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H.K PUBUDU KALPANI KALUARACHCHI
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ABSTRACT

In this thesis, we present a new Interior-Point Method (IPM) for monotone Lin-

ear Complementarity Problem (LPC). The advantage of the method is that it uses

full Newton-steps, thus, avoiding the calculation of the step size at each iteration.

However, by suitable choice of parameters the iterates are forced to stay in the neigh-

borhood of the central path, hence, still guaranteeing the global convergence of the

method under strict feasibility assumption. The number of iterations necessary to

find ε-approximate solution of the problem matches the best known iteration bounds

for these types of methods. The preliminary implementation of the method and

numerical results indicate robustness and practical validity of the method.

INDEX WORDS: linear complementarity problem, interior-point method, full

Newton-step, polynomial convergence
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CHAPTER 1

INTRODUCTION

1.1 Description of the Problem

The objective of the Linear Complementarity Problem (LCP) is finding a vector in

a finite dimensional real vector space that satisfies a certain system of inequalities.

More precisely, for a given vector q ∈ Rn and matrix M ∈ Rn×n find a vector x ∈ Rn

(or show that no such vector exists), such that the following inequalities and equations

are satisfied.

x ≥ 0

q +Mx ≥ 0

xT (q +Mx) = 0

(1.1)

We denote the above LCP by the pair (M,q), that is LCP(M,q). We will elaborate

more on the problem formulation in the next chapter.

The LCP is not an optimization problem. However, it is closely related to op-

timization problems because Kurush-Kuhn-Tucker (KKT) optimality conditions for

many optimization problems can be formulated as LCP. For example, KKT condi-

tions of linear and quadratic optimization problems can be formulated as LCP (see

2.1 in Chapter 2). In addition, there are problems that can be directly formulated as

LCP. This is the reason why LCP is often considered as a problem in the mathemat-

ical programming area. The applications include, but are not limited to, economics,

engineering (game and equilibrium theory), transportation, and many other areas of

operations research.
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Specially significant is a connection of LCP to LP which is by for most used and

theoretically examined optimization problem.

The LP can be formulated as follows,

min cTx

s.t Ax = b

x ≥ 0

(1.2)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n.

The minimization can be replaced by maximization. Thus, LP is a problem of

finding x ∈ Rn that minimizes (or maximizes) objective function z = cTx subject to

a set of constrains Ax = b, x ≥ 0.

As we already mentioned, KKT conditions of LP can be formulated as LCP. See

Section 2.3 in Chapter 2, Example 1. This provides a direct link between the two and

enables generalization of methods and techniques used to solve LP to LCP and vice

versa.

It is important to mention another well known fact and that is for the general

type of matrix M , LCP (1.1) is a NP complete problem, which means that there is

no efficient (polynomial) algorithm to solve LCP with general matrix M . Therefore,

we need to consider classes of matrices M for which efficient algorithms do exist. See

Section 2.2 in Chapter 2.
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1.2 A Brief Historical Overview

Some instances of the LCP can be traced back to the early 1940’s; however, larger

interest in LCP was taken in the early to mid 1960’s in conjunction with the rapid

development of theory and methods for LP.

In 1947, George Dantzig proposed a famous SM to solving the LP. Basically, the

main idea of the SM is to travel along from vertex to vertex on the boundary of the

feasible region. The method constantly increases (or decreases) the objective function

until either an optimal solution is found or the SM concludes that such an optimal

solution does not exist.

Theoretically, the algorithm could have a worse-case scenario of 2n iteration, with

n being the size of the problem, which is an exponential number. This was shown in

1972 by Klee and Minty [8]. However, on behalf of the SM, it is remarkably efficient in

practice and an exponential number of iterations has never been observed in practice.

It usually requires O(n) iterations to solve a particular problem. There exists many

resources and excellent software for the SM.

Another great advancement in the area of solving convex optimization problems

was the ellipsoid method. This method was introduced by Nemirovsky and Yudin

[24] in 1976 and by Shor [20] in 1977. The algorithm works by encapsulating the

minimizer of a convex function in a sequence of ellipsoids whose volume decreases

at each iteration. Later Khachiyan [7] showed in 1984 that the ellipsoid method can

be used to solve the LP in polynomial time. This was the first polynomial time

algorithm for the LP. Unfortunately, in practice, the method was far surpassed by

the SM. Nevertheless, the theoretical importance of the ellipsoid method is hard to
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neglect.

In 1984, Karmarkar [6] introduced an Interior-Point Method (IPM) for LP. Kar-

markar used the efficiency of the simplex method with the theoretical advantages

of the ellipsoid method to create his efficient polynomial algorithm. The algorithm

is based on projective transformations and the use of Karmarkar’s primal potential

function. This new algorithm sparked much research, creating a new direction in

optimization - the field of IPMs. Unlike the SM, which travels from vertex to vertex

along the edges of the feasible region, the IPM follows approximately a central path

in the interior of the feasible region and reaches the optimal solution only asymptot-

ically. As a result of finding the optimal solution in this fashion, the analysis of the

IPMs become substantially more complex than that of the SM.

Since the first IPM was developed, many new and efficient IPMs for solving LP

have been created. Many researches have proposed different interior-point methods,

which can be grouped into two different groups: potential reduction algorithms and

path-following algorithms. Each of the two groups contains algorithms based on pri-

mal, dual, or primal-dual formulations of the LP. Also, computational results show

that the primal-dual formulation is superior to either the primal or dual formula-

tion of the algorithm. We will focus on the primal-dual path-following IPMs, which

have become the standard of efficiency in practical applications. These primal-dual

methods are based on using Newton’s method in a careful and controlled manner.

Soon after the SM was developed, a similar method for solving LCP was intro-

duced by Lemke [10]. It is a pivoting algorithm similar to the SM. Unfortunately,

Lemke’s algorithm can sometimes fail to produce a solution even if one exists. Never-

theless, Lemke’s algorithm was extremely useful. However, researchers kept searching
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for other methods for the LCP. Much later, in the 1990’s, the tradition of immediate

generalizations from LP to LCP continued even more strongly in the case of the IPMs

and many efficient IPMs have been proposed for LCP.

In this thesis, we will focus on extending a class of IPMs, from LP to LCP. The

main features of this class of methods is that at each iteration a full Newton-step is

taken, i.e., it is not necessary to calculate a step size. These type of IPMs are called

Full-Newton-step IPM (FNS-IPM). They were first discussed for LP by Roos in [18].

In addition, IPMs have been generalized to solve many other important optimiza-

tion problems, such as semidefinite optimization, second order cone optimization, and

general convex optimization problems. The unified theory of IPMs for general convex

optimization problems was first developed by Nesterov and Nemirovski [15] in 1994.

The first comprehensive monograph that considers in-depth analysis of the LCP

and methods for solving it is the monograph of Cottle, Pang, and Stone [3]. More

recent results on the LCP as well as nonlinear complementarity problems and varia-

tional inequalities are contained in the monograph of Facchinei and Pang [5].



CHAPTER 2

LINEAR COMPLEMENTARITY PROBLEM

In this chapter the linear complementarity problem (LCP) is introduced, defined, and

discussed. Also, several direct applications of the linear complementarity problem are

presented and discussed.

2.1 Linear Complementarity Problem

LCP is a problem of finding a particular vector in a finite real vector space that

satisfies a certain system of inequalities. Mathematically, given a vector q ∈ Rn and

a matrix M ∈ Rnxn, we want to find a vector x ∈ Rn (or to show such a vector does

not exist) such that

s = q +Mx

x ≥ 0, s ≥ 0

xT s = 0.

(2.1)

A sufficient condition for existence and uniqueness of a solution to this problem

is that M be symmetric positive definite. Since (x, s) ≥ 0, the complementarity

equation xT s = 0 can be written equivalently as

xs = 0,

which represents component-wise product of vectors, as follows,

xs = (x1s1, x2s2, . . . , xnsn)T . (2.2)

This product is often called Hadamard’s product.

The feasible set of points (feasible region) of the LCP as defined in (2.1) is the
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following set:

F =
{

(x, s) ∈ R2n : s = Mx+ q, x ≥ 0, s ≥ 0
}
. (2.3)

Furthermore, the set of strictly feasible points of the LCP is the following set:

F0 = {(x, s) ∈ F : x > 0, s > 0} .

The solution set of the LCP is given by

F ∗ =
{

(x∗, s∗) ∈ F : x∗T s∗ = 0
}
. (2.4)

An important subset of the above solution set is a set of strict complementarity

solutions

F ∗
s = {(x∗, s∗) ∈ F∗ : x∗ + s∗ > 0} . (2.5)

We can now say that the main idea of the LCP is to find a certain vector x that

is both feasible and complementary. This vector is called a solution of the LCP. The

LCP is always solvable with the zero vector being a trivial solution, if q ≥ 0.

