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CHAPTER 1

INTRODUCTION

1.1 Review for the Dagum and Mc-Donald Generalized Distributions

1.1.1 Dagum Distribution

Dagum distribution was proposed by Camilo Dagum in 1970’s (Dagum 1977-1980).

His proposals enable the development of statistical distributions used to fit empirical

income and wealth data, that could accommodate both heavy tails in empirical income

and wealth distributions, and also permit interior mode. Dagum distribution has both

Type-I and Type-II specification, where Type-I is the three parameter specifications

and Type-II deal with four parameter specification.

Dagum in 1977 motivated his model from empirical observation that the income

elasticity η (F, x) of the cumulative distribution function (cdf) F of income into a

decreasing and bounded function of F.

The cdf and pdf of Dagum (Type-I) distribution are given by

G(x;λ, δ, β) =
(
1 + λx−δ

)−β
, (1.1)

and

g (x;λ, δ, β) = βλδx−δ−1
(
1 + λx−δ

)−β−1
, for λ, δ, β > 0, (1.2)

respectively, where λ is a scale parameter, and δ and β are shape parameters.

Dagum (1980) refers to his model as the generalized logistic-Burr distribution.

Actually when β = 1, Dagum distribution was also referred to as the log-logistic

distribution. Also, generalized (log-) logistic distributions arise naturally in Burr’s
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(1942) system of distributions. The most popular Burr distributions are Burr-XLL

distribution, often called Burr distribution with cdf,

F (x; δ, β) = 1−
(
1 + x−δ

)−β
, for x > 0, δ, β > 0, (1.3)

and more importantly the Burr-III distribution with cdf

F (x; δ, β) =
(
1 + x−δ

)−β
, for x > 0 and δ, β > 0. (1.4)

Thus, these distributions are more popular in economics, after the introduction

of an additional parameter (λ as we can see above in the Dagum cdf and pdf). It is

clear that the Dagum distribution is a Burr III distribution with an additional scale

parameter (λ).

The kth raw or noncentral moments of Dagum distribution are given by

E
(
Xk
)

=

∫ ∞
0

xkβλδx−δ−1
(
1 + λx−δ

)−β−1
dx

= βλ
k
δB

(
β +

k

δ
, 1− k

δ

)
, (1.5)

for δ > k, λ, δ, β > 0, where B(.,.) is the beta function, (by setting t = (1 + λx−δ)−1).

The mean, mode and variance of the Dagum distribution are given by

µX =
1
λ

Γ(β + 1
δ

)
Γ
(
1− 1

δ

)
Γ (β)

, (1.6)

Mode =
1

λ

(
δβ − 1

δ + 1

) 1
δ

, (1.7)

and

σ2
X =

2
λδ

Γ2 (β)

[
Γ (β) Γ

(
β +

2

δ

)
Γ

(
1− 2

δ

)
− Γ2

(
β +

1

δ

)
Γ2

(
1− 1

δ

)]
, (1.8)

respectively. The qth percentile of the Dagum distribution is

x(q) = λ
1
δ

(
q
−1
β − 1

)−1
δ
. (1.9)
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1.1.2 Mc-Donald Generalized Distribution

Consider an arbitrary parent cdf G(x). The probability density function (pdf) f(x) of

the new class of distributions called the Mc-Donald generalized distribution is given

by

f(x; a, b, c) =
cg(x)

B(a, b)
Gac−1(x) (1−Gc(x))b−1 , for a > 0, b > 0, and c > 0. (1.10)

See Corderio et al.(2012) for additional details.

Note that g(x) is the pdf of parent distribution , g(x) = dG(x)/dx, and a,b and

c are additional shape parameters. Introduction of this additional shape parameters

is specially to introduce skewness. Also, this allows us to vary tail weight. It is

important to note that for c=1 we obtain a sub-model of this generalization which is

a beta-generalization and for a=1, we have the Kumaraswamy (Kw),[Kumaraswamy

(1980)] generalized distributions. For random variable X with density function given

above in (1.10), we write X∼Mc-G(a,b,c).

The cdf for this generalization is given by,

F (x; a, b, c) = IG(x)c(a, b) =
1

B(a, b)

∫ G(x)c

0

ωa−1(1− ω)b−1dω, (1.11)

where IGc(x)(a, b) = B(a, b)−1
∫ G(x)c

0
ωa−1(1 − ω)b−1dω denotes incomplete beta func-

tion ratio (Gradshteyn and Ryzhik, 2000). The same equation can be expressed as

follows:

F (x; a, b, c) =
G (x)ac

aB (a, b)
[2F1 (a, 1− b; a+ 1;G(x)c)] , (1.12)

where

2F1 (a, b; c;x) = B (b, c− b)−1

∫ 1

0

tb−1 (1− t)c−b−1

(1− tz)a
dt, (1.13)
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is the well known hypergeometric function (Gradshteyn and Ryzhik, 2000), and

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (1.14)

One important benefit of this class is its ability to fit skewed data that cannot

properly be fitted by many other existing distributions. Mc-G family of densities

allows for higher levels of flexibility of its tails and has a lot of applications in various

fields including economics, finance, reliability and medicine.

1.1.3 Hazard and Reverse Hazard Functions

In this section, some basic utility notions are presented. Suppose the distribution

of a continuous random variable X has the parameter set θ∗ = {θ1, θ2, · · · , θn}. Let

the probability density function (pdf) of X be given by f(x; θ∗). The cumulative

distribution function of X, is defined to be

F (x; θ∗) =

∫ x

−∞
f(t; θ∗) dt. (1.15)

The hazard function of X can be interpreted as the instantaneous failure rate or the

conditional probability density of failure at time x, given that the unit has survived

until time x. The hazard function h(x; θ∗) is defined to be

h(x; θ∗) = lim
∆x→0

P (x ≤ X ≤ x+ ∆x)

∆x[1− F (x; θ∗)]
=
−F̄ ′(x; θ∗)

F̄ (x; θ∗)
=

f(x; θ∗)

1− F (x; θ∗)
, (1.16)

where F̄ (x; θ∗) is the survival or reliability function.

