distribution has parameter set θ∗, the Fisher information is a matrix (FIM)

with entries

[IX(θi, θj)](i,j) = −EX
[

∂2

∂θi∂θj
ln[f(X)]

]
. (4.3)

4.1.1 Useful functions

Two special functions are common throughout the computations in this chapter.

Recall that

Γ(x) =

∫ ∞
0

tx−1e−tdt.
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The following result is well known

Γ(n)(x) =
dn

dxn
Γ(x) =

dn

dxn

∫ ∞
0

tx−1e−tdt

=

∫ ∞
0

dn

dxn
tx−1e−tdt

=

∫ ∞
0

tx−1 lnn(t)e−tdt. (4.4)

Another common function is the digamma function given by

Ψ(x) =
d

dx
ln[Γ(x)] =

Γ′(x)

Γ(x)
. (4.5)

Dentote Γ(n)( c
β

+ 1) and Ψ(n)( c
β

+ 1) by Γnc and Ψn
c , respectively (β = 2 in the

Rayliegh sections. The Euler-Mascheroni constant, γ, is also part of several results

for this chapter. It is given by

γ = −Γ′(1) = −Ψ(1) = −
∫ ∞
0

ln(x)e−xdx ≈ 0.5772. (4.6)

4.2 Weibull Distribution

Let X ∼ Weibull(θ, β) with pdf f(x). It follows that

ln[f(x)] = ln

(
β

θβ

)
+ (β − 1) ln(x)−

(
x

θ

)β
. (4.7)
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The entropy of the Weibull distribution is given by

h(X) = −EX(ln[f(X)]) = −
∫ ∞
0

ln[f(x)]f(x)dx

=

∫ ∞
0

(
x

θ

)β
f(x)dx+ (1− β)

∫ ∞
0

ln(x)f(x)dx− ln

(
β

θβ

)
=

∫ ∞
0

ue−udu+ (1− β)

∫ ∞
0

ln(θu
1
β )e−udu− ln

(
β

θβ

)
= 1 + (1− β) ln(θ)

∫ ∞
0

e−udu+

(
1

β
− 1

)∫ ∞
0

ln(u)e−udu

− ln

(
β

θβ

)
= 1 + ln(θ)− β ln(θ) +

(
1

β
− 1

)
Γ′(1)− ln(β) + β ln(θ)

= 1 + ln

(
θ

β

)
+

(
1− 1

β

)
γ. (4.8)

It is easy to see that h(X) is a monotonically increasing function of θ when β is known

or fixed. Since

∂

∂β
h(X) =

γ

β2
− 1

β
, (4.9)

then ∂
∂β
h(X) = 0 if and only if β = γ. It follows that h(X) is a(n) increas-

ing(decreasing) function of β when β ≤ γ(β ≥ γ) and θ is known or fixed.

The following results will be used to help compute the FIM:

∂

∂θ
ln[f(x)] = −β

θ
+

β

θβ+1
xβ =

β

θ

[(
x

θ

)β
− 1

]
, (4.10)

∂2

∂θ2
ln[f(x)] =

β

θ2
− (β + 1)β

θβ+2
xβ =

β

θ2

[
1− (β + 1)

(
x

θ

)β]
, (4.11)

∂

∂β
ln[f(x)] =

1

β
− ln(θ) + ln(x)−

(
x

θ

)β
ln

(
x

θ

)
, (4.12)

∂2

∂β2
ln[f(x)] = − 1

β2
−
(
x

θ

)β
ln2

(
x

θ

)
= − 1

β2

(
1 +

(
x

θ

)β
ln2

[(
x

θ

)β])
, (4.13)

∂2

∂β∂θ
ln[f(x)] =

1

θ

[(
x

θ

)β
ln

[(
x

θ

)β]
+

(
x

θ

)β
− 1

]
. (4.14)
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The entries of the FIM are given by

[IX(θ, β)]1,1 = −EX
(
∂2

∂θ2
ln[f(X)]

