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CUSUM GENERALIZED VARIANCE CHARTS

by

YUXIANG LI

(Under the Direction of Charles W. Champ)

ABSTRACT

The commonly recommended charts for monitoring the mean vector are affected by

a shift in the covariance matrix. As in the univariate case, a chart for monitoring

for a change in the covariance matrix should be examined first before examining the

chart used to monitor for a change in the mean vector. A variety of charts used to

monitor for a shift in the process covariance matrix have been introduced into the

literature. A group of these charts are based on the sample generalized variance |S|,

where S is the sample covariance matrix. We examine the multivariate Shewhart and

cumulative sum (CUSUM) charts based on function of the generalized variance |S|

and the ln (|S|).. The performance of these chart is based on an analysis of the chart’s

run length distribution. We give closed form expressions for the distribution of these

statistics. Properties of the run length distribution are given as solutions to various

integral equations. A method for obtaining approximate solutions to these integral

equaltions is discussed.

Key Words : average run length, integral equations, Meijer G function, moments,

run length distribution

2009 Mathematics Subject Classification:



CUSUM GENERALIZED VARIANCE CHARTS

by

YUXIANG LI

B.S. in Electrical Engineering, Wuhan Science and Technology University

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment

of the Requirement for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2013



c©2013

YUXIANG LI

All Rights Reserved

iii



CUSUM GENERALIZED VARIANCE CHARTS

by

YUXIANG LI

Major Professor: Charles W. Champ

Committee: Broderick O. Oluyede

Hani Samawi

Daniel Linder

Electronic Version Approved:

December 13, 2013

iv



DEDICATION

I dedicate this this to my parents. It is their unconditional love that motivates

me to obtain my goals. I also dedicate this thesis to my wife, Ting Peng, who has

provided me with a strong love shield that always surrounds me which never lets any

sadness to enter my life.

v



ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Charles W. Champ for his insightful guidance

and constant encouragement. Without his ideas and help I could not have done this

thesis. I would also like to thank my committee members Dr. Broderick Oluyede, Dr.

Hani Samawi, and Dr. Daniel Linder for their suggestions and willingness to serve

on my committee. Also, I would like to thank Dr. Steven E. Rigdon of St. Louis

University and Dr. Alan Genz of Washington State University for providing me with

some helpful information about my research. I would also like to thank my parents

whose encouragement motivated me to achieve my goals in education and in life. I

applaud the faculty, staff, and fellow graduates of the Department of Mathematical

Sciences for their support.

vi



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Quality Control Charts . . . . . . . . . . . . . . . . . . . . 1

1.2 Model and Sampling Method . . . . . . . . . . . . . . . . . 2

1.3 Types of Shifts in the Process Generalized Variance . . . . 3

1.4 Thesis Prospectus . . . . . . . . . . . . . . . . . . . . . . . 5

2 Distributions of Functions of |S| . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Some Distributional Results . . . . . . . . . . . . . . . . . 7

2.3 Distribution of |S| . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Distribution of ln (|(n− 1) Σ−1S|) . . . . . . . . . . . . . . 15

2.5 Evaluating f|S| (w) and fln(|(n−1)Σ−1S|) (u) Numerically . . . 25

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 GENERALIZED VARIANCE SHEWHART CHART . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . 28

vii



3.3 The Run Length Distribution . . . . . . . . . . . . . . . . 30

3.4 The Bivariate Case . . . . . . . . . . . . . . . . . . . . . . 36

3.5 AN EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 GENERALIZED VARIANCE CUSUM CHART . . . . . . . . . . 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Run Length Distribution . . . . . . . . . . . . . . . . . . . 48

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Areas for Further Research . . . . . . . . . . . . . . . . . . 58

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



LIST OF TABLES

Table Page

3.1 ARL, SDRL, T5,2,λ,0.005,0.0038,1−γ . . . . . . . . . . . . . . . . . . . 39

3.2 ARL,n = 5, α = 0.005, τ = α/2, λ = 1 . . . . . . . . . . . . . . . . 40

3.3 ARLs,m = 10, n = 5, α = 0.00395, τ = α/2 . . . . . . . . . . . . . 40

3.4 ARL, SDRL, for m = 10, n = 5, α = 0.005, and τ = 0.0038 . . . 41

3.5 Phase II Data Summary . . . . . . . . . . . . . . . . . . . . . . . 43

ix



LIST OF FIGURES

Figure Page

2.1 Plot of fχ2
5

(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Plot of floge(χ2
5)

(y) (solid curve), flog2(χ2
5)

(y) (dashed curve) . . . . 10

2.3 Plot of f− loge(χ2
5)

(y) (solid curve), f− log2(χ2
5)

(y) (dashed curve) . . 11

3.1 Plot of ARL versus λ . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Phase II Plot of |S| versus t . . . . . . . . . . . . . . . . . . . . . 44

x



CHAPTER 1

INTRODUCTION

1.1 Quality Control Charts

The quality control chart introduced by Walter A. Shewhart (see Shewhart (1931))

in the early 1920’s. He described two kinds of variability in a quality measurement X

found in a process which he labelled as “natural” and “assignable.” Natural causes of

variability are inherent to the process whereas assignable ones when removed improve

the quality of the process. A process that is operating in which the only natural causes

of variability are present is said to be in a “in-control” state. When an assignable

cause(s) is present, then the process is in a “out-of-control” state. Duncan (1986)

discussed the three uses of the control chart with respect to natural and assignable

causes of variability. He summarized that a control chart can be used by the prac-

titioner as an aid in (1) bringing a process into a state of statistical in control, (2)

defining what is meant by the process being in a state of statistical in control, and

(3) monitoring for a change in the process. That is, the control chart is an aid to the

practitioner in discovering assignable causes of variability, as an aid in defining what

is meant by a process being in an in-control state, and detecting when an assignable

cause of variability has changed the process. Cases (1) and (2) are part of the first

phase of controlling a process. Charts used in this phase are referred to as Phase I or

retrospective control charts. In the monitoring phase, the charts are called Phase II

or prospective control charts.

When there is a p × 1 vector X of quality measurements, generally, the main

interest of a practitioner is to control the p × 1 mean vector µ of the distribution of

X. The most popular charts used for this purpose both in Phase I and Phase II are

not only affected by a change in the process mean vector µ but also by a change in

the process covariance matrix Σ. For example, Champ, Jones-Farmer, and Rigdon
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(2005) show that the Hotelling’s T 2 chart can be affected by changes in the covariance

matrix. It is then typically recommended that a chart for controlling for a change in

Σ be use. This chart should be examined first. If there is no evidence in a change

in the covariance matrix Σ, then one can assume that any change indicated by the

chart for controlling the mean vector µ is due to a change in µ.

1.2 Model and Sampling Method

The model that we will use in this study is (1) the p × 1 quality vector X has a

multivariate normal distribution with a p × 1 mean vector µ and a p × p positive

definite covariance matrix Σ. When the process is in a state of statistical in-control,

then µ = µ0 and Σ = Σ0, where µ0 and Σ0 are fixed and typically unknown. In Phase

I, the researcher will have available the quality measurements on m samples of each

having n items produced. We represent the measurements on these items produced

by the process by Xi,1, . . . ,Xi,n for i = 1, . . . ,m. These measurements are assumed

to be m independent random samples with Xi,j ∼ Np (µ0,Σ0) for j = 1, . . . , n and

i = 1, . . . ,m. We will refer to this model for the data as the “independent normal

model.”

We define estimators µ̂0 and Σ̂0 for µ0 and Σ0 by

µ̂0 = X0 =
1

mn

∑m

i=1

∑n

j=1
Xi,j and Σ̂0 = S0 =

1

m

∑m

i=1
Si,

where

Si =
1

n− 1

∑n

j=1

(
Xi,j −Xi

) (
Xi,j −Xi

)T
.

It is shown in Anderson (2003) under our independent normal model that

µ̂0 ∼ Np

(
µ0,

1

mn
Σ0

)
and Σ̂0 ∼ Wishart

(
m (n− 1) ,

1

m (n− 1)
Σ0

)
;

and µ̂0 and Σ̂0 are stochastically independent.
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In Phase II, the researcher will periodically take the p × 1 quality vector X on

n items from the output of the process. We assume that these sets of measurements,

Xt,1, . . . ,Xt,n, are independent random samples with common Np (µ,Σ) distribution,

for t = 1, 2, 3, . . .. Further, we assume the measurements to be taken in Phases I and

II are independent. The estimators we will use in this phase for µ and Σ are

µ̂ = Xt =
1

n

∑n

j=1
Xt,j and Σ̂ = St =

1

n− 1

∑n

j=1

(
Xt,j −Xt

) (
Xt,j −Xt

)T
.

In Anderson (2003), it is shown that

µ̂ ∼ Np

(
µ,

1

n
Σ

)
and Σ̂ ∼ Wishart

(
n− 1,

1

n
Σ

)
;

and µ̂ and Σ̂ are stochastically independent. It is not difficult to see that µ̂0, Σ̂0, µ̂,

and Σ̂ are stochastically independent.