Reverse Hazard function can be interpreted as an approximate probability of a

failure in [x, x+ dx], given that the failure had occurred in [0, x] . The reverse hazard

function τ(x; θ∗) is defined to be

τ(x; θ∗) =
f(x; θ∗)

F (x; θ∗)
. (1.17)
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Some useful functions that are employed in subsequent sections are given below.

The gamma function is given by

Γ(x) =

∫ ∞
0

tx−1e−t dt. (1.18)

The digamma function is defined by

Ψ(x) =
Γ
′
(x)

Γ(x)
, (1.19)

where

Γ
′
(x) =

∫ ∞
0

tx−1(log t)e−t dt

is the first derivative of the gamma function. The second derivative of the gamma

function is

Γ
′′
(x) =

∫ ∞
0

tx−1(log t)2e−t dt.

The lower incomplete and upper incomplete gamma functions are

γ(s, x) =

∫ x

0

ts−1e−t dt and Γ(s, x) =

∫ ∞
x

ts−1e−t dt (1.20)

respectively.

The hazard function (hf) and reverse hazard functions (rhf) of the Mc-G distri-

bution are given by

hF (x) =
cg (x)Gac−1 (x) {1−Gc (x)}b−1

B (a, b)
{

1− IG(x)c (a, b)
} , (1.21)

and

τF (x) =
cg (x)Gac−1 (x) {1−Gc (x)}b−1

B (a, b) IGc(x)(a, b)
, (1.22)

respectively.
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1.1.4 Outline of Results

The outline of this thesis as follows: In chapter 2, the Mc-Dagum distribution and

related family of distributions are introduced. The expansion for the density, hazard

and reverse hazard functions, and other properties are presented. Chapter 3 presents

the moments, and inequality measures. Chapter 4 contains entropy measures of the

Mc-Dagum distribution. Chapter 5 contains inference for the model parameters as

well applications of the results presented in earlier chapters.



CHAPTER 2

INTRODUCING MC-DAGUM DISTRIBUTION

In this chapter, a new class of distribution, called Mc-Dagum distribution is intro-

duced. Considering the properties and some useful features of both Dagum and Mc-

Donald distributions, a broad range of generalization is possible by combining these

distributions. The new class of distributions possess capabilities widely applicable in

several areas as we will show in the next few chapters.

2.1 Mc-Dagum Distribution

In chapter 1, the cdf and pdf of Dagum distribution were given as

G (x;λ, δ, β) =
(
1 + λx−δ

)−β
, (2.1)

and

g (x;λ, δ, β) = βλδx−δ−1
(
1 + λx−δ

)−β−1
, λ, δ, β > 0, (2.2)

respectively. The pdf for Mc-Donald distribution is given by

f(x; a, b, c) = c
B(a,b)

g(x)Gac−1(x) (1−Gc(x))b−1 , a > 0, b > 0, c > 0, (2.3)

and the cdf is

F (x) = IG(x)c(a, b)

= 1
B(a,b)

∫ G(x)c

0
ωa−1(1− ω)b−1dω.

(2.4)

Now, combining the densities given in equations (2.2) and (2.3), we obtain the
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pdf of the Mc-Dagum distribution as follows:

f(x;λ, δ, β, a, b, c) =
c

B(a, b)
βλδx−δ−1

(
1 + λx−δ

)−β−1
[(

1 + λx−δ
)−β]ac−1

[
1−

(
1 + λx−δ

)−cβ]b−1

(2.5)

=
cβλδx−δ−1

B(a, b)

(
1 + λx−δ

)−βac−1
[
1−

(
1 + λx−δ

)−cβ]b−1

,

for a, b, c, λ, β, δ > 0.

The cdf of this new distribution is given by

F (x) = IG(x)c(a, b)

= 1
B(a,b)

∫ G(x)c

0
ωa−1(1− ω)b−1dω

= 1
B(a,b)

∫ (1+λx−δ)
−βc

0 ωa−1(1− ω)b−1dω

= I
(1+λx−δ)

−βc (a, b) ,

(2.6)

where

Iy(a, b) = 1
B(a,b)

∫ y
0
ωa−1(1− ω)b−1dω (2.7)

is the incomplete beta function. The cdf can also be written as follows:

F (x) =

(
1 + λx−δ

)−βac
aB(a, b)

[
2F1

(
a, 1− b; a+ 1; (1 + λx−δ)−βc

)]
, (2.8)

where

2F1 (a, b; c;x) = 1
B(b,c−b)

∫ 1

0
yb−1(1−y)c−b−1

(1−yz)a
dy, (2.9)

is the well-known hypergeometric function, (Gradshteyn and Ryzhik,(2000)).
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2.2 Hazard and Reverse Hazard Functions

The failure rate function or hazard function and reverse hazard function are given by

hF (x; a, b, c, λ, β, δ) = cg(x)Gac−1(x)[1−Gc(x)]b−1

B(a,b)[1−IGc(x)(a,b)]

=
cβλδx−δ−1(1+λx−δ)

−βac−1
[1−(1+λx−δ)−cβ]

b−1

B(a,b)

[
1−I

[(1+λx−δ)−βc]
(a,b)

] ,
(2.10)

and

τF (x; a, b, c, λ, β, δ) =
cβλx−δ−1(1+λx−δ)

−βac−1
[
1−(1+λx−δ)

−cβ]b−1

B(a,b)I
(1+λx−δ)−βc

(a,b)
(2.11)

for a > 0, b > 0, c > 0, λ > 0, β > 0, δ > 0, respectively.