)
= −

∫ ∞
0

(
β

θ2

[
1− (β + 1)

(
x

θ

)β])
f(x)dx

=
β

θ2

[
(β + 1)

∫ ∞
0

(
x

θ

)β
f(x)dx−

∫ ∞
0

f(x)dx

]
=

β

θ2
[(β + 1)

∫ ∞
0

ue−udu− 1]

=
β

θ2
[(β + 1)− 1] =

(
β

θ

)2

, (4.15)

[IX(θ, β)]2,2 = −EX
(
∂2

∂β2
ln[f(X)]

)
=

∫ ∞
0

1

β2

(
1 +

(
x

θ

)β
ln2

[(
x

θ

)β])
f(x)dx

=
1

β2

(∫ ∞
0

f(x)dx+

∫ ∞
0

(
x

θ

)β
ln2

[(
x

θ

)β]
f(x)dx

)
=

1

β2

(
1 +

∫ ∞
0

u ln2(u)e−udu

)
=

1

β2
[1 + Γ′′(2)]

=
1

β2

(
1 +

π2

6
− 2γ + γ2

)
, (4.16)

and

[IX(θ, β)]1,2 = [IX(θ, β)]2,1 = −EX
(

∂2

∂θ∂β
ln[f(X)]

)
= −

∫ ∞
0

1

θ

[(
x

θ

)β
ln

[(
x

θ

)β]
+

(
x

θ

)β
− 1

]
f(x)dx

= −1

θ

(∫ ∞
0

(
x

θ

)β
ln

[(
x

θ

)β]
f(x)dx+

∫ ∞
0

(
x

θ

)β
f(x)dx− 1

)
= −1

θ

(∫ ∞
0

u ln(u)e−udu+

∫ ∞
0

ue−udu− 1

)
= −1

θ
(1 + Γ′(2)− 1)

= −1

θ
Γ′(2) =

1

θ
(γ − 1). (4.17)
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4.2.1 Rayleigh Distribution

Let X ∼ Rayleigh(σ) with pdf f(x). To find the entropy of X, simply set θ =
√

2σ

and β = 2 which yields

h(X) = −EX(ln[f(X)]) = 1 + ln

(√
2

2
σ

)
+
γ

2
. (4.18)

Note that h(X) is a monotonically increasing function of σ.

Every computation thus far for the Raleigh distribution and its weighted and

renewal versions have been simple substitutions. If the same substitution is applied

to obtain the FI then

IX(σ) =

(
2√
2σ

)2

=
2

σ2
.

However, this is not the FI for the Rayleigh distribution. Note that

d2

dσ2
ln[f(x)] = −3x2

σ4
+

2

σ2
= − 2

σ2

(
3x2

2σ2
− 1

)
. (4.19)

Therefore, the FI is given by

IX(σ) = −EX
(
d2

dσ2
ln[f(x)]

)
=

2

σ2

(∫ ∞
0

3x2

2σ2
f(x)dx−

∫ ∞
0

f(x)dx

)
=

2

σ2

(
3

∫ ∞
0

ue−udu− 1

)
=

2

σ2
(3− 1) =

4

σ2
. (4.20)

This is because the information the random variable carries about its parameter(s) is

not affected by the constant multiple.
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4.3 Weighted Weibull Distribution

Let Y ∼ WeibullW (θ, β) with pdf g(y|w(t) = tc). It follows that

ln[g(y)] = ln

(
β

θβ+cΓc

)
+ (c+ β − 1) ln(y)−

(
y

θ

)β
. (4.21)

The entropy for the weighted Weibull is

−EY (ln[g(Y )]) = −
∫ ∞
0

ln[g(y)]g(y)dy

=

∫ ∞
0

(
y

θ

)β
g(y)dy + (1− c− β)

∫ ∞
0

ln(y)g(y)dy − ln
(

β

θβ+cΓc

)
=

1

Γc

∫ ∞
0

u
c
β
+1e−udu+

(1− c− β)