1.3 Types of Shifts in the Process Generalized Variance

The process generalized variance is the determinant |Σ| of the covariance matrix Σ. A

change in Σ may result in a change in the process parameter |Σ|. It is our interest to

control for a change in this process parameter |Σ| from its in-control value |Σ0|. Under

the assumption the covariance matrix Σ (Σ0) is positive definite, then the associated

correlation matrix Ψ (Ψ0) is also positive definite. Note that the covariance matrix

can be expressed as

Σ = ΓΨΓT (Σ0 = Γ0Ψ0ΓT
0 ),

where Γ = Diagonal (σ1, . . . , σp) (Γ0 = Diagonal (σ1,0, . . . , σp,0)). One can show that

the eigenvalues of a positive definite matrix are all positive real numbers. It then

follows that Ψ (Ψ0) can be expressed as

Ψ = VCVT (Ψ0 = V0C0V
T
0 ),
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where C = Diagonal (ξ1, . . . , ξp) (C0 = Diagonal (ξ1,0, . . . , ξp,0)) is the diagonal

matrix of eigenvalues with of Ψ (Ψ0) with the associated normalized eigenvectors

v1, . . . ,vp (v1,0, . . . ,vp,0) the columns of the matrix V (V0). Define the matrix

P = ΓVC1/2 (P0 = Γ0V0C
1/2
0 ).

Further define

Λ = P−10 P.

The square λ2 of the determinant of Λ is

λ2 = |Λ|2 =
∣∣ΛΛT

∣∣ =
∣∣∣(P−10 P

) (
P−10 P

)T∣∣∣ =
∣∣∣(P0P

T
0

)−1∣∣∣ ∣∣PPT
∣∣

=
∣∣Σ−10 Σ

∣∣ =
|Σ|
|Σ0|

=

∣∣ΓΨΓT
∣∣∣∣Γ0Ψ0ΓT
0

∣∣ .
Suppose that Ψ = Ψ0. It would follow that

λ2 =
|Γ|2

|Γ0|2
=

∏p
i=1 σ

2
i∏p

i=1 σ
2
i,0

=
∏p

i=1

σ2
i

σ2
i,0

=
∏p

i=1
λ2i ,

where λ2i = σ2
i /σ

2
i,0 for i = 1, . . . , p. We see that λ2 = 1 if the process is in-control

and λ2 6= 1 if the process is in an out-of-control state with respect to the process

generalized variance. Suppose only one of the variances has shifted, say, σ2
1 has

shifted from its in-control value of σ2
1,0. It would follow that

λ2 = |Λ| = σ2
1

σ2
1,0

= λ21.

We can also see that

λ2 =

∣∣ΓVCVTΓ
∣∣

|Γ0V0C0VT
0 Γ0|

=
|ΓCΓ|
|Γ0C0Γ0|

=
∏p

i=1

σ2
i ξi

σ2
i,0ξi,0

.

If a shift has occurred but not with the variances, then their has been a change in

the correlation structure of the process covariance. It would follow that

λ2 = |Λ| =
∏p

i=1

ξi
ξi,0

=
∏p

i=1
ζi,



5

where ζi = ξi/ξi,0 for i = 1, . . . , p.

We note that the type of shift Healy (1987) assumed is the special case of the one

presented here in which Σ = cΣ0. That is, the standard deviation of each component

of the vector of quality measurements shifts the same proportion of their in-control

values. For this type of shift in the covariance matrix,

λ2 =
∣∣Σ−10 Σ

∣∣ =
∣∣Σ−10 (cΣ0)

∣∣ = cp.

1.4 Thesis Prospectus

In this thesis, we will discuss analytical methods for analyzing the performance of

the Shewhart and CUSUM |S| and ln (|S|) charts. First we examine closed form

expressions presented in the literature for the probability and cumulative density

functions describing the distribution of the sample generalized variance |S| and ln (|S|)

under the independent multivariate normal model. We provide a new closed form

expression for the probability density function of |S|. It is pointed out that each

of these methods suffers from the “curse of dimensionality.” We discuss the use of

the methods found in the literature for dealing with the dimension problem for large

values of p to evaluating the probability density function describing the distributions

of |S| and ln (|S|) . An outline is given for using these results in the analytical

methods for analyzing the run length performance of the Shewhart and CUSUM |S|

and ln (|S|) charts. Some analytical results are given in the bivariate case. Examples

are given to illustrate the procedure. Some recommendations for further research are

given.



CHAPTER 2

DISTRIBUTIONS OF FUNCTIONS OF |S|

2.1 Introduction

A measure of the variability in the distribution of a p× 1 multivariate measurement

X is the population generalized variance |Σ|, where Σ is the p×p matrix of variances

and covariances of the components of X. It can be shown that the sample covari-

ance S based on a random sample (independence data model) X1, . . . ,Xn from the

distribution of X is an unbiased estimator of Σ. An estimator of |Σ| is the sample

generalized variance |S|. In general, the sample generalized variance is a biased esti-

mator of the population generalized variance. Under the multivariate normal model

for the distribution of X, it is shown in Anderson (2003) that for n > p

|S| ∼ |Σ|
(n− 1)p

∏p

i=1
χ2
(n−1)−(i−1),

where χ2
n−1, . . . , χ

2
n−p are independent chi square random variables with respective

degrees of freedom n−1, . . . , n−p. Thus under the independent multivariate normal

model

|S|∏p

i=1

(
n−i
n−1

)
is an unbiased estimator of |Σ|.

Anderson (2003) states “If p = 1, |S| has the distribution of |Σ| · χ2
n−1/ (N − 1).

If p = 2, |S| has the distribution of |Σ|χ2
N−1 ·χ2

N−2/ (N − 1)2. It follows from Problem

7.15 or 7.37 that when p = 2, |S| has the distribution of |Σ|
(
χ2
2N−4

)2
/ (2N − 2)2.”

Here his capital N is our lower case n which is the sample size. It follow that when

p = 1 |Σ| = σ2 (the process variance) and |S| = S2 (the sample variance). We see

that ∣∣(n− 1) Σ−1S
∣∣ ∼

 χ2
n−1, if p = 1;(
χ2
2n−4

)2
/4, if p = 2.
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It also follows that

ln
(∣∣(n− 1) Σ−1S

∣∣) ∼
 ln

(
χ2
n−1
)

, if p = 1;

2
(

ln
(
χ2
2n−4

)2 − ln (2)
)

, if p = 2.

In this article, we are interested in the distribution of the sample generalized variance

|S| and ln (|(n− 1) Σ−1S|) under the independent multivariate normal model.

2.2 Some Distributional Results

A random variable X is said to have Chi Square distribution with ν > 0 degrees of

freedom if the probability density function (pdf) fχ2
ν

(x) describing the distribution

of X has the form

fχ2
ν

(x) =
1

Γ
(
ν
2

)
2ν/2

xν/2−1e−x/2I(0,∞) (x) ,

where I(0,∞) (x) is an indicator function having the value 1 if x ∈ (0,∞) and 0

otherwise. A graph of fχ2
5

(x) is given in the following figure.
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Figure 2.1: Plot of fχ2
5

(x)

The kth moment of a Chi Square distribution is given in the following theorem.

Theorem 2.1: If X ∼ χ2
ν , then E

(
Xk
)

is

E
(
Xk
)

=
Γ
(
ν
2

+ k
)

2k

Γ
(
ν
2

) ,

for k = 1, 2, 3, . . ..

Proof of Theorem 2.1: We see that

E
(
Xk
)

=

∫ ∞
0

xk
1

Γ
(
ν
2

)
2ν/2

xν/2−1e−x/2dx

=
Γ
(
ν+2k
2

)
2(ν+2k)/2

Γ
(
ν
2

)
2ν/2

∫ ∞
0

1

Γ
(
ν+2k
2

)
2(ν+2k)/2

x(ν+2k)/2−1e−x/2dx

=
Γ
(
ν
2

+ k
)

2k

Γ
(
ν
2

)
�

An interesting general family of transformations of χ2
ν random variable is defined
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by Y = logb (χ2
ν), where b > 0 and b 6= 1. The cdf describing the distribution of Y is

Flogb(χ
2
ν)

(y) = P (logb (X) ≤ y) = P (logb (X) ≤ y) = P
(
blogb(X) ≤ by

)
= P (X ≤ by) = Fχ2

ν
(by) .

It then follows that the pdf of the distribution of X is given by

flogb(χ2
ν)

(y) = byfX (by; ν) =
1

Γ
(
ν
2

)
2ν/2

e−(b
y−ν ln(b)y)/2.

The following figure displays the plot of floge(χ2
5)

(y) and flog2(χ2
5)

(y).
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Figure 2.2: Plot of floge(χ2
5)

(y) (solid curve), flog2(χ2
5)

(y) (dashed curve)

Also of interest are transformations of X defined by Y = − logb (χ2
ν). The cdf

describing the distribution of Y is

F− logb(χ
2
ν)

(y) = P (− logb (X) ≤ y) = P (logb (X) ≥ −y) = P
(
X ≥ b−y

)
= 1− P

(
X ≤ b−y

)
= 1− Fχ2

ν

(
b−y
)

.

It then follows that the pdf of the distribution of X is given by

f− logb(χ
2
ν)

(y) = b−yfX
(
b−y; ν

)
=

1

Γ
(
ν
2

)
2ν/2

e−(b−y+ν ln(b)y)/2.

