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ONE-DIMENSIONAL FRACTAL WAVE EQUATIONS

by
F. CHAN

(Under the Direction of Dr. Sze-Man Ngai)

ABSTRACT

We study one-dimensional wave equations defined by a class of fractal Laplacians.
These Laplacians are defined by fractal measures generated by iterated function sys-
tems with overlaps, such as the well-know infinite Bernoulli convolution associated
with golden ratio and the 3-fold convolution of the Cantor measure. The iterated
function systems defining these measures do not satisfy the open set condition or
the post-critically finite condition, and therefore the existing theory, introduced by
Kigami and developed by many other mathematicians, cannot be applied. First, by
using a weak formulation of the problem, we prove the existence, uniqueness and
regularity of weak solutions of these wave equations. Second, we study numerical
computations of the solutions. By using the second-order self-similar identities in-
troduced by Strichartz et al., we discretize the equation and use the finite element
method and central difference method to obtain numerical solutions. Last, we also
prove that the numerical solutions converge to the weak solution, and obtain estimates

for the convergence of this approximation scheme.
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self-similar identities, weak solution, finite element method
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0.1 Notation

Let us introduce some notation and symbols used in this thesis.
Let A, be Laplacian with respect to p.

Let C2°(a,b) be the set of infinitely differentiable functions with compact sup-

ports [a,b]. Let X be a Banach space and ||-|| denote the corresponding norm.
Let LP([0,T]; X') be the space of all measurable functions u : [0, 7] — X.

Let Xbe a Banach space. The space C([0,7]; X) comprises all continuous func-
tions u : [0, 7] — X. The space C'([0,T]; X) comprises all C"' functions u : [0,T] —

X. The space C?([0,T]; X) comprises all C* functions u : [0,T] — X.

Let Dom (£) := H}(a,b) be the Sobolev space of all functions f : [a,b] — R in
L*([a, b],dx) with f(a) = f(b) = 0.

Let (Dom (£))" denote the dual space of Dom (£). Then each u € (Dom (€))’

defines a continuous linear functional < w,v >:= (u,v),,.
E(u,v) = fab VuVov dr with domain Dom (&).

(uw,v), = fab uv du denotes the inner product in L2 [a, b] and let |ull, denote the

corresponding norm.

Let u € X, where X is Dom (£), L*([a,0],dz) or L2[a,b]. Then Vu is the

distributional derivative with respect to .
Let w: [0,7] — X. Then @ denotes the strong derivative. See Appendix G.

Let a: [0,7] — R. Then o denotes the strong derivative. See Appendix G.
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Let u : [0, 7] — X, where X be Dom (&) or L?[a,b]. Then 9u denotes the partial

derivative. See Appendix G.

Let u : [0,T] = Dom (€) or Let u : [0,T] = L [a,b]. Then u; and (u,,); denote

the weak derivative.



CHAPTER 1
INTRODUCTION

In the real world, many geometric objects are best modeled by fractals, such as trees,
coastlines, mountains, and clouds. In 1975, Mandelbrot[19] coined the term of fractals

and argued the theory of fractals.

Analysis on fractals [13] actors of Laplacian on the Sierpinski gasket, which is
first introduced by J. Kigami in [12], and eigenvalues and eigenfunctions of Laplacian
on post critically finite self-similar sets. In this work, Kigami also explain how to
construct Dirichlet forms, harmonic functions, Green’s functions and Laplacians on

the post critically finite self-similar sets.

Dalrymple et al. [6] studied analogues of some classical differential equations,

such as heat and wave equations on the Sierpinski gasket.

In this thesis, we study one-dimensional wave equations defined by a class of
fractal Laplacians. These Laplacians are defined by fractal measures generated by
iterated function systems with overlaps. We proved the existence and uniqueness
of the weak solution of the hyperbolic initial/boundary value problem of the non-
homogeneous wave equation. (see chapter 2.) We also solve the homogeneous wave
equation numerically. Finally, we prove that the numerical solutions converge to the

weak solution.

1.1 Preliminaries

In this section, we will introduce known results related to our projects.



1.1.1 Fractal measures

Let D be a non-empty compact subset of R?. A function S : D — D is called
contraction on D if there is a number ¢ with 0 < ¢ < 1 such that |S(z) — S(y)| <
cle —y| for all z,y € D. An iterated function system(IFS) is a finite collection
of contractive functions {S;},. In this thesis, we are mainly interested in IFS of

contractive similitudes on R?. These functions are of the form
where 0 < p; < 1, R; is an orthogonal transformation and b; € R? (see [8]).

To each set of probability weights {p;}",, where p; > 0 and Y ;" p; = 1, there
exists a unique probability measure, called a self-similar measure, satisfying the iden-
tity

p=> pipoS; " (1.1.2)
i=0

(see [10]).

We say that {5;}, satisfies the open set condition (OSC) if the exist a nonempty
bounded open set U such that U S;(U) C U and S;(U) N S;(U) = 0 for all i # j
(see [8]). Let{S;}", and u be of the form (1.1.1) and (1.1.2), respectively. Also, we

assume that supp(u) = [a, b]. Define
Tij(x) =pYz+d;, j=1,2,...,N, (1.1.3)

where n; € N and d; € R%. p is said to satisfy a family of second-order self-similar

identities (or simply second-order identities) with respect to {T;}7, (see [17]) if

(i) supp(p) € UL, T;(supp(p)), and
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(ii) for each Borel set A C supp(p) and 0 <14,j < N, u(7; o T;A) can be expressed

as a linear combination of {u(T,A):k=1,...,L} as

(T, 0 TjA) ch (T A (1.1.4)

where ¢, = ¢(7,j) are independent of A.

For our purposes, {7}, has to satisfy the OSC.

1.1.2 Operator A,

Let 1 be a continuous positive finite Borel measure on R with supp(u) C [a,b].
It is well known (see e.g., [3, 9]) that y defines a Dirichlet Laplacian A, on L?[a, b],
described as follows. Let H'(a, b) be the Sobolev space of all functions in L*([a, b], dz)
whose distributional derivatives (see Appendix G) belong to L?[a,b], with the inner

product
b b
(U, V) 51 (a,b) ::/ uv dx+/ VuVudz.
Let H{(a,b) be the completion of C°(a,b) in H'(a,b). H}(a,b) is a dense subspace
of L2]a,b]. Define a quadratic form on L?[a, b],

b
E(U,U):/ VuVodz, (1.1.5)

with domain equal to H}(a, b) in the Dirichlet case. Since the embeddings H} (a, b) <
L2[a,b] and H'(a,b) < LZ[a,b] are compact, & is closed. Thus there exists a non-

negative self-adjoint operator 7" on L2[a, b] such that Dom (£) = Dom (7""/?) and

E(u,v) = (T"?u, TY?v),  for all u,v € Dom (£),



where
(u,v), ::/uvdu
denotes the inner product in L?([a, b],du). Let || - ||, denote the corresponding norm.
We define A, := =T and call it the Dirichlet Laplacian with respect to p if

Dom (£) = Hj(a,b).

Let v € Dom (£) and f € L2[a,b]. It is known that u € Dom (A,) and Aju = f

if and only if Au = fdu in the sense of distribution, i.e.,

b b b b
/ Vqudx—/ (—Au)vdx—/ (—fu)vd,u—/ (—A u)vdp
for all v € C°(a, b).

It is known (see, e.g., [3, 9]) that there exists an orthonormal basis of eigenfunc-
tions of A, and the eigenvalues {\, } are discrete and satisfy 0 < A; < Ay < -+ with

lim,, oo A;, = 0.
The eigenvalues A and eigenfunctions u are defined by the following equation:
/Vu(x) Vou(z)de =\ / u(z)v(z) dp(z), (1.1.6)
where the equation holds for all v € C§°(a,b).

The operators A, and their generalizations have been studied in connection with
spectral functions of the string and diffusion processes . More recently, they have been

studied in connection with fractal measures (see [3, 9, 20]).



1.2 Main problems in our project

We first give a heuristic derivation of the general wave equation of a vibrating string
with non-homogeneous mass density.(see e.g. [25]) In later chapters, we will study
the properties of one-dimensional fractal wave equations, such as weak solutions and
their regularity. Moreover, we will use numerical methods to find approximations to

the weak solution of this type of equations.

We use the following notation: Let u(z,t) be vertical displacement from equilib-

rium position at position x and time .
Let T'(x,t) be magnitude of tension.

Let p be measure representing mass density (non-constant).

Applying Newton’s second law of motion, we get

T(x,t) T(x,t)

5 _ BY — 0, 1.2.7
1+ ul le=a V14 u2 la=zo ( )
and
T(z,t)u, T(z,t)u, /ml
—_— - = Uy d L. 1.2.8
‘/1_’_u3 T=x1 ,/1—}-11% =10 20 tt A ( )




Assume that the vertical displacement is small, i.e. |u,| << 1. Then /1 +u2 =
1 + O(u2). Therefore, (1.2.7) implies T'(z1,t) ~ T(xo,t), i.e., T = constant, and

(1.2.8) implies

r=x1 r=x0

T-ux| _ —T-um| = /901 Uygy dfb.
zo

1 1
T/ Uy AT :/ Uy d .
o o

Tum = Uyt d,LL

Therefore,

Normalize so that T'=1. Suppose we let A,u = f & Au= fdu

Then,

If 1 is Lebesgue measure, this reduces to the standard wave equation Au = wuy.

1.3 Main result

The main purpose of this thesis is to study the one-dimensional wave equations defined

by a class of fractal Laplacians.

In Chapter 2, we proved that the existent and uniqueness of solution of these kind

equations. The most important result of Chapter 2 is as follows:

Theorem 1.3.1. There exists a constant C' > 0, depending only on U and T, such



that for allm € N,

13 (i (2, )l ey + 1 s )l ) + 11, )il 207y o

2 2
<SC(1f 20,2, 2200 T 191Dom &) + [1211,)-

(1.3.9)

This helps us prove the existent and uniqueness of solution. In Chapter 3, we used
the finite element method to approximate our weak solution. There is a main result

in chapter 3:

If w™(x,t) be defined by

u™(z,t) = Zﬂj(t)qu(x), where §;(t) := B, ;(t) and ¢;(x) :== ¢y, ;(z) (1.3.10)

where ¢g, ¢1, ..., ¢nm are the standard piecewise linear finite element basis functions
defined as:
T—Tf— .
Sl i gy <w<ay, k=1,..,N"
= s = m_ 1.3.11
or () Fo—— if xp<e<zpy, k=0,....N 1 (1.3.11)
0 otherwise.

\

and satisfy:

b b
—/ Vu™(z,t)V;(x) dx = / u™it(z,t)pi(x) du, for i =0,--- , N™.  (1.3.12)

Moreover,
d*w
W = —KW, t>0
(1.3.13)
w(0) =wy W(0)=wy.

Theorem 1.3.2. Let p be defined by (1.1.2) on R with supp|u| = |a,bland satis-

fies a family of second-order self-similar identities. Assume M is invertible. Then,
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(1.3.12) could be discretized into a systme of second order ordinary differential equa-

tions (1.3.18). Thus, it could be solved numerically by the finite element method.

In Chapter 6, we proved the convergence of the approximation solution. The main

result is as follows:

Theorem 1.3.3. Let v be a absolute continuous function on [a,b]. Let m, = {x;} N

be any partition of [a,b]. Then, |vx) — Ppo(z)| < C | 7m||*/? for all z € [a,b].

This helps us to show: u™ defined in(1.3.10), converges in L?[a,b] to u.



CHAPTER 2
EXISTENCE AND UNIQUENESS OF WEAK SOLUTION

In this section, we modify the proof in [7], and replace the standard Laplacian A
by the p-Laplacian A,. Then, Our goal is to prove the existence and uniqueness of
a weak solution of the following non-homogeneous hyperbolic initial/boundary value

problem (IVBP):

(

uy — Ayu = f on Ur = [a,b] x [0,T],

u=20 on {a,b} x [0,T], (2.0.1)

u=g, uy=h onU x {t=0}

\

Let £(u,v) be the quadratic form defined in (1.1.5), with domain H}(a,b). First

of all, we will discuss the solution of abstract homogeneous wave equations.

Theorem 2.0.4. (Shinbrot [22]) Let H be a complex Hilbert space. Definew : R — H,

and let A be a self-adjoint operator on H satisfying
(Au(t),u(t)) > 0 for each t such that u(t) € Dom (A). (2.0.2)
Let g € Dom (A), h € Dom (Az2). Then the initial value problem
i(t) + Au(t) = 0, (2.0.3)

u(0) =g, u(0)=h, (2.0.4)

has a unique solution, given by u(t) = [ cos(tvVN)dExg + [;° Smf%\&)dE,\h, where

{E\}xer 1 the spectral family associated with A .

Proof. See [22]. For completeness we also include some details in Appendix G. [
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Proposition 2.0.5. If g € Dom(—AM) and h € Dom ((—A, )2) then (2.0.1) has a

unique solution, given by u(t) = [ cos( (tV/)) NdE\g+ [[° sin t\[ )dE\h, where {E)\}rer

is the spectral family associated with —A,

Proof. Since g and h are supported on [a,b] and vanish at the end points a and b.