Γc

∫ ∞
0

ln(θu
1
β )u

c
β e−udu+ ln

(
θβ+cΓc
β

)
=

1

Γc

∫ ∞
0

u
c
β
+1e−udu+

(1− c− β)

Γc

(
ln(θ)

∫ ∞
0

u
c
β e−udu

+
1

β

∫ ∞
0

ln(u)u
c
β e−udu

)
+ ln

(
θβ+cΓc
β

)
=

Γ( c
β

+ 2)

Γc
+

(1− c− β)

Γc

(
ln(θ)Γc +

Γ′c
β

)
+ ln

(
θβ+cΓc
β

)
=

c

β
+ 1 + (1− c− β)

(
ln(θ) +

Ψc

β

)
+ ln

(
θβ+cΓc
β

)
=

c

β
+ 1 + (1− c− β)

Ψc

β
+ ln

(
θΓc
β

)
. (4.22)

Clearly, h(Y ) is a increasing function of θ when β is known or fixed. Note that

∂

∂β
h(Y ) =

(c2 − 1)Ψ′c
β3

+
cΨ′c −Ψc − c

β2
− 1

β
. (4.23)

Figure 4.2 and (4.23) suggest there exists c∗ ≤ 1 such that for all c < c∗, ∂
∂β
h(Y ) = 0,

h(Y ) has solution βc. Therefore, if c < c∗, h(Y ) is an increasing(decreasing) function

of β when β < βc(β ≥ βc) and θ is known or fixed. If c ≥ 1, then h(Y ) is a decreasing

function of β when θ is known or fixed.

Note that

ln[g(y)] = ln[w(y)] + ln[f(y)]− ln(EX [w(X)]).
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It follows that

[IY (θ∗)]i,j = −EY
[

∂2

∂θi∂θj
ln[g(Y )]

]
= −EY

(
∂2

∂θi∂θj
ln[w(Y )] +

∂2

∂θi∂θj
ln[f(Y )]− ∂2

∂θi∂θj
(EX [w(X)])

)
= −EY

(
∂2

∂θi∂θj
ln[w(Y )]

)
− EY

(
∂2

∂θi∂θj
ln[f(Y )]

)
+

∂2

∂θi∂θj
ln(EX [w(X)]). (4.24)

Given w(t) = tc, (4.24) simplifies to

[IY (θ∗)]i,j = −EY
(

∂2

∂θi∂θj
ln[f(Y )]

)
+

∂2

∂θi∂θj
ln[EX(Xc)]. (4.25)

The following results will be used to help compute the FIM:

∂

∂θ
ln[EX(Xc)] =

∂

∂θ
[c ln(θ) + ln(Γc)] =

c

θ
, (4.26)

∂2

∂θ2
ln[EX(Xc)] = − c

θ2
, (4.27)

∂

∂β
ln[EX(Xc)] =

∂

∂β
[c ln(θ) + ln(Γc)] = − c

β2
Ψc, (4.28)

∂2

∂β2
ln[EX(Xc)] =

2c

β3
Ψc +

c2

β4
Ψ′c, (4.29)

∂2

∂θ∂β
EX(Xc) =

∂2

∂θ∂β
[c ln(θ) + ln(Γc)] = 0, (4.30)
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−EY
(
∂2

∂θ2
ln[f(Y )]

)
= −

∫ ∞
0

(
β

θ2

[
1− (β + 1)

(
y

θ

)β])
g(y)dy

=
β

θ2

[
(β + 1)

∫ ∞
0

(
y

θ

)β
g(y)dy −

∫ ∞
0

g(y)dy

]
=

β

θ2

[
β + 1

Γc

∫ ∞
0

u

c
β
+1

e−udy − 1

]
=

β

θ2

[
β + 1

Γc
Γ

(
c

β
+ 2

)
− 1

]
=

β

θ2

[
(β + 1)

(
c

β
+ 1

)
− 1

]
=

1

θ2
[(β + 1)(β + c)− β]

=
β2 + cβ + c

θ2
, (4.31)