2.2 Classes of LCP

In general LCP is NP-complete, which means that there exists no polynomial algo-

rithms for solving it. Thus, the problem needs to be restricted to certain classes of

matrices for which the polynomial algorithms exist. We now list several such classes

of matrices M for LCP. They are as follows:

• Skew-symmetric matrices (SS):

(x ∈ Rn)(xTMx = 0). (2.6)
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• Positive semi-definite matrices (PSD):

(x ∈ Rn)(xTMx ≥ 0). (2.7)

• P -matrices: Matrices with all principal minors positive or equivalently

(0 6= x ∈ Rn)(∃i ∈ I)(xi(Mx)i > 0). (2.8)

• P0-matrices: Matrices with all principal minors nonnegative or equivalently

(0 6= x ∈ Rn)(∃i ∈ I)(xi 6= 0 and xi(Mx)i ≥ 0). (2.9)

• Sufficient matrices (SU): Matrices which are column and row sufficient

– Column sufficient matrices (CSU):

(∀x ∈ Rn)(∀i ∈ I)(xi(Mx)i ≤ 0⇒ xi(Mx)i = 0). (2.10)

– Row sufficient matrices (RSU): M is row sufficient if MT is column suffi-

cient.

• P∗(κ): Matrices such that

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0,∀x ∈ Rn,

where

I+(x) = {i : xi(Mx)i > 0} , I−(x) = {i : xi(Mx)i < 0} ,

or equivalently

xTMx ≥ −4κ
∑

i∈I+(x)

xi(Mx)i,∀x ∈ Rn, (2.11)
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Figure 2.1: Relations and examples of the classes of matrices.

and

P∗ =
⋃
κ≥0

P∗(κ). (2.12)

Especially interesting, important (and nontrivial) is that the P∗ matrices are just

sufficient.

The relationship between some of the above classes is as follows:

SS ⊂ PSD ⊂ P∗ = SU ⊂ CS ⊂ P0, P ⊂ P∗, P ∩ SS = ∅. (2.13)

Some of these relations are obvious, like PSD = P∗(0) ⊂ P∗ or P ⊂ P∗, while others

require proof. Refer to Figure 2.1, which was first published in [9], to see a visual flow

of how these classes of matrices are related. Also, all of the above classes have the

nice property that if matrix M belongs to one of these classes, then every principal

sub-matrix of M also belongs to the class.
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In this thesis, we will assume that matrix M is a positive semi-definite (PSD)

matrix. This case is not the most general, but it is certainly most commonly used

both in theory and practice. Hence, this is reason why we will focus on this class of

matrices in the thesis. The LCP with a PSD matrix M is called monotone LCP.

2.3 Introductory Examples

LCP has many applications. Some examples of the LCP include but are by far not

limited to: the bimatrix game, optimal invariant capital stock, optimal stopping,

convex hulls in the plane, and the market equilibrium problems. Each one of the

listed problems can be reformulated into the linear complementarity problem. In the

sequel, we will describe several applications.

Example 1: Quadratic Programming

Quadratic programming is another application of the LCP. It is the problem of mini-

mizing or maximizing a quadratic function of several variables subject to linear con-

straints on these variables. The quadratic program (QP) is defined as

minimize f(x) = cTx+ 1
2
xTQx

subject to Ax ≥ b

x ≥ 0

(2.14)

where Q ∈ Rnxn is symmetric, c ∈ Rn, A ∈ Rmxn and b ∈ Rm. Note that the case

where Q = 0 gives rise to a linear program (LP). If x is a locally optimal solution of

the quadratic program (2.14), then there exists a vector y ∈ Rm such that the pair
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(x, y) satisfies the Karush-Kuhn-Tucker optimality conditions

u = c+Qx− ATy ≥ 0, x ≥ 0, xTu = 0,

v = −b+ Ax ≥ 0, y ≥ 0, yTv = 0.
(2.15)

If Q is positive semi-definite (the objective function f(x) is convex), then the con-

ditions in (2.15) are sufficient for the vector x to be a globally optimal solution of

(2.14).

The Karush-Kuhn-Tucker conditions in (2.14) define the LCP where

q =

 c

−b

 and M =

 Q −AT

A 0

 . (2.16)

Note that M is not symmetric, even though Q is symmetric. However, M does have

a property known as bisymmetry. A square matrix A is bisymmetric if it can be

brought to the form

A =

 G −AT

A H

 ,
where both G and H are symmetric. Also, if Q is positive semi-definite, then so is

M . In general, a square matrix M is positive semi-definite if zTMz ≥ 0 for every

vector z.

This convex quadratic programming model, in the form of (2.14), has a magni-

tude of practical applications in engineering, finance, and many other areas. The size

of these practical problems can become very large. Thus, the LCP plays an important

role in the numerical solution of these problems.

Example 2: Bimatrix games
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Game theory analyzes strategic interactions in which the outcome of one’s choices

depends upon the choices of others. For a situation to be considered a game, there

must be at least two rational players who take into account one another’s actions

when formulating their own strategies. We consider a game with two players called

player I and player II and the game consists of large number of plays. Here at each

play Player I picks one of m choices and Player II picks one of n choices. These

choices are called pure strategies. If in a certain play, Player I choose pure strategy

i and Player II chooses pure strategy j, then Player I loses Aij and Player II loses

Bij. A positive value of Aij represents a loss to Player I, while a negative value of Aij

represents a gain. Similarly for Player II and Bij. The matrices A and B are called

loss matrices, and the game is fully determined by the matrix pair (A,B).

If A + B = 0, the game is known as zero sum game and if A + B 6= 0 game is

known as bimatrix game. Player I chooses to play strategy i with probability xi such

that
∑
xi = 1, and Player II chooses to play strategy j with probability yj such that∑

yj = 1, then expected loss of Player I is xTAy and expected loss of Player II is

xTBy.

A player is changing his own strategy while other player holds his strategy fixed

to minimize the loss. i.e,

xTAy ≤ xTAy ∀x ≥ 0 eTmx = 1,

xTBy ≤ xTBy ∀y ≥ 0 eTny = 1.
(2.17)

The objective is to find (x, y) that is called Nash equilibrium pair. Nash equilibrium

can be find using LCP as described in the Lemma below.

Lemma 2.3.1. Suppose A,B ∈ Rm×n are positive loss matrices representing a game

(A,B) and suppose that (s, t) ∈ Rm×n solves LCP(M,q), where
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M =

 0 A

BT 0

 , q = −em+n ∈ Rm+n.

Then (x, y) such that,

x = s
eTms

and y = t
eTmt

,

is an equilibrium pair of Γ(A,B).

Proof. We write LCP conditions explicitly as

0 ≤ At− em ⊥ s ≥ 0

0 ≤ BT s− en ⊥ t ≥ 0
(2.18)

from the equation (2.1) we have Mx + q = s ≥ 0 and x ≥ 0. So we can write these

inequalities as below, 0 A

BT 0


 s

t

+

 em

en

 ≥ 0,

 At

BT s

+

 em

en

 ≥ 0. (2.19)

This implies At − em ≥ 0 and BT s − en ≥ 0. Therefore t 6= 0 and s 6= 0. Then

x = s
eTms

and y = t
eTn t

well define. x ≥ 0, y ≥ 0, from the definition we have eTmx = 1

and eTny = 1. Then x and y are mixed strategies. By complementarity we have,

xT (At− em) =
sT

eTms
(At− em) = 0. (2.20)

Since x and y are mixed strategies, and from the Equation (2.20), we get the following

property.

xTAt = xT em = 1. (2.21)
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So we have,

Ay − (xTAy)em = 1
eTn t

(At)− (xTAy)em

= 1
eTn t

(At− (xTAt)em)

= 1
eTn t

(At− em) from (2.21)

(2.22)

Since At− em ≥ 0 and x ≥ 0, we have xT (Ay − (xTAy)em) ≥ 0. This implies,

xTAy ≥ (xT em)(xTAy) = xTAy (2.23)

Similarly we can prove xTBy ≥ xTBy. Hence (x, y) is a Nash equilibrium pair.

Example 3: The Market Equilibrium Problem

The state of an economy where the supplies of producers and the demands of

consumers are balanced at the resulting price level is called market equilibrium . We

can use a linear programming model to describe the supply side that captures tech-

nological details of production activities for a particular market equilibrium problem.

Econometric models with commodity prices as the primary independent variables

generates the market demand function. Basically, we need to find vector x∗ and

subsequent vectors p∗ and r∗ such that the conditions below are satisfied for supply,

demand, and equilibrium:

Supply conditions:

minimize cTx

subject to Ax ≥ b

Bx ≥ r∗

x ≥ 0

(2.24)

where c is the cost vector for the supply activities, x is the vector production activities.