The proposition follows from theorem 2.0.4. O

Remark: In general, the classical wave equation may not have a solution unless f has

the proper Darboux structure. (See [4]).

Definition 2.0.1. (i) A function s:[0,T] — X is called simple if it has the form

t) = Z XE,, (t)um fort e [0,T], (2.0.5)

m=1
where each E,, is a Lebesgue measurable subset of [0,T] and u,, € X(m =

1,...,N).

(ii) A function u : [0,T] — X is strongly measurable if there exist simple function

sy 1[0, T] — X such that

sn(t) — u(t) for Labesgque a.e. (0 <t <T).

(i1i) A function u : [0,T] — X is weakly measurable if for each u* € X*, the

mapping t — (u*,u(t)) is Lebesque measurable.

Definition 2.0.2. We say u : [0, 7] — X is almost separably valued if there ezists a
subset E C [0,T], with L(E) = 0, such that the set {u(t)|t € [0, T|\E} is separable.

Theorem 2.0.6. (Pettis [21]). The mapping u : [0,T] — X is strongly measurable if

and only if u is weakly measurable and is almost separably valued.
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Definition 2.0.3. Let X be a separable Banach space with norm || ||y . Then define
LP([0,T]; X) to be the space of all measurable functions u : [0,T] — X satisfying
. T 1
(i) Nl poozriy = Uy G )17 dt)r < 00 for 1 < p < oo, and

(i1) ”uHLOO([O,T];X) 1= esssupg< < [|[ult) | x < oc.

Remark: For 1 < p < oo, LP([0,T]; X) are Banach spaces. (See Appendix B.)

Definition 2.0.4. g,h € Dom (£), f € L?([0, T]; Dom (£)), A functionu € L*([0,T]; Dom (£)),
with uy € L*([0,T]; L2[a,b]) and uy € L*([0,T]; (Dom (£))’) is a weak solution of
IBVP (2.0.1) if the following conditions are satisfied:

(1) (uy,v) +E(u,v) = (f,v), for each v € Dom (E), f € Li[a, b and Lebesque a.e.
te|0,7T);
(ii) u(x,0) = g(x) and u,(z,0) = h(z) for all x € [a,b].

Let {w}2, C C'[a,b] be an orthonormal basis of L?[a,b] consisting of the

eigenfunctions of —A,, with eigenvalues {\;}32;. Then

b b
/Vkavdx:)\k/ wpvdu, Yv € Dom (E).

The existence of such an orthonormal basis of eigenfunctions of A, can be found

in [3].

Fix a positive integer m, and define

U (2, 1) 1= Z Qi (H)wr (), (2.0.6)
k=1
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where we will show that the coefficients {a,x(t)}7, can be chosen to belong to

C?(0,T) and satisfy

Wi (0) = (g, Wk ), k=1,...,m (2.0.7)
Oé;n,k(o) - (h’wk>,u7 k= ]-7 cee, M (208)

and

((um)tt,wk> + E(Um, wi) = (f, wi) s 0<t<T, k=1,...,m. (2.0.9)

m

Theorem 2.0.7. For each m € N, there exists a unique function w,, of the form

(2.0.6) satisfying (2.0.7)-(2.0.9).

Proof. Let w,,(z,t) be defined in (2.0.6). Then, we have

<(um)tt, wk># = o/l (1), (2.0.10)

Moreover, & (U, wy) = Y70, E(wj, wi)am ;(t), j,k = 1,...,m, and f == (f, wg),

Consequently, (2.0.9) is discretized into the linear system of ODEs:

k() = E(wj,wp)am;(t) = fr,  0<t<T, k=1,...,m,
Jj=1
or
Oé;/n,k:(t) - )\kOémJg(t) = fk, 0<t< T, k= 1, o,y (2011)

with the initial conditions (2.0.7) and (2.0.8). There exists a unique C? vector-valued
function o (t) = (alf ((t),...,al . (t)) satisfying (2.0.7), (2.0.8) and (2.0.11) for

m,1 ’» rm,m

0 <t < T,namely

i (t) = (9,01) cos(v/Art) + Prus (),

where P, (t) is the particular solution that depends on f(¢,x). ]
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We now need to take the limit as m — oo. To this end we need the following
estimates for w,,, together with its partial derivatives with respect to time, that are

uniform in m.

Theorem 2.0.8. There exists a constant C > 0, depending only on U and T, such

that for allm € N,

0% ((fton (2, 6) 1o ) + 1 tm (2 D)l ) + 11 o6l 011,00

0<t<T

2 2
<SC(1f 1 20.21,2200) T 191Dom &) + [1211,)-
(2.0.12)

Proof. Multiplying equality (2.0.9) by a;, ,(t), we have

((um)tt, a;n’k(t)wkk + €<um, a;n,k(t)wk> = <f, Oz;n’k(t)wk> : k=1,...,m.

I

Summing the k£ equations up, we have

(o i O lO)w) +& (i > allty) = (1 f D))

k=1

That is,
(o) oo tor) = (00 e
Since
TG I I2) = (s ()
and
%(ég(um, ) = €t (tn)e),

from (2.0.13) we have

d /1 1 1 1
% G 5 @ w)) = (£ ) < il 151, < 5 Gl 11
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Consuquently,

d

= (1ol 4+ €t t) ) < )l + & s ) + 151

Since H(Um)tHi and & (U, um(x,t)) are absolutely continuous functions (see Ap-

pdeix C1), Gronwall’s inequality, yields the estimate:
[t (2, 8))ell, + & (2, 1), (2, 1))

; (2.0.14)
e (nar O + & 0) (. 0) + [ )

Moreover, for the first term on right hand side of (2.0.14), we have

[, ), 0 On(e)) i = 3 [ (@ s0) ()P
/(Z k() dp ;/ﬂ , k m
= Z(a;n,k(o))2'
k=1

By expressing h(z) = 7.2 a7, 1 (0)wi(x), we have for all m € N,

IR0, = tim (D" a s O)wea), 3 ol O)wi(e)) = Tim >(a, 1(0))?

(2.0.15)
> | (um(, 0))ell,
Also, for the second term on right hand side of (2.0.14), we have
E (U (x,0), up(x,0)) <Zamk wk,Zamk wk>
- (2.0.16)

(Oém7k(0))2>\k.

NE

Z O, k wk; am,k(o)wk) =

k=1

i
I

By expressing g(z) = >, @mr(0)wg(x), we obtain

n

E(g,g9) = lim 5<Zank wk,Zank wk> = nh_)rgo (Ozn,k(O))QE(wk,wk)

n—0o0

= lim Z(an,kw)) A

(2.0.17)
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Combining (2.0.16) and (2.0.17), we have, for all m € N,
E(Um(7,0),un(z,0)) < E(g,9). (2.0.18)
Now, combining (2.0.14), (2.0.15) and (2.0.18), we get, for all m € N,
[ Ol + .8 1 0)) < (B2 + E(.9) + 17O o100 )

Since 0 <t < T was arbitrary, we see from this estimate that

155 (1, )l E ), i (,))) < € IE+E09 9)HLF O 013000
(2.0.19)

Next, we fix any v € Dom (&), with ||v]|p,, & < 1, and write v = v1 + vy, where
v € span {wi}iLy and (v, wy), =0 (K =1,2,...,m). Then, [[v1|[poy g < 1. (2.0.6)

and (2.0.9) imply

((tn)st, 0) = ((um)tt,v>u - ((um)tt,m)u = (f,01) — E (U, v1)-

So, |{((um)u, v)| < |(f,v1)y — € (U, v1)|, which implies that

ICCm)ets )l pom gy < C NNl + VE(m, ).

Thus, we have

il o ey < U + €ty ).

From (2.0.19), this implies

T
/0 (et ) | pom ey &t < CULA N 201,200 T IRl + E(g, 9))- (2.0.20)
Remark [

Definition 2.0.5. Let Xbe a Banach space.
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(i) The space C([0,T]; X) comprises all continuous functions u : [0,T] — X with

lullegoryx) = Jnax, [ul| y < oo,

(ii) The space C1([0,T]; X) comprises all C* functions u : [0, T] — X with

]l eomysx) = Jnax, [ ]|y < o0,

(iii) The space C*([0,T]; X) comprises all C* functions u : [0, T] — X with

il e (o.r75x) = Jnax, ] x < 0.

Definition 2.0.6. Let u € L'([0,T];X). We say v € L'([0,T]; X) is the weak
derivative of u, written

Uy = 0,

/OT¢t(t) /¢ u(t

for all scalar test function ¢(t) € C°(0,T).

Definition 2.0.7. Let Xbe a Banach space. We say a sequence {u,}>*_; C X

converges weakly to u € X, written

Uy — U,

(u®s ) — (U, )
for each bounded linear functional u* € X*.

Theorem 2.0.9. Assume g € Dom (£),h € L3[a,b] and f € L*([0,T7]; L:[a,b]).
Then the IBVP (2.0.1) has a weak solution.
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Proof. From the energy estimate (2.0.12), we know that {u,,}>_, is bounded in
L2([0,T); Dom (£)), {(tm):}5_; is bounded in LQ([O,T];Li[a,b]), and {(wm )},
is bounded in L?(([0, T]; Dom (£))").

So, by Banach Alaoglu theorem, there exists a subsequence {un, (z,t)}°; and
u € L*([0,T]; Dom (€)), with u, € L*([0,T]; L2 [a, b]), and uy € L*([0, T; (Dom (£))’)
such that

;

U, (T, 1) — wu(z,t) in L*([0,T]; Dom (£)),

(i, (z,1))e = ug(x,t) in L*([0,T]; L2[a, b)), (2.0.21)

| (@) = wale,t) i L2([0, T]; (Dom (£))).

Oum, (z,t)
ot

Remark: Originally, weakly converge to some v in L*([0,T7; L?[a,b]) and

2'U,r,rn X 1
9 atg( .4 weakly converge to some o in L*([0,T]; (Dom (£))’). It can be proved that
—8”51”’” =~ and % = 0. (See Appendix E).

Now, we fix an integer N and choose a function v € C'([0,T]; Dom (£)) of the
form

v(xt) = o (t)wy (), where {a,}n_, € C?[0,T]. (2.0.22)

I

We select m > N, multiply (2.0.9) by a(t), sum k = 1,..., N, and then integrate

with respect to t to get

/0 (((um(az,t))tt,v(x,t))—i—S(um(.:l:,t),U(x,t))) dt:/o (f(x,1), v(z, 1)), dt.
(2.0.23)

Setting m = my, letting [ tend to oo, and using (2.0.21), we have

/0 ({000 0)) + £l 1), (1)) dt:/o (), v( 1), . (2.0.24)
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Since {wy}72, is a basis of Dom (£), the set of functions of the form (2.0.22) is
dense in L?([0,T]; Dom (£)), and thus (2.0.24) holds for all v € L*([0, T]; Dom (£)).
Then, (2.0.24) implies

(u(2,1), v(2, 1)) + E(ulz, t),v(x, 1) = (f(2,1),v(x, 1)),
for all v € Dom (€) and a.e. t € [0, T].
Next we will verify
w(z,0)=g(z) and  w(z,0) = h(x). (2.0.25)

For this, in (2.0.24), we choose any function v € C?([0,T]; Dom (£)), with v(T) =
v(T) = 0. Integrating by parts twice with respect to ¢ for the first term of (2.0.24),

we get

/OT (G, ), v, 1) + E(ule, 1), v(w, 1)) dt
— /OT(f(x,t),v(x,t))udt — (u(z,0),v0,(z,0)) + (ue(,0),v(x,0)).  (2.0.26)
Similar to (2.0.23),
/OT((um(x,t),vt(x, ) + E(um(z, t),v(x, 1)) dt
_ /OT(f(x,t),v(x,t))udt — ((,0), va(, 0)) + (tm o, 0), v(z, 0)).
Setting m = m; and combining (2.0.7), (2.0.8) and (2.0.21), we have
/OT (¢, %> + Eule, 1), v(, 1)) ) dt

T
= [ (ovlat)dt — (oo) w0 + () 0). (2020
0
Comparing (2.0.26) and (2.0.27), and noting that v(z,0) and v;(z,0) were arbitrary,

we conclude that (2.0.25) holds. Therefore, u(z,t) is a weak solution of (2.0.1). [
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Theorem 2.0.10. Assume the same hypotheses of Theorem 2.0.9. Then the weak
solution of the IBVP (2.0.1) is unique.

Proof. To show this, it suffices to show that the only weak solution of (2.0.1) with
g(z) = h(z) = f(z,t) =0is u = 0in L*([0, T]; Dom (£)). To show this, fix 0 <r < T

and set

[Fu(z,mydr if 0<t<s,
v(x,t) =
0 it s<t<T.

Then v(z,t) € Dom (€) for each ¢ € [0, 7] and so

/0 S (tue, ), (e, 1) + E (e, 1), v(a, 1)) di = 0. (2.0.28)

We have u;(z,0) = 0 and by the definition of v(z,t), we have v(z,s) = 0. Integrating

by parts in the first term of (2.0.28), we obtain:

_ /0 (W(% £), v, 1)) + E(ul, t), v(x,t))) dt = 0.