−EY
(
∂2

∂β2
ln[f(Y )]

)
=

∫ ∞
0

1

β2

(
1 +

(
y

θ

)β
ln2

[(
y

θ

)β])
g(y)dy

=
1

β2

(∫ ∞
0

g(y)dy +

∫ ∞
0

(
y

θ

)β
ln2

[(
y

θ

)β]
g(y)dy

)
=

1

β2

(
1 +

1

Γc

∫ ∞
0

u
c
β
+1 ln2(u)e−udu

)
=

1

β2

(
1 +

Γ′′( c
β

+ 2)

Γc

)
, (4.32)

−EY
(

∂2

∂θ∂β
ln[f(Y )]

)
= −1

θ

∫ ∞
0

[(
y

θ

)β
ln

[(
y

θ

)β]
+

(
y

θ

)β
− 1

]
g(y)dy

= −1

θ

(∫ ∞
0

(
y

θ

)β
ln

[(
y

θ

)β]
g(y)dy +

∫ ∞
0

(
y

θ

)β
g(y)dy − 1

)
= −1

θ

(
1

Γc

∫ ∞
0

u
c
β
+1 ln(u)e−udu+

1

Γc

∫ ∞
0

u
c
β
+1e−udu− 1

)
= −1

θ

(
Γ′( c

β
+ 2)

Γc
+

Γ( c
β

+ 2)

Γc
− 1

)
= −1

θ

[(
c

β
+ 1

)
Ψ

(
c

β
+ 2

)
+
c

β

]
. (4.33)

Using (4.11), (4.13) and (4.25-33) the FIM entries are given by

[IY (θ, β)]1,1 =
β(β + c)

θ2
, (4.34)
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[IY (θ, β)]2,2 =
1

β2

(
1 +

Γ′′( c
β

+ 2)

Γc
+

2c

β
Ψc +

c2

β2
Ψ′c

)
, (4.35)

and

[IY (θ, β)]1,2 = [IY (θ, β)]2,1 = −1

θ

[(
c

β
+ 1

)
Ψ

(
c

β
+ 2

)
+
c

β

]
. (4.36)

4.3.1 Weighted Rayleigh Distribution

Let Y ∼ RayleighW (σ) with pdf g(y). The entropy of Y , is a monotonically increasing

function of σ given by

h(Y ) = −EY (ln[g(Y )]) =
c+ 2− (c+ 1)Ψc

2
+ ln

(√
2

2
σΓc

)
. (4.37)

If Y has a length biased distribution, then

−EY (ln[g(Y |w(t) = t)]) = −1

2
+ γ + ln(

√
2π

4
σ). (4.38)

Note that

d2

dσ2
ln[EX(Xc)] = − c

σ2
(4.39)

and

−EY
(
d2

dσ2
ln[f(Y )]

)
=

2

σ2

(∫ ∞
0

3x2

2σ2
g(y)dy −

∫ ∞
0

g(y)dy

)
=

2

σ2

(
3

Γc

∫ ∞
0

u
c
2
+1e−udu− 1

)
=

2

σ2

(
3

Γ( c
2

+ 2)

Γc
− 1

)
=

2

σ2

(
3

(
c

2
+ 1

)
− 1

)
=

3c+ 4

σ2
. (4.40)

Using (4.24) and (4.38-39) we have

IY (σ) =
2(c+ 2)

σ2
. (4.41)

Clearly, IY (σ) is a monotonically decreasing function of σ.
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4.4 Weibull Renewal Distribution

Let X ∼ WeibullR(θ, β) with pdf fR(z). It follows that

ln[fR(z)] = −
(
z

θ

)β
− ln(θΓ1). (4.42)

The entropy of the Weibull renewal distribution is

−EZ(ln[fR(Z)]) = −
∫ ∞
0

ln[fR(z)]fR(z)dz

=

∫ ∞
0

(
z

θ

)β
fR(z)dx+ ln(θΓ1)

∫ ∞
0

fR(z)dz

=
1

Γ( 1
β
)

∫ ∞
0

u
1
β e−udu+ ln(θΓ1)

=
Γ1

Γ( 1
β
)

+ ln(θΓ1)

=
1

β
+ ln(θΓ1). (4.43)

Clearly, h(Z) is a monotonically increasing function of θ when β is known. Note that

∂

∂β
h(Z) = −1 + Ψ1

β2
. (4.44)

It follows that h(Z) is a decreasing function β when θ is known or fixed (see figure

4.3).