The following figure is displays the plot of f− loge(χ2
5)

(y) and f− log2(χ2
5)

(y).
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Figure 2.3: Plot of f− loge(χ2
5)

(y) (solid curve), f− log2(χ2
5)

(y) (dashed curve)

The following theorem is useful.

Theorem 2.2: f− logb(χ
2
ν)

(−y) = flogb(χ2
ν)

(y) and flogb(χ2
ν)

(−y) = f− logb(χ
2
ν)

(y).

Proof of Theorem 2.2: We see that

f− logb(χ
2
ν)

(−y) =
1

Γ
(
ν
2

)
2ν/2

e−(b−(−y)+ν ln(b)(−y))/2

=
1

Γ
(
ν
2

)
2ν/2

e−(b
y−ν ln(b)y)/2

= flogb(χ2
ν)

(y) .

Further, we see that

flogb(χ2
ν)

(−y) =
1

Γ
(
ν
2

)
2ν/2

e−(b−y−ν ln(b)(−y))/2

=
1

Γ
(
ν
2

)
2ν/2

e−(b−y+ν ln(b)y)/2

= f− logb(χ
2
ν)

(y) .
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�

Another useful theorem is as follows.

Theorem 2.3: fχ2
ν

(x) = x−1 logb (e) fln(χ2
ν)

(logb (x)).

Proof of Theorem 2.3: We see that

Fχ2
ν

(x) = P
(
logb

(
χ2
ν

)
≤ logb (x)

)
= Flogb(χ

2
ν)

(logb (x)) .

Thus,

fχ2
ν

(x) =
d

dx
Flogb(χ

2
ν)

(logb (x)) = x−1 logb (e) fln(χ2
ν)

(logb (x)) .

�

2.3 Distribution of |S|

Grigoryan and He (2005) derived a closed form expression for the probability density

function f|S| (w) describing the distribution of |S| under the independent multivariate

normal model using the results in Anderson (2003). First they derived a closed form

expresssion the probability density function f|(n−1)Σ−1S| (w) describing the distribution

of ∣∣(n− 1) Σ−1S
∣∣ ∼∏p

i=1
χ2
n−i,

where χ2
n−1, . . . , χ

2
n−p are independent chi square random variables with respective

degrees of freedom n− 1, . . . , n− p. Let Xi = χ2
n−i and make the transformation

W1 = X1,W2 = X1X2, . . . ,Wp = X1 · · ·Xp.

The inverse of this transformation is

X1 = W1, X2 = W2/W1, . . . , Xp = Wp/Wp−1
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with Jacobian

J =
1

W1W2 · · ·Wp−1
.

It follows that the joint probability density function fW1,W2,...,Wp (w1, w2, . . . , wp) de-

scribing the joint distribution of W1,W2, . . . ,Wp is given by

fW1,W2,...,Wp (w1, w2, . . . , wp) = fX1 (w1) fX2 (w2/w1) · · · fXp (wp/wp−1)
1∏p−1

i=1 wi

=
1

Γ
(
n−1
2

)
2(n−1)/2w

(n−1)/2−1
1 e−w1/2

× 1

Γ
(
n−2
2

)
2(n−2)/2 (w2/w1)

(n−2)/2−1 e−(w2/w1)/2

. . .
1

Γ
(
n−p
2

)
2(n−p)/2 (wp/wp−1)

(n−2)/2−1 e−(wp/wp−1)/2
1∏p−1

i=1 wi

=
w

(n−2)/2−1
p

∏p−1
i=1 w

−1/2
i∏p

i=1 Γ
(
n−i
2

)
2p(2n−p−1)/4

e−w1/2e−
∑p
i=2(wi/wi−1)/2

It now follows that the probability density function f|S| (wp) as given in Grigoryan

and He (2005) describing the marginal distribution of Wp = |(n− 1) Σ−1S| is

f|(n−1)Σ−1S| (wp) =

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

w
(n−2)/2−1
p

∏p−1
i=1 w

−1/2
i∏p

i=1 Γ
(
n−i
2

)
2p(2n−p−1)/4

× e−w1/2e−
∑p
i=2(wi/wi−1)/2dw1 . . . dwp−1.

Observing that

F|S| (w) = P (|S| ≤ w) = P
(∣∣(n− 1) Σ−1S

∣∣ ≤ (n− 1)p
∣∣Σ−1∣∣w)

= F|(n−1)Σ−1S|
(
(n− 1)p

∣∣Σ−1∣∣w) .

The probability density function describing the distribution f|S| (w) of |S| is

f|S| (w) = (n− 1)p
∣∣Σ−1∣∣ f|(n−1)Σ−1S|

(
(n− 1)p

∣∣Σ−1∣∣w)
=

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

(n− 1)p |Σ−1| ((n− 1)p |Σ−1|w)
(n−2)/2−1∏p−1

i=1 w
−1/2
i∏p

i=1 Γ
(
n−i
2

)
2p(2n−p−1)/4

× e−w1/2e−(
∑p−1
i=2 (wi/wi−1)+((n−1)p|Σ−1|w/wp−1))/2dw1 . . . dwp−1.
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Pham-Gia and Turkkan (2010) show that the distribution of |(n− 1) Σ−1S| can

be expressed in terms of the Meijer G function. The Meijer G function is defined by

Gm r
p,q

x
∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 =
1

2πi

∫
L

∏m
j=1 Γ (bj − s)

∏r
j=1 Γ (1− aj + s)∏q

j=m+1 Γ (1− bj + s)
∏p

j=r+1 Γ (aj − s)
xsds,

where the integral is along the complex contour L of a ratio of products of gamma

functions. On page 936, they express the pdf describing the distribution of |(n− 1) Σ−1S|

with some modification is given as follows

f|(n−1)Σ−1S| (w) =
1

2p

(∏p

j=1

1

Γ
(
n−j
2

))Gp 0
0,p

w

2p

∣∣∣∣∣∣∣
n−1
2
, . . . , n−p

2

n−1
2
, . . . , n−p

2

 I(0,∞) (w) .

It would then follow that the pdf describing the distribution of ln (|(n− 1) Σ−1S|)

would have the form

fln(|(n−1)Σ−1S|) (w) = ewf|(n−1)Σ−1S| (e
w)

=
ew

2p

(∏p

j=1

1

Γ
(
n−j
2

))Gp 0
0,p

ew
2p

∣∣∣∣∣∣∣
n−1
2
, . . . , n−p

2

n−1
2
, . . . , n−p

2

 .

The Meijer G function has been implimented in both MATLAB and Mathemat-

ica. The MATLAB code is

Gm r
p,q

x
∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq


= meijerG([[a1, . . . , ar], [ar+1, . . . , ap]], [[b1, . . . , bm], [bm+1, . . . , bq]], x).
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It follows that

Gp 0
0,p

x
∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq


=

1

2πi

∫
L

∏p
j=1 Γ (bj − s)

∏0
j=1 Γ (1− aj + s)∏p

j=p+1 Γ (1− bj + s)
∏0

j=0+1 Γ (aj − s)
xsds

=
1

2πi

∫
L

∏p

j=1
Γ (bj − s)xsds

= meijerG([[a1, . . . , a0], [a0+1, . . . , a0]], [[b1, . . . , bp], [bp+1, . . . , bp]], x)

= meijerG([[], []], [[b1, . . . , bp], []], x).

It follows that

f|(n−1)Σ−1S| (w) =
1

2p

(∏p

j=1

1

Γ
(
n−j
2

))meijerG([[], []], [[
n− 1

2
, . . . ,

n− p
2

], []], w/2p).

In Mathematica, the Meijer -function is implemented as

Gm r
p,q

x
∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

 = MeijerG[a1, ..., ar, a(r+1), ..., ap, b1, ..., bm, b(m+1), ..., bq, x].

We then have

f|(n−1)Σ−1S| (w) =
1

2p

(∏p

j=1

1

Γ
(
n−j
2

))MeijerG([[], []], [[
n− 1

2
, . . . ,

n− p
2

], []], w/2p).

2.4 Distribution of ln (|(n− 1) Σ−1S|)

The cumulative distribution function FU (u), where U = ln (|(n− 1) Σ−1S|) is given

by

FU (u) = P
(
ln
(∣∣(n− 1) Σ−1S

∣∣) ≤ u
)

= P (|S| ≤ |Σ| eu/ (n− 1)p)

= F|S| (|Σ| eu/ (n− 1)p) .

Hence, the probability density function describing the distribution of U can be ex-

pressed in terms of the probability density function describing the distribution of |S|
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as

fU (u) = |Σ| eu/ (n− 1)p f|S| (|Σ| eu/ (n− 1)p) .

Using the expression derived by Grigoryan and He (2005), we can express the prob-

ability density function fU (u) as

fU (u) =

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

(|Σ| eu/ (n− 1)p)
(n−2)/2−1

(∏p−1
i=1 w

−1/2
i

)
∏p

i=1 Γ
(
n−i
2

)
2p(2n−p−1)/4

× e−w1/2e−(
∑p−1
i=2 (wi/wi−1)+(|Σ|eu/(n−1)p/wp−1))/2dw1 . . . dwp−1

From the expression by Pham-Gia and Turkkan (2010) for the probability density

function describing the distribution of |(n− 1) Σ−1S|, we have

fln(|(n−1)Σ−1S|) (w) = ewf|(n−1)Σ−1S| (e
w)

=
ew

2p

(∏p

j=1

1

Γ
(
n−j
2

))Gp 0
0,p

ew
2p

∣∣∣∣∣∣∣
n−1
2
, . . . , n−p

2

n−1
2
, . . . , n−p

2

 .