Moreover, we have v(x,t) = —u(x,t) for 0 <t < s. Hence
/OS ((ut(a:,t), u(z,t)) — E(ve(x, t),v(x, t))) dt =0
= [ 5 (Gt 0l = G000 )) de =0

N [% lu(z, £)]12 — %5@(:5,75),@(;1;,@)}; ~0 forae. t€0,T].

lu(z, ), = E(v(, 5),0(x, 5)) = [lu(z, 0], — E(v(z, 0), v(x, 0)).

Since u(x,0) = v(x,s) =0, [|u(z, 3)||i + E(w(x,0),v(z,0)) = 0. This implies

u(z,s) =0 for a.e. x € [a,b] and for all s € [0, 7]



and u(z,t) is continuous in Dom (€). Thus u(x,t) = 0.
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CHAPTER 3
THE FINITE ELEMENT METHOD

In this section, we use the finite element method to solve the homogeneous IBVP

(2.0.1).

Multiplying the first equation in (2.0.1), where f(z,t) = 0, by v € Dom (),

integrating both sides, and then using integration by parts, we obtain

b b
—/ Vu(z,t) Vv(m,t)dm:/ g (z,t) v(x, t) dp. (3.0.1)

Next, we apply the finite element method to approximate u(zx,t) by

u™(x,t) = Zﬁj(t)gbj(x), where ;(t) := B,,;(t) and ¢;(x) := ¢, ;(z) (3.0.2)

and ¢q, ¢1,...,¢pNm are the standard piecewise linear finite element basis functions

defined as:

r—x1

if zo<z<uz
To—T1

po(z) =
0 otherwise,

TR g < o < 2, 1<k<N™-1

T —Tk—1

dr(z) = ﬁﬁ if o <o <apn

0 otherwise,

T—TNmMm _1 .
Tym—TNm_1 if zym_ <z <aNm

onm(x) =

0 otherwise.

Equivalently,

TR if g <ax<ap, k=1,...,N™

Tp—Tk—1

Pp(w) = ¢ 2L §f g <2 <appq, k=0,...,N"—1 (3.0.3)

T —Tk+1

0 otherwise.
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We require u"(x,t) to satisfy:

b b
Vu™(z,t)V;(x) dx = / upy (x, t)¢i(x) dp, for i =0,--- , N™. (3.0.4)

Substituting (3.0.2) into (3.0.4) and using u(a,t) = u(b,t) = 0, we get

Nélﬁj(t) {—/ab V() Vi(x) dﬂf} = Nélﬂ}’(t) {/ab 0, (2)pi(x) du}. (3.0.5)

We define the matrices M and K (the mass and stiffness matrices, respectively)

by
’ de; , . do,
sz—/ oj(x)pi(x)dp, K= — / dgij( )di( ) dz, (3.0.6)
and the vector-valued function w(t) by
Ai(t)
w(t) =
Bm_1(t)

Then (3.0.5) can be put in a matrix form as
Mw"” + Kw = 0. (3.0.7)

Equivalently,
Mw" = —Kw. (3.0.8)

We have a system of second-order linear ODEs (3.0.8) with constant coefficients.
We need two initial conditions, and they are obtained from the initial conditions in
(2.0.1). We have

u(e,0) = g(z), O<z<l,
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and g(z) can be approximated by its linear interpolant:

N™_1

g(@) = g(x:)i(x).
i=1
Therefore, we set

w;(0) = g(zi).

Similarly, we set

w.(0) = h(z;).

These lead to the initial conditions

g(x1) h(z1)
w(0) = wo = : , w'(0) =w( =
g(xnm_1) h(znm_1)
Therefore, we get the IVP
d*w
W = —KW, t>0
(3.0.9)

w(0) =wy, W(0)=wy.

Theorem 3.0.11. Define M by (3.0.6). If fori=1,...,N™ — 1, M;; — M, —
M, 1 > 0, then M is strictly diagonally dominant matrices. Thus, (3.0.9) has a

unique solution w(t).

In the case of the infinite Bernoulli convolution associated with the golden ratio,
and the 3-fold convolutions of the Cantor measure, we prove M is strictly diagonally

dominant. (See [27].) The proof is shown in Appendix A.3.

Remarks: From this theorem, we know that for j = 1,---  N™ — 1, 3;(¢) are C?

functions on (0,7).
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Remarks: will move to below of the following paragraph.
In the rest of this thesis we will consider self-similar measures p defined by IFSs

of the form {S;}¥, as given in (1.1.1) and (1.1.2). We assume that yu satisfies a family

of second-order self-similar identities with respect to {T]}é\]:1

Since Ty[a, b] can represent each m-level interval T'[a, b], where J = (j1,...,Jm)
and ji € {1,..., N}, can be written as [x;_1, z;], where the index k can be obtained

directly from J as follows (see [5]):
i=1i(J):= (1 — DN+ (o — DN™ 2 4o 4 (o — )N + 1. .

For example, if J = (1,...,1), theni(J) =1, and if J = (N,..., N), theni(J) = N™.

It follows that

Ty, =Tjla,b| = [x;—1, 2], or Tj(x):=T)(x)=(x;—xi1)
Wedeﬁnecz::cf,forjzl,...,Nandi:1,...,Nm.

By assumption, we can evaluate the measure of each 1-level interval, i.e., u(7}[a, b]) =

[ dpoTj, and the integrals of [z dpoTj and [a?dpoTy, j=1,...,N.

Theorem 3.0.12. Let u be defined by (1.1.2) on R with supp[u] = [a,b] and assume
that p satisfies a family of second-order self-similar identities. Assume the mass
matriz M is invertible. Then (5.0.4) can be discretized into a system of second order
ordinary differential equations0 (3.0.9). Thus, it can be solved numerically by the

finite element method.

We remark that

b
M, — / 61(2) i () dp,
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while,
T

Ti41
T—=Tj—1 T —Tj—1 T—=Tjp1 T — Tj1
M;; = dp+ dp
T — Tj—1 X — Tj—1 x T — Tig1 T — Ti41

Ti—1 2

— a

b b
r—a r—a
— [P duTa@) + [ (<5 1 (T, ).
For change of variable, formula, see Appendeix A.3.
Method 1. We let w, := w(t,), n > —1 and use the central difference method
(CDM) to solve the IVP (3.0.9).

Using the approximations

and  w(t,) ~ % (3.0.11)

d*w (t,) W1 = 2W, + Wy g

az (At)?

Substituting (3.0.11) into (3.0.8) yields

Wp+1 — 2Wn + W,
(At)?

= M Kw,
Wil — 2W, + W, = —(At)*M'Kw,
Woi = (21 — (A’ M 'K)w,, — w,,_1.
Moreover, we have
w, = (21 — (At M 'K)wo —w_;, W, =
or

w; = (21 — (A’ M 'K)wy —w_, W =w; — 2Atw,

From the last two equations we get

A 2
w, = <I - %M*K) wo + Atwy,.
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Therefore, the IVP becomes, by the CDM approximation:

;

Woi1 = (21 — (A M 'K)w, —w,_;, n=12 ..

W(to) = Wy ( )
, 3.0.12
w(t;) =wy = (I - %M_IK) wo + Atwy,

t, = nAt.

Method 2. We transform the second-order system of ODEs to an equivalent first-

order system.

Let y(t) = w'(t), and thus y'(t) = w”(t), and let

Then (3.0.9) becomes the following equivalent first-order system:

Y'(t) = AY(t), Y(to) = . A= . (3.0.13)
W/(to) —M_lK 0

This system can be solved by using standard ODE theory.



CHAPTER 4

THE CENTRAL DIFFERENCE METHOD
In this section, we use the central difference method to solve the wave equation:

;

Ugq = Uyt dlvb

uw(a,t) =u(b,t) =0 (4.0.1)

\ u(z,0) =g(x), w(x,0)=h(x).

Let P = P({x;}/_;, {tn}1_0) be a partition of the rectangle [a,b] x [0,T7, i.e.,

a=xpg<r1<--<zxy=b and O=tyg<t;1 <---<ty=T.

Also, let

Define @, = u,(P) on {((z;—1 +2;)/2,t,) : 1 <j<J, 0<n <N} by

B (xj,l + x; ) o u(zj, tn) —u(xj—1,tn)
t, (L ) = .
2 A.ij

u, approximates the partial derivative u, at the points ((z;—1 + x;)/2,%,).

Next, define @y, = Uy (P) on {z;,t,) : 1 <j<J—1,0<n <N} by

Tge(T,tn) 1 = Uy (2 + 2541)/2,t0) — (2521 + 75)/2,10)
R (Azj + Ajia)/2

P (4.0.2)
2l (S sk )ulont) + 2wt
- Al’j + ij—i—l

Thus, @, (z;,t,) approximates the second-order partial derivative u,, at (x;,%,)
In a similar fashion, we define @; = u;(P) on {(xj, (tn—1+1%,)/2) : 0<j < J, 1<
n < N} by

_ th—1 +1n w(x;, tn) —u(x;, th—
Ut<33j, 12 > — (x; )At (@ 1)7
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and define @y = uy(P) on {(x,t,) :0<7<J, 1 <n<N -1} by

(2, (b + ts1)/2) = @2, (b + tao)/2)

ﬂttZ:

(Atn + An+1)/2
(4.0.3)
B 2 Atiﬂu(%‘a tny1) — (ﬁtn + —Ati+1>u(xj7tn) + ﬁu(%in—ﬁ
B Aty + Aty

Obviously, u; and u;; approximate the partial derivatives u; and wuy, respectively.

In all of our computations, we set At, = At for alln = 1,..., N. In this case,

equation (4.0.3) simplifies to

u(j, tny1) — 2u(z), ) + (), tn 1)

e (4.0.4)

Uy (zj,t,) =

Substituting (4.0.2) and (4.0.4) into (4.0.1) leads to the following discretized wave

equation:
Q(ﬁmﬂ(%ﬂatn) - (A%j + ﬁjﬂ)ﬂ(%in) + A%ja(l’j—latn))
Aj + AT (4.0.5)
(@ tag) = 20(y, ) + (g, b)) plrgs 254a])
(At)? (Azj + Axji)

We consider the two cases with the same or different Ax;.

Case 1: Ax; = Az for all 1 < j < J. In this case equation (4.0.5) becomes

ﬂ(xj+1a tn) - QQ(IJ& tn) + a(%’—h tn)

(Az)?
(g, toyr) — 20(x5, tn) + @25, by p[25-1, 2514])
(A1) 2(Ax)
Let
2(At)?
s; =5i(P) = , j=1...,J—-1
1= 5P = Rl 2]
Then we get

Sj (ﬂ(l’j+1,tn) — 2@(1'],15”) + ﬂ,(l’j_htn)) = ﬂ(xj,tn+1) - 2@($J7tn) + ﬂ(fﬁj,tn_l),
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or
Wy, tr1) + W@y, to1) = s;U(Tjr1,tn) — 2(s; — D)a(xj, t,) + sju(zj—1,t,). (4.0.6)
Moreover, we have
iz, t)—a(z;,t_1) = Uz, t0) - (2A1)+O(AL)? ~ uy(z4, 1) (2A1) & h;(2At). (4.0.7)
Therefore, adding (4.0.6) (for n = 0) and (4.0.7), we get
iy to) 2 i00,0) = (35— 1) - Ao, 0) + Zle;-1,0) + by - (A1), (40.8)
Finally,

w(xj, to) =z, to) = g(xj) = g5, U(xo,t) =u(a,t) and a(zy,t) =1u(b,t) =0.
(4.0.9)
Therefore, using the central difference method, we can approximate the solution of

the system (4.0.1) by the following formulas:

)
W), tpyr) & 55 (w11, ) + 2(s; — Dalxy, tn) + s, tn) — W), tr-1)

- - S5 .
. U($j+1,t0) -+ (Sj — 1) . U(Ij,to) + EJU(Zijl,to) + hj . (At)

(zo,t) = u(a,t) =0, a(xys,t)=uau(bt)=0.
\
(4.0.10)
Case 2. Ax; is not constant.
Ifzj—a; #2;—xj_1 and let Ax; = x; —x;_1, where j = 1,2,.... Then from

(4.0.5), we have
2q, 0 t) — (5 + &)U t) + 57 (@1, 10))
Al’jJrl + Ax_y
ntl_9

j ﬁ(:vj,tn) +1~L(l’j,tn_1) ,U([l'j—lyxj—&-l])
(At)? (Azj + Azjq)’

u
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which is simplified to

(ol ) — (e iy ) ity b))
$il ——a(ziq,ty) — (— w(wi, ty) + —u(xi_1,t,
/ ij-i—l AR A$j A{L'j_H / A$j it
:’&(.CCJ', tn+1) — 2’(2(5%’, tn> —+ ﬂ(in,tn,l),
or
a(‘rj7tn+1> + ﬂ’(‘xja tnfl) ( )
4.0.11
5 N 1 . 5
= i@y, ) — (5;(~— — Q)i tn) + —— i1, tn).
ij+1 u(xJJrl? ) (SJ(AI'J + ij+1> )u(xj )+ AZ']U(xj 1 )

Moreover, from (2.12), if n = 0, we have

iz, t1) — @(x;,t 1) = Uz, t0) - (2At) + O(A)? = @y (5, t0) (2At)
(4.0.12)
h;(2At).