Using similar methods as (4.23), the entries for the FIM for a renewal distribution

can be given by

[I(θ∗)](i,j) = −EZ
(

∂2

∂θi∂θj
ln[fZ(Z)]

)
= −EZ

(
∂2

∂θi∂θj
ln[SX(Z)]

)
+

∂2

∂θi∂θj
ln[EX(X)].

(4.45)

The following results will be used to help compute the FIM:

∂

∂θ
ln[SX(z)] =

β

θ

(
z

θ

)β
, (4.46)
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∂2

∂θ2
ln[SX(z)] = −(β + 1)β

θ2

(
z

θ

)β
, (4.47)

−EZ
(
∂2

∂θ2
ln[SX(Z)]

)
=

(β + 1)β

θ2

∫ ∞
0

(
z

θ

)β
fR(z)dz,

=
(β + 1)β

θ2Γ( 1
β
)

∫ ∞
0

u
1
β e−udu

=
(β + 1)β

θ2Γ( 1
β
)

Γ1 =
β + 1

θ2
, (4.48)

∂

∂β
ln[SX(z)] = −

(
z

θ

)β
ln

(
z

θ

)
, (4.49)

∂2

∂β2
ln[SX(z)] = −

(
z

θ

)β
ln2

(
z

θ

)
= − 1

β2

(
z

θ

)β
ln2

[(
z

θ

)β]
, (4.50)

−EZ
(
∂2

∂β2
ln[SX(Z)]

)
=

1

β2

∫ ∞
0

(
z

θ

)β
ln2

[(
z

θ

)β]
fR(z)dz

=
1

β2Γ( 1
β
)

∫ ∞
0

u
1
β ln2(u)e−udu

=
Γ′′1

β2Γ( 1
β
)
, (4.51)

∂2

∂θ∂β
ln[SX(z)] =

1

θ

[
β

(
z

θ

)β
ln

(
z

θ

)
+

(
z

θ

)β]
=

1

θ

[(
z

θ

)β
ln

[(
z

θ

)β]
+

(
z

θ

)β]
,

(4.52)

−EZ
(

∂2

∂θ∂β
ln[SX(Z)]

)
= −1

θ

∫ ∞
0

[(
z

θ

)β
ln

[(
z

θ

)β]
+

(
z

θ

)β]
fR(z)dz

= −1

θ

(∫ ∞
0

(
z

θ

)β
ln

[(
z

θ

)β]
fR(z)dz +

∫ ∞
0

(
z

θ

)β
fR(z)dz

)
= −1

θ

(
1

Γ( 1
β
)

∫ ∞
0

u
1
β ln(u)e−udu+

1

Γ( 1
β
)

∫ ∞
0

u
1
β e−udu

)
= −1

θ

(
Γ′1

Γ( 1
β
)

+
Γ1

Γ( 1
β
)

)
= −Ψ1 + 1

θβ
. (4.53)

Using (4.27), (4.29) and (4.45-53) the entries of the FIM are given by

[IZ(θ, β)]1,1 =
β

θ2
, (4.54)
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[IZ(θ, β)]2,2 =
1

β2

(
Γ′′1

Γ( 1
β
)

+
2

β
Ψ1 +

1

β2
Ψ′1

)
, (4.55)

and

[IZ(θ, β)]1,2 = [IZ(θ, β)]1,2 = −Ψ1 + 1

θβ
. (4.56)