Here we give another method for deriving the probability density function

fU (u) = fln(|(n−1)Σ−1S|) (u)

describing the distribution of

U = ln
(∣∣(n− 1) Σ−1S

∣∣) ∼∑p

i=1
ln
(
χ2
n−i
)

,

where n > p are positive integers, χ2
n−i is a random variable with a Chi Square

distribution with n− i degrees of freedom, and χ2
n−1, . . . , χ

2
n−p are independent. The

pdf of U is given in the following theorem.

Theorem 2.4: If χ2
n−1, . . . , χ

2
n−p are independent Chi Square random variables with

degrees of freedom n − 1, . . . , n − p, respectively, with n > p, then the probability

density function fU (u) describing the distribution of

U =
∑p

i=1
ln
(
χ2
n−i
)
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can be expressed as

fU (u) =

∫ ∞
0

· · ·
∫ ∞
0

fln(χ2
n−1)

(u− x2 − . . .− xp) fln(χ2
n−2)

(x2)

· · · fln(χ2
n−p)

(xp) dx2 · · · dxp

=

∫ ∞
0

· · ·
∫ ∞
0

eufχ2
n−1

(
eu−x2−...−xp

)
fχ2

n−2
(ex2)

· · · fχ2
n−p

(exp) dx2 · · · dxp.

Also, the cumulative distribution function FU (u) can be expressed as

FU (u) =

∫ ∞
0

· · ·
∫ ∞
0

Fln(χ2
n−1)

(u− x2 − . . .− xp) fln(χ2
n−2)

(x2)

· · · fln(χ2
n−p)

(xp) dx2 · · · dxp

=

∫ ∞
0

· · ·
∫ ∞
0

euFχ2
n−1

(
eu−x2−...−xp

)
fχ2

n−2
(ex2)

· · · fχ2
n−p

(exp) dx2 · · · dxp.

Proof of Theorem 2.4: For convenience, define Yi = ln
(
χ2
n−i
)

for i = 1, . . . , p for

any integer p < n. Also, we let

ci =
1

Γ
(
n−i
2

)
2(n−i)/2 .

Consider the one-to-one transformation

Ui =
∑i

j=1
Yj

for i = 1, . . . , p. We see that U = Up. The inverse transformation is

Y1 = U1 and Yi = Ui − Ui−1

for i = 2, . . . , p with Jacobian J = 1. The joint probability density function of

U1, . . . , Up for

u1 < u2 < . . . < up
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is given by

fU1,...,Up (u1, . . . , up) = fY1 (u1) fY2 (u2 − u1) · · · fYp (up − up−1) .

For p = 2 and n > p, we have

fU1,U2 (u1, u2) = fY1 (u1) fY2 (u2 − u1)

= c1e
−(eu1−(n−1)u1)/2c2e

−(eu2−u1−(n−2)(u2−u1))/2

= c1c2e
−eu1/2e−(eu2−u1−(n−2)(u2−u1)−(n−1)u1)/2

= c1c2

(∑∞

i=0

(−1)i eiu1

2ii!

)
e−(eu2−u1−(n−2)(u2−u1)−(n−1)u1)/2

= c1c2
∑∞

i=0

(−1)i

2ii!
e−(eu2−u1−(n−2)(u2−u1)−(n−1)u1−2iu1)/2

= c1c2e
(n−1)u2/2

∑∞

i=0

(−1)i eiu2

2ii!
e−(eu2−u1+(2i+1)(u2−u1))/2

It follows that

fU2 (u2) =

∫ u2

−∞
fY1 (u1) fY2 (u2 − u1) du1

= c1c2e
(n−1)u2/2

∑∞

i=0

(−1)i eiu2

2ii!

∫ u2

−∞
e−(eu2−u1+(2i+1)(u2−u1))/2du1

Making the transformation x2 = u1 − u2 with dx2 = du1, we have

fU2 (u2) = c1c2e
(n−1)u2/2

∑∞

i=0

(−1)i eiu2

2ii!

∫ 0

−∞
e−(e−x2−(2i+1)x2)/2dx2

= c1c2e
(n−1)u2/2

∫ 0

−∞

∑∞

i=0

(−1)i ei(u2+x2)

2ii!
e−(e−x2−x2)/2dx2

=

∫ 0

−∞
c1e
−(eu2+x2−(n−1)(u2+x2))/2c2e

−(e−x2+(n−2)x2)/2dx2

=

∫ 0

−∞
fln(χ2

n−1)
(u2 + x2) f− ln(χ2

n−2)
(x2) dx2

=

∫ ∞
0

fln(χ2
n−1)

(u2 − x2) fln(χ2
n−2)

(x2) dx2

Hence, the theorem is true for p = 2 and n > p. Now suppose that the theorem is

true for p > 2 and n > p. For n > p+ 1 and u1 < u2 < . . . < up+1, we have

fU1,...,Up+1 (u1, . . . , up+1) = fY1 (u1) fY2 (u2 − u1) · · · fYp (up − up−1) fYp+1 (up+1 − up) .
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It follows that

fUp+1 (up+1) =

∫ up+1

−∞

∫ up

−∞
· · ·
∫ u2

−∞
fY1 (u1) fY2 (u2 − u1) · · ·

× fYp (up − up−1) fYp+1 (up+1 − up) du1 · · · dup−1dup

=

∫ up+1

−∞

∫ up

−∞
· · ·
∫ u2

−∞
fY1 (u1) fY2 (u2 − u1) · · · fYp (up − up−1)

× du1 · · · dup−1fYp+1 (up+1 − up) dup

=

∫ up+1

−∞
fUp (up) fYp+1 (up+1 − up) dup.

We now have

fUp+1 (up+1) =

∫ up+1

−∞
(

∫ ∞
0

· · ·
∫ ∞
0

fln(χ2
n−1)

(up − x2 − . . .− xp)

× fln(χ2
n−2)

(x2) · · · fln(χ2
n−p)

(xp) dx2 · · · dxp)

× fYp+1 (up+1 − up) dup

=

∫ ∞
0

· · ·
∫ ∞
0

(

∫ up+1

−∞
fln(χ2

n−1)
(up − x2 − . . .− xp)

× fYp+1 (up+1 − up) dup)

× fln(χ2
n−2)

(x2) · · · fln(χ2
n−p)

(xp) dx2 · · · dxp.
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Observe that∫ up+1

−∞
fln(χ2

n−1)
(up − x2 − . . .− xp) fYp+1 (up+1 − up) dup

=

∫ up+1

−∞
c1e
−(eup−x2−...−xp−(n−1)(up−x2−...−xp))/2

× cp+1e
−(eup+1−up−(n−p−1)(up+1−up))/2dup

= c1cp+1

×
∫ up+1

−∞
e−e

up−x2−...−xp/2e−(eup+1−up−(n−p−1)(up+1−up)−(n−1)(up−x2−...−xp))/2dup

= c1cp+1

∫ up+1

−∞

∑∞

i=0

(−1)i e(n−1+2i)(up+1−x2−...−xp)/2

2ii!

× e−(eup+1−up+(p−1+2i)(up+1−up))/2dup

= c1cp+1e
(n−1)(up+1−x2−...−xp)/2

×
∑∞

i=0

(−1)i ei(up+1−x2−...−xp)

2ii!

∫ up+1

−∞
e−(eup+1−up+(p+2i)(up+1−up))/2dup

Making the transformation xp+1 = up+1 − up with dxp+1 = dup, we have∫ up+1

−∞
fln(χ2

n−1)
(up − x2 − . . .− xp) fYp+1 (up+1 − up) dup

= c1cp+1e
(n−1)(up+1−x2−...−xp)/2

∑∞

i=0

(−1)i ei(up+1−x2−...−xp)

2ii!

×
∫ 0

−∞
e−(e−xp+1−(p+2i)xp+1)/2dxp+1

= c1cp+1e
(n−1)(up+1−x2−...−xp)/2

∫ 0

−∞

∑∞

i=0

(−1)i ei(up+1−x2−...−xp+xp+1)

2ii!

× e−(e−xp+1−(p+2i)xp+1)/2dxp+1

=

∫ 0

−∞
c1e
−(eup+1−x2−...−xp−xp+1−(n−1)(up+1−x2−...−xp+xp+1))/2

× cp+1e
−(e−xp+1+(n−p)xp+1)/2dxp+1

=

∫ 0

−∞
fln(χ2

n−1)
(up+1 − x2 − . . .− xp + xp+1) f− ln(χ2

n−p−1)
(xp+1) dxp+1

=

∫ ∞
0

fln(χ2
n−1)

(up+1 − x2 − . . .− xp − xp+1) fln(χ2
n−p−1)

(xp+1) dxp+1
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It now follows that

fUp+1 (up+1) =

∫ up+1

−∞
(

∫ ∞
0

· · ·
∫ ∞
0

fln(χ2
n−1)

(up − x2 − . . .− xp) fln(χ2
n−2)

(x2) · · ·

× fln(χ2
n−p)

(xp) dx2 · · · dxp)fYp+1 (up+1 − up) dup

=

∫ ∞
0

· · ·
∫ ∞
0

fln(χ2
n−1)

(up+1 − x2 − . . .− xp − xp+1)

× fln(χ2
n−2)

(x2) · · · fln(χ2
n−p−1)

(xp+1) dx2 · · · dxp+1.