ﬂ(l‘j, tl) u(xja )

Q

By summing (4.0.11) (for n = 0) and (4.0.12), we get

- s - 1 1 .
U($j,t1) N oo u('errbo) - (‘9(5 + A )/2 - 1)u<xj>t0)
g T (4.0.13)

2A$j+1
w(xj_1,t0) + hj - (At).

+2A

Moreover,
w(xj, to) = u(z;,0) = g(z;) = g5,  u(zo,t) =ula,t) =0, a(z,,t)=u(bt)=0.
(4.0.14)

Therefore, we can approximate the solution of the system(4.0.1) by the following

scheme:
n)

)
Wy, tor1) =m0 W@ ) = (55(55 + m) — 2)alag,t

+A:): (l'] 1,t ) ﬂ(xj,tn_l)

’ll(.??j,tl) = m : u($j+170) - (S]<Ax + ACC]-H)/Z B 1> (xj’tO) (4015)

+2A w(xj_1,to) + hj - (At)

u(r;,0) = g(r;) = gj
t(a,t) =0, u(b,t)=




CHAPTER 5
FRACTAL MEASURES DEFINED BY ITERATED FUNCTION
SYSTEMS

In this chapter, we solve the homogeneous IBVP (2.0.1) numerically for three different
measures namely, the weighted Lebesgue measure, the infinite Bernoulli convolution

associated with the golden ratio, and the 3-fold convolutions of the Cantor measure.

Let {S;}}¥, be an IFS of contractive similitudes on R of the form
Si(x)=pxr+0b, 1=1,...,N, (5.0.1)

and let p be an associated self-similar measure with supplu] = [a,b] satisfying the

following self-similar identity:
N
= Zpiu oS, (5.0.2)
i=1

where 0 < p; < 1 and Zf\ilpi = 1.

5.0.1 Weighted Lebesgue measure

The weighted Lebesgue measure is defined by the system of

1 1 1
Sl(il?) = 5:15, SQ(iL') = §$ + 5

and
p=puo Sy +(1—puosSy".

In view of [3], we will choose the weight p = 2 — /3.
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VN

0 1 1
2
5151 /\5251 518 525
0 1 s 1
1 2 1
For any Borel subset A C [0, 1], we have:
Si1T; A S1A
uSTA | fesa |
wu(S2T;A) p(S2A)
where
0 1-— 0
M, = g ) M, = g )
0 p 0 (I-p)
Let J = 71J2---Jm, Ji = 1,2 or 3. Then
(S1A)
u(SsA) = ¢y :
j1(S2A)

where

cy=e, M, - M; =(ch ).

5.1 Infinite Bernoulli convolution associated with the golden ratio

The infinite Bernoulli convolution associated with the golden ratio satisfies a family
of second-order self-similar identities. This was first pointed out by Strichartz et al.

[26]. We can make use of this to calculate the measure of suitable subintervals.
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The infinite Bernoulli convolution associated with the golden ratio is defined the

by the IFS
V-1
Si(z) = pz, So(z) = pr + (1 —p), p=—G
0 1
51/ \52
0 1= p P 1

For each 0 < p < 1, we call the corresponding self-similar measures
u(A) = ppo STH(A) + (1= p)uo Sy (A).

the weighted infinite Bernoulli convolution associated with the golden ratio. If p = 1/2,

we get the classical one.

Define

Ti(z) = p’x. Talx) = p’e+p?, Ty(x) = p’z +p.

Then 4 satisfies the following second-order self-similar identities (see [17]): for any

Borel subset A C [0, 1], we have:

(T A) u(T1A)
M(TQﬂA) = M, ,LL(T2A) , 1=1, 27 3,

w(I5T;A) (T3 A)
where
P2 0 0 o p* 0
Mi=1 (1-pp*> (l=pp 0|, M2=1]0 (1-p)p 0 |,

0 1—p 0 0 (1-p)? 0
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If p =1/2, we obtain

2 00 010 0 4 0
]\4—1 .M—1 .M—1
1—8 1 2 01, 2= 0O 1 0|, 3—8 0 2 1
04 0 01 0 0 0 2

Let J =712 Jm, Ji = 1,2 or 3. Then
u(TLA)

wWTrA) =cy | W(ThLA) |,
u(T3A)

where

1 2 3
cyg=e,M;,---M; = (c;,c5 7).

Moreover, we have

/ f(x)du=p / F(S1(2)) dpi+ (1 - p) / f(Sala)dp. (5.13)

Then, we use (5.1.3) to evaluate the measure of each interval p(7}[0,1]) = fol dp o
1y, f01 xduoT; and fol w*duo Ty, j =1,2,3 for any probability weights p and 1 — p.

The following result is the matrix with p = % :

fol dpo Ty fol dpu o Ty fol dyp o T3 3 3 3
1 1 1 _

Jyxduo Ty [jxduoTy [jaduoTs | = m . m
! ! 1 5p+4 5 2—

Jo widpo Ty Jo atduo Ty Jya*duoTy i) i i

(5.1.4)
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We will apply this matrix to calculate the value of the entries of M in (3.0.12), which
is very important for finding out the measure of each interval on the level m of the

finite element method.

5.2 3-fold convolution of the Cantor measure

The 3-fold convolutions of the Cantor measure satisfies a family of second-order iden-

tities. It is defined by the IF'S

1 2
Si(z) = 3% + g(z —1), for i=1,2,34,

does not satisfy the OSC.

0 | | 3
R
0 1 2 3

Its corresponding self-similar measures

1 .3 .3 1
MZ§M°S11+§MOS21+§M0531+§/~00541
Define,
1 1 1
Ti(z) = gz, Dfr)=gr+1, Tir)=go+2

Then p satisfies the following second-order self-similar identities (see [17]): for any

Borel subset A C |0, 3],
p(T1;A) w(ThA)
IM(TQJA) = Mj /_L(TQA) s .] - ]-7 27 37

(T5;A) w(T3A)
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where the coefficient matrices M; are given by

100 010 3 01
M—1 ]\/[—1 M—1
1=3 03 0|, 273 30 31, 373 03 0
10 3 010 0 01

Let J =712 Jm, ji = 1,2 or 3. Then

(T A)
M(TJA> =Cg ,LL(TQA) )
u(13A)

where
_ _ /1 .2 .3
CJ _elej o 'Mjm - (CJacJ7C )

We can also evaluate the measure of each interval T';. They are given by

- - _ -
fo dp o Ty fog dpo Ty fOS dp o Ty % % %
fOS xdpo Ty f03 xdp o Ty f03 xdp o Ty z 2 3
~ . (5.2.5)
3 3 3
oot [T, [eaen | | 8w g

We will apply this matrix to calculate the value of entries of M in (3.0.12), that is

very important for finding out the measure of each interval on level m of the finite

element method.



CHAPTER 6
CONVERGENCE OF THE APPROXIMATION SCHEME

In this chapter, we proved the convergence for the approximation scheme for the
homogeneous IBVP (2.0.1). Some of our results are obtained by modifying similarly

ones in [24].

Let V,, be the set of end-points of all the m-level intervals, and rearrange its
elements so that V,,, = {z : k =0,1,..., N"} withxy < zgy1fork=0,1,..., N™—1.
Let S™ be the space of continuous piecewise linear functions with nodes V,,. The

functions in S™ are bounded; moreover, dim S™ = N™ + 1. Let
Sp i={ue S :u(a) =u(b) =0}

be the subspace of S™ consisting of functions satisfying the Dirichlet boundary con-
ditions. Then

dim S = #V,, —2 = N™ — 1.

We will choose the basis of S™ consisting of the tent functions defined in (3.0.3):
Then fix ¢t € [0, 7], any u™(x,t) € S™ defined in(3.0.2)

Definition 6.0.1. The linear map P, : Dom (£) — S}y is defined by

N™—1

P = Z u(z;)pi(x) for all u € Dom (E).

1=0

1s called the Rayleigh-Ritz projection.

Lemma 6.0.1. Let v be a absolutely continuous function on [a,b]. Then |v(z) —v(y)| <

1/2

|z — y H’U”Hé for all z,y € [a,b].
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Proof. Since v is a absolutely continuous function on [a, b], and for all z,y € [a, b],

Vu(s)ds — /Oy Vu(s)ds| =

< [ IV0)] ds < fo — g ol (Sece.glr))
)

jo(z) = v(y)| =

(6.0.1)

]

Lemma 6.0.2. Let P,, be the Rayleigh-Ritz projection,and u € Dom (£). Then,

P is its component in the subspace S}, uw — Pyu vanishes on the boundary and

E(u = Ppu,a™) =0 for all a"™ € Sp.(See[24).

Proof.

n

E(u — Pty i / v( u—g;u 23)Gimi(2))V i (7) da
= [ = )b a) = w2 s
/ ¥ (= (1) () — 0(121) D1 (2))
= (4= u(@i)éminr () = ulw)omale) ) 11
— (= w(@) (@) = w(wis)bm i (2)) 22,
= (@) = w(@i1)émi1 () = u(e)omi(a) )
~ (i) = ul@ie )i (io1) = w(@) b))
— (wei) = w(@)bmi(@in) = u(win)dmin (7))
+ () = (@) dmi(@) = (i) omis (1))
=(u(e) = u(e)) = (i) = (i) = (i) = u(ein) + (ulw) - ulz)
=0.

Since {@mi}, " is a basis of S%, E(u — Ppu, ™) = 0. O
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Lemma 6.0.3. Let v be in Dom (£), and let Ppv be the Rayleigh-Ritz projection of
v to the subspace STy of piecewise linear functions with any partition m,, = {xl}f\;"é

Then

V|, = Pl

Proof. Similar to that of [5, Lemma 5.3]. O

Theorem 6.0.4. Let v be a absolute continuous function on [a,b]. Let m, = {x;}

be any partition of [a,b]. Then, |vx) — Ppo(z)| < C T2 for all z € [a, b].

Proof. Since v(x) be a absolute continuous function on [a,b], and x € [a,b], there

exists i € {1,..., N™} such that x € [x;_1,z;] and lemma 6.0.1 and 6.0.3 . Thus,
[0(2) = Pmo(z)| < Jo(x) = v(zia) + v(i1) = Pmo(z)|
< o(z) = v(@ia)| + [o(zia) = Pmo ()|

@ 1/2 1/2 @i 1/2 1/2
< </ \Vv]%la:) (a:—xi_1> + (/ ]VU\zda:) (xl —:L‘Z'_l)

1/2
< 2M<x,~ — %—1) , where M = [|v[|lp,,, (¢) -
Let h = max{x; — z;_1}. Then,

lv(z) — Pro(z)] < 2MhY? < 2M |7, ||Y?, for all z € [a, b]. (6.0.2)

Let g,h € Dom (€), f € L*([0,T]; Dom (£)), and u be defined by in the IVBP
(2.0.1). Then we have,

< U, v > +E(u,v) = (f,v), for all v € Dom (&) (6.0.3)

Lemma 6.0.5. Fiz m. Let u € L*([0,T],Dom (£)) be a weak solution of IBVP
(2.0.1). Let u™ be defined in (3.0.2). We can choose it to satisfy:
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(i)
(g, v™), +E@W™, V™) = (f,v™), for allv™ € Sp, (6.0.4)

(id) w"(2,0) = 32000 g@)dil), and up'(2,0) = 32700 hi)gi(x).
Define e(t) := Pu(t) — u™(t). Then, (ew,e), + E(e,er) = ([Pu— ulw, €t),.

Proof. Since e; € S7}, substituting e; for v in (6.0.3) and e, for v™ in (6.0.4) respec-

tively. Using the definition of pairing and subtracting these equations, we get
(uy —ugy,e)y +E(uw—u",e) =0.
Equivalently,
(uir — (Prw)u + (Pmw)y — upy, e)y + E(u — Pru + Ppu —u™, e;) =0,
which imply

(Pru) — ull,er)y + EPpu — u™,er) = (Pmu)y — uu, )y, because E(u —

Puu,e) = 0. By the definition of e(), this becomes

(ext, er) + E(e,er) = ([Pmu — ulit, €1) - (6.0.5)

Proposition 6.0.6. Fiz t. Then u™ converges in L7[a,b] to u.

Proof. Let B(t) = Lep i)y + 5(e.c) = L les(®I2 + & et)2me - Then
le:l> < V2V/E(), (6.0.6)
lelBome < V2VE(), (6.0.7)
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1 2
E) < 5 (leal, + lelloome ) (6.05)
Left hand side of (6.0.5) is equal to (1 ||et||i)t + (3 lellEome)t = Eilt).