Technological constraints on production are represented by the first condition in (2.24)
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and the demand requirement constraints are represented by the second condition in

(2.24);

Demand conditions:

r∗ = Q(p∗) = Dp∗ + d (2.25)

where Q(·) is the market demand function with p∗ and r∗ representing the vectors of

demand prices and quantities, respectively. Q(·) is assumed to be an affine function;

Equilibrium condition:

p∗ = π∗ (2.26)

where the (dual) vector of market supply prices corresponding to the second constraint

in (2.24) is denoted by π∗.

Using Karush-Kuhn-Tucker conditions for problem (2.24), we see that a vector

x∗ is an optimal solution of problem (2.24) if and only if there exists vectors v∗ and

π∗ such that:

y∗ = c− ATv∗ −BTπ∗ ≥ 0, x∗ ≥ 0, (y∗)Tx∗ = 0,

u∗ = −b+ Ax∗ ≥ 0, v∗ ≥ 0, (u∗)Tv∗ = 0,

δ∗ = −r∗ +Bx∗ ≥ 0, π∗ ≥ 0, (δ∗)Tπ∗ = 0.

(2.27)

If for r∗, we substitute the demand function (2.25) and we use condition (2.26),

then we can see that the conditions in (2.27) gives us the linear complementarity

problem where

q =


c

−b

−d

 , M =


0 −AT −BT

A 0 0

B 0 −D

 . (2.28)
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Observe that the matrix M in (2.28) is bisymmetric and if the matrix D is

symmetric, as it could have been seen, the Karush-Kuhn-Tucker optimization condi-

tions of the market equilibrium problem, and in fact the linear problem in general,

can be expressed in the LCP framework. This can also be extended to quadratic

programming problems as discussed below.

maximize dTx+ 1
2
xTDx+ bTy

subject to ATy +BTx ≤ c

x ≥ 0, y ≥ 0

(2.29)

On the other hand, if D is asymmetric, Then M is not bisymmetric and the connection

between the market equilibrium model and the quadratic program above fails to exist.



CHAPTER 3

LEMKE’S METHOD

In this chapter, we review a well known Lemke’s algorithm to solve LCP. This is a

pivoting algorithm introduced by Lemke [10] and it is a generalization of Dantzig’s

Simplex Method developed earlier for LP.

3.1 Basic Definition

We consider an LCP in the standard form as described in (2.1) Chapter 2.

s = q +Mx

x ≥ 0, s ≥ 0

xT s = 0.

(3.1)

We denote it LCP(M,q). We additionally assume that M is positive semidefi-

nite matrix. To describe Lemke’s method for solving LCP(M,q) we introduce some

definitions.

Definition 3.1.1.

Consider the problem SLCP(M,q) (3.1).

1. A component si is called the complement of xi, and vice versa, for i = 1, 2, ..., n.

2. Pair (x, s) is complementary if x ≥ 0, s ≥ 0, and xT s = 0. (Note that a

complementary pair must satisfy xisi = 0 for i = 1, 2, ..., n.)

3. Pair (x, s) is almost complementary if x ≥ 0, s ≥ 0, and xisi = 0 for i=1,2,...,n.

except for a single index j, 1 ≤ j ≤ n.
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3.2 Lemke’s Method

For positive semidefinite M matrix, Lemke’s method generates a finite sequence of

feasible, almost-complementary pairs that terminates at a complementary pair or an

unbounded ray.

Similarly to the Simplex Method, an initial pair must first be obtained, usually

via a Phase I scheme. There are different Phase I schemes depending on the particular

structure of LCP. We will describe a commonly used Phase I scheme, which requires

only one pivot.

Phase II generates a sequence of almost-complementary vector pairs. It performs

a pivot at each iteration, selecting the pivot row by means of a ratio test like that

of the Simplex Method, whose purpose is to ensure that the components of x and s

remain nonnegative throughout the procedure. Phase II finishes when complementary

pair is found or we end up on the unbounded ray.

This outline can be summarized as follows.

Lemke’s Algorithm

Phase I: (Generates a Feasible Almost- Complementary Table).

1. If q ≥ 0, STOP : x = 0 is a solution of LCP(M,q); that is, (x, s) = (0, q) is a

feasible complementary pair.

2. Otherwise, add the artificial variables x0 and s0 that satisfy the following rela-

tionships:

s = Mx+ ex0 + q, s0 = x0, (3.2)
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where e is the vector of ones in Rn. Create the initial tableau,

x x0 1

s = M e q

s0 = 0 1 0

3. Make this tableau feasible by carrying out a Jordan exchange on the x0 column

and the raw corresponding to the most negative qi.

4. Without removing the artificial variables from the tableau, proceed to Phase II.

( Phase II: Generate a Feasible Complementary or Unbounded Tableau).

1. Start with a feasible almost-complementary pair (x, s) and the corresponding

tableau in Jordan exchange form,

sI1 xJ2 1

xJ1 = HI1J1 HI1J2 hI1

sI2 = HI2J1 HI2J2 hI2

Record the variable that becames nonbasic (i.e., becames a column label) at

the previous iteration. At the first step, this is simply the component of s that

was exchanged with x0 during Phase I.

2. Pivot column selection: Choose the column s corresponding to the complement

of the variable that became nonbasic at the previous pivot.

3. Pivot row selection: Choose the row r such that,

−hr/Hrs = min {−hi/His|His < 0}.
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If all His ≥ 0, STOP: An unbounded ray has been found.

4. Carry out a Jordan exchange on element Hrs. If (x, s) is complementary, STOP:

(x, s) is a solution. Otherwise, go to Step 2.

We continue with few remarks.

Remarks

1. Step 2 maintains almost-complementarity by moving a component into the basis

as soon as its complement is moved out. By doing so, we ensure that for all

except one of the components, exactly one of xi and si is basic while the other

is nonbasic. Since nonbasic variables are assigned the value 0, this fact ensures

that xisi = 0 for all except one component which is the almost complementary

property. When the initial tableau of Phase II was derived from Phase I, it is

the variables s0 and x0 that violate complementarity until an optimal tableau

is found.

2. The ratio test in Step 3 follows from the same logic as in the Simplex Method.

We wish to maintain non negativity of all the components in the last column,

and so we allow the nonbasic variable in column s to increase away from zero

only until it causes one of the basic variables to become zero. This basic variable

is identified by the ratio test as the one to leave the basis in the current iteration.

3. In practice, it is not necessary to insert the s0 row into the tableau, since s0

remains in the basis throughout and is always equal to x0.

The following important theorem assures that Lemke’s algorithm terminates at

the solution of the LCP(M,q) if M is positive semidifinite.
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Theorem 3.2.1. 1. If M ∈ Rnxn is positive definite, then Lemke’s algorithm ter-

minates at the unique solution of LCP(M,q) for any q ∈ Rn.

2. If M ∈ Rnxn is positive semidefinite, then for each q ∈ Rn, Lemke’s algorithm

terminates at a solution of LCP(M,q) or at an unbounded ray. In the latter

case, the set {x|Mx+ s ≥ 0, x ≥ 0} is empty; that is, there is no feasible pair.

The proof can be found in [4].

3.3 Example

We consider a quadratic programming problem

min 1
2
x2

1 − x1x2 + 1
2
x2

2 + 4x1 − x2

s.t x1 + x2 − 2 ≥ 0

x1, x2 ≥ 0.

(3.3)

The KKT condition of this problem are described in Example 1, Chapter 2,

(2.15) and (2.16). In this case we have

Q =

 1 −1

−1 1

 , A =

[
1 1

]
, p =

 4

−1

 , b =

[
2

]
,

which leads to the following LCP

M =


1 −1 −1

−1 1 −1

1 1 0

 , q =


4

−1

−2

 ,

x1

x2

x3

 =


x1

x2

u1

 .

Below are the steps of the Lemke’s algorithm applied to this problem.
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Phase I

Step 1: According to the Phase I of the Lemke’s Algorithm, here we add the artificial

variable x0 that satisfy the following relationship, s = Mx + ex0 + q. so the initial

table is as follows.

x1 x2 x3 x0 1

s1 = 1 −1 −1 1 4

s2 = −1 1 −1 1 −1

s3 = 1 1 0 1 −2

We make this table feasible by carrying out a Jordan elimination on the x0 col-

umn (pivot column, s=4) and the row corresponding to the most negative entry in the

last column (pivot row, r=3). Here s = 4 and r = 3. Since Brs = 1
Ars

and Brj =
−Arj
Ars

, Bis = Ais
Ars

and Brj = Aij −BisArj we find the entries of the second table below.

x1 x2 x3 s3 1

s1 = 0 −2 −1 1 6

s2 = −2 0 −1 1 1

x0 = −1 −1 0 1 2

This table yields almost complementary solution x0 = 2, x1 = 0, x2 = 0, x3 = 0 and

s1 = 0, s2 = 1, s3 = 0.