Hence, the theorem is true for p + 1. By the Axiom of Induction, the results holds

for all n and p such that n > p.

The cumulative distribution function FU (u) describing the distribution of U is

has the form

FU (u) =

∫ u

−∞
fU (t) dt

=

∫ u

−∞

∫ ∞
0

· · ·
∫ ∞
0

fln(χ2
n−1)

(t− x2 − . . .− xp) fln(χ2
n−2)

(x2)

· · · fln(χ2
n−p)

(xp) dx2 · · · dxpdt

=

∫ ∞
0

· · ·
∫ ∞
0

(∫ u

−∞
fln(χ2

n−1)
(t− x2 − . . .− xp) dt

)
fln(χ2

n−2)
(x2)

· · · fln(χ2
n−p)

(xp) dx2 · · · dxp

=

∫ ∞
0

· · ·
∫ ∞
0

(∫ u−x2−...−xp

−∞
fln(χ2

n−1)
(t) dt

)
fln(χ2

n−2)
(x2)

· · · fln(χ2
n−p)

(xp) dx2 · · · dxp

=

∫ ∞
0

· · ·
∫ ∞
0

Fln(χ2
n−1)

(u− x2 − . . .− xp) fln(χ2
n−2)

(x2)

· · · fln(χ2
n−p)

(xp) dx2 · · · dxp

=

∫ ∞
0

· · ·
∫ ∞
0

euFχ2
n−1

(
eu−x2−...−xp

)
fχ2

n−2
(ex2)

· · · fχ2
n−p

(exp) dx2 · · · dxp.

�



22

The distribution of |S| expressed in terms of the distribution of ln (|(n− 1) Σ−1S|)

under the independent multivariate normal model is given in the following theorem.

Theorem 2.5: If χ2
n−1, . . . , χ

2
n−p are independent Chi Square random variables with

degrees of freedom n − 1, . . . , n − p, respectively, with n > p, then the probability

density function f|S| (u) and cumulative distribution function F|S| (u) describing the

distribution of |S| are

f|S| (w) = w−1fln(|(n−1)Σ−1S|)

(
ln

(
(n− 1)pw

|Σ|

))
and

F|S| (w) = Fln(|(n−1)Σ−1S|)

(
ln

(
(n− 1)pw

|Σ|

))
.

Proof of Theorem 2.5: Observe that

F|S| (w) = P (|S| ≤ w) = P

(
ln
(∣∣(n− 1) Σ−1S

∣∣) ≤ ln

(
(n− 1)pw

|Σ|

))
= Fln(|(n−1)Σ−1S|)

(
ln

(
(n− 1)pw

|Σ|

))
.

Hence, their probability density function f|S| (w) is

f|S| (w) =
d

dw
F|S| (w) = w−1fln(|(n−1)Σ−1S|)

(
ln

(
(n− 1)pw

|Σ|

))
.

�

Theorem 2.6: The kth moment of the distribution of |S| for n > p under the

independent normal model is

E
(
|S|k

)
=

2pk |Σ|k

(n− 1)pk

∏p

i=1

Γ
(
n−i
2

+ k
)

Γ
(
n−i
2

) .

Proof : Recall that ∣∣(n− 1) Σ−1S
∣∣ ∼∏p

i=1
χ2
n−i,

χ2
n−1, . . . , χ

2
n−p are independent Chi Square random variables with degrees of freedom

n− 1, . . . , n− p, respectively, with n > p. Thus,

E
(∣∣(n− 1) Σ−1S

∣∣k) = E

[(∏p

i=1
χ2
n−i

)k]
=
∏p

i=1
E
[(
χ2
n−i
)k]

,
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since the random variables χ2
n−1, . . . , χ

2
n−p are independent. From Theorem 2.1, we

have

E
[(
χ2
n−i
)k]

=
Γ
(
n−i
2

+ k
)

2k

Γ
(
n−i
2

) .

Hence, the kth moment of W is expressed as

E
(∣∣(n− 1) Σ−1S

∣∣k) = 2pk
∏p

i=1

Γ
(
n−i
2

+ k
)

Γ
(
n−i
2

) .

It follows that the kth moment of |S| is

E
(
|S|k

)
=

2pk |Σ|k

(n− 1)pk

∏p

i=1

Γ
(
n−i
2

+ k
)

Γ
(
n−i
2

) .

�

Note that the distribution of |(n− 1) Σ−1S| can be expressed in terms of the

distribuiton of ln (|(n− 1) Σ−1S|) by

f|(n−1)Σ−1S| (w) = w−1fln(|(n−1)Σ−1S|) (ln (w)) I(0,∞) (w) .

The kth moment of |(n− 1) Σ−1S| can then be determined by

E
(∣∣(n− 1) Σ−1S

∣∣k) =

∫ ∞
0

wkf|(n−1)Σ−1S| (w) dw

=

∫ ∞
0

wkw−1fln(|(n−1)Σ−1S|) (ln (w)) dw

=

∫ ∞
0

wk−1
∫ ∞
0

· · ·
∫ ∞
0

eln(w)fχ2
n−1

(
eln(w)−x2−...−xp

)
fχ2

n−2
(ex2)

· · · fχ2
n−p

(exp) dx2 · · · dxpdw

=

∫ ∞
0

· · ·
∫ ∞
0

(∫ ∞
0

wkfχ2
n−1

(
eln(w)−x2−...−xp

)
dw

)
fχ2

n−2
(ex2)

· · · fχ2
n−p

(exp) dx2 · · · dxp.

Making the change of variable

x1 = ln (w)− x2 − . . .− xp or w = ex2+...+xpex1 with dw = ex2+...+xpex1dx1,
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we have

E
(∣∣(n− 1) Σ−1S

∣∣k) =

∫ ∞
0

· · ·
∫ ∞
0

(∫ ∞
0

(
ex2+...+xpex1

)k
fχ2

n−1
(ex1) ex2+...+xpex1dx1

)
×fχ2

n−2
(ex2) · · · fχ2

n−p
(exp) dx2 · · · dxp

=

∫ ∞
0

· · ·
∫ ∞
0

(∫ ∞
0

(ex1)k ex1fχ2
n−1

(ex1) dx1

)
× (ex2)k ex2fχ2

n−2
(ex2) · · · (exp)k expfχ2

n−p
(exp) dx2 · · · dxp

=
∏p

i=1

(∫ ∞
0

(exi)k exifχ2
n−i

(exi) dxi

)
.

Making the change of variables

ti = exi with dt = exidxi,

we have

E
(∣∣(n− 1) Σ−1S

∣∣k) =
∏p

i=1

(∫ ∞
0

tkfχ2
n−i

(t) dt

)
.

Using the results from Theorem 2.1, we have

E
(∣∣(n− 1) Σ−1S

∣∣k) =
∏p

i=1

(
Γ
(
n−i
2

+ k
)

2k

Γ
(
n−i
2

) )

= 2pk
∏p

i=1

(
Γ
(
n−i
2

+ k
)

Γ
(
n−i
2

) )
, and

E
(
|S|k

)
=

2pk |Σ|k

(n− 1)pk

∏p

i=1

Γ
(
n−i
2

+ k
)

Γ
(
n−i
2

) .

When the moment generating function of the distribution of a random variable

exists, then one can show that it uniquely determine the distribution. Bain and

Engelhardt (1992) state and prove that the moment generating function can be de-

termined from its moments about zero. By comparing moments, we have verified

that Theorem 2.4 holds.
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2.5 Evaluating f|S| (w) and fln(|(n−1)Σ−1S|) (u) Numerically

Define

hu (x) = (2π)(p−1)/2 exTx/2fln(χ2
n−1)

(u− x2 − . . .− xp) fln(χ2
n−2)

(x2) · · · fln(χ2
n−p)

(xp) ,

where n > p with

x = [x2, . . . , xp]
T .

We can then write the probability density function describing the distribution of

fU (u) = (2π)−(p−1)/2
∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

e−xTx/2hu (x) dx2 · · · dxp

=

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

1

(2π)(p−1)/2 |I|1/2
e−

1
2
(x−0)TI−1(x−0)hu (x) dx2 · · · dxp

=

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

φ (x)hu (x) dx2 · · · dxp,

where 0(p−1)×1 vector of zeros and I(p−1)×(p−1) identity matrix.

φ (x) =
1

(2π)(p−1)/2 |I|1/2
e−

1
2
(x−0)TI−1(x−0)

with Genz and Monahan (1999) give a numerical method for evaluating I (hu), where

I (hu) = (2π)−(p−1)/2
∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−xTx/2hu (x) dx2 · · · dxp.

FORTRAN code to evaluate I (f) is available from Dr. Alan Genz, Department of

Mathematics, Washington State University, Pullman, WA.