4.4.1 Rayleigh Renewal Distribution

Let Z ∼ RayleighR(σ) with pdf fR(z). The entropy of Z is a monotonically increasing

function of σ given by

h(Z) = −EY (ln[fR(Z)]) =
1

2
+ ln

(√
2π

2
σ

)
. (4.57)

Note that

d2

∂σ2
ln[SX(z)] = −3x2

σ4
= − 2

σ2

(
3x2

σ2

)
(4.58)

and

−EZ
(
d2

dσ2
ln[SX(Z)]

)
=

2

σ2

∫ ∞
0

3x2

2σ2
fR(z)dz

=
6

σ2
√
π

∫ ∞
0

u
1
2 e−udu

=
6

σ2
√
π

Γ1 =
6

σ2
√
π

√
π

2
=

3

σ2
. (4.59)

Using (4.39), (4.45) and (4.58-59) the FI is given by

IZ(σ) =
2

σ2
. (4.60)
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4.5 Useful Graphs

Figure 4.1: Entropy with θ = 1 and c = 1

Figure 4.2: ∂
∂β
h(Y )
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Figure 4.3: ∂
∂β
h(Z)

Figure 4.4: (2,2) entries of the FIM with θ = 1 and c = 1
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Figure 4.5: (1,2) and (2,1) entries of the FIM with θ = 1 and c = 1



CHAPTER 5

TESTS CONCERNING WEIGHTED AND PARENT

DISTRIBUTIONS

5.1 Basic Notions

In this chapter, the maximum likelihood estimates of the Weibull (Rayleigh) and its

weighted and renewal versions are presented. In section 5.5 the likelihood ratio test

is defined and results are presented on tests for the parent distribution versus the

weighted distribution.

Definition 5.1.1. Let random variables X1, X2, ..., Xn be iid with pdf f(xk; θ
∗). The

likelihood function of θ∗ is given by

LX(θ∗|x1, x2, ..., xn) = Πn
i=1f(xi|θ∗) (5.1)

Denote LX(θ∗|x1, x2, ..., xn) by LX(θ∗). In general, it is much more convenient

to work with the log-likelihood function, ln[LX(θ∗)]. Maximizing the log-likelihood

with respect to the parameters gives us the maximum likelihood estimates.

Definition 5.1.2. Given likelihood function LX(θ∗), the solution for θk in the system

of equations

∂

∂θi
ln[LX(θ∗)] = 0, 1 ≤ i ≤ n, (5.2)

yields the maximum likelihood estimate (MLE) of θk, denoted by θ̂k.

In many cases, the MLE does not have a closed-form solution and (5.2) must be

solved using numerical methods.
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5.2 Weibull (Rayleigh) Distribution

Let X ∼ Weibull(θ, β) with pdf f(x). The likelihood function for X given n inde-

pendent observations is given by

LX(θ, β) =
βn

θnβ
e−

∑n
i=1(

xi
θ
)βΠn

i=1x
β−1
i . (5.3)

The log-likelihood function is given by

ln[LX(θ, β)] = n ln(β) + (β − 1)
n∑
i=1

ln(xi)− nβ ln(θ)−
n∑
i=1

(
xi
θ

)β
. (5.4)

Maximizing (5.4) with respect to β and θ yields

∂

∂β
ln[LX(θ, β)] =

n

β
+

n∑
i=1

ln(xi)− n ln(θ)−
n∑
i=1

(
xi
θ

)β
ln

(
xi
θ

)
= 0 (5.5)

and

∂

∂θ
ln[LX(θ, β)] =

β

θβ+1

n∑
i=1

xβi −
nβ

θ
= 0. (5.6)

Solving for θ in (5.6) given β = β̂ yields the MLE for θ given by

θ̂ =

(∑n
i=1 x

β̂
i

n

) 1

β̂

. (5.7)

Substituting θ̂ for θ in (5.5) and solving (numerically) yields β̂. For the Rayleigh

distribution, using usual substitution, the MLE for σ is

σ̂ =

√∑n
i=1 x

2
i

2n
. (5.8)

5.3 Weighted Weibull (Rayleigh) Distribution

Let Y ∼ WeibullW (θ, β;w(t) = tc) with pdf g(y). The likelihood function for Y given

n independent observations is given by

LX(θ, β) =
βn

θn(β+c)Γnc
e−

∑n
i=1(

yi
θ
)βΠn

i=1y
c+β−1
i . (5.9)
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The log-likelihood function is given by

ln[LY (θ, β)] = n ln(β) + (c+ β− 1)
n∑
i=1

ln(yi)− n(β + c) ln(θ)−
n∑
i=1

(
yi
θ

)β
− n ln(Γc).