For the right hand side of (6.0.5), it follows Cauchy Swartz inequality and (6.0.6),

that’s

([Pt = ey €0) < | [Prate = uluell, leall,, < N[Prte = uluell,, V2V/E(?).
So combine (6.0.7) and (6.0.8),

Ey(t) <||[Pmu — ulull, V2VE(),

Ey(t)
JED <P = ulull, V2,

2/EG) - 2VE0) <V2 [ [P =l
0
2/ E(s) <2+ \/5/ [[Pmu — ulyll, dt, because v/ E(0) = 0.
0
From (6.0.7) and (6.0.8), we have
2

() e < 2V/E() V2 / | Prnts — ], dt,

66 e <V [ Po =l it (6010

(6.0.9)

2 S
S el V2 [P =l .

s T
le(s)ll, <C. / | [Pott — ulul, dt < C, / [Pt — lul, dt
0 0
T T
< / [Pt — ]l d) VT < Cof / 2 [lu |2 pt) VT (6:0-11)
0 0

my L
<C V2T (p™)7 [Jusel| 210,77, Dom (e) -
Therefore, fix t,
[u™ = ull, <|u™ = Paull, + [Prnu —ull,
<CNV2T (™) l|usel| 2o 100 () + 200™2) el ) = 0 as 1m0 4= 0.

(6.0.12)
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CHAPTER 7
NUMERICAL RESULTS



Figure 1: Dirichlet boundary condition for the weighted Lebesque measure associated
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Figure 2: Dirichlet boundary conditions for the infinite Bernoulli convolution associ-

ated with the golden ratio.
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APPENDIX A
FRACTAL MEASURES

A.1 BERNOULLI CONVOLUTION ASSOCIATED WITH THE
GOLDEN RATIO

ﬁéﬂmmzpéﬂﬂﬂ&mm+a—m/‘ £(Sa) dp

Sy A

and

léﬂmwonz (T ) dy

Ti[A]

pPP=1-p, p’=2p-1, p'=2-3p, p"=5p-3, p°=5-38p



Let p=1/2. Then, our goal is to claim that (5.1.4) is true.

Proof. Consider the first row:

2

P
/ du:1/2/ du+1/2/ dp
0 S0,0%) S5 1 [0,07]
P 0
:1/2/ du+1/2/ dp
0 —p

p
:1/2/ du
0

Therefore,

2 2

P p P I p
/ du:1/2/ d,u+1/2/ du:>/ d,u:/ dj.
0 0 p2 0 0

Moreover,

p
/du:/ du—i—l/?/ dp
p? Sy p%p) S5 P20

2

1 p
:1/2/ du~|—1/2/ dp
p 0
1 p
:1/2/ du+1/2/ dp by(A.1.1)
Iz p?

Then, by (A.1.1)
p 1 o? 1
/d,u:/du:/ d,uand/d,uzl
p? p 0 0

p? P 1 1
/ d,u:/dy:/d,uzl/?)/ dpu=1/3
0 p? P 0

2 2

p p
/ duole/ d,u:/ dpu=1/3
0 T1[0,1] 0

Therefore,

95

(A.1.1)
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p p
/ d,ungz/ du:/ du=1/3
0 T50,1] p?

2

P 1
/ duoT3:/ du:/du:1/3
0 T3[0)1] P

Now consider the 2nd row

1
/ xdp :/ S1(z)du + 1/2/ So(z)du
0 s710,1) 5510,1]

1+p 1
:1/2/ pxdu+1/2/ (px + p*)du
0 —

P
1 1 1
:1/2/ pxdu+1/2/ pxdu+1/2/ prdpu.
0 0 0

Therefore,

1 1 1 1
(1—p)/ xduzl/QpQ/ dp = /:L‘d/LZI/Z/ dp=1/2.
0 0 0 0

2

1%
/ xdpu :1/2/ Si(x)dp + 1/2/ So(x)dp
0 570,07 S5 1[0,p7]

p 0
:1/2/ pxdu+1/2/ (px + p*)du
0

—p
2

P p
:1/2p/ xd,u—i—l/?p/ xdj.
0 p?

o? 1 P P
/ xdy = 2p1 / xdy = P xd.
0 1— §p 02 2 — 1% 02

p
/ xdpu :1/2/ Sl(ac)du—i-l/Q/ So(z)dp
p? Syt p2,p)

S5 [p?.0)

1 p?
:1/2/ pxdu—l—l/Z/ (px + p*)du
P 0

2 2

1/1d+1/pd+12/pd
== x = x = .
zpp i 2p0 i 2/)0 v

o6

(A.1.2)
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Thus,
24p [* 1 [t 12/92 11 1,1 1 1,
S0 adp == dp+ = dp = =p=+ =p*= = ~p+ —p*.
2 /pzM 2”/09“”2” L R L S L
g 2 1 1 11 1
dp=—"(=p+=p?) = —(=p+ =p?
/p2mu 2+p(4p+6p) 2+p(2p+3p) s
1 (3,0+2p2)_ 1L 24p° 1 o
2+4p 6 24p 6 6
Therefore, (A.1.2) becomes
02
p
xdu = ) Al4
/0 6(2 - p) (A14)

1
/ xdp —1/2/ Si(z)dp + 1/2/ So(x)dp
p Sy p1] S5 o]

1+p 1
:1/2/ prdp + 1/2/ (px + p*)dp
1 p?

1 [t 1 !
== du + = p? du.
Qp/pzx‘”Qp/pr“

1 ! 1 [* 0>
1— = du = = d Ly
= ( 2p)/pxu 2/p2pa:u+3

1 2 2 2
2 p p 2 p+dp 14+ 3p 4—3p
= [adn= P By = 5 () -
P

12 ' 62-p) 62-p)

Therefore,

1 p
_ _ 5P
zdpo T =/ Tl(m)duz/ pldp=p~?
/o ! T1[0,1] ! 0 6(2 —p)

1 1

6p(2—p) 6(3p—1)

p

1 p p
/ wduoTz—/ T21($)du—/ [p3x—(1+p)]du—/ p3xdu—/ (L+p)dp
0 Tg[O,l] 2 2 2

P P P



1 5+4p  1+4p

P37 62—p) 3
3p? p 1

6(2—p) 2(1+2p) 2(3+p)

Finally, we consider the third row

! 1 1
/ Py =1 / (S1(2))%dpt + & / (So(x))d
0 2 /s, 2 /510,

1 [t 1/t
=§/ P rdp + 5/ (px + p*)*dp
0 0

1 1 1 1 1 1 1
:—/ praidu + —/ pPridp + pg/ wdy + —p4/ du
2 Jo 2 Jo 0 2" Jo

Moreover,

p? 1
/ Py = / (S2(a))Pai + / (Sa())2dp
0 Sy 10,p2) S5 10,07

1

2

1 P22 1 0 2\2 1 P222 1 P22

5 [ patdut g | (prtp)du=g | patdpt o | patdu
0 0 p?

o8
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2 2 2

2.2 1 g 2 3 P 1 4 p
padu + = pr-du + p xdp + =p dp
2 Jo 0 2 Jo

b\;b\

Moreover,
. 1 2 1 2
Todp =7 (S1(@)) dp + 3 (Sa(z)) dp
p> Sy el S5 M [p2.p)
L[y, L 2\2
=5 [ paidu+5 [ (pz+p7)du
2 2 J,
1
2

p 1 1 1
= (2+ ,02)/ ridp = pz/ w2dp + 2p3/ xdp + p4/ du
0 0 0

02

P 2—3p
—~ (2 2 20, — 2P 29 — 1 P
(+p)//ﬂxu P55+ 2(2p )6(2_p)+ ;
r 20—1 4p*—=2p 2-3p
;¥<2+p2)/ w*dp = +
52 2 6(2—p) 3
p 320 —1)(2 — 4p* —2p42(2 — 3p)(2 —
:>(2—i—,02)/ P2y — (20— 1)(2—p) +4p* —2p+2(2 - 3p)(2 — p)
p? 6(2—p)
_2-3p+4p?
6(2 - p)
:>/p$2_ 6—"7p B 6—"7p _ 6-Tp
P2 6(2+p°)(2—p) 6B—p)(2—-p) 6(7—0p)
Therefore,
/prz_l—P/pxz_l—p 6—Tp _ 6—Tp—06p+Trho* 13 —20p
0 S l4p)et  14p6B-p(2—p) 6(T—6p+Tp—6p%) 6(1+7p)
And,

1
/ r2dp =
P

1
/ (Sy(a)Pdp+ / (So(2))%dp
Sy el S5 M p,1)

1+p 5 5 1 1 oo
/ pxdu+§/(pw+p)du
1 P

2

1 1 /1 1 [P 1 1 1
= / w2dp = —/ praidu + —/ praidu + p3/ xdp + —p4/ du
P 2 P 2 p2 p2 2 p2

o= N
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1 ! 1, 6-Tp 1 p 1
= (1- —,02)/ wldp = 5p* <+ p(5 )+ 5p!
2" ), 2" 6(7 = 6p) 2 6(2—p) 3
! 1 6-7p 1 2 —3p 1
= (1——/)2)/ wdp = S p? +5(2p—1) - )+ (2 - 3p)
; 2" 6(7—6p) 2 6(2—p) ' 3
1 ! 1 6-7p 1 2-3p
1— =2 20— 2 2P0
= 2p)/px =50 G e T 6 6= p)
1 2 _ _ _ _ _ o _
j(l_lpz)/ deM:pm 7p)(2 = p) +2(7 = 6p)(2 — p) — 2(2 — 3p)(7 — 6p)
207, 12(7 - 6p)(2 — p)

19 — 46p + 27p%) + (—14p + 12p* + 42p — 36p?)
12(14 — 19p + 6p2)
1 ! 19 — 18p — 3p? 22 — 21
2 ) 12(20 — 25p) 12(20 — 25p)

12 ! 2 (
=1 =5p7) | 7dp=
2 p

N ! xzd - 22 —21p B 22 —21p
M= 620 — 250)(2 — p?) ~ 6(20 — 25p)(1 + p)
22 21 22 — 21
6(20 — 5p — 250%) _ 6(20p — 5)

Therefore,

2

! P 1 13-20p
2 -1 2 —4_2
zédp ol :/ I (x))°d —/ rodp =
/0 e Tl[(),l]( v )y 0 g : 2—3p6(1+7p)

13 —20p o 1B3—-20p  6-Tp
6(2+11p —21p%)  6(32p—19)  6(13p — 6)
—1+6p  Sp+4
6(7—6p)  6(8+p)

1
:>/ 22dpo Ty =
0

1
:>/ 22dpo Ty =
0

1 p
/ PduoTy = / Ty (2))2dp = / (p=% — (1 + p)dp
0 T[0,1] 2

P
2/2 (p~°a* = 2p°(1 + p)z + (1 + p)*du
p



! 11 6-7 2(1+p) 1 1
;x/o xQd”OT2:5—8p6(7—6pp) N 2(p—ﬁ1))6+(1+p)2§
:>/1x2d,uoT2: 6—7p (4 p) 2+
0 6(35 — 86p +48p2)  3(2p — 1) 3
:>/19c2duoT2: 6-7p  (1+p)—(2-p)(2p—1)
0 6(83 — 134p) 320 —1)
—1+6p 1
T 6(—51+83p) 3(20—1)
:>/1x2duoT2— 5-p 1 (5-p(2p-1)—-2(32-51p)
0 6(32—51p) 3(2p—1) 6(32 —51p)(2p — 1)
=>/1x2duoT2: —69+113p—2p* 71+ 115p
0 6(—32 + 115p — 102p2)  6(—134 + 217p)
;»/ledungz U-Tlp  —21+44p _ 17-2Tp
0 6(83 —134p)  6(—51+83p) 6(32 —51p)
1
j/ wdpoT, = 6(_—110911372[)) - 6(13_—1(1)5 )~ 6(:2112) )
0 p p p
4—3p 1+4p S+ p

1
= 2dpuo Ty = = =
/ox Mo 6T —6p) 61170 6R+p)

1 1
/ PdpoT, = / (T3 () dp = / (02 — (1+ p)*dp
0 T3[O,1] P

1 1
= / 22dpo Ty = / (p~*2% = 2p (1 + p)z + (1 + p)*du
0 p

! 1 22-21 2(14+p) 4-3 1
;»/0 wdpo Ty = 2—3p6(20p—§) - (1—;)6(2—5) T+
é/ledungz 22 — 21p (I +p)(Ed=3p) 2+p
0 6(—10 4 55p — 60p%)  3(1 —p)(2—p) 3
;x/ledﬂngz 22-2lp  (1+4p) 2+p
0 6(—70 4+ 115p)  3((2 — 3p + p?) 3
:/1302@0%: 22-2lp  (1+4p)+(2+p)(3—4p)
0 6(—70 + 115p) 3(3 — 4p)

! 1422 —5+9p + 4p?
= / 22dp o Ty = 2 _ o0t p
0 6(45 — 70p) 3(3 —4p)

61
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! 1+22p —1+5p
= / 22dpo Ty = -
0 6(45 — 70p)  3(3 — 4p)

N /1 PdioTs (14 22p)(3 — 4p) — 2(—1 + 5p)(45 — T0p)
6(45 — 70p)(3 — 4p)
(3 —62p— 88p?) — 2(—45 + 295p — 350p%)
B 6(135 — 390p + 280p2)
5 —440p — 700p?
6(415 — 670p)

! — 114 —4
= [ Rdpory = 705 Op _ 35+ 705p
0 6(415 — 670p)  6(—255 + 415p)
! 270 — 435 54 — 87 —33+ 54
— [ 2duoTy = P _ P _ +o4p
0 6(160 — 255p)  6(32 —51p)  6(—19+ 32p)
! 21 — —12 421 —12
= [ 2PduoTy = 0 +2lp 9= 1%
0 6(13 —19p) 6(—6+13p) 6(7 —6p)
1
_ _ 2 _
= 22dpo Ty = 5+ 9p = 0= 3 = p
0 6(1+7p) 6(8+p) 2(8+p)
This is to complete of proof of the claim of (5.1.4). [

A.2 THREE-FOLD CONVOLUTION OF THE CANTOR MEASURE



/ f@)duoT, = / F(T7  )dp
A T;[A]

But, we have

/Qf(TSC)du = /Q FW)dpo T (y)

Our goal is to claim that (5.2.5) is true.