Phase II

Step 2: In Phase I we obtained the following table.
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x1 x2 x3 s3 1

s1 = 0 −2 −1 1 6

s2 = −2 0 −1 1 1

x0 = −1 −1 0 1 2

Since s3 became non basic at last pivot, here we choose x3 as pivot column.

Minimum ratio test gives min
{−6
−1

= 6, −1
−1

= 1
}

= 1.

Thus pivot row is r = 2 (from minimum ratio test). When s = 3 and r = 2 we

find the entries in the third table by using the Jordan elimination. Using formulas

indicated in Step 1 we obtain the following table:

x1 x2 s2 s3 1

s1 = 2 −2 1 0 5

x3 = −2 0 −1 1 1

x0 = −1 −1 0 1 2

This table yields almost complementary solution x0 = 2, x1 = 0, x2 = 0, x3 = 1 and

s1 = 5, s2 = 0, s3 = 0.

Step 3: By continuing the same process as in Step 2 we get s = 2 and r = 3.

After performing Jordan elimination we obtain the following table.

x1 x0 s2 s3 1

s1 = 4 2 1 −2 1

x3 = −2 0 −1 1 1

x2 = −1 −1 0 1 2
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This is a final table, because it contains a solution that is fully complementary,

x0 = 0, x1 = 0, x2 = 2, x3 = 1 and s1 = 1, s2 = 0, s3 = 0. Hence, the solution of the

original problem (3.3) is x1 = 0 and x2 = 2.



CHAPTER 4

FULL NEWTON-STEP INTERIOR-POINT METHOD

In this chapter, we will discuss the IPM method for solving a monotone LCP. The

advantage of the method is that it uses full-Newton-steps, thus, avoids the calculation

of the step size at each iteration. First, we will explain the concept of the IPM with

full Newton-steps, then we will analyze its convergence and finally we will give an

estimate on the number of iterations needed to find an ε - approximate solution of

LCP.

4.1 Interior Point Condition for LCP

We consider the monotone LCP in the standard form. Find a point (x, s) ∈ R2n that

satisfies the following conditions

Mx+ q − s = 0, (x, s) ≥ 0,

xs = 0,
(4.1)

where M ∈ Rnxn is positive semidefinite matrix, q ∈ Rn is a vector. Also recall that

the xs in the last equation represents the component-wise (Hadamard) product of

the vectors x and s as defined in (2.2).

We assume that problem (4.1) has a strictly feasible point or equivalently, that

it satisfies Interior Point Condition (IPC).

IPC Assumption

There exists (x0, s0) > 0 such that Mx0 + q − s0 = 0,

This is an essential assumption needed in the future development of the IPM for

LCP.
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Recall that we denote feasible region of (4.1) as

F =
{

(x, s) ∈ R2n : s = Mx+ q, x ≥ 0, s ≥ 0
}
, (4.2)

and the interior of the feasible region, which we also call strictly feasible region, as

F0 =
{

(x, s) ∈ R2n : s = Mx+ q, x > 0, s > 0
}
. (4.3)

In other words IPC can be equivalently stated as: F0 is not empty, i.e., there is a

point (x0, s0) ∈ F0.

4.2 Main Idea of the Method

The general idea is to solve (4.1) using Newton’s method. However, Newton’s method

can “get stuck” at the complementarity equation xs = 0. Therefore, the main idea

of primal-dual interior-point methods is to replace the last equation in (4.1), the

so called complementarity equation, with the parameterized equation xs = µe, with

parameter µ > 0. So we consider the following system

Mx+ q − s = 0,

xs = µe,
(4.4)

where e is defined as a vector of all ones of size n. By the last equation, any solution

(x, s) of (4.4) will satisfy x > 0 and s > 0. In this thesis we will always assume that

the interior point condition (IPC) is satisfied.

It can be shown that for certain classes of matrices, if M has a full rank, i.e.

rank(M) = n and IPC holds, then the parameterized system (4.4) has a unique

solution, for each µ > 0. This is particularly true for positive semi-definite matrices

that we are considering in this thesis. This solution is denoted as (x(µ), s(µ)) and we
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call (x(µ), s(µ)) the µ-center of (4.1). The set of µ-centers (with µ running through

all positive real numbers) gives a homotopy path, which is called the central path of

(4.1). The importance of the central path for the LP was discovered first by Sonnevend

[21] and Megiddo [16] for Linear optimization(LO) and later generalized to LCP by

Kojima et al. [9]. The main property of the central path is that if µ → 0, then the

limit of the central path exists and since the limit points satisfy the complementarity

condition, the limit yields the optimal solutions for (4.1).

This limiting property of the central path leads to the main idea of the iterative

methods for solving (4.1): Trace the central path while reducing µ at each iteration.

Theoretically, an exact trace is wanted, but practically it is too inefficient. However,

it has been shown that it is only sufficient to trace the central path approximately in

order to achieve global convergence and maintain favorable convergence properties of

the given algorithms.

We rewrite the system (4.4) as follows,

F (x, S) =

 Mx+ q − S

Xs− µe

 = 0 (4.5)

As discussed previously, the IPMs trace the central path approximately. The

general outline of the generic interior-point primal-dual method is discussed below.

Without loss of generality, we assume that a point (x, s) is “close” to the µ-center,

(x(µ), s(µ)) for some parameter µ > 0. Then, µ is decreased to µ+ := (1 − θ)µ, for

some θ ∈ (0, 1). Next, we redefine µ = µ+, and we solve one step of Newton method
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applied to function F (x, s) in (4.5). This leads to,

∇F

 ∆x

∆s

 = −F (x, s) (4.6)

which is equivalent to the following system.

−M∆x+ ∆s = 0,

s∆x+ x∆s = µe− xs.
(4.7)

Since M has full row rank, the system (4.7) has a unique solution for any (x, s) >

0. The solution (∆x,∆s) is known as the Newton direction. By taking a step along

this search direction, we construct a new iterate (x+, s+)

x+ = x+ ∆x, s+ = s+ ∆s. (4.8)

Here we choose to have a full Newton step, i.e, we choose a step-size to be equal to one.

We repeat the procedure until we find iterates that are in a certain neighborhood of

the µ-center (x(µ), s(µ)). Then, again, µ is reduced by the factor 1− θ and Newton’s

method is applied again targeting a new µ-center, and so on. We repeat this process

until µ is small enough, i.e. nµ ≤ ε, where ε is a small positive number. At this stage

in the algorithm, we have found ε-approximate solutions of (4.1).

This is exactly the classical Newton method. The key feature of the IPM is to

keep iterates close to the central path at all times. This is also a main difference of

IPM and classical Newton Method. The convergence in this method is guaranteed by

appropriate choice of parameters and by using two types of steps at each iterations;

the Feasibility step and the Centering step. After one feasibility step an iterates may

be “too far” from the central path (µ-center). After doing a couple of centering steps

approximate solution will again be sufficiently close to the µ-center.
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Scaling

Before formally stating the algorithm, we introduce important scaling that al-

lows generalization and introduction of kernel-based barrier functions. For any triple

(x, s, µ) with x > 0, s > 0 and µ > 0, we introduce the so called variance vector :

v :=

√
xs

µ
. (4.9)

Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if v = e.

The scaled search directions dx and ds are then defined as

dx :=
v∆x

x
, ds :=

v∆s

s
, (4.10)

where each of the operations are component-wise product and division.

Lemma 4.2.1. If v is defined, as in (4.9) and the search directions dx, ds are defined

as in (4.10), then the Newton system from (4.7) can be transformed into the following

system:

−M̃dx + ds = 0,

dx + ds = v−1 − v,
(4.11)

where

M̃ := DMD, D := X
1
2S−

1
2 , S := diag(s), and X := diag(x).

Proof. Recall the Newton system given in (4.7)

−M∆x+ ∆s = 0, (4.12)

s∆x+ x∆s = µe− xs. (4.13)

The scaled search directions dx,ds as defined in (4.10), can be rewritten as

∆x =
xdx
v
, ∆s =

sds
v
, (4.14)
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where v is defined in (4.9).

By applying (4.14) to (4.13), we obtain

s
(
xdx
v

)
+ x

(
sds
v

)
= µe− xs(

sx
v

)
dx +

(
xs
v

)
ds = µe− xs

dx + ds = v
sx

(µe− xs)

dx + ds = v−1 − v.