(5.10)

Maximizing (5.10) with respect to β and θ yields

∂

∂β
ln[LY (θ, β)] =

n

β
+

n∑
i=1

ln(yi)− n ln(θ)−
n∑
i=1

(
yi
θ

)β
ln

(
yi
θ

)
+
nc

β2
Ψc = 0 (5.11)

and

∂

∂θ
ln[LY (θ, β)] =

β

θβ+1

n∑
i=1

yβi −
n(β + c)

θ
= 0. (5.12)

Solving for θ in (5.12) given β = β̂ yields the MLE for θ given by

θ̂ =

(
β̂
∑n

i=1 y
β̂
i

n(β̂ + c)

) 1

β̂

. (5.13)

Substituting θ̂ for θ in (5.11) and solving (numerically) yields β̂. For the Rayleigh

distribution, using usual substitution, the MLE for σ is

σ̂ =

√∑n
i=1 y

2
i

n(c+ 2)
. (5.14)

5.4 Weibull(Rayleigh) Renewal Distribution

Let Z ∼ WeibullR(θ, β) with pdf fR(x). The likelihood function for Z given n

independent observations is given by

LZ(θ, β) =
e−

∑n
i=1(

zi
θ
)β

θnΓn1
. (5.15)

The log-likelihood function is given by

ln[LZ(θ, β)] = −
n∑
i=1

(
zi
θ

)β
− n ln(θ)− n ln(Γ1). (5.16)
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Maximizing (5.16) with respect to β and θ yields

∂

∂β
ln[LZ(θ, β)] =

n

β2
Ψ1 −

n∑
i=1

(
zi
θ

)β
ln

(
zi
θ

)
= 0 (5.17)

and

∂

∂θ
ln[LZ(θ, β)] =

β

θβ+1

n∑
i=1

zβi −
n

θ
= 0. (5.18)

Solving for θ in (5.18) given β = β̂ yields the MLE for θ given by

θ̂ =

(
β̂
∑n

i=1 z
β̂
i

n

) 1

β̂

. (5.19)

Substituting θ̂ for θ in (5.17) and solving (numerically) yields β̂. For the Rayleigh

renewal distribution, using usual substitution, the MLE for σ is given by

σ̂ =

√∑n
i=1 z

2
i

n
. (5.20)

5.5 Likelihood Ratio Test

The likelihood-ratio (LHR) test compares the ratios of two likelihood functions that

have a different parameter. This test can also be used to see if a sample came from

a particular distribution or its weighted distribution. Let θ∗ be in parameter space Ω

and let Ω0 be a subset of Ω. The compliment of Ω0 is Ωc
0.

Definition 5.5.1. Let the distribution of random variable X have parameter set θ∗.

Given the hypotheses

H0 : θ∗ ∈ Ω0

HA : θ∗ ∈ Ωc
0

and test statistic

Λ(x) =
sup{LX(θ∗)|θ∗ ∈ Ω0}
sup{LX(θ∗)|θ∗ ∈ Ω}

, (5.21)
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the likelihood-ratio test is any test with rejection region {x|0 ≤ Λ ≤ C ≤ 1}, where C

is constant.

Note that the test statistic in (5.21) may be written as

Λ(x) =
sup{LX(θ∗)|θ∗ ∈ Ω0}
sup{LX(θ∗)|θ∗ ∈ Ωc

0}
(5.22)

without changing the rejection region.