Proof.
[ 3 3 3 1 [ 1 3 1 ]
JodwoTi  JyduoTy  fyduoTy 5 5 3
SeduoTy  [PaduoTy [PaduoT 2 9 3
JoxdpoTy  [JxduoTy  [jwduoTs | 7 0 14
3 3 3
fo 2?dpo Ty fo x%dp o T fo x?dp o Ty % —16149503 %34

Proof : Consider the first row:

1
1 3 3 1
/dp:—/ du—i——/ du-l——/ du+—/ du
0 8 s710 1] 8 Syt0 1] 8 S0 1) 8 S0 1]

1

! 1 /3 3 3 [ 1 73
dp== [ du+> | du+2| du+={ d
:>/0 : 8/0 ’”8/_ ‘”8/_4 ’”8/_6 s

63



64

2 1 3 2
dp=2(1—-2)42 d
> [an=g0-2+3G+ [
3. (2 3 3 15
1= [ qp==2p 2222
= 8)/1 F=T0"10 " 10
2 15,8 3
=~ [ 4 5
= (40)(5) i

3
1 3 3 1
/du:—/ d,u+—/ du—ir—/ du—ir—/ du
2 8 Jsi ') 8 /s 8 Js; 23] 8 Js;'23)

3 19 37 35 13
= du:—/ du+—/ du—ir—/ du—l——/ du
/2 8 Jo 8 Ju 8 /2 8 Jo

’ 3 [° 1
= d,u:—/d,u—k—
IR
3
1
= dp = -
/2“ 5

3 1 1
/ dﬂ 9] Tl = / dlu/ = / dlu = —
0 71[0,3] 0 5
3 2
/ dpoTy = / dp = / du
0 T»[0,3] 1
3 3 1
/ d/.L 9] T3 = / dﬂ = / dlu = —
0 7300,3] 2 5

Now consider the 2nd row:

/xdu— / x)dp +
51 [03

+ / Ss(x)dp +
5510,3]

Therefore,

3
5

/ So(z)dp

5510,3)

/ Sy(z)dp
S; 03]

ool w OOIr—\
0|~ ool w



’ 11 3 /71 2
dpu == | —xdu+ - i — |
:>/Ox,u 8/03:1:,u+8/_2(3:c—|—3)p

3 01 4 1 /31
"“/ (—x—l——)du—i——/ (§$+2)du

8,3 '3 8 ) ¢
3 1 /3 1/ 1 13 11 /3
= — dp + = du=+ = du+ = + — di+ =
:>/owdu 24/o$“+8/0$”4+8/0x“+2+24oxWr
3

3

= dp = —

o T

= [ = 5 [ GG = G+ ) = 2

¢ [ sl= R+ P+ PR+HE =5
= 1 deZ%

Moreover,
3 1 4 1 1
dp=0+2 | (zo+)dp+ < [ (Gx+2)du+0
/2»“! +8/2(317+3)u+8/0(3x+)u+

3 13 13 1 3 13
du== | wdp+= [ du+— [ adu+- [ d
j/2$,LL 8/2$M+2/2 ,u+24oxu+4/ou



66

Therefore,

3 1 27
/ xdpo Ty = / TN (x)dp = / 3rdy == —
0 T1[0,3] 0 70

/3 duoT / T, (x)d /2(3 3)d 3(9 3) )
T lj,o 9 = €T Iu: €xr — Iu: - ) = —
0 T2[0,3] ? 1 10 5 10

/SxduoT—/ T1(:16)alp—/:‘)(395—6)61l,u—3§—61—i
0 ’ T3(0,3] ’ 2 70 5 14

Consider the third row :

3 (1 4, IR
| (G4 2)Pdu+< | (zz+2)%d
+8/_4(3x+3) u+8/_6(335+) 1

3 3 3 3 3 3
1 3 12 12 3
/ vidy=— | 2Ydp+ = | 2Pdp+ = | vdp+ — | du+—= [ 2du
0

72 J, 72 J, 72 J, 72 J, 72 J,
= 3 3 3 3 3
+24 d+48 d+1 *d +12 d+36 d
— | z — — | =z — | =z —
72 ), T ), T ), T T ), T T
3 I 48 [ 12 48 36
= [ Pdp=- | Pdpt = | wdpt+ 2+ 242
A 9/0x“+720x“+72+72+72
8 %, 48 3. 4 T
= dp = (=)= =1
g ) T=(R)G+3=3
3 21
2
= dyp = —
o TS



67

! 1 21 3 M1 2
22dy = = —1)%d —/ —r+ =)2d
/ ” 8/0<3:c> peg [ Gre g

3 1 1 1
3 12 12
2 2 2
= dp=— | 2°dp+ — | z°du+ — —
/ 1 o+ u+72 xdu+72 dp

- Ow = <712><21>+<$§><190>+<§—§><5>:%

613
:>/ iy = ——

72 du—ir% 2:1: —|—§—;l chdu—l—i 2d,u
:>/ vidp = — / 2du+% 3xd,u %%—l—% 2 —i—% 2xd,u—|—;1—§g
;x'r_z - <;2)(281)+;§(§_3)+§3<30+190)+(%)<§)+(%)(§>:%
- [ g

3 5 3
3 1 4 1 1
*du =0 —/ x4+ -)%d —/ —z+2)%d
/2xu +82(3x+3) /L+80(3x+)u

Thus, we have

3 3 3
3 24
w2dp = Pdu+ = [ wd
/2 H= 72/ Htagg ), m

48 1 s 12 /3 36 [3
— d — | 22du+ = du+ — [ d
TR, M), T ), e :

69/3 , 24 33 48 1. 1 21 12 3 36 7237
rodp = (
2

jﬁ 72)<70)+(ﬁ)(3)+(ﬁ)(_)+(ﬁ)<§)+(ﬁ)l:ﬁ
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3
7237

2
- dp = =28
/233 M= 6440

Therefore,

3 ! ! _
613 5517

2 zﬂ:/ T \(2))%d :/ 3%1:9/ Ydp = 9(—=) =
/0 xoap o 1y T1[O,3]( L (z))dp ; (32) du 0 ol (6440) 6440

3 2
/ 2dpo Ty = / (Ty () dp = / (32 — 3)%dp
0 T>[0,3] 1

3 2 2 2 2
:/de,uoT2:9/(x2—2x—|—1)d,u:9/ :172d,u—18/ a:d,u—|—9/ du
0 1 1 1 2

3 1811 9 3 11943

2
= dpoT, =9(—=) —18(=)+9(2) = =
/ox o (1288) (10) (5) 6440

3 3
| adnoti= [ (@ @)= [ (30— 0

3 3 3 3 3
#/xQdung,:Q/ (x2—4x+4)du:9/ xQd,u—SG/ md,u+36/ dp
0 2 2 2 2

’ 7237 33 1 63
2duo T = 9(—2) — 36(=—= Z
:>/0 xodp o Ty 9(6440) 36(==) + 36(-)

70 5 184
This is to complete of proof of the claim of (5.2.5).

[
A.3 INVERTIBILITY OF M
Theorem A.3.1. (see [2]) If f is nonnegative, then
[ 1ot = [ 5t ). (A35)
Q o

A function f (not mecessarily nonnegative) is integrable with respect to pT~* if and

only if fT is integrable with respect to u, in which case (A.3.5) and

| s@ouds) = [ ) (A.3.6)
T-1A! Al
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holds. For nonnegative f, (A.3.6) always holds.

Lemma A.3.2. From the weighted Lebesgue measure, the infinite Bernoulli con-
volution associated with the golden ratio, we have show that (5.1.4) is true. For
i = 1,2,3, f01(2x2 —z)duoT; > 0 and f01(2x2 — 3z + 1)dp o T, > 0. Thus,
[y (2a% —x)duo Ty > 0 and [, (22% — 3z +1)dpo Ty > 0. Then, M is invertible in

this case.
Proof.
0 6(p+8) 6(3p—1) 6 (3p—1)(p+38)
and
' 2(5p + 4 3 1 11202 +19p — 16
0 6(p+8) 6Bp—1) 3 2@Bp—1)(p+3)
' 2p+5 1 1p+2
/(2552—37)(1#075: o) 1 _lpt2
0 6(p+8 6 6p+38
and

2(p+5) 1. 1 1p+2
-3(z)+=-==——=>0.
6(p+38) <6) 3 6p+38

1
/ (22° =3z + 1) duo Ty =
0

1 2(2 — 1 1 7p—4—12p% +6p°
/(2x2—x)d,uoT3: (2=p) N P+ O >0
0 6(p+8) 6(3p%+3) 18 (P +1)(p+38)
and
! 2(2 — 3 1 1 20p%— 12
/(2x2—3x+1)duoT3: 2=p) _ to=o2r PE o,
0 6(p+8) 6(3p2+3) 3 6(pP+1)(p+38)
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Lemma A.3.3. From the 3-fold convolutions of the Cantor measure, we have show
that (5.2.5) is true. For i = 1,2,3, fo x)dpoT; > 0 and fo 21 — 1+
1)dpoT; > 0. Thus, fo 22> — 3x)dpo Ty > 0 and fo 202 —x+ 1)duo Ty > 0.

Then, M s tnvertible in this case.

Proof.
3
2, 1 25517 127 199
e o TP Rt A L
/0<9x gt e =560 T 370~ 3020
and
3
2, 25517 27 1 3
2 g NdpoT, =220 20 22 S
/0(99” vt DduoTi= oo =775~ ou
3
2, 1 211943 19 361
—z° —=z)dpoly=—- — —— = —— >
/0(9x 3oy = 5y T 310 ~ 3220
and
3
2, 211943 9 3 361
/0(9:5 v l)dpeTy =550 " 1075 3220 "
3
2, 1 263 13 3
2 T, =222 -2 2
/0(9”5 3 e Ty = 591 T3 oad
and

3
2, 263 3 1 199
S e DdpoTy—=2> 2 L2
/0(9“; vrl)dueTs =59~ 115~ 3220



APPENDIX B
NORMED SPACES INVOLVING TIME

B.1 COMPLETENESS OF L*([0,T]; X)

Theorem B.1.1. Let X be a Banach space and for 1 < p < oo. Then LP([0,T]; X)

1s a Banach space.
Proof. For 1 < p < oo,
(1) For all f € L?([0,T]; X), we have Z; := [ ||f||% dt > 0. Z; = 0, if and only if
f =0 for Lebesgue a.e. t € [0,T].

(2) Forall f € LP([0,T]; X) and a € R, we have [ [|af|[% dt = [ |a” || fI[% dt =

|Oé|pr.
(3) Forall f,g € L¥([0,T]; X), we have [ | +gll% dt < [ (Ifllx + llgllx)? dt <
Iy +1,.
These three conditions hold for p = oo with its norm. Thus, for 1 < p < o0,

LP(]0,T]; X) are normed spaces.

We modify the proof in [18]. Let {u,} C LP([0,T]; X') be a Cauchy sequence. It

suffices to show that {u,} has a convergent subsequence. Let n; € N such that
[ttn =y | ooy, < 1/2 for all n > ny.
Let ny € N such that ny > n; and

[t = tny || 1o o 17.x) < 1/2* for all n > n,.
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In general, for each k € N, let ni, € N such that n, > n;_; and

[tn = Wl 1o o.1p:x) < 1/2* for all n > ny,.