According to Dr. Genz, his method can be adapted to evaluate fU (u). First we

need to substitute x with the vector

y = [y2, . . . , yp]
T ,

where yi = |xi| for i = 2, . . . , p and divide by 2p−1. The method used by Genz and

Monahan (1999) to evaluate

fU (u) =
1

2p−1

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ (y)hu (y) dy2 · · · dyp
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make a change of variables to a spherical-radial coordinate system to describe the

stochastic spherical-radial rules. Defining y = rz, with zTz = 1, such that yTy = r2,

r ≥ 0 results in

fU (u) = π−(p−1)/22−(p−1)
∫

zTz=1

∫ ∞
0

e−r
2/2rp−1hu (rz) drdz.

2.6 Conclusion

In this chapter, we presented and derived some useful distributional results for describ-

ing the distribution of the generalized variance |S| and the distribution of ln (|(n− 1) Σ−1S|).



CHAPTER 3

GENERALIZED VARIANCE SHEWHART CHART

3.1 Introduction

The Phase I Shewhart quality control chart is a plot of a statistic

θ̂i = θ̂i (Xi,1, . . . ,Xi,n)

versus the sample number i for each of the m preliminary samples. The plot usually

includes a center line (CL) along with a lower (LCL) and an upper (UCL) control

limits. The chart is said to signal a potential out-of-control process if either θ̂i ≤ LCL

or θ̂i ≥ UCL. These charts are used in a Phase I study of the process in an attempt

to remove what Shewhart (1931) referred to as “assignable” causes of variability that

when detected and removed from the process results in a better quality process. The

data collected in this phase in which there is evidence it is from an in-control process

is used to estimate the in-control process parameters that are used to design a Phase

II chart.

Once the process is believed to be in a state of statistical in-control, it is desirable

to monitor for a change in the process. The monitoring phase is often referred to as

Phase II. In this phase, the practitioner plots a statistic

θ̂t = θ̂t (Xt,1, . . . ,Xt,n)

versus the sample number t for t = 1, 2, 3, . . .. This plot typically includes a CL

(center line), a LCL (lower control limit), and an UCL (upper control limit). The

charts signals a potential out-of-control process at time (sampling stage) t if either

θ̂t ≤ LCL or θ̂t ≥ UCL. It is our interest in this chapter to examine Phase II

Shewhart chart based on the statistic

θ̂t = |St| .
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The Phase II generalized variance Shewhart chart is a plot of the points (t, |St|) for

t = 1, 2, 3, . . .. The chart signals a potential change in the process from a in-control

state to an out-of-control state at sampling stage t if either |St| ≤ LCL or |St| ≥ UCL.

3.2 Literature Review

Montgomery and Wadsworth (1972) developed a Shewhart |S| chart using an asym-

totic normal approximation to the distribution of the generalized variance. They

assumed that the p × 1 vector X of quality measurements has a Np (µ,Σ) distribu-

tion. Further, they assumed that periodically the practitioner would have available

independent random samples Xt,1, . . . ,Xt,n in Phase II from the distribution of X.

Recall that the two previous assumptions are referred to as the independent multi-

variate normal model. Under this model, Anderson (2003) shows that

√
n− 1 (|S| / |Σ| − 1)

is asymptotically normally distributed with mean 0 and variance 2p. It follows that

√
n− 1 (|S| / |Σ| − 1)√

2p

has an asymptotically standard normal distribution.

To determine the asymtotic control limits, we observed that asymtotically

α = 1− P
(
−zα/2 <

√
n− 1 (|S| / |Σ| − 1)√

2p
< zα/2

)
.

Next observe that we can write

α = 1− P
[
−
(
zα/2
√

2p√
n− 1

− 1

)
|Σ| < |S| <

(
zα/2
√

2p√
n− 1

+ 1

)
|Σ|
]

.

Hence, the asymptotic center line (CL), lower (LCL) and upper (UCL) probability
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control limits when Σ0 is known are given by

LCL = −
(
zα/2

√
2p√

n− 1
− 1

)
|Σ0| ; CL =

(∏p

i=1

n− i
n− 1

)
|Σ0| ; and

UCL =

(
zα/2

√
2p√

n− 1
+ 1

)
|Σ0| ,

where 0 < α < 0.5. Replacing zα/2 with 3 gives the asymptotic 3-sigma limits

suggested by Shewhart (1931). If Σ0 is unknown, then it is recommended that |Σ0|

be replaced by
∣∣S0

∣∣.
Alt and Smith (1988) introduced a generalized variance |S| Shewhart chart. They

assume the independent multivariate normal model. At each time t, the point (t, |St|)

is plotted for t = 1, 2, 3, . . .. On this plot a center line (CL), lower control (LCL) and

upper control (UCL) limits are drawn with

LCL = max
{

0, E (|S| |Σ = Σ0 )− 3
√
V (|S| |Σ = Σ0 )

}
;

CL = E (|S| |Σ = Σ0 ) ; and

UCL = E (|S| |Σ = Σ0 ) + 3
√
V (|S| |Σ = Σ0 ).

It is shown in Anderson (2003) that under the given model

E (|S| |Σ = Σ0 ) = b1 |Σ0| and V (|S| |Σ = Σ0 ) = b2 |Σ0|2 ,

where

b1 =

∏p
i=1 (n− i)
(n− 1)p

and b2 =

∏p
i=1 (n− i)
(n− 1)p

[∏p

i=1

2 + n− i
n− 1

−
∏p

i=1

n− i
n− 1

]
.

It follows that the center line and control limits can be expressed as

LCL = max
{

0, |Σ0|
(
b1 − 3

√
b2

)}
; CL = b1 |Σ0| ; and

UCL = |Σ0|
(
b1 + 3

√
b2

)
.

Note that under the independent multivariate normal model and assuming Σ is pos-

itive definite, Dykstra (1970) proved that the sample covariance matrix S is positive
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definite with probability one. It then follows that the sample generalized variance

|S| is positive with probability one. Thus the LCL can be set to zero if the “three

sigma” lower control limit is negative. The chart is said to “signal” at sampling stage

t when either |St| ≤ LCL or |St| ≥ UCL.

Aparisi et al. (1999) studied the properties of the run length distributon of the |S|

chart assuming and the in-control covariance matrix Σ0 is known. They considered

more general control limits of the form

LCL = max
{

0, |Σ0|
(
b1 − kL

√
b2

)}
; CL = b1 |Σ0| ; and

UCL = |Σ0|
(
b1 + kU

√
b2

)
,

where kL, kU > 0 and kL is chosen so that the LCL is nonnegative.

The control limits of the Shewhart |S| chart can be expressed in terms percentage

points of the distribution of the generalized variance |S|. Note that the distribution

of

W =
∣∣(n− 1) Σ−1S

∣∣ ∼∏p

i=1
χ2
(n−1)−(i−1)

only depends on n and p. Letting wn,p,1−γ be the 100 (1− γ)th percentile of the

distribution of W , then the 100 (1− γ)th percentile of the distribution of |S| can be

expressed as |Σ|wn,p,1−γ/ (n− 1)p. Hence, the lower and upper control limits for the

Shewhart |S| chart is given by

LCL = |Σ0|wn,p,1−τ/ (n− 1)p and UCL = |Σ0|wn,p,α−τ/ (n− 1)p ,

where 0 < τ < α < 0.5. Typically, the value of τ is selected to be α/2.

3.3 The Run Length Distribution

The run length T of the chart is the number of the sample in Phase II in which the

chart first signals. For the chart proposed by Montgomery and Wadsworth (1972),
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the distribution of the run length based on the asymptotic control limit is

LCL = −
(
zα/2

√
2p√

n− 1
− 1

)
|Σ0| ;

CL =

(∏p

i=1

n− i
n− 1

)
|Σ0| ; and

UCL =

(
zα/2

√
2p√

n− 1
+ 1

)
|Σ0| ,

α = α
(
λ2, n, p

)
= P (T = 1)

= 1− P [LCL < |S1| < UCL]

= 1− P
[
B <

√
n− 1 (|S1| / |Σ| − 1)√

2p
< A

]
= 1− Φ (A) + Φ (B) ,

where

B =

(
−zα/2

√
2p+

√
n− 1

)
λ−2 −

√
n− 1

√
2p

and

A =

(
zα/2
√

2p+
√
n− 1

)
λ−2 −

√
n− 1

√
2p

.

For t > 1, the event {T = t} can be expressed as

{T = t} =

(⋂t−1

i=1

{
B <

√
n− 1 (|Si| / |Σ| − 1)√

2p
< A

})
∩
{
B <

√
n− 1 (|St| / |Σ| − 1)√

2p
< A

}c

.

We see that {T = t} has been expressed as the intersection of t independent events.

Hence,

P (T = t) =
∏t−1

i=1
P

(
B <

√
n− 1 (|Si| / |Σ| − 1)√

2p
< A

)
× P

({
B <

√
n− 1 (|St| / |Σ| − 1)√

2p
< A

}c)
.

It then follows that

P (T = t) =
∏t−1

i=1
(1− α)× α = α (1− α)t−1 .
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Thus, the asymtotic run length distribution is a geometric distribution with parameter

α. The expection E (T ) is commonly referred to as the average run length (ARL). It

follows for this chart that

ARL = ARL
(
λ2, n, p

)
=

1

α (λ2, n, p)
.