5.5.1 Testing for Weightedness

To LHR test can be used to see if a sample came from a particular distribution or

one of it’s weighted versions by observing the LHR using the likelihood function of

each. Although this does not seem fit the definition of the LHR test it is the case.

The proceeding argument explains why this is true.

Let the distributions of random variables X and Y have pdfs f(x; θ∗) and g(y; θ∗),

respectively, where Y has the weighted distribution of X. Let distribution of random

variable V have pdf

g∗(v; θ∗; k) =
[w(v)]kf(v)

(EX [w(X)])k
, k ∈ {0, 1}. (5.23)

Since g∗(v; k|k = 0) = f(v) and g∗(v; k|k = 1) = g(y), g∗(v; k) is indeed a pdf and k

is a parameter of g∗(v; k). A LHR test for k can be done with hypotheses

H0 : k = 0

HA : k = 1
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and test statistic (given independent observed values v1, v2, ..., vn of V )

Λ(v) =
LV (θ∗; 0)

LV (θ∗; 1)
=

Πn
i=1g

∗(vi; k|k = 0)

Πn
i=1g

∗(vi; k|k = 1)

=
Πn
i=1f(vi)

Πn
i=1g(vi)

=
(EX [w(X)])n

Πn
i=1w(vi)

. (5.24)

Note that the hypothesis mentioned above is equivalent to

H0 : V has the same distribution as X

HA : V has the same distribution as Y.

Given w(t) = tc, the test statistic is

ΛW (v) =
(EX [w(X)])n

Πn
i=1w(vi)

=
[EX(Xc)]n

Πn
i=1v

c
i

. (5.25)

Recall that a renewal distribution is a weighted distribution with w(t) = 1
λX(t)

. There-

fore, the test statistic is

ΛR(v) =
(EX [w(X)])n

Πn
i=1w(vi)

= [EX(X)]nΠn
i=1λX(vi). (5.26)

5.5.2 Tests concerning Weibull (Rayleigh) Distributions

Let x1, x2, ..., xn be n independent observed value of random variable X which has

either a Weibull (Rayleigh) distribution or weighted Weibull (Rayleigh) distribution.

The test for weight (w(t) = tc) has hypotheses

H0 : X ∼ Weibull(θ, β)

HA : X ∼ WeibullW (θ, β;Xc)

and test statistic

Λ(x) =
(θcΓc)

n

Πn
i=1x

c
i

. (5.27)
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The test statistic for testing for length-biasedness and size-biasedness in a Rayleigh

distribution are given by

ΛL(x) =
(
√

2πσ)n

2nΠn
i=1xi

(5.28)

and

ΛS(x) =
(2σ2)n

Πn
i=1xi

, (5.29)

respectively.

Let z1, z2, ..., zn be n independent observed value of random variable Z which has

either a Weibull (Rayleigh) distribution or Weibull(Rayleigh) renewal distribution.

The test has hypotheses

H0 : Z ∼ Weibull(θ, β)

HA : Z ∼ WeibullR(θ, β)

and test statistic

Λ(z) = (θΓ1)
nΠn

i=1

β

θβ
zβ−1i =

(
βΓ1

θβ−1

)n
Πn
i=1z

β−1
i . (5.30)

The test statistic for testing for the Rayleigh renewal distribution is given by

ΛR(z) =

(
1

σ2

√
π

2

)n
Πn
i=1zi. (5.31)

5.6 Conclusion

In this thesis several theoretical properties of two cases of the weighted Weibull dis-

tribution were presented. Some areas for further research include:

1. Theoretical properties of combined distributions in the form:

k(x) = pfX(x) + (1− p)gY (x),
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where fX is the parent distribution, gY is the weighted distribution and 0 ≤ p ≤ 1.

2. Estimation of parameters based on combined samples. Tests of hypothesis con-

cerning the models parameters based on combined samples.

3. Extensions to multivariate weighted distributions.

4. Stochastic inequalities and dependence results.

Results in these areas could be very useful in real life applications.
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