We have shown the transformation for (4.13) using (4.14). Next we will focus our

attention on transforming (4.12). If we apply (4.14) to (4.12), we see

−M
(
xdx
v

)
+

(
sds
v

)
= 0. (4.15)

The above equation can be transformed in the following way. First, observe that any

vector a ∈ Rn can be written as

a = [diag(a)] e,

where

diag(a) =



a1

a2

. . .

an


(4.16)

and e is a vector of all ones.

Therefore, vector xdx
v

can be written as

xdx
v

=
(
XV −1Dx

)
e

= XV −1 (Dxe) (4.17)

= XV −1dx
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where

X = diag(x), V −1 = diag(v−1), Dx = diag(dx).

Similarly, vector sds
v

can be written as

sds
v

=
(
SV −1Dx

)
e

= SV −1 (Dse) (4.18)

= SV −1ds

where

S = diag(s), V −1 = diag(v−1), Ds = diag(ds).

Substitution of (4.17) and (4.18) into (4.15) leads to

S−1V (−MXV −1dx + SV −1ds) = 0

−S−1VMXV −1dx + ds = 0
(4.19)

The matrix S−1VMXV −1 can be simplified by observing that

V S−1 = diag
(v
s

)
= diag

(√
x

µs

)
=

1
√
µ
X

1
2S−

1
2 =

1
√
µ
D. (4.20)

and

XV −1 = diag
(x
v

)
= diag

(√
µx

µs

)
=
√
µX

1
2S−

1
2 =
√
µD. (4.21)

where D := X
1
2S−

1
2 , S := diag(s), and X:= diag(x).

Next, by applying (4.20) and (4.21) to (4.19), we get

− [DMD] dx + ds = 0.

If we denote M̃ := DMD, we obtain

−M̃dx + ds = 0.

Hence, the lemma is proved.
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Lemma 4.2.2. If matrix M is positive semi-definite, then M̃ is also positive semi-

definite.

Proof. Let a ∈ Rn and M̃ be as defined above, then

aTM̃a = aT (DMD) a

=
(
aTD

)
M (Da)

= (Da)T M (Da)

≥ 0.

By assumption, we know M is positive semi-definite. Hence, by definition, M̃ is

positive semi-definite.

Proximity measure

We need proximity measure to check how close we are to the µ- center. Note

that

v−1 − v = 0 ⇔ v = e.

Therefore, we see that v = e if and only if the pair (x, s) coincides with the µ-center

(x(µ), s(µ)).

A very important observation is that the right hand side v−1 − v in the last

equation of (4.11) equals the negative gradient of the function

Ψ(v) :=
n∑
i=1

(
v2
i − 1

2
− log vi

)
, (4.22)

which can be written as,

dx + ds = −∇Ψ(v). (4.23)

This equation is known as the scaled centering equation. The scaled centering equation

basically defines the search directions. An easy verification is that ∇2Ψ(v) = diag(e+
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v−2). Since this matrix is positive definite, Ψ(v) is strictly convex. We can see that

∇Ψ(e) = 0, hence Ψ(v) attains its minimal value at v = e, with Ψ(e) = 0. So, it

follows that Ψ(v) is non-negative everywhere and vanishes at v = e, which means it

vanishes at the µ-center (x(µ), s(µ)). Therefore, we can conclude that the µ-center

(x(µ)s(µ)) can be characterized as the minimizer of the function Ψ(v). Thus, Ψ(v)

serves as a measure of how close (x, s) is to the µ-center.

From the discussion above we see that ‖∇Ψ(v)‖ can also serve as a proximity

measure. Therefore we define

δ(x, s, µ) = δ(v) =
1

2

∥∥v − v−1|
∣∣ =

1

2
‖∇Ψ(v)‖ . (4.24)

4.3 Full Newton-step Interior-Point Algorithm for LCP

We can now formally describe the Full Newton-step Interior Point algorithm. As we

mentioned, this algorithm follows the central path approximately. Suppose we start

with (x, s) close to µ-center. We start with outer iteration by first reducing µ to

µ+ = (1 − θ)µ. Therefore, new v becomes v+ = v√
1−θ . Then we find the directions

dx and ds by solving the system (4.11) and calculate the original directions ∆x and

∆s by solving the Newton system (4.14). These are called feasibility directions. We

update x and s using the recently found search directions ∆x and ∆s and by solving

the system (4.8).

As a consequence, Ψ(v) changes to Ψ(v+). The inequality, Ψ(v) ≤ τ , means that

(x, s) is in a τ -neighborhood of the µ-center (x(µ), s(µ)), where τ > 0 represents a

certain threshold value. Recall that, we measure the closeness of (x, s) to µ-center
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(x(µ), s(µ)) by the value of Ψ(v). However, after the θ-update of µ, the updated

Ψ(v+) may be greater than τ , if so, we need to perform further steps to reduce Ψ(v+)

to get closer to the new µ-center, i.e, to get back to the τ -neighborhood of a new

µ-center.

To accomplish this, we perform inner iteration where we find the directions dx

and ds by solving the system (4.11). Since x and s have changed in the outer iteration,

v differs at every iteration. Then we calculate the original direction ∆x and ∆s by

solving the Newton system (4.14). We update x and s using the recently found

search directions ∆x and ∆s, by solving the system (4.8). This process is repeated

until Ψ(v) ≤ τ , upon which the process begins again. We begin again by reducing

µ and updating v, and so on until we have an iterate that is ε-close to the actual

solution. The Full Newton-step form of the Algorithm is shown in Table 4.1. In the

sequel, we will refer to it as simply the Algorithm.

The graphical representation of the Algorithm is given in Figure 4.1
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Full Newton-step Interior-Point Algorithm for LCP

Input:

Determine input parameters:

threshold parameter τ > 0,

fixed barrier update parameter θ, 0 < θ < 1,

accuracy parameter ε > 0.

begin

Set (x0, s0, µ0) > 0 so that the IPC is satisfied;

while nµ ≥ ε do

µ := (1− θ)µ;

v :=
√

xs
µ

;

Calculate direction (dx, ds) by solving (4.11);

Calculate original direction (∆x,∆s) by solving (4.14);

Update x := x+ ∆x and s := s+ ∆s;

Update v :=
√

xs
µ

;

while Ψ(v) > τ do

Calculate direction (dx, ds) by solving (4.11);

Calculate original direction (∆x,∆s) by solving (4.14);

Update x := x+ ∆x and s := s+ ∆s;

Update v :=
√

xs
µ

;

end do

end do

end

Table 4.1: Full Newton-step Interior-Point Algorithm for LCP
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Figure 4.1: Graphical representation of the Algorithm.



CHAPTER 5

ANALYSIS OF THE ALGORITHM

5.1 Some Useful Inequalities

Before we start the analysis of the algorithm, we derive some equations and inequal-

ities that will be frequently used in the sequel.

From the equations (4.9) and (4.10) in Chapter 4, we have following equation.

dxds = v∆x
x

v∆s
s

=

√
xs
µ

√
xs
µ

xs
∆x∆s

= ∆x∆s
µ
.

(5.1)

From the equation (4.11) in Chapter 4, dx+ds = v−1−v and δ(x, s, µ) = δ(v) =

1
2
‖v−1 − v‖, therefore ‖dx+ ds‖2 = ‖v−1 − v‖2

= 4δ2. Furthermore,

‖dx+ ds‖2 = (dx+ ds)T (dx+ ds)

= dxTdx+ dsTds+ 2dxTds

= ‖dx‖2 + ‖ds‖2 + 2dxTds.

(5.2)

From the equation (4.11) in Chapter 4, M̃dx = ds. Since M̃ is positive semi-definite,

we can write dxTds = dxTM̃dx ≥ 0 so dxTds ≥ 0.

Let pv = dx+ ds and qv = dx− ds then

‖pv‖2 − ‖qv‖2 = pTv pv − qTv qv

= (dx+ ds)T (dx+ ds)− (dx− ds)T (dx− ds)

= 4dxTds.

(5.3)
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Since dxTds ≥ 0, we conclude that ‖pv‖2 ≥ ‖qv‖2. Furthermore, we can write

dxTds ≤ 1
4
‖pv‖2

= 1
4
‖dx+ ds‖2

= δ2.

(5.4)

Therefore we have

0 ≤ dxTds ≤ δ2. (5.5)

From the equation (5.3) we get

‖pv‖2 − ‖qv‖2 = 4dxTds

‖qv‖2 = ‖pv‖2 − 4dxTds

≤ ‖pv‖2 , since dxTds ≥ 0

= ‖dx+ ds‖2

= 4δ2.

(5.6)

Now we consider p2
v − q2

v :

p2
v − q2

v = (dx− ds)2 − (dx+ ds)2

= 4dxds

dxds = 1
4
(p2
v − q2

v)

|dxds| = 1
4
|(p2

v − q2
v)| .