The process is in-control when λ2 = 1. The asymtotic in-control average run length

is

ARL = ARL (1, n, p) =
1

α (1, n, p)
.

In the more general setting when the control limits for the Shewhart |S| are

expressed in as percentage points of the distribution of |S| when Σ0, we see that

α = 1− P
(
wn,p,1−τ
(n− 1)p

|Σ0| < |S| <
wn,p,α−τ
(n− 1)p

|Σ0|
)

= 1− P
(wn,p,1−τ

λ2
<
∣∣(n− 1) Σ−1S

∣∣ < wn,p,α−τ
λ2

)
= 1− FW

(wn,p,α−τ
λ2

)
+ FW

(wn,p,1−τ
λ2

)
.

The ARL of the chart can then be expressed as

ARL =
1

1− FW
(wn,p,α−τ

λ2

)
+ FW

(wn,p,1−τ
λ2

) .

As we have seen, the control limits of the Shewhart |S| are or can be expressed as

a function of |Σ0|. If |Σ0| is replaced with
∣∣S0

∣∣, then the distribution of the run length

is no longer a geometric distribution. However, the distribution of T conditioned on∣∣S0

∣∣ has a geometric distribution. For the Shewhart |S| with estimated control limits

LCL =
∣∣S0

∣∣wn,p,1−τ/ (n− 1)p and

UCL =
∣∣S0

∣∣wn,p,α−τ/ (n− 1)p
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the parameter for this geometric distribution is

α
(
λ2,m, n, p |W0 = w0

)
= 1− P

(∣∣S0

∣∣wn,p,1−τ
(n− 1)p

< |S| <
∣∣S0

∣∣wn,p,α−τ
(n− 1)p

|W0 = w0

)

= 1− P
(

w0wn,p,1−τ
mp (n− 1)p λ2

< W <
w0wn,p,α−τ

mp (n− 1)p λ2

)
= 1− FW

(
w0wn,p,α−τ

mp (n− 1)p λ2

)
+ FW

(
w0wn,p,1−τ

mp (n− 1)p λ2

)
,

where

W =
∣∣(n− 1) Σ−1S

∣∣ and W0 =
∣∣m (n− 1) Σ−10 S0

∣∣ .
The ARL of the chart given W0 = w0 is

ARL
(
λ2,m, n, p |W0 = w0

)
=

1

1− FW
(
w0wn,p,α−τ
mp(n−1)pλ2

)
+ FW

(
w0wn,p,1−τ
mp(n−1)pλ2

)
=

1

1− FW
(

w0

mp(n−1)p
wn,p,α−τ

λ2

)
+ FW

(
w0

mp(n−1)p
wn,p,1−τ

λ2

) .

The unconditional ARL of the chart is then given by

ARL
(
λ2,m, n, p

)
=

∫ ∞
0

1

1− FW
(
w0wn,p,α−τ
mp(n−1)pλ2

)
+ FW

(
w0wn,p,1−τ
mp(n−1)pλ2

)fW0 (w0) dw0.

We have that the mean of W0 is

E (W0) =
∏p

i=1
(m (n− 1)− (i− 1)) .

which coverges in probability to mp (n− 1)p as m goes to infinity. Thus, as m in-

creases, the unconditional ARL approaches the ARL when Σ0 is known.

A Shewhart chart based on the ln (|S|) chart is equivalent to a chart based on

|S|. Observe that at sampling stage t, the event defined by the inequality∣∣S0

∣∣wn,p,1−τ
(n− 1)p

< |S| <
∣∣S0

∣∣wn,p,α−τ
(n− 1)p

.
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This inequality is equivalent to the inequality

ln

(∣∣S0

∣∣wn,p,1−τ
(n− 1)p

)
< ln (|S|) < ln

(∣∣S0

∣∣wn,p,α−τ
(n− 1)p

)
.

Hence, a Shewhart ln (|S|) chart with control limits

LCL = ln

(∣∣S0

∣∣wn,p,1−τ
(n− 1)p

)
and UCL = ln

(∣∣S0

∣∣wn,p,α−τ
(n− 1)p

)

is equivalent to the Shewhart |S| chart with control limits

LCL =

∣∣S0

∣∣wn,p,1−τ
(n− 1)p

and UCL =

∣∣S0

∣∣wn,p,α−τ
(n− 1)p

.

Other measures of the performance of the chart are the standard deviation

(SDRL) of the run length distribution and percentiles of the run length distribu-

tion. The SDRL for the chart with known parameters is

SDRL
(
λ2, n, p

)
=

√
1− α (λ2, n, p)

α (λ2, n, p)
.

where

α
(
λ2, n, p

)
= 1− FW

(wn,p,α−τ
λ2

)
+ FW

(wn,p,1−τ
λ2

)
.

In the estimated parameters case, the conditional SDRL given W0 = w0 is

SDRL
(
λ2,m, n, p |W0 = w0

)
=

√
1− α (λ2,m, n, p |W0 = w0 )

α (λ2,m, n, p |W0 = w0 )
,

where

α
(
λ2,m, n, p |W0 = w0

)
= 1− FW

(
W0wn,p,α−τ

mp (n− 1)p λ2
|W0 = w0

)
+ FW

(
W0wn,p,1−τ

mp (n− 1)p λ2
|W0 = w0

)
.

The uncondition SDRL (λ2,m, n, p) is

SDRL
(
λ2,m, n, p

)
=

∫ ∞
0

√
1− α (λ2,m, n, p |W0 = w0 )

α (λ2,m, n, p |W0 = w0 )
fW0 (w0) dw0,
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In general, the 100γth is the value T1−γ of T that satisfies the following inequal-

ities

P (T ≤ T1−γ) ≥ γ and P (T < T1−γ) < γ.

For a random variable T having geometric distribution with parameter α, it can be

shown that

P (T > t) = (1− α)t .

Hence,

P (T ≤ t) = 1− (1− α)t and P (T < t) = 1− (1− α)t−1 (for t > 1).

The 100γth percentile T1−γ of a geometric distribution is the solution to the set of

inequalities

1− (1− α)T1−γ ≥ γ and 1− (1− α)T1−γ−1 < γ.

Observe that

1− γ ≥ (1− α)T1−γ and 1− γ < (1− α)T1−γ−1 implies

ln (1− γ) ≥ T1−γ ln (1− α) and ln (1− γ) < (T1−γ − 1) ln (1− α) implies

ln (1− γ)

ln (1− α)
≤ T1−γ and 1 +

ln (1− γ)

ln (1− α)
> T1−γ implies

ln (1− γ)

ln (1− α)
≤ T1−γ < 1 +

ln (1− γ)

ln (1− α)
.

Thus, it follows that

T1−γ =

⌈
ln (1− γ)

ln (1− α)

⌉
,

where dxe is the smallest integer greater than or equal to x. In the known parameters

case, we have

T1−γ = Tn,p,λ2,α,τ,1−γ =

⌈
ln (1− γ)

ln
(
FW

(wn,p,α−τ
λ2

)
− FW

(wn,p,1−τ
λ2

))⌉ .
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In the estimated parameters case, we see that the 100γth percentile can be expressed

as

T1−γ = Tm,n,p,λ2,α,τ,1−γ

=


∫ ∞
0

ln (1− γ) fW0 (w0) dw0

ln
(
FW

(
W0wn,p,α−τ
mp(n−1)pλ2 |W0 = w0

)
− FW

(
W0wn,p,1−τ
mp(n−1)pλ2 |W0 = w0

))
 .

3.4 The Bivariate Case

From the results given by Anderson (2003) for p = 2 under the independent multi-

variate normal model, we have

W =
∣∣(n− 1) Σ−1S

∣∣ ∼ (χ2
2n−4

)2
/4 and

W0 =
∣∣m (n− 1) Σ−10 S0

∣∣ ∼ (χ2
2m(n−1)−2

)2
/4

When Σ0 is known, then the ARL is determined by

ARL =
1

1− F
(χ2

2n−4)
2
/4

(
(χ2

2n−4,α−τ)
2
/4

λ2

)
+ F

(χ2
2n−4)

2
/4

(
(χ2

2n−4,1−τ)
2
/4

λ2

) ,

where

wn,2,1−γ =
(
χ2
2n−4,1−γ

)2
/4.

Note that

F
(χ2

2n−4)
2
/4

(y) = P
((
χ2
2n−4

)2
/4 ≤ y

)
= P

(
χ2
2n−4 ≤

√
4y
)

= Fχ2
2n−4

(2
√
y) .

Thus,

ARL =
1

1− Fχ2
2n−4

(
2

√
(χ2

2n−4,α−τ)
2
/4

λ2

)
+ Fχ2

2n−4

(
2

√
(χ2

2n−4,1−τ)
2
/4

λ2

) .
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The ARL can be numerically evaluated using the Scientific WorkPlace functions

ChiSquareInv and ChiSquareDist with

χ2
ν,1−γ = ChiSquareInv (γ; ν) and Fχ2

ν
(y) = ChiSquareDist (y; ν) .