2.3 Expansion of Distribution

In this section, we present a series expansion of the Mc-Dagum cdf and pdf. Consider

the Mc-Dagum cdf given by

F (x;λ, β, δ, a, b, c) = IG(x)c(a, b)

= 1
B(a,b)

∫ G(x)c

0
ωa−1(1− ω)b−1dω

= 1
B(a,b)

∫ (1+λx−δ)
−βc

0 ωa−1(1− ω)b−1dω.

(2.12)

Note that for |ω| < 1,

(1− ω)b−1 =
∞∑
j=0

(−1)j Γ (b)

Γ (b− j) j!
ωj.
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Therefore, the cdf can be expanded to obtain:

F (x;λ, β, δ, a, b, c) = 1
B(a,b)

∫ (1+λx−δ)
−βc

0 ωa−1
∑∞

j=0
(−1)jΓ(b)
Γ(b−j)j! dω

=
∑∞

j=0
(−1)j

B(a,b)
Γ(b)

Γ(b−j)j!

∫ G(x;λ,β,δ)c

0
ωa+j−1dω

=
∑∞

j=0
(−1)jΓ(b)

B(a,b)Γ(b−j)j!

[
ωa+j−1+1

a+j−1+1

]G(x;λ,β,δ)c

0

=
∑∞

j=0
(−1)jΓ(b)

B(a,b)Γ(b−j)j!
[G(x;λ,β,δ)]c(a+j)

(a+j)

=
∑∞

j=0 pjG (x;λ, βc(a+ j), δ) ,

(2.13)

for b > 0, real non-integer, where pj = (−1)jΓ(a+b)
j!Γ(a)Γ(b−j)(a+j)

.

Similarly, the pdf is given by

f(x) =
∞∑
j=0

pjg(x;λ, βc(a+ j), δ). (2.14)

If b > 0 is an integer, then

F (x;λ, β, δ, a, b, c) =
b−1∑
j=0

pjG (x; βc(a+ j), λ, δ) , (2.15)

and

f(x;λ, β, δ, a, b, c) =
b−1∑
j=0

pjg(x; βc (a+ j) , λ, δ). (2.16)

This is a finite mixture of Dagum distributions with parameters λ, βc(a + j)andδ.

The graphs below are the pdf of the Mc-Dagum distribution for different values of

parameters λ, δ, β, a, b, and c.
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The graphs below are the cdf and hazard functions of the Mc-Dagum distribution

for different values of parameters a, b, c, λ, δ, β.
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2.3.1 Submodels

With this generalization, we have several submodels that can be obtained with specific

values of the parameters λ, β, a, b and c.

1. When c = 1, the Mc-Dagum distribution is the beta-Dagum distribution, with

the density given by:

f(x;λ, β, δ, a, b) =
βλδx−δ−1

B(a, b)

(
1 + λx−δ

)−βa−1 [
1− (1 + λx−δ)−β

]b−1
, (2.17)

for x > 0, λ > 0, β > 0, δ > 0, a > 0, and b > 0.

2. If a = b = c = 1, we have the Dagum distribution with the pdf,

fD (x;λ, δ, β) = βλδx−δ−1
(
1 + λx−δ

)−β−1
, (2.18)
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for λ, δ, β > 0.

3. If b = c = 1 and a > 0, then we have the Dagum distribution with parameters

βa, λ and δ. The pdf is

f (x; βa, λ, δ, ) = βaλδx−δ−1
(
1 + λx−δ

)−βa−1
, (2.19)

for λ, δ, β > 0.

4. If a = c = 1 and b > 0, we have another Beta-Dagum distribution with param-

eters b, β, λ, δ and the pdf is given by

fBD (x;λ, δ, β, b) = bβλδx−δ−1
(
1 + λx−δ

)−β−1
[
1−

(
1 + λx−δ

)−β]b−1

, (2.20)

for λ, δ and β > 0.

5. If a = c = λ = 1, then we have the beta-Burr III distribution with parameters

b, β, δ and the pdf is given by

fBB (x; δ, βb, ) = bβδx−δ−1
(
1 + x−δ

)−β−1
[
1−

(
1 + x−δ

)−β]b−1

, (2.21)

for b, δ, β > 0.

6. If c = β = 1, then we have the beta-Fisk distribution with parameters a, b, λ, δ

and the pdf is given by

fBF (x;λ, δ, a, b) =
λδx−δ−1

B (a, b)

(
1 + λx−δ

)−a−1
[
1−

(
1 + λx−δ

)−1
]b−1

, (2.22)

for a, b, λ, δ > 0.

2.3.2 Kum-Dagum Distribution

Kumaraswamy in his paper (1980) proposed a two-parameter distribution (Kumaraswamy

distribution) defined in (0, 1). Here we will refer to it as Kum distribution. Its cdf is
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given by:

F (x; a; b) = 1− (1− xa)b , x ∈ (0, 1), a > 0, b > 0. (2.23)

The parameters a and b are the shape parameters. The Kum distribution has the

probability density function (pdf) given by:

f(x; a, b) = abxa−1(1− xa)b−1, x ∈ (0, 1), a > 0, b > 0. (2.24)

Note that the Kumaraswamy distribution can be derived from the beta distribution.