Now for each m € N, define S, : [0,7] — [0, oo] by

Sin(t) =l (B) 1 + D [t (8) = e, (D) £ € [0, 7). (B.L.1)

Then {S,,} is a monotone increasing sequence of real-valued functions on [0, T]. Ap-

plying the triangle inequality in the space LP([0,77],dt) to (B.1.1), yields

HSmHLP([O,T];X) = HumHLp([O,T];X) + Z Hunk+1(t) = Uny, (t)HLp([QT};X)
= (B.1.2)

< ||umHLp([0,T];X) + Z 1/2% = [|uy, ||Lp([0,T};X) + 1 <oo.
k=1
Define S : [0,7] — [0, 0] by

S(t) := lim S,, : [0,7]. (B.1.3)

m— 00

Then for 1 < p < oo, by the monotone convergence theorem and (B.1.2),

T T
/ ISP dt = lim/ Sul? dt < oo,

Hence S € LP(]0,T],dt), and thus S(t) < oo for Lebesgue a.e. t € [0,T]. The same

holds by (B.1.2) if p = co. Next, we note that for each t € [0, 7,
Un 11 (t) =tny (t) + (Uny (1) — n, () + -+ + (Wi (t) — tn,, (1))

m (B.1.4)
=t (1) + Y (g, () =ty (1))

Moreover, by (B.1.3), the series w,, (£)+> " ((tn,.,, (t)—un, (t)) is absolutely summable
in X, provided S(t) < oo. Since X is a Banach space, the series is summable in X

for such ¢. Hence for all ¢ such that S(t) < oo, we could define
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u(t) == up, () + Z Upy, (8) = Un, (1)) (B.1.5)
k=1

Equations (B.1.4) and (B.1.5) imply that

u(t) = lim wu,,, ., (t) in X, provided S(t) < infty. (B.1.6)

m—r0o0

Moreover, for all such t,
lu@®llx = lim {Jun,,, ()] < SE) <infty.

Hence, ||u(t)||y € L*([0,T7],dt). This means u € LP([0,T], X ). Lastly, we notice that

for all ¢ such that S(t) < infty,

et (8) = w®)] . < [t )] + )

<S(t) + [[u®)] x € L2([0,T1, dt).

(B.1.7)

Combining (B.1.6), (B.1.6) and using the dominated convergence theorem, we get

T

lim i [ty (8) — u(t)|| dt = 0.

That is , {uy,,, ,} converges to w in LP([0,T],X). Thus, LP([0,t]; X) is a Banach

space. ]
Lemma B.1.2. If X is a Hilbert space, and for all f,g,h € L*([0,T]; X) and
< f.g>= [ (f(t),g(t)x dt. Then,

(1) < f,f>>0,<f, f>=0if and only if f =0 for a.e. t €1[0,T);

(2) <f,g>=<g,f>;

(3) <af,g>=a< f,g> foralaeR;

(4) < f+h,g>=<f,g>+<h,g>.
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Thus, L*([0,T]; X) is a Hilbert space.

Proof.

(1) < f.f>= [y (F@), F@)xdt = [} [IF (D) dt > 0;
<f,f>=0& fOT If®)]% dt =0 < [|[f(t)]x = 0 for ae. €[0,T] < f(t) =0
for a.e. t € [0,77;

2) < fog>= [ (f(t),9(t = [T(g(t), f(t))x dt =< g, f >;
(3) <af,g>= fo (af(t) fo Y, g())xdt =a < f,g >;
(4) < f+hyg>= [ (ft)+h(t), gt)x dt = [ (f(£),g(t)x + (h(t), g(t))x dt =<

frg>+<h,g>.

Thus, L*([0,T]; X) is a Hilbert space. O



APPENDIX C
ABSOLUTE CONTINUITY

C.1 ABSOLUTE CONTINUITY OF |(u,(z,1))|> AND
E(Up (1), up(z,1)).

The following lemma is used in the proof of the theorem 2.0.8 in Chapter 2.

Lemma C.1.1. ||(uy,(z, t))tHi and E (U, (2, 1), um(z,t)) are absolute continuous func-

tions on t € [0,T] for any z € R.

Proof. Since

d 1 ,
2 (G Mm@ 8))ell) = (@, O)u, (um(, 8))0)s

and

d 1

71 (5E(Uum (@, 1), um (2, 1)) = E(um(, 1), (um (@, 1))2),

it suffices to show that
((um(z,1))ee, (Um (2, t))t)u
and

E (um(, 1), (um(,1)):)

are continuous.

By using (2.0.6), (2.0.10) and (2), we have

/ (tn (2, 8) ot (2, £)) 1 s = / S ol (Bwn(n) S ol (s (@) dp

j=1

NE

Oé;/n,k(wa;n,k(t)‘

i

1
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/ VYV (2, 1)V (un(z,t)) :Z Qi ( )\k/ Wi (2)V (um(x, 1)) du

Thus,

(a2, ) el = 11t (2, 0))ell, + 2((ttm ()t (i (2, 8))2)
and
E (2, ), U (2,£)) = &t (2,0), 1 (,0)) + 26 (1w (2, ), (e (2,1)):).
]

Lemma C.1.2 (Gronwall’s inequality). Let n(-) be a non-negative, absolutely con-

tinuous function on [0, T, which satisfies for a.e. t the differential inequality

1'(t) < o()n(t) +¥(t),

where ¢(t) and 1(t) are non-negative, summable functions on [0,T]. Then

n(t) < e oy / ¥(s)ds)

for all t € [0,T].



APPENDIX D
SEPARABILITY

The following lemma is used in the proof of the theorem 2.0.6 in Chapter 2.

Lemma D.0.3. Any subset of separable Banach Space X, with norm || ||, is separable.

Proof. Let Y = {yx}?2, be a countable dense subset of X. Let n € N. Then for each
a € A, let B(a, L) be the open ball in (X, ||-|| i, with center a and radius 1. For each
such open ball, there exists y € Y NB(a, ). Let (™Y =V N (UaenB(a, 1)). For

each m, let 2™ € A such that
1
(m) _ ,,(m) -
el — 5 < =

Let € > 0, be arbitrary and for all x € A be arbitrary. Let N, := EJ + 1. Then there

exists y](\, € B(x, —) < B(z,¢€). Then, there exists xxzo) € A such that

1
< —.
x — N,

(mo) m0
‘ xNE

Therefore,

Joser? =] = s =5 <



APPENDIX E
WEAK DERIVATIVE

E.1 BANACH SPACE VALUED FUNCTIONS

Let X be a seperable Banach space, with norm || ||.

Definition E.1.1. (i) If s(t) = > x& (t)u; is simple, we define

/OT s(t) dt = i | Ei|u;. (E.1.1)

(i1) We say f:[0,T] — X is summable if there ezists a sequence {sx}32, of simple

functions such that
T
/ l|sk(t) — f()] dt =0 as k— oo. (E.1.2)
0
(i1i) If fis summable, we define
T T
/ FEydt = tim [ si(t) dt. (F.1.3)
0 k—oo [

Theorem E.1.1 (Bochner). A strongly measurable function uw : [0,T] — X is

summable if and only if t — ||u(t)|| is summable. In this case

[ wtrad] < [ puto
<u*,/0Tu(t) dt> < /OT (u*, f(t)) dt,

and

for each u* € X*.

Lemma E.1.2. If o(t) = > ", x5, (t) ¢ is simple on [0,T] and v € X, then
fOT&(t)u dt = ufOT a(t)dt.
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Proof.
T m
/ alt)udt = / (ZXE )udt = Z|Ez|czu
0 i=1
:uZ|Ei|ci _ u/Ta(t)dt.
i=1 0
L]

Lemma E.1.3. If f : [0,T7] — R is a Lebesque integrable function on [0,T] and

ue X, thenfo udt—ufo

Proof. Since f(t) is a Lebesgue integrable function on [0, 7], there exists a sequence

of simple functions {a,,}5°; on [0, 7] such that f(¢) = lim,_, a, (). Hence,
T T
[ lon®u= sl at = [ louy = 50 ful a

=l [ o)~ 10 a

— 0 asn— oo.

Therefore, f(t)u is summable. Thus, we have

T T
/ fudt = lim ozn(t)udt =u lim an(t)dt = u/ f(t)dt.

]

Lemma E.1.4. Ifu,, — u in L*([0,T]; Dom (£)), then u, — u in L*([0,T]; L2 [a, b]).

Proof. Suppose for v* in the dual space of L*([0, T]; L2 [a, b]) and v is the correspond-
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ing Reisz’s representation of v*. Then,

‘ (v7, Um>L2([o,T];Lg [a,b]) — (v7, U>L2([0,T];L3 [a,b]) ‘

T T T
(v Um) dt—/ (v,u), dt| = / (v,um—u)udt‘
0 0

T
/\Uum— \dt</0 lell, - ull, dt
T 1
([ 1z ) ([ =l )’

— 0asm — oo.

Lemma E.1.5. For all u € L*([0,T]; Dom (£)), we have

T T d
V/ u(z,t)dt = / Vu(x,t)dt, where V = T
0 0

-
Proof. We know that v(z) € L?[a,b]. In fact, for all v(z) € C>(a,b), we have

/abv(x)v</0Tu(x,t)dt>dx - —/b /x)(/T (2.1) di ) o
_ / / w(e,t) de dt
:/ / 7) Vul(z, t) de dt
- / o(z) /0 Vu(e, 1) dt)dx.

Then, we have VfOT uw(z,t)dt = fo Vu(zx,t)dt. O

Lemma E.1.6. Letu € L*([0,T}; X), where X is Dom (€) or L7[a,b]. Define v(-,t) :=

f; u(-,7)dr. Then v(z,t) € L*([0,T];Dom (£)), and vy(-,t) = u(-,t).
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Proof. Fix t € [0,T].Then,

/ab|Vv(a:,t)\2da;§ /;(/Ot]Vu(x,Tﬂ r) dr
< /ab ((/Ot Vu(e, ) dr)3 T3 do
< /abT</0t|Vu({E,T)|2 dr)dx

t b
gT/ / Ve, ) dedr
0 a
t
ST/ ity ) ) < TM.
0

Thus, for each t € [0,T], v(x,t) € Dom (£).

Moreover, let ¢(t) € C(0,T). Then,
T T ¢
/ ei(t)v(x,t)dt = / gpt(t)/ u(+,7)drdt
0 0 0

:/OT/t:TTgot(t)u(-,T)dth:/OT(/thSOt(t)dt)u('vT)dT

:/ —(t)u(z,t)dt.

0

So, vy(+,t) = u(-,t). O
Lemma E.1.7. The set {¢¢p : ¢ € CX(0,T),¢(x) € CX(a,b)} is dense in

L2((0,T); L2[a, ).

Proof. Suppose u € L*([0,T]; Dom (£)). For each fix ¢, u(-,t) € Dom (£). Thus, there

exists ¢, (z) € C[a, b] such that ||t (z) — ul[pey, g < €/2". Now, @,(t) :=1for t €
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E, C [0,T],¢n(t) :< 1 for t € E,, where E, = [0, T]\E,, and ¢,(t) € C>(0,T).
2 g 2
[on(t)¥n(z) — u”LQ([O,T};Dom(é‘)) = /0 [on () Yn () — ullpom () dt

- / 6 000) = Wl 1+ [ 05 (0) = e

< (B +2 [ (100 1600 e+ e )
Ey

€

<o (B +2 [ (100 ey + Nollome) )
ETL

6 €

< L(B) 42 (2n+||u|| o) + o ) )
En

€

- +2 +3HUHD0m )dt

2 En

€

<5(57) L(E) +6 / ||u||1230m(5) at = 0.
En
Remark: £(E,) — 0 and any fe L'(X), X C R™. Then, lim, 4 fEn fdx = 0. O
Proposition E.L8. Suppose un — u in L*(0,T]; Dom (£)), and (un)i — 7 in

L*([0,T; L2[a,b]). Then (up): — ue in L*([0,T]; L2 [a, b]).

Proof. Suppose = fOTydt, v* € L*([0,T]; L2[a, b]). Then (v*, (up):) — (v*,7)

@// (1) dudt—>/ /vvdu)dt.

Choosing ¢(t) € CZ(0,T) and ¢(x) € C(a,b) and replacing v*by ¢(t)(z) in the

above equation. We get

m—ro0

L.H.S = lim OT ( / b(um)tgo(t)@/)(x) du)dt

— lim ab( /0 : o(t)() (um)tdt>du: lim abw(a:)( /0 ) o(t) (um)tdt>du

b T
=Jim (@ [ =t unde)dy

m— 00

ZWILLH;O OT (/ab —@i ()Y () Uy, du)dt = /OT (/ab —i(t)1(x) ud,u)dt.
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So, we have

/ / udu)dt /OT(/ab—wt(t)zﬁ(x)ﬁdu)dt.

Since {¢¢(t)¥(x)} is dense in L*([0, T]; L2 [a, b]), we get u = (. This implies u, =
- [

Lemma E.1.9. Fiz v € L*([0,7],Dom (£)), and for all w € L*([0,T], Dom (£)),
define l(w fo w,v) dt. Then, | € (L*([0,T], Dom (£)"))'.

Proof.
T T T
) = w0 dt\s / (w0, )] dt < / ol e 1¥llmom ey

T T
2 2
<( / ol ey )2 / lolom ey @)

2 2
< wllze2o,77,00m €)1Vl 22(10,77,00m £)) -

Thus, I(w) is bounded.