(5.7)

Case I : p2
v − q2

v ≥ 0. Given that p2
v − q2

v ≤ p2
v it follows that

|dxds| = 1
4
|p2
v − q2

v |

= 1
4
(p2
v − q2

v)

≤ 1
4
p2
v

= 1
4
|pv|2 .

(5.8)
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Case II : p2
v − q2

v ≤ 0. This implies q2
v − p2

v ≥ 0, i.e. |p2
v − q2

v | ≤ q2
v .

|dxds| = 1
4
|p2
v − q2

v |

≤ 1
4
|qv|2 .

(5.9)

Thus,

maxi |dxidsi| ≤ 1
4
max

{
|pv|2 , |qv|2

}
,

which leads to

maxi |dxidsi| = ‖dxds‖∞ ≤
1
4
max

{
‖pv‖2 , ‖qv‖2}

Therefore, from equation (5.6) we have,

‖dxds‖∞ ≤ δ2. (5.10)

Next, we have

‖dxds‖2 = (dxds)T (dxds)

= (dx1ds1)2 + (dx2ds2)2 + ....+ (dxndsn)2

≤ (dx1ds1 + dx2ds2 + ....+ dxndsn)2

= (dxTds)2

≤ δ4.

(5.11)

Hence, ‖dxds‖ ≤ δ2.

Now, we can easily obtain similar inequalities for ∆x and ∆s:

∆xT∆s = (xv−1dx)T (sv−1ds)

= (dx
√

x
s

√
µ)T (ds

√
s
x

√
µ)

= µ(dx
√

x
s
)T (ds

√
s
x
)

= µdxTds

≤ µδ2,

(5.12)
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‖∆x∆s‖∞ = maxi |∆xi∆si|

= maxi |µdxidsi|

= µmaxi |dxidsi|

= µ ‖dxds‖∞

≤ µδ2,

(5.13)

‖∆x∆s‖2 =
∑n

i=1(∆xi∆si)
2

=
∑n

i=1 µ
2(dxidsi)

2

= µ2
∑n

i=1(dxidsi)
2

= µ2 ‖dxds‖2 ,

‖∆x∆s‖ = µ ‖dxds‖

≤ µδ2.

(5.14)

5.2 Analysis of a Full Newton-step

Keep µ fixed.

Let x+ = x+ ∆x and s+ = s+ ∆s. Then,

x+s+ = (x+ ∆x)(s+ ∆s)

= xs+ x∆s+ s∆x+ ∆x∆s

= xs+ (µe− xs) + ∆x∆s

= µe+ ∆x∆s.

(5.15)

From the equation (5.1) we have,

x+s+ = µe+ ∆x∆s

= µe+ µdxds

= µ(e+ dxds).

(5.16)
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Lemma 5.2.1. The full Newton step is feasible iff

e+ dxds ≥ 0, (5.17)

and strictly feasible iff

e+ dxds > 0. (5.18)

Proof. a) If full-Newton step is feasible then x+ ≥ 0 and s+ ≥ 0. Hence, x+s+ ≥ 0

and from (5.16) it follows e+ dxds ≥ 0.

If Newton step is strictly feasible then x+ > 0 and s+ > 0. Hence, x+s+ > 0

and from (5.16) it follows e+ dxds > 0.

b) If (e + dxds) ≥ 0 then from the equation (5.15) µe + ∆x∆s ≥ 0. Let step

length α be defined in the interval 0 ≤ α ≤ 1. Then xα = x+α∆x and sα = s+α∆s.

When α = 0 , x0 = x and s0 = s. When α = 1, then x1 = x + ∆x, i.e x1 = x+ and

s1 = s+ ∆s, i.e s1 = s+.

Since we have x0s0 = xs > 0 , the proof uses a continuity argument, namely that

x1 and s1 are nonnegative if xαsα is positive for all α in the open interval (0,1).

The points x1 and s1 are feasible iff the open segment connecting x0 and x1 lies in

the interior of the feasible region, and the s0 and s1 lies in the interior of the feasible

region. We have

xαsα = (x+ α∆x)(s+ α∆s)

= xs+ α(x∆s+ s∆x) + α2∆x∆s

= xs+ α(µe− xs) + α2∆x∆s

≥ xs+ α(µe− xs)− α2µe since (µe+ ∆x∆s ≥ 0)

= (1− α)(xs+ αµe).

(5.19)
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Since xs, e and µ are positive, xαsα ≥ 0 for 0 ≤ α < 1. Therefore by continuity, the

vectors x1 and s1 can not have negative entries.

Lemma 5.2.2. If δ(x+, s+, µ) ≤ 1, then the full-Newton step is feasible, i.e, x+ and

s+ are nonnegative. Moreover, if δ < 1, then x+ and s+ are positive i.e. they are

strictly feasible and

δ(x+, s+, µ) ≤ δ2

2
√

1−δ2 .

Proof. Let δ+ = δ(x+, s+, µ) and v+ =
√

x+s+

µ
. Since δ(v) = 1

2
‖v−1 − v‖, we have

δ+ = 1
2
‖(v+)−1 − v+‖

= 1
2
‖(v+)−1(e− (v+)2)‖ .

(5.20)

From (5.16) we have x+s+ = µ(e + dxds), and v+ becomes v+ =
√
e+ dxds. By

substituting this value into the equation (5.20) we get

2δ+ =
∥∥(
√
e+ dxds)−1 − (e− e− dxds)

∥∥
=
∥∥∥ dxds√

e+dxds

∥∥∥
≤ ‖dxds‖
‖√e+dxds‖

≤ ‖dxds‖√
1−‖dxds‖∞

≤ δ2√
1−δ2 .

(5.21)

Thus,

δ+ ≤ δ2

2
√

1− δ2

and the lemma is proved.

Corollary 5.2.3. If δ(x, s, µ) ≤ 1√
2

then δ(x+, s+, µ) ≤ δ2(x, s, µ).
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Proof. From Lemma 5.2.2 we have

δ(x+, s+, µ) ≤ δ2(x,s,µ)

2
√

1−δ2(x,s,µ)

≤ δ2(x,s,µ)

2
√

1− 1
2

= δ2(x,s,µ)√
2

≤ δ2(x, s, µ),

(5.22)

which proves the corollary.

Corollary 5.2.3 actually indicates that we have quadratic convergence if the iter-

ates are sufficient close to the µ center.

We also have the following lemma

Lemma 5.2.4. (x+)T s+ ≤ µ(n+ δ2)

Proof. We have

(x+)s+ = eT (x+s+)

= eT (x+ ∆x)(s+ ∆s)

= eT (µe+ ∆x∆s)

= µeT e+ eT∆x∆s

= µn+ ∆xT∆s

≤ µ+ µδ2

= µ(n+ δ2).

(5.23)

The immediate consequence is the following corollary.
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Corollary 5.2.5.

‖v‖2 ≤ n+ δ2. (5.24)

Proof. We have

‖v‖2 = vTv

= (
√

xs
µ

)T (
√

xs
µ

)

= 1
µ
(x1s1 + x2s2 + ....+ xnsn)

≤ 1
µ
(µ(n+ δ2))

= n+ δ2.

(5.25)

µ update, µ→ µ+.

Lemma 5.2.6. Let (x, s) > 0 be a current iterate and µ > 0 such that δ = δ(x, s, µ)

and µ+ = (1− θ)µ. Then

δ(x, s, µ+)2 ≤ 3

4
δ2(1− θ) +

δ2

4(1− θ)
+

nθ2

4(1− θ)
. (5.26)

Proof. since δ(x, s, µ)2 = 1
4
‖v−1 − v‖2

, or equivalently 4δ(x, s, µ+)2 = ‖(v+)−1 − v+‖2
,

we have

4δ(x, s, µ+)2 =

∥∥∥∥√µ+

xs
−
√

xs
µ+

∥∥∥∥2

=
∥∥∥√1− θv−1 − v√

1−θ

∥∥∥2

=
∥∥∥√1− θ(v−1 − v) +

√
1− θv − v√

1−θ

∥∥∥2

=
∥∥∥√1− θ(v−1 − v)− θv√

1−θ

∥∥∥2

= (
√

1− θ(v−1 − v)− θv√
1−θ )

T (
√

1− θ(v−1 − v)− θv√
1−θ )
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4δ(x, s, µ+)2 = (1− θ) ‖(v)−1 − v‖2
+ θ2‖v‖2−(2θ−2θ2)(vT v−1−θ2‖v‖2)

(1−θ)

= (1− θ)4δ2 − ‖v‖
2θ(2−θ)−n(2θ−2θ2)

(1−θ)

≤ (1− θ)4δ2 − (n+δ2)θ(2−θ)−n(2θ−2θ2)
(1−θ)

= (1− θ)4δ2 + δ2θ(2−θ)
(1−θ) + nθ2

(1−θ)

= 3δ2(1− θ) + δ2

(1−θ) + nθ2

(1−θ) .