The beta distribution has the pdf:

f(x;α, β) =
Γ (α + β)

Γ (α) Γ (β)
xα−1(1− x)β−1, where x ∈ (0 1), α > 0, β > 0. (2.25)

Combining cdf of Kum distribution with the Dagum distribution discussed in

chapter 1, we obtain Kum-Dagum distribution with the cdf and pdf for this distribu-

tion given by

FKum (x) = 1−
[
1−

(
1 + λx−δ

)−βa]b
, (2.26)

and

fkum (x) = abβλδx−δ−1
(
1 + λx−δ

)−β−1 [
1 + λx−δ

]−β(a−1)
[
1−

(
1 + λx−δ

)−βa]b
= abβλδx−δ−1

(
1 + λx−δ

)−β−βa+β−1
(

1−
[
1 + λx−δ

]−βa)−β−1

= abβλδx−δ−1
(
1 + λx−δ

)−βa−1
(

1−
[
1 + λx−δ

]−βa)−β−1

,

(2.27)

for a, b, β, λ, δ > 0, respectively. We do not study the properties of the Kum-Dagum

distribution in this thesis.

2.4 Concluding Remarks

In this chapter, we introduced a new class of distributions called the Mc-Dagum

distribution. We obtained the pdf, cdf, hazard function, reverse hazard function
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for this class of distributions. We obtained the series expansion of the distribution

and presented plots of pdf, cdf and hazards function for different parameter values.

Through these graphs we see that the distribution possesses the ability to fit for a

large range of data sets. We noted that there are several submodels for selected

values of the Mc-Dagum model parameters. Additionally we introduced another new

distribution called “Kum-Dagum distribution” but we do not discuss its properties

in this thesis.



CHAPTER 3

MOMENTS AND INEQUALITY MEASURES

In this chapter, we present moments and inequality measures for the Mc-Dagum distri-

bution. Income distribution and its variation is an important concern for economists.

We use the results presented in chapter 2 which we obtained by expanding the pdf.

3.1 Moments

We can derive the kth moment of a Mc-Dagum distribution using properties of the

mixture distribution. The kth raw or non-central moments are given by,

E(Xk) =
∫∞

0
xk cβλx

−δ−1

B(a,b)

(
1 + λx−δ

)−βac−1
(

1−
(
1 + λx−δ

)βc)b−1

dx

= cβλ
B(a,b)

∫∞
0
xk−δ−1

(
1 + λxδ

)−βac−1
(

1−
(
1 + λx−δ

)−βc)b−1

dx.
(3.1)

Now let, y−1 =
(
1 + λx−δ

)
, then x = (1− y)

−1
δ (λy)

1
δ , and we have

E(Xk) = cβ
δB(a,b)

∫ 1

0
(1− y)

−k
δ (λy)

k
δ yβac−1(1− yβc)b−1dy. (3.2)

Using the fact that (1 − yβc)b−1 =
∑∞

j=1
(−1)jΓ(b)
Γ(b−j)j! (yβc)j, and for pj = (−1)jΓ(a+b)

j!Γ(a)Γ(b−j)(a+j)
,

and |yβcweobtain

E(Xk) = λ
k
δ cβ

δB(a,b)

∑∞
0

(−1)jΓ(b)
Γ(b−j)j!

∫ 1

0
y
k
δ

+βac+βcj−1(1− y)1− k
δ
−1dy

= λ
k
δ cβ

δB(a,b)

∑∞
0

(−1)jΓ(b)
Γ(b−j)j! B(βc(a+ j) + k

δ
, 1− k

δ
)

=
∑∞
j=0 pjβc(a+j)λ

k
δ

δ
B(βc(a+ j) + k

δ
, 1− k

δ
), δ > k.

(3.3)We

can obtain the kth incomplete moment for a Mc-Dagum distribution as follows:

E
[
Xk|X ≤ x

]
= EX≤x

[
Xk;λ, β, δ, a, b, c

]
=
∫ x

0
ukf (u) du

=
∫ x

0
uk
∑∞

j=0 pjf(u; βc(a+ j), λ, δ)du

=
∑∞

j=0 pj
∫ x

0
ukf(u; βc(a+ j), λ, δ)du

=
∑∞

0 pj
βc(a+j)λ

k
δ

δ
B((1 + λx−δ)−1; βc(a+ j) + k

δ
, 1− k

δ
),

(3.4)
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for δ > k, where B(t; c1, c2) =
∫ t

0
yc1−1(1− y)c2−1dy.

The mean residual life (MRF) function denoted by µ(x;λ, β, δ, a, b, c) = µ(x) is

given by

µ(x) = E[X − x|X ≥ x]

= E(X)−E(X|X≤x)
1−F (x)

− x

=

∑∞
j=0 pjβc(a+j)λ

k
δ

δ
B(βc(a+j)+ k

δ
,1− k

δ
)−
∑∞

0 pj
βc(a+j)λ

k
δ

δ
B((1+λx−δ)−1;βc(a+j)+ k

δ
,1− k

δ
)

1−
∑∞
j=0 pjG(x;λ,βc(a+j),δ)

− x.
(3.5)

3.2 Inequality Measures

Lorenz and Bonferroni curves are the most widely used inequality measures in income

and wealth distribution (Kleiber, 2004). Zenga curve was presented by Zenga in 2007.

In this section, we will derive Lorenz, Bonferroni and Zenga curves for the Mc-Dagum

distribution.