Moreover, if aj, ag € R and wy, wy € L*([0,T], Dom (£)")

T T
l(onwy + apws) :/ (cqwy + aowsy, v) dt = / ay (wy,v) + as (w2, v) dt
0 0
T T
:/ Ofl(wl,?})udt—f—/ Ozg(wg,l})udt
0 0
T T
:a1/ (wy,v) dt + (1/2/ {(way,v) dt
0 0

:all(wl) + CYQZ(IUQ).
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Proposition E.1.10. Suppose (uy,); — u; in L*([0,T]; L2[a, b)) , and I, — lo in

L*([0, T); Dom (€)'). Then L,y — Ly, in L*([0,77; Dom (£)) .

w)t

Proof. Suppose ¢ € L*([0,T]; L2[a,b]) is the representative of I,, and define
v = fOTUdt, for any v € L*([0,T]; Dom &). Then by l,.),, — lo in L*([0, T]; Dom (£)")

and Lemma E.1.9, we have

T T
/ Uum)es v) dt — / (y,v) di
0 0

[ ([ wmavas)ar [ [ roa)ar

Choosing ¢(t) € C(0,T) and ¢(z) € Cg(a,b) and replacing v by ¢(t)y(z) in the

1.e.

above equation.

Le fthandside :nlljgo </ U )1t P(1 d,u)dt
:nllg;o </0T90 (U ttdt>dﬂ = nllféo b¢< )(/OTSO(t) (Um)ttdt>dﬂ
T
~ tim wcz:(/o (1) (t) it )

~ lim T(/b it du)dt:/OT</ab—got(t)zp(x)utdu>dt.
oot it— [ ( / ") ot du

0dt>du = /awa)(/oT —u(t) v dt) dp

/
/OT /b ydu)dt.
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Since {g;(t)¢(x)} is dense in L*([0,T7]; L2]a,b]), we get u; = . This implies uy =

o. O]

Lemma E.1.11. Let u, v € L*([0,T]; Dom (£)). Then, all Lebesgue a.e. x € [a,b] ,

(u(z, t)v(x, b)) = u(z, t)w(x, t) + ulx, t)v(z, t).

Proof. Let ¢(t) € C°. Then, fOT (u(x,t)v(t)) o(t)dt = — fOT <u(x,t)v(t)><pt(t)dt.

[ (w0000 + ate ) sty
=~ [ wtet (000) e+ [t gty
=~ [ wtteaa— [ nuwenas [ ut e
=~ [ (st

Now, let v,(x,-) € C>(0,T) such that v,(z,-) = v(z,-) in H}(0,T). Then,

/OT (u(x,t)v(x,t)>t90(t) di — — /OT (u(x,t>v($,t)>g0t(t)dt
= — lim T u(x, t)vn(x, t)gpt<t)dt

n—o00 J
T

= lim (ut(x,t)vn(x,t) + u(x,t)(vn(x,t))t>go(t)dt

_ /0 ! (w0, 1) + e, o, 1)) o)t

For the last equality, we use the fact v,(x,-) — v(z,-) in H}(0,T). O



APPENDIX F
EMBEDDING OF Hj IN LZ

Proposition F.0.12. Let u € Hj(a,b) and let {¢,} C C=(a,b) such that ¢, — u
in Hi(a,b). Then, there exists a subsequence {¢,, } such that ¢,, — u. everywhere

n [a,b], where u. is the continuous representative of the equivalence class of u in

H}(a,b).

Proof. Since ¢, — u in H}(a,b), there exists a subsequence {¢,, } converging point-
wise Lebesgue a.e. to u. on (a,b). Now let = € (a,b), and let € > 0 be arbitrary. We

first notice that since ¢,, is convergent, there exists C' > 0 such that
lonllpome < C for all n € N. (F.0.1)

Next, by the continuity of wu,, there exists 0 < 6. < ( such that for all y € [a, b],

5ic)

with |y — 2| < d¢, we have

|ue(x) — uc(y)| < €/3. (F.0.2)

Hence,

The first term can be estimated as follows,

1/2
/ngnk ds_ /|V¢nk ) |x—y|1/2

< ||¢”k||Dom€ |JI - y|1/2 < C( )2 S €/3

|¢nk( ) gbnk | =

(F.0.4)

3+ C
Substituting (F.0.2) and (F.0.4) into (F.0.3), we get

|6y () = we(2)] < €/3 + [0 (y) = uc(y)] + /3,

for all y € (x — 6c, . + d¢).
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Let y € (a,b)satisty limy o ¢, (y) = uc(y). Then, for all k sufficient large,

|, (y) — uc(y)| < €/3, and hence |¢,, (x) — u.(x)| < e. Thus, limy_e0 O, () = ue(x)

for al = € [a, b].
[

Corollary F.0.13. Let u € Hj(a,b) and let u be its unique L7 [a,b] representative.

Then we can take u to be u,.
Corollary F.0.14. If supp(u) = [a,b],a < b, then I : Hy(a,b) — L%[a,b] is injective.

Consequently, Dom (£) = H}(a,b).

Proof. Let u € H(a,b) such that I(u) = 0. Then we have & = u, = 0 in L2[a, 0] .

Since supp(u) = [a, b], we have u. = 0 on [a, b]. Thus, u = 0 Lebesgue a.e on [a,b] [



APPENDIX G
DIFFERENTIABILITY OF DISTRIBUTION AND BANACH SPACE
VALUED FUNCTIONS

Let D denote the collection of all test functions on [a, b].
Definition G.0.2. (see e.g.[25]) A distribution f is a functional : D — R which is

linear and continuous in the following sense. If ¢ € D 1is a test function, then we

denote the corresponding real number by (f, ®).

By linearity we mean that

(f,ad+ Bv) = a(f,¢) + B(f, )
for all constants o, B and all test functions ¢, .

By continuity we mean following. If {¢,} is a sequence of test functions that
vanish outside a common interval and converge uniformly to a test function ¢, and if

all their derivatives do as well, then

(f,0n) = (f,0) asn— oc.

Definition G.0.3. (see e.g.[25]) For any distribution f, we define its derivative V f
by the formula
(Vf,0)=(f, Vo) for all test functions ¢.

Definition G.0.4 (Strong derivative). (see e.g. [11]) If f : (a,b) C R — X, where
X is a Banach space, then it is differentiable at t € (a,b) if L := limy g w

exists in X. The limit L, if it exists, will be denoted by f(t)

Definition G.0.5 ( Fréchet derivative). (see e.g.[15]) Let V and W be Banach spaces,

and U C V be an open subset of V.. A function f : U — Wis called Fréchet
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differentiable at t € U if there exists a bounded linear operator Ay : V- — W such that

o I+ R) = £ = AB)ll

=0
h—0 171y

Definition G.0.6 (Gateaux derivative). (see e.g.[23]) Suppose X and Y are locally
convez topological vector spaces (for example, Banach spaces), U C X is open, and
F : X — Y. The Gateaux differential dF(u; V) of F at w € U in the direction

U — X is defined as
F(u+ hV) — F(u)
h .

dF(u; V) =

Remark: In the case, f : (a,b) C R — X, where X is a Banach space, if f has a
strong derivative at t € (a,b), then f is Fréchet differentiable at ¢ and also Gateaux

derivative at t.

Proposition G.0.15. If f is strongly differentiable at t € (a,b), and L be the strong

derivative of f, then f is Fréchet differentiable at t.

Proof.
i 1 fEFR = 5@
h—0 h X
o fig [LEFR) = F@) —RD)
h—0 h X
i R = FO = RDI
h—0 |h|

Define A;(h) = hL. Then Ai(h) : (a,b) — X is a linear operator. Hence f is Fréchet

differentiable at t. ]

Definition G.0.7 (Partial derivative). 2u(z,t) = lim,_ w exists in R.

Proposition G.0.16. Suppose for t € (0,T). u(t) := limy_o w, the limit
)

exists in Dom (€). Then the partial derivative gu(x,t) = u(x,t) for Lebesgue a.e.

x € [a,b]. Consequently, we can regard u; = @ in Dom (£) = H}(a,b).
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Proof.
y u(t+h) —u(t) alt) o
h=0 Dom (£)
b t+h) — u(t 2
et [ |oEED =u® oy o
=0 J, h
b B 2

o fim [ MR @) a(z,t)| da = 0.

h—0 J/, h
t+h)—u(t
= foraex € [a,b],lllirr(l) u(t+h) —ult) —u(x,t)‘ = 0.
—

= for a.e x € [a,b], %u(m,t) = u(x,t).

]

Definition G.0.8 (Spectral Family). (see e.g.[14]) A real spectral family is a one-
parameter family {Ex\}xer of projections Ey defined on a Hilbert space H (of any

dimension) which depends on a real parameter X\ and is such that

(1) Ex < E,, hence E\E, = E,E\ = E\ if A\ <n,
(i) limy_, o Exx = 0,limy_,, o Fyxx = x for any x € H,

(111) Exior = lim, i Eyx = Eyz.

Proof of theorem 2.0.4. The uniqueness of (2.0.3) is well known.

Let v(t) == [;° =V Asin(tVA)dExg + [;° cos(tv/A)dEyh. Fix t € R. Then, for
any h € R\{O},

+VAsin(tVA)dE,g

u(t + h) —u(t) [ cos((t+ h)VA) — cos(tV/N)
. () = /0 4
 sin((t + h)VA) — sin(tV/\)
-/ .

— cos(tVN)dE\h.
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Hence,
(t+h) _u( ) —U(t)‘
S /oo cos( (t + h)VA) — cos(tV/ ) - VAsin(tV ) dEsg
4+ / sin((t + h)VY) — sin(tv/A) — cos(tVA)dExh
" (G.0.1)
S(/O coS((t—l—h)\/;) — cos(tvV/\) +VXsin(tVN) dEAg> 1/2
+(/0°° sin((t + h)\/i) —sin(tV/\) ~ cos(tVN) dE;Jz) 1/2‘
(see, e.g.,Yosida [28], p312, Corollary 2)
Note that for the first term in (G.0.1), we have,
cos((t + h)\/i) — cos(tV/\) T+ VAsin(tV)
_ cos(tvV/\) cos(hv/\) — sin(t\/X) sin(hv/\) — cos(tV/ ) -V Asin(tV)
cos(tv/ ) (cos(hv/A) — 1) \/_Sln(t\/_) sin(hv/\)
= N 5y + Vsin(tV) (G.0.2)
(cos(h\/_ sin(hv/\)
< |cos(tV/\) ™ ‘\/XSI t\/_)’ ™5y —l—’\/X‘

<M + (VA2 + VA =4(VN),

for all h sufficient small.
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Also for the second term in (G.0.1), we have,

IN

sin((t 4+ h)vVA) — sin(tV/\)
NG — cos(tV/A)

sin(tv/A) cos(hv/\) + cos(tv/A) sin(hv/A) — sin(tv/\) — cos(tV/\)
hv/A

sin(tv/A)(cos(hv/A) — 1) sin(hv/\)
o — Cos(t\/X)T — cos(tV/A)

cos(hv/A — 1) sin(hv/\)

(G.0.3)

sin(t\/X)‘

‘ (t\/_))

o W )cos(h\/X)‘

<MD+ M) +1=4

for all h sufficient small.

Combining (G.0.1),(G.0.2), (G.0.3) and by the dominated convergence theorem, we

have limy,_,q

u(tth)—ut) )H = 0. Hence u(t) = v(t). Let

w(t) := / —Acos(tVA)dEyg — \/X/OOO sin(tV\)dExh

0

. Then for any h € R\{O}

IA

<</W-—A$mu+m¢3+vﬁmﬁ¢m

+</0°° cos((t 4+ h)VA) — cos(tv/ ) VstV

(t—I—h ) —a(t) H

/OO \/Xsm ((t + h)VA) + VAsin(tvV/))

. + Acos(tVA)dEyg

/OO Vcos((t+ h)VA) — \/Xcos(t\/_)+\/—8m

A (tVA)dEh | (G.0.4)

2

dE,\g)

1/2

+ Acos(tV/A)

h

1/2

n dEAh)

Using (G.0.3), for the first term of (G.0.4), we have

2

—VAsin((t + h)VA) + VAsin(tV/)) < (1)) (G.0.5)

. + Acos(tVA)
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Similarly, by using (G.0.2), for the second integral of (G.0.4), satisfies

cos(t+ PV = costVA) | r i) 2

: < (4V2)% = 16 (G.0.6)

Combining (G.0.4),(G.0.5), (G.0.6), by the dominated convergence theorem and

letting h tend to 0, we get i(t) = w(t).
Finally,

(Au(t), x) = /OOO Ad(Eyu(t), x) = /000 Ad(u(t), Exx)

:/Ooom</ooocos(t\/_>dEn9+/ Ej_\/_)dE h E,\a:>

:/OOOM(/O cos(ty/n)d (Ey,g, Ext) + /
[ AT

:/OOO)\d(/ cos(ty/m)d (ExE,g, )

0

.
:/OOO)\ (/O/\cos(t\/_ Epg, / (tnﬁd (Eyh, ) )

:/OOO)\cos(t\/X)d<EAg,x>+/0 )\Slns/_\/_) (EAh,£C>>

sty h,EA:L*>>

d (ErE,h, :1:')) (G.0.7)

E Z.
= IS
—~ —~
~ ~
3 3

\/

= — (i), 2).

Since (FE\h,x) is of bounded variation on [0, A], , we get the last equality from

the second equality. (See e.g. Apostal [1].)

The initial conditions are obvious. ]
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