The inequality above is due to (5.24).

When δ(x, s, µ) ≤ 1
2
, the goal is to find θ value which will satisfy δ(x, s, µ+) ≤ 1√

2
.

From the Lemma 5.2.6. we have

δ(x, s, µ+)2 ≤ 3
4
δ2(1− θ) + δ2

4(1−θ) + nθ2

4(1−θ)

≤ 3
16

(1− θ) + 1
16(1−θ) + nθ2

4(1−θ) .
(5.27)

By substituting θ = 1√
kn

into the above inequality, we have

δ(x, s, µ+)2 ≤ 1
16(1−θ) [3(1− θ)2 + 1 + 4θ2n]

≤ 1
16(1− 1√

kn
)
[4 + 3

kn
− 6√

kn
+ 4n

kn
] ≤ 1

2

(5.28)

So we have −4kn + 2
√
kn + 4n + 3 ≤ 0. Then k =

1∓
√

1+4(3+4n)2

16n
since we need the

biggest θ we have to choose the smallest k; thus, we choose k =
1−
√

1+4(3+4n)2

16n
. After

doing several simplifications we get k ≤ 2 for n ≥ 3. We can summarize this result

in the following corollary.

Corollary 5.2.7. If δ(x, s, µ) ≤ 1
2

and θ = 1√
2n

, then δ(x, s, µ+) ≤ 1√
2
.

Combining Lemma 5.2.6 and Corollary 5.2.3 we get the following theorem.

Theorem 5.2.8. If δ(x, s, µ) ≤ 1
2

then δ(x+, s+, µ+) ≤ 1
2
.



46

Proof. Let δ(x, s, µ) ≤ 1
2
. Then, by Corollary 5.2.7 we have δ(x, s, µ+) ≤ 1√

2
. Next,

by Corollary 5.2.3 we get

δ(x+, s+, µ+) ≤ δ2(x, s, µ+) ≤ 1
2
.

Thus, all the iterates of the algorithm are guaranteed to be in the same neigh-

borhood (τ = 1
2
) of the central path. This leads to the following estimate on the

number of iterations to obtain ε- approximate solution of the LCP.

Theorem 5.2.9. If θ = 1√
2n

, µ0 = 1√
2
, δ(x, s, µ) ≤ 1

2
and n ≥ 3, then the Full

Newton-step IPM requires at most
√

2n log n
ε

iterations to obtain ε-approximate solu-

tion of LCP(M,q).

Proof. At the start of the Algorithm duality gap has a certain value and in each

iteration duality gap is reduced by the factor 1−θ. The duality gap can be transformed

as follows

xTk sk ≤ µk(n+ δ2)

≤ µk(n+ 1
4
)

≤ (1− θ)kµ0(n+ 1
4
)

≤ (1− θ)k 1√
2

√
2n

≤ (1− θ)kn.

Let (1− θ)kn ≤ ε. Then
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log(1− θ)kn ≤ logε

klog(1− θ) + logn ≤ logε

−klog(1− θ) ≥ logn− logε

−klog(1− θ) ≥ log n
ε
,

Since −log(1− θ) ≥ θ, we have

−kθ ≥ log n
ε

k ≥ 1
θ
log n

ε

k ≥
√

2nlog n
ε
.

which completes the proof.



CHAPTER 6

NUMERICAL RESULTS

In this chapter, The Full Newton-step interior-Point Algorithm for LCP, as given in

Table 4.1, is implemented in MATLAB. We performed numerical tests of our im-

plementation of the algorithm for the set of problems of various dimensions. Some

problems were generated ”by hand” and others were randomly generated. The sum-

mary of results is given in tables below.

6.1 Generating Sample Problems

In what follows we briefly describe how the test problems were generated.

Generating Matrix M

The first group of problem was generated manually. Actually problem EH1 is

the same problem as the one in Example 3.3 in Chapter 3 (Lemke’s Method). The

PSD matrices of the problems were generated as either diagonal matrices with positive

elements or tridiagonal matrices with positive elements on diagonal.

In the second group matrices of the sample problem were randomly generated

by using ”rand” function as described below.

A = rand(n)

M = ATA.

PSD was checked by evaluating eigenvalues, i.e.,

eig(M) ≥ 0.

Starting points and initial conditions
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In creating the appropriate starting point we first choose x0 as a vector of ones.

Then s0 is calculated as Mx0 + q = s0. However, we also need to make sure that

initial conditions for the application of the algorithm are satisfied, that is, we need to

check if (x0, s0) > 0 and δ ≤ 1
2

are satisfied, where δ is defined by (4.24) in Chapter

4.

Parameters

We also tested several sets of parameters. First, we take the set of parameters

τ = 1
3

and θ = 1√
2n

as required by the algorithm in order to guarantee convergence.

Next, we try a wider τ -neighborhoods (τ = 1
2

, τ = 0.9) and more aggressive

reduction of µ-parameter at each iteration, by taking barrier parameter to be a fixed

value independent of the size of the problem (θ = 1√
6

, θ = 0.5). In these cases we can

not guarantee convergence, however, in most instances the algorithm still converges.

6.2 Summary of Numerical Results

We generated 12 test problems. Five of them were generated manually (denoted as

EH) with dimensions up to n=10 and seven were randomly generated with dimensions

up to n=300. We solved this set of test problems with the following set of parameters.

1. τ = 1
3

and θ = 1√
2n

2. τ = 1
3

and θ = 1√
6

3. τ = 1
2

and θ = 1√
6

4. τ = 0.9 and θ = 0.5
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5. τ = 0.9 and θ = 0.9

The number of inner and outer iterations as well as CPU time for each case are listed

in the tables below.

1. τ = 1
3

and θ = 1√
2n

.

Problem Size CPUtime InnerIter OuterIter

EH1 3× 3 0.366277 2 71

EH2 4× 4 6.7580e− 02 1 86

EH3 5× 5 3.9294e− 02 1 99

EH4 6× 6 6.6948e− 02 2 111

EH5 10× 10 7.2536e− 02 2 151

ER1 3× 3 2.8160e− 02 1 71

ER2 5× 5 4.9308e− 02 2 99

ER3 10× 10 5.1607e− 02 3 151

ER4 50× 50 4.409072 5 374

ER5 100× 100 6.02802 13 541

ER6 200× 200 25.572454 14 800

ER7 300× 300 84.213142 16 994

Tab.1, θ = 1√
2n
, τ = 1

3

2. In the Table 2 below we fixed the barrier update parameter θ for all the examples

and we did not change threshold parameter. So τ = 1
3

and θ = 1√
6
.
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Problem Size CPUtime InnerIter OuterIter

EH1 3× 3 6.7547e− 02 2 71

EH2 4× 4 4.5001e− 02 1 71

EH3 5× 5 5.8841e− 02 1 72

EH4 6× 6 5.8032e− 02 2 72

EH5 10× 10 5.1062e− 02 2 73

ER1 3× 3 7.8325e− 02 8 71

ER2 5× 5 4.9308e− 02 8 72

ER3 10× 10 5.9844e− 02 10 73

ER4 50× 50 1.488650 12 76

ER5 100× 100 1.901632 13 77

ER6 200× 200 3.572454 14 79

ER7 300× 300 9.233684 15 79

Tab.2, θ = 1√
6
, τ = 1

3

We can observe that in all instances the number of outer iterations is signif-

icantly reduced in comparing with Table 1 and is almost independent of the

dimension of the problem. That, of course, reflects on the significant reduction

of CPU time as well.

Although the convergence is not guaranteed any more we see that the algorithm

still converges for all test problems.

3. In the Table 3 below we increase the threshold parameter and keep the barrier

update parameter as in Table 2. So τ = 1
2

and θ = 1√
6
.
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Problem Size CPUtime InnerIter OuterIter

EH1 3× 3 0.018107 2 71

EH2 4× 4 3.4474e− 02 1 71

EH3 5× 5 3.9648e− 02 1 72

EH4 6× 6 4.6360e− 02 1 72

EH5 10× 10 2.6462e− 02 2 73

ER1 3× 3 2.9832e− 02 1 71

ER2 5× 5 2.9494e− 02 1 72

ER3 10× 10 3.3830e− 02 3 73

ER4 50× 50 0.95765 6 76

ER5 100× 100 1.301632 7 77

ER6 200× 200 3.282454 8 79

ER7 300× 300 9.023684 8 79

Tab.3, θ = 1√
6
, τ = 1

2

Increasing threshold parameter means that we increase the neighborhood. By

comparing Table 2 and Table 3 we can see that the number of outer iterations

seems to be almost the same for both. But number of inner iterations in Table

3 reduced significantly. The reason is that number of outer iteration depends

mostly on θ while number of inner iteration depend mostly on τ .