The Lorenz, Bonferroni and Zenga curves are defined by

LF (x) =
∫ x
0 tf(t)dt

E(X)

=
EX≤x(X)

E(X)
,

(3.6)

B (F (x)) =
∫ x
0 tf(t)dt

F (x)E(X)

=
EX≤x(X)

F (x)E(X)

= LF (x)
F (x)

,

(3.7)

and

A(x) = 1− µ−(x)
µ+(x)

, (3.8)
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respectively, where µ−(x) =
∫ x
0 tf(t)dt

F (x)
= EX(x)

F (x)
and µ+(x) =

∫∞
x tf(t)dt

1−F (x)
= E(X)−EX>x(x)

1−F (x)

are the lower and upper means. For Mc-Dagum distribution, using these results, we

obtain the curves. Lorenz curve for Mc-Dagum distribution is given by

LFG(x;λ, β, δ, a, b, c) =
∑∞
j=0 pjβc(a+j)λ

1
δ B((1+λx−δ)−1;βc(a+j)+ 1

δ
,1− 1

δ
)∑∞

j=0 pjβc(a+j)λ
1
δ B(βc(a+j)+ 1

δ
,1− 1

δ
)

. (3.9)

Bonferroni curve for Mc-Dagum distribution is given by

B(FG(x;λ, β, δ, a, b, c)) =
∑∞
j=0 pjβc(a+j)λ

1
δ B((1+λx−δ)−1;βc(a+j)+ 1

δ
,1− 1

δ
)∑∞

j=0 pjG(x;λ,βc(a+j),δ)
∑∞
j=0 pjβc(a+j)λ

1
δ B(βc(a+j)+ 1

δ
,1− 1

δ
)
.

(3.10)

Zenga curve for the Mc-Dagum distribution is given by

A(x;λ, β, δ, a, b, c) = 1−
[

E(X|X≤x)
F (x)

E(X)−E(X≤x)
1−F (x)

]
= 1− (1−F (x))E[X|X≤x]

F (x)[E(X)−E(X|X≤x)]
,

(3.11)

where E [X|X ≤ x] =
∑x

0 pj
βc(a+j)λ

1
δ

δ
B((1 + λx−δ)−1; βc(a+ j) + 1

δ
, 1− 1

δ
),

E(X) =
∑∞
j=0 pjβc(a+j)λ

1
δ

δ
B(βc(a+ j) + 1

δ
, 1− 1

δ
), and

F (x) =
∑∞

j=0 pjG (x;λ, βc(a+ j), δ) .

3.2.1 Inequality Measures for Some Sub models

For various submodels that we introduced in chapter 2, we can generate Lorenz,

Bonferroni and Zenga curves. Let ξ1=(λ, β, δ, a, b), ξ2=(λ, β, δ, b), ξ3=(λ, δ, a, b) and

E=
∑∞

j=0 pjβ(a+ j)λ
1
δB(β(a+ j) + 1

δ
, 1− 1

δ
)

1. If c = 1, we obtain the Lorenz and Bonferroni curves for the beta-Dagum

distribution:

LFG(x; ξ1) =

∑∞
j=0 pjβ(a+ j)λ

1
δB((1 + λx−δ)−1; β(a+ j) + 1

δ
, 1− 1

δ
)

E
,
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and

B(FG(x; ξ1)) =

∑∞
j=0 pjβ(a+ j)λ

1
δB((1 + λx−δ)−1; β(a+ j) + 1

δ
, 1− 1

δ
)∑∞

j=0 pjG (x;λ, β(a+ j), δ)E
,

respectively.

2. If a = c = 1 and b > 0, then Lorenz and Bonferroni curves for another Beta-

Dagum distribution with parameters b, β, λ, δ given by

LFG(x; ξ2) =

∑∞
j=0 pjβ(1 + j)λ

1
δB((1 + λx−δ)−1; β(1 + j) + 1

δ
, 1− 1

δ
)∑∞

j=0 pjβ(1 + j)λ
1
δB(β(1 + j) + 1

δ
, 1− 1

δ
)

,

and

B(FG(x; ξ2)) =

∑∞
j=0 pjβ(a+ j)λ

1
δB((1 + λx−δ)−1; β(1 + j) + 1

δ
, 1− 1

δ
)∑∞

j=0 pjG (x;λ, β(1 + j), δ)E
,

respectively.

3. If a = c = λ = 1, then we obtain the Lorenz and Bonferroni curves for the

beta-Burr III distribution with parameters b, β, δ, that is

LFG(x; β, δ, b) =

∑∞
j=0 pjβ(1 + j)B((1 + x−δ)−1; β(1 + j) + 1

δ
, 1− 1

δ
)∑∞

j=0 pjβ(1 + j)B(β(1 + j) + 1
δ
, 1− 1

δ
)

,

and

B(FG(x; β, δ, b)) =

∑∞
j=0 pjβ(a+ j)B((1 + x−δ)−1; β(1 + j) + 1

δ
, 1− 1

δ
)∑∞

j=0 pjG (x; β(1 + j), δ)E
.

4. If c = β = 1, then we obtain the Lorenz and Bonferroni curves for the beta-Fisk

distribution with parameters a, b, λ, δ.

LFG(x; ξ3) =

∑∞
j=0 pj(a+ j)λ

1
δB((1 + λx−δ)−1; (a+ j) + 1

δ
, 1− 1

δ
)

E
,

and

B(FG(x; ξ3)) =

∑∞
j=0 pj(a+ j)B((1 + λx−δ)−1; (a+ j) + 1

δ
, 1− 1

δ
)∑∞

j=0 pjG (x;λ, (a+ j), δ)E

for a, b, λ, δ > 0.
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3.3 Concluding Remarks

In this chapter, we presented the raw moments and the kth incomplete moments

for the Mc-Dagum distribution. Inequality measures for the distribution are derived

using well known Lorenz and Bonferroni curves. Additionally, Zenga curve was also

obtained. Lorenz curve and Bonferroni curves for some submodels of this class of

distributions are also obtained.



CHAPTER 4

ENTROPY

In this chapter, we discuss the Renyi entropy, Shannon entropy and β̃-entropy for

the Mc-Dagum distribution. The entropy of a random variable X is a measure of

variation of the uncertainty.

4.1 Renyi and Shanon Entropy

For a pdf f(x), Renyi entropy (Renyi, 1961) is given by

HR(f) = log
1−s

(∫∞
0
f s(x)dx

)
, s > 0, s 6= 1. (4.1)

As s→ 1, we obtain the Shanon entropy. Note that,

fs(x) = (cβλδ)sx−sδ−s

Bs(a,b)

(
1 + λx−δ

)−βacs−s [
1−

(
1 + λx−δ

)−cβ]bs−s
and

∫∞
0
f s(x)dx = (cβλδ)s

Bs(a,b)

∫∞
0
x−sδ−s

(
1 + λx−δ

)−βacs−s [
1−

(
1 + λx−δ

)−cβ]bs−s
dx

= (cβλδ)s

Bs(a,b)

∫ 1

0

[
(1− y)

−1
δ (λy)

1
δ

]−sδ−s yβacs+s(1−yβc)
bs−s

y2λδ

[
(1−y)

−1
δ (λy)1δ

]−δ−1dy

= (cβλδ)s

Bs(a,b)

∫ 1

0
λ−sδ−sy

−sδ−s
δ

+βacs+s−2+ 1
δ

+1(1− yβc)sb−s(1− y)s−1+ s−1
δ dy.

(4.2)

Using the fact that, (1− ω)b−1 =
∑∞

j=0
(−1)jΓ(b)
Γ(b−j)j! ω

j, and setting

y = (1 + λx−δ)−1, so that x−δ = y−1−1
λ

=1−y
λy

, and λδx−δ−1dx=y−2dy, we obtain

∫∞
0
f s(x)dx = (cβλδ)s

Bs(a,b)

∫ 1

0
λ−sδ−sy

−sδ−s
δ

+βacs+s−2+ 1
δ

+1(1− yβc)sb−s(1− y)s+
s
δ
− 1
δ
−1dy

= (cβλδ)sλ−sδ−sλ1+
1
δ

Bs(a,b)

∫ 1

0
yβacs+s−s−

s
δ

+ 1
δ

+1−2(1− y)s+
s
δ
− 1
δ
−1(1− yβc)sb−sdy

= (cβλδ)sλ1+
1
δ
−sδ−s

Bs(a,b)

∫ 1

0
yβacs−

s
δ

+ 1
δ
−1(1− y)s+

s
δ
− 1
δ
−1
∑∞

j=0
(−1)jΓ(sb−s+1)yβcj

Γ(sb−s+1−j)j!

= (cβλδ)sλ1+
1
δ
−sδ−s

Bs(a,b)

∑∞
j=0

(−1)jΓ(sb−s+1)
Γ(sb−s+1−j)j!

∫ 1

0
yβcj+βacs−

s
δ

+1δ−1(1− y)s+
s
δ
− 1
δ
−1dy

= (cβλδ)sλ1+
1
δ
−sδ−s

Bs(a,b)

∑∞
j=0

(−1)jΓ(sb−s+1)
Γ(sb−s+1−j)j! B(βcj + βacs− s

δ
+ 1

δ
, s+ s

δ
− 1

δ
).

(4.3)
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Therefore, Renyi entropy for the Mc-Dagum distribution is

HR(f) =
log

1− s

[
(cβλδ)sλ1+ 1

δ
−sδ−s

Bs(a, b)

∞∑
j=0

(−1)jΓ(sb− s+ 1)

Γ(sb− s+ 1− j)j!
(4.4)

B

(
βcj + βacs− s

δ
+

1

δ
, s+

s

δ
− 1

δ

)]
for s > 0 and s 6= 1. If bs− s is a positive integer, then the sum in the Renyi entropy

stops at bs− s.

4.2 β̃-entropy

We also obtain β̃-entropy for the Mc-Dagum density as follows.

Hβ̃(f) =


1

β̃−1
[1−

∫∞
0
f β̃(x)dx] , if β̃ 6= 1,β̃ > 0,

E[−log(f(X))], if β̃=1.

(4.5)

Therefore, if β̃ 6= 1, β̃ > 0,

Hβ̃(f) =
1

β̃ − 1

[
1− (cβλδ)β̃λ1+ 1

δ
−β̃δ−β̃

Bβ̃(a, b)

∞∑
j=0

(−1)jΓ(β̃b− β̃ + 1)

Γ(β̃b− β̃ + 1− j)j!

× B

(
βcj + βacβ̃ − β̃

δ
+

1

δ
, β̃ +

β̃

δ
− 1

δ

)]
.

4.3 Concluding Remarks

In chapter 4, measures of uncertainty, including Renyi, Shanon and β̃-entropy for the

Mc-Dagum distribution were presented.



CHAPTER 5

INFERENCE

5.1 Maximum Likelihood Estimates (MLE)

Let Θ = (λ, β, δ, a, b, c)T . In order to estimate the parameters λ, β, δ, a, b and c of

the Mc-Dagum distribution, we use the method of maximum likelihood estimation.