4. In the Table 4 below we increase both parameter values, τ = 0.9 and θ = 0.5.
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Problem Size CPUtime InnerIter OuterIter

EH1 3× 3 0.035081 2 54

EH2 4× 4 1.4631e− 02 1 54

EH3 5× 5 4.0955e− 02 1 54

EH4 6× 6 1.6545e− 02 1 55

EH5 10× 10 2.1862e− 02 2 55

ER1 3× 3 1.6553e− 02 1 54

ER2 5× 5 2.7308e− 02 1 54

ER3 10× 10 2.8403e− 02 2 55

ER4 50× 50 0.58698 5 57

ER5 100× 100 1.038574 7 59

ER6 200× 200 2.57954 8 60

ER7 300× 300 6.97584 8 60

Tab.4, θ = 0.5, τ = 0.9

From Table 4 we can conclude that by increasing θ, number of outer iterations

reduces significantly. However, increasing τ value does not affect to the number

of inner iterations almost at all. The reason may be that the increase in value

of ψ(v) is either moderate or significant and number of these cases does not

change much when τ is increased beyond certain value (τ = 1
2

seems to be that

value).

5. In the Table 5 below we increase parameter θ to θ = 0.9.
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Problem Size CPUtime InnerIter OuterIter

EH1 3× 3 0.60936 2 17

EH2 4× 4 1.9631e− 02 1 17

EH3 5× 5 4.0355e− 02 2 17

EH4 6× 6 4.0545e− 02 2 17

EH5 10× 10 4.1862e− 02 2 17

ER1 3× 3 4.0053e− 02 1 16

ER2 5× 5 4.0308e− 02 3 17

ER3 10× 10 1.8403e− 02 4 17

ER4 50× 50 0.09698 7 13

ER5 100× 100 0.238574 8 18

ER6 200× 200 1.57954 9 18

ER7 300× 300 3.56584 10 18

Tab.5, θ = 0.9,τ = 0.9

The result we obtained from the Table 5 above shows that by increasing the θ

value we further continue to reduce the number of outer iterations significantly.

However, the number of inner iterations increases slightly. The reason is that

targeting µ-centers that are further appart will most likely result in the higher

number of cases when ψ(v) > τ , which triggers inner iteration calculations.

The above analysis shows clearly advantage of IPM versus Lemke’s algorithm

for large dimensional LCPs.

Note: We would also like to point out that the solution of EH 1 obtained using

our IPM matches the solution obtained using classical Lemke’s algorithm. That

is a strong indicator of the correctness of our implementation of IPM.



CHAPTER 7

CONCLUSION

In this thesis, we consider the Linear Complementarity Problem (LCP) defined by

(2.1) with positive semidefinite matrix (PSD), which is also known as monotone LCP .

Although LCP is not an optimization problem, it is closely related to many important

optimization problems and it has many important applications.

THe LCP problem can be solved using classical simplex-type (pivoting) Lemke’s

algorithm that is described in Chapter 3. However in the last two decades a new class

of Newton-type IPM have been developed and successfully applied to solve LCP.

We propose a new IPM to solve monotone LCP. The algorithm is given in Ta-

ble 4.1 in Chapter 4. Main feature of the IPM is that there is no calculation of

the step size, i.e, we use full Newton step at each iteration; thus, we call the al-

gorithm Full-Newton-Step IPM. The convergence of the algorithm is guaranteed by

the appropriate choice of parameters. Furthermore, we have proved that iteration

bound is O(
√
nlog n

ε
) which matches the best known iteration bound for these type

of algorithms.

If θ depend on n such as θ = O( 1√
n
), then the algorithm is called a short-step

algorithm. If θ is independent of n such as θ = O(1), then the algorithm is called a

long-step algorithm. In our method, in order to prove convergence result, parameter

θ depends on n, therefore the method is a short-step algorithm.

The main emphasis of the thesis is to provide the convergence analysis of the

Algorithm described in Table 4.1 and to prove that iteration bound matches the best

known iteration bound for these types of methods. This is done in Chapter 5.
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However, in Chapter 6 we also provided an initial implementation of the method

and tested it on a small set of test problems of various dimensions. We tested our

algorithm on several set of parameters. First we set the parameter to be τ = 1
3

and

θ = 1√
2n

as required by the algorithm in order to guarantee convergence. Next, we

tried a wider τ -neighborhoods. (τ = 1
2

, τ = 0.9) and more aggressive reductions

of µ-parameter at each iteration, by taking barrier parameter to be a fixed value

independent of the size of the problem (θ = 1√
6

, θ = 0.5 , θ = 0.9).

The results we obtained show that the method converges for all test problems

even in the case when choice of parameters does not theoretically guarantee conver-

gence. In addition, we observe that increase in parameters τ and specially θ reduces

number of inner and outer iterations significantly. Even more importantly, the num-

ber of outer iterations increased minimally with the increase in dimension, it is almost

constant irrespective of the dimension.This indicates the robustness and stability of

the approach.

Thus, even this very preliminary implementation shows not only theoretical but

also practical validity of the proposed approach.
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APPENDIX A

MATLAB Codes

The following is the listing of the main program. In it input data are generated

either manually or randomly. Also a strictly feasible starting point is generated. Then

the problem with these input data is solved using subroutine IPM2.m that implements

Algorithm.

A.1 Main Program : prog3.m

%Main Program

% For the Matrices generating by hand(First set of examples)

%M-file prog3.m

%A -- Matrix A

%q -- Matrix q

clear;

%load matrix

n=4;

%define parameters

eps=10^-4;

taw=1/3;

%define matrices

load M.txt

load q.txt

x=ones(n,1);

s=M*x+q;

mu=1/sqrt(2);

v=sqrt(x.*s./mu);

[x s] = IPM4(M,x,s,mu,v)

% For the Matrices generated by using random generater (for the second set of examples)

%Using n, we generate a diagonal matrix of size n, with random entries.

A = rand([n,1]);

%We create a positive definite matrix M from matrix A

M = A’A;

eig(M);
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A.2 IPM Algorithm : IPM2.m

function [x,s]= IPM2(M,x,s,mu,v);

n=3;

%x=2*ones(n,1);

%s=2*ones(n,1);

%mu=1/3;

%v=sqrt(x.*s./mu);

x=[1;3;.1];

s=M*x+b;

mu=1/3;

%taw=1/sqrt(2);

taw=1/3;

%outer loop

theta=1/sqrt(6);

while x’*s>=eps

mu=(1-theta)*mu;

v=sqrt(x.*s./mu);

[dx,ds]=SolveSystem2(M,x,s,mu,v);

Dx = x.*dx./v;

Ds = s.*ds./v;

x=x+Dx;

s=s+Ds;

v=sqrt(x.*s./mu);

delta=0.5*norm(v.^-1-v);

%si=.5*(v.^2-1)-log(v);

%Si=sum(si,1)

%inner loop

while delta>= taw

V = diag(v);

X = diag(x);

S = diag(s);

D = X^(.5)*S^(-.5);

Mtilda = D*M*D;

%[dx,ds]=SolveSystem(M,x,s,mu,v);

[dx,ds]=SolveSystem2(M,x,s,mu,v);

Dx = x.*dx./v;

Ds = s.*ds./v;

x=x+Dx;

s=s+Ds ;

v=sqrt(x.*s./mu);

delta=0.5*norm(v.^-1-v);

%si=.5*(v.^2-1)-log(v);

%Si=sum(si,1);



59

end

%x=x’;

%s=s’;

end

end

A.3 Newton System Solver : SolveSystem2.m

This subroutine solves the linear system at each iteration of IPM2.m

function[dx,ds]=SolveSystem2(M,x,s,~,v)

% This is the function solving system

% Mtilda*dx-ds = 0

% dx+ds = 0

n=3;

X=diag(x);

S=diag(s);

D = X^(.5)*S^(-.5);

Mtilda = D*M*D;

%Mtilda=D*M*D;

dx=(eye(n)+ Mtilda)\(v.^-1 - v);

ds=Mtilda*dx;

end
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APPENDIX B

MATLAB Output

Below we provide the entire output for Example 3.3.

B.1 Output of EH1

% Mathlab out put of the example describe in both Lemke’s method and IPM

>> count1 =

71

count2 =

2

x =

0.0000

2.0000

1.0000

s =

1.0000

0.0000

0.0000

Elapsed time is 0.019958 seconds.
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