Let X1, X2, ......., Xn be a random sample from f(x;λ, β, δ, a, b, c). The log-likelihood

function L(λ, β, δ, a, b, c) is:

L(λ, β, δ, a, b, c) = nlog

(
cβλδ

B(a, b)

)
+ log

(
n∏
i=1

x−δ−1
i

)
+ log

[
n∏
i=1

(
1 + λx−δi

)−βac−1

]

+ log
n∏
i=1

[
1−

(
1 + λx−δi

)−cβ]b−1

(5.1)

= nlog(c) + nlog(β) + nlog(λ) + nlog(δ)− nlogB(a, b)

− (δ + 1)
n∑
i=1

logxi − (βac+ 1)
n∑
1

log[1 + λx−δi ]

+ (b− 1)
n∑
i=1

log[1− (1 + λx−δi )−cβ].

(5.2)

Differentiating L(λ, β, δ, a, b, c) with respect to each parameter λ, β, δ, a, b and c and

setting the result equals to zero, we obtain maximum likelihood estimates. The partial

derivatives of L with respect to each parameter or the score function is given by:

Un(Θ) =

(
∂L

∂λ
,
∂L

∂β
,
∂L

∂δ
,
∂L

∂a
,
∂L

∂b
,
∂L

∂c

)
, (5.3)

where

∂L

∂λ
=
n

λ
−βac

n∑
i=1

(
x−δi

1 + λx−δi

)
−

n∑
i=1

x−δi
(1 + λx−δi )

+ (b− 1)
n∑
i=1

cβ(1 + λx−δi )−cβ−1x−δi
[1− (1 + λx−δi )−cβ]

,

(5.4)



26

∂L

∂β
=
n

β
− ac

n∑
i=1

log(1 + λx−δi ) + c(b− 1)
n∑
i=1

(1 + λx−δi )−cβlog(1 + λx−δi )

[1− (1 + λx−δi )−cβ]
, (5.5)

∂L

∂δ
=

n

δ
−

n∑
i=1

logxi + λ(βac+ 1)
n∑
i=1

x−δi log(xi)

(1 + λx−δi )
(5.6)

− λcβ(b− 1)
n∑
i=1

x−δi (1 + λx−δi )−cβ−1logxi

[1− (1 + λx−δi )−cβ]
,

∂L

∂a
= −n(ψ(a)− ψ(a+ b))− βc

n∑
i=1

log(1 + λx−δi ), (5.7)

∂L

∂b
= −n[ψ(b)− ψ(a+ b)] +

n∑
i=1

log[1− (1 + λx−δi )−cβ], (5.8)

where ψ(.) is digamma function defined by ψ(x) = d
dx
logΓ(x) = Γ′(x)

Γ(x)
, and

∂L

∂c
=
n

c
− βa

n∑
i=1

log(1 + λx−δi ) + (b− 1)β
n∑
i=1

(1 + λx−δi )−cβlog(1 + λx−δi )

[1− (1 + λx−δi )−cβ]
. (5.9)

The MLE of the parameters λ,β,δ,a,b and c, say λ̂,β̂,δ̂,â,b̂ and ĉ are obtained by

solving the following equations, ∂L
∂λ

= ∂L
∂β

= ∂L
∂δ

=∂L
∂a

= ∂L
∂b

=∂L
∂c

=0. There is no closed

form solution to these equations, so numerical technique such as Newton-Rapson

method must be applied.

5.2 Fishers Information Matrix

To obtain the Fishers information matrix (FIM), we derive the second partial deriva-

tives and cross partial derivatives with respect to each parameter λ,β,δ,a,b and c as

follows:

From equation (5.4) we obtain

∂2L

∂λ2
=
−n
λ2

+ (βac+ 1)
n∑
i=1

x−2δ
i

A2
i

+ (b− 1)
n∑
i=1

cβx−2δ
i A−cβ−2

i [A−cβi − cβ − 1]

[1− A−cβi ]2
, (5.10)
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where, Ai=(1 + λx−δi ),

∂2L

∂λ∂β
= −ac

n∑
i=1

x−δi
Ai

+ (b− 1)
n∑
i=1

x−δi cA−cβ−1
i

[cβlog(Ai)− 1 + A−cβi ]

[1− A−cβi ]2
, (5.11)

∂2L

∂λ∂δ
= (−βac− 1)

n∑
i=1

x−δi log(xi)

A2
i

+ (b− 1)
n∑
i=1

cβx−δi A−cβ−1
i log(xi)Bi, (5.12)

where, Bi =
1−λx−δi cβA−1

i −λx
−δ
i A−1

i +λx−δi cβA−cβ−1
i −(1+λx−δi )−cβ

[1−A−cβi ]2
,

∂2L

∂λ∂a
= −βc

n∑
i=1

x−δi
(1 + λx−δi )

, (5.13)

∂2L

∂λ∂b
=

n∑
i=1

cβ(1 + λx−δi )−cβ−1x−δi
[1− (1 + λx−δi )−cβ]

, (5.14)

and

∂2L

∂λ∂c
= −βa

n∑
i=1

x−δi
Ai

+ (b− 1)
n∑
i=1

βx−δi A−cβ−1
i [cβlogAi − 1 + A−cβi ]

[1− A−cβi ]2
. (5.15)

From equation (5.5), we obtain

∂2L

∂β2
=
−n
β2

+ c2(b− 1)
n∑
i=1

(1 + λx−δi )−cβ[log(1 + λx−δi )]2

[1− (1 + λx−δi )−cβ]2
, (5.16)

∂2L

∂β∂δ
= ac

n∑
i=1

Ci + (b− 1)
n∑
i=1

λcA−cβ−1
i x−δi logxi[1− cβlogAi − A−cβi ]

[1− A−cβi ]2
, (5.17)

where, Ci =
λx−δi log(xi)

Ai
,

∂2L

∂β∂a
= −c

n∑
i=1

log(1 + λx−δi ), (5.18)

∂2L

∂β∂b
=

n∑
i=1

c(1 + λx−δi )−cβlog(1 + λx−δi )

[1− (1 + λx−δi )−cβ]
, (5.19)

and

∂2L

∂β∂c
= −a

n∑
i=1

logAi + (b− 1)
n∑
i=1

A−cβi logAi[cβlogAi + A−cβi − 1]

[1− A−cβi ]2
. (5.20)
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From equation (5.6), we obtain

∂2L

∂δ2
=
−n
δ2

+ λ(βac+ 1)
n∑
i=1

x−δi (logxi)
2A−cβ−1

i Di (5.21)

where Di=
[1−λcβx−δi (1+λx−δi )−1−λx−δi (1+λx−δi )−1−(1+λx−δi )−cβ+λx−δi (1+λx−δi )−cβ−1]

[1−(1+λx−δi )−cβ ]2
.

Also,

∂2L

∂δ∂a
= λβc

n∑
i=1

x−δi logxi

(1 + λx−δi )
, (5.22)

∂2L

∂δ∂b
= −λcβ

n∑
i=1

x−δi (1 + λx−δi )−cβ−1logxi

[1− (1 + λx−δi )−cβ]
, (5.23)

and

∂2L

∂δ∂c
= λβc

n∑
i=1

Fi − λβ(b− 1)
n∑
i=1

A−cβ−1
i x−δi logxi[cβlogAi + A−cβi − 1]

[1− A−cβi ]2
, (5.24)

where Fi =
x−δi logxi

(1+λx−δi )
.

From equation (5.7), we obtain

∂2L

∂a2
= n

[
(ψ(a+ b))2 − Γ

′′
(a+ b)

Γ(a+ b)
− (ψ(a))2 +

Γ
′′
(a)

Γ(a)

]
, (5.25)

∂2L

∂a∂b
= n

[
(ψ(a+ b))2 − Γ

′′
(a+ b)

Γ(a+ b)

]
, (5.26)

and

∂2L

∂a∂c
= −β

n∑
i=1

log(1 + λx−δi ). (5.27)

From equation (5.8), we obtain

∂2L

∂a2
= n

[
(ψ(a+ b))2 − Γ

′′
(a+ b)

Γ(a+ b)
− (ψ(b))2 +

Γ
′′
(b)

Γ(b)

]
, (5.28)
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and

∂2L

∂b∂c
=

n∑
i=1

β(1 + λx−δi )−cβlog(1 + λx−δi )

[1− (1 + λx−δi )−cβ]
. (5.29)

From equation (5.9), we obtain

∂2L

∂c2
=
−n
c2

+ β(b− 1)
n∑
i=1

β(1 + λx−δi )−cβ[log(1 + λx−δi )]2

[1− (1 + λx−δi )−cβ]2
. (5.30)

Fisher information matrix for the Mc-Dagum distribution is:

I(θ) = I(λ, β, δ, a, b, c) =



Iλλ Iλβ Iλδ Iλa Iλb Iλc

Iβλ Iββ Iβδ Iβa Iβb Iβc

Iδλ Iδβ Iδδ Iδa Iδb Iδc

Iaλ Iaβ Iaδ Iaa Iab Iac

Ibλ Ibβ Ibδ Iba Ibb Ibc

Icλ Icβ Icδ Ica Icb Icc


. (5.31)

where, Iλλ=−E
[
∂2L
∂λ2

]
,........,Icc=−E

[
∂2L
∂c2

]
.

The elements of the 6 X 6 matrix I(λ, β, δ, a, b, c) can be approximated by the

elements of the information matrix, where

Iij(θ) = −E
[
∂2L

∂θi∂θj

]
≈ −∂

2L

∂θi∂θj
. (5.32)

Applying the usual large sample approximation, MLE of Θ, that is Θ̂ is approximately

N6(Θ, I−1
n (Θ)), where In(Θ) is the 6X6 observed information matrix. Under the

regularity conditions and parameters in the interior of the parameter space but not

on the boundary, the asymptotic distribution of
√
n((Θ̂)−Θ) is N6(Θ, I−1(Θ)), where

I(Θ) = lim
n→∞

n−1In(Θ).

Therefore, the approximate 100(1-α)% two-sided confidence intervals for λ, β, δ, a, b

and c are given by:
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λ̂± Zα
2

√
I−1
λλ (θ̂), β̂ ± Zα

2

√
I−1
ββ (θ̂), δ̂ ± Zα

2

√
I−1
δδ (θ̂),

â± Zα
2

√
I−1
aa (θ̂), b̂± Zα

2

√
I−1
bb (θ̂) and ĉ± Zα

2

√
I−1
cc (θ̂),

where, Zα
2

is the upper (α
2
)th percentile of a standard normal distribution.

5.3 Concluding Remarks

In this chapter, we presented log-likelihood function for the Mc-Dagum distribution

and obtained partial derivatives with respect to each parameter to estimate the model

parameters. We noticed that there are no closed form estimates of the parameters,

so numerical methods must be applied. We also obtained Fisher Information matrix;

Iij(θ) = −E
[
∂2L

∂θi∂θj

]
≈ −∂

2L

∂θi∂θj
. (5.33)

Finally the approximate confidence intervals for each parameter was given.

5.4 Future Works

In the future, we will investigate and obtain results on the Kumaraswamy-Dagum

(Kum-Dagum) distribution that was mentioned in the Chapter one. We will also

work on obtaining estimates of model parameters from the Bayesian viewpoint for

both Mc-Dagum and Kum-Dagum distributions and conduct goodness-of-fit tests for

these models.
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