A graph of the ARL versus λ is given in the following figure for n = 5, α = 0.005,

and τ = 0.0025 (solid line) along with the case in which τ = 0.0038.
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Figure 3.1: Plot of ARL versus λ

α = 0.005, τ = 0.0025 (solid line) and τ = 0.0038 (dashed line)

We can see for the case in which τ is chosen to be α/2 there are values for λ

in which the out-of-control ARL is greater than the in-control ARL. A chart that

has this property is referred to an ARL biased chart. ARL biased charts were first

studied by Krumbholz (1992). An ARL unbiased chart (in-control ARL greater than

any out-of-control ARL) can be designed by selecting τ such that ARL (1) > ARL (λ)

for λ 6= 1 (λ > 0). As one can see from the Figure 3.1, selecting τ = 0.0038 results in

a chart that is “close to” being an unbiased chart. The method presented in Champ

(2001) could be used to determine the exact value τ that would result in an unbised

Shewhart |S| chart.

The following table gives the average run length, standard deviations of the run

length, and various percentiles for a Shewhart |S| chart with a known value for Σ0.
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Table 3.1: ARL, SDRL, T5,2,λ,0.005,0.0038,1−γ

λ ARL SDRL 0.01 0.05 0.25 0.50 0.75 0.95 0.99

0.50 41.15 40.65 1 3 12 29 57 122 188

0.60 66.01 65.51 1 4 19 46 91 197 302

0.70 99.20 98.70 1 6 29 69 137 296 455

0.80 140.24 139.74 2 8 41 97 194 419 644

0.90 181.43 180.93 2 10 53 126 251 543 834

1.00 200.00 199.50 3 11 58 139 277 598 919

1.10 176.63 176.13 2 10 51 123 245 528 812

1.20 129.95 129.45 2 7 38 90 180 388 597

1.30 88.26 87.76 1 5 26 61 122 263 405

1.40 59.67 59.17 1 4 18 42 83 178 273

1.50 41.49 40.99 1 3 12 29 57 123 189

When Σ0 is unknown and is to be estimated with S0, then the run length per-

formance of the Shewhart |S| chart is measured by the unconditional ARL which is

given by

ARL =

∫ ∞
0

f(
χ2
2m(n−1)−2

)2
/4

(w0) dw0

1− F
(χ2

2n−4)
2
/4

(
w0wn,2,α−τ
m2(n−1)2λ2

)
+ F

(χ2
2n−4)

2
/4

(
w0wn,2,1−τ
m2(n−1)2λ2

) .

Note that

F(
χ2
2m(n−1)−2

)2
/4

(y) = Fχ2
2m(n−1)−2

(2
√
y) ; and

f(
χ2
2m(n−1)−2

)2
/4

(y) = 2y−1/2fχ2
2m(n−1)−2

(2
√
y) .

Thus, we can write

ARL
(
λ2,m, n

)
=

∫ ∞
0

w
−1/2
0 fχ2

2m(n−1)−2

(
2
√
w0

)
dw0

1− Fχ2
2n−4

(
2

√
w0(χ2

2n−4,α−τ)
2
/4

m2(n−1)2λ2

)
+ Fχ2

2n−4

(
2

√
w0(χ2

2n−4,1−τ)
2
/4

m2(n−1)2λ2

) .
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The results in Table 3.2 illustrate that as m increases the unconditional ARL of the

Shewhart |S| chart with estimated parameters increases to the ARL of the chart with

parameters known.

Table 3.2: ARL,n = 5, α = 0.005, τ = α/2, λ = 1

m ARL m ARL m ARL

5 137.08 25 179.27 45 187.34

10 159.11 30 182.14 50 188.45

15 169.28 35 184.29 100 193.84

20 175.28 40 185.98 400 198.37

Obtaining a parameters estimated chart having the same in-control ARL as the

parameters known chart for a given value of m can be done by decreasing the value

α. For example, for m = 10 with n = 5, if one choose α = 0.00395 with τ = α/2,

then the in-control value of the ARL of the chart is 200.01. But as we can see from

Table 3.3 the chart will not on average detect changes in |Σ|.

Table 3.3: ARLs,m = 10, n = 5, α = 0.00395, τ = α/2

λ ARL(Know Parameters) ARL(Estimated Parameters)

0.7 147.73 200.72

0.8 202.02 234.57

0.9 230. 48 232.56

1.0 200.00 200.01

1.1 138.88 154.48

1.2 88.89 111.30

1.3 57.45 77.49

The following table gives the average run lengths, standard deviations of the run
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length, and various percentiles for a Shewhart |S| chart when Σ0 is estimated with

S0.

Table 3.4: ARL, SDRL, for m = 10, n = 5, α = 0.005, and τ = 0.0038

λ ARL SDRL

0.50 49.79 49.28

0.60 79.39 78.89

0.70 114.29 113.78

0.80 145.81 145.31

0.90 162.85 162.35

1.00 159.92 159.41

1.10 140.62 140.12

1.20 113.60 113.10

1.30 86.65 86.15

1.40 64.05 63.54

1.50 46.87 46.37

Both in-control and out-of-control ARLs are less than their counterparts when

Σ0 is assumed known.

3.5 AN EXAMPLE

Montgomery (2001) gives an example in which tensile (X1) and diameter (X2) of a

textile fiber are the quality measurements of interest. At each sampling stage, random

samples of size n = 10 are taken from the output of the process. The practitioner has

available m = 20 samples each of size n = 10 for the process when the process was

believed to be in-control. The estimates for the in-control mean vector and covariance
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matrix using these data are

x =

 x1

x2

 =

 115.59

1.06

 and S0 =

 1.23 0.79

0.79 0.83

 .

It follows that ∣∣S0

∣∣ =

∣∣∣∣∣∣∣
 1.23 0.79

0.79 0.83


∣∣∣∣∣∣∣ = 0.3968.

For α = 0.004305 with τ = α/2, the unconditional average run length of the chart is

199.99. The control limits for the Phase II Shewhart |S| chart are

LCL =
∣∣S0

∣∣wn,p,1−τ/ (n− 1)p =
(0.3968)

(
χ2
2(10)−4,1−0.004305/2

)2
/4

(10− 1)2

=
(0.3968) (ChiSquareInv (0.004305/2; 2 (10)− 4))2

4 (10− 1)2

= 0.024 and

UCL =
∣∣S0

∣∣wn,p,α−τ/ (n− 1)p =
(0.3968)

(
χ2
2(10)−4,1−0.004305/2

)2
/4

(10− 1)2

= 1.669.

The center line (CL) for this chart is

CL =

∣∣S0

∣∣
(n− 1)2

(n− 1) (n− 2) =
(0.3968)

(10− 1)2
(10− 1) (10− 2) = 0.353.

The following table gives summary information from the process in Phase II.
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Table 3.5: Phase II Data Summary

t x1 x2 s21 s22 s1,2 |S|

1 115.25 1.04 1.25 0.87 0.80 0.4475

2 115.05 1.09 1.30 0.90 0.82 0.4976

3 115.90 1.07 1.16 0.73 0.80 0.2068

4 114.98 1.05 1.25 0.78 0.75 0.4125

5 116.15 1.09 1.19 0.87 0.83 0.3464

6 115.75 0.99 1.45 0.79 0.78 1.208475

7 116.01 1.05 1.26 0.55 0.72 0.39285

8 115.29 1.11 1.23 2.0025 1.23 0.950175

Unknown to the practitioner, the variance for measurementX2 made a substained

shift at time t = 6 by a value of 1.52. The following plot of the sample generalized

variance versus the sample number indicates there may have been a change in the

process at time t = 8, but the chart did not signal.
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Figure 3.2: Phase II Plot of |S| versus t

It would be interesting to see how a CUSUM ln
(∣∣∣(n− 1) S

−1
0 S
∣∣∣) chart would

compare to Shewhart ln
(∣∣∣(n− 1) S

−1
0 S
∣∣∣) chart which is equivalent to Shewhart |S|

with estimated parmaeters.

3.6 Conclusion

Control charting procedures with a center line and control limits were introduced by

Walter A. Shewhart (see Shewhart (1931) and have been referred to as Shewhart

charts. Over time there have bee several Shewhart charts introduced into the litera-

ture by a variety of authors. The Shewhart generalized variance chart is one of those.

We have show that the Shewhart |S| and ln (|S|) charts are equivalent in the sense

that when one of the charts signals the other also signals a potential out-of-control

process. Also, we have show how to analyze each of these charts when parameters

are estimated.



CHAPTER 4

GENERALIZED VARIANCE CUSUM CHART

4.1 Introduction

Page (1956) in his seminal work proposed the cumulative sum (CUSUM) quality

control chart for monitoring for a change in the process mean. Ewan and Kemp

(1960) recommended a tabular form of the CUSUM consisting of a lower and upper

sided CUSUM sum procedures. In the design of a CUSUM chart in which the statistic

whose values are to be “acumulated” is always positive, one must adjust their method.

For the lower-sided CUSUM chart base on the generalized variance |S| with head

start value c− as proposed by Lucas (1985), the CUSUM statistic has the form

C−0 = c− and C−t = min
{

0, C−t−1 + |St| − k−
}

,

for t = 1, 2, 3, . . ., where k− > 0. The chart is a plot of the points
(
t, C−t

)
for

t = 1, 2, 3, . . .. The chart signals at the first sampling stage t in which C−t ≤ h− ≤ 0.

The head start value is selected to be in the interval (h−, 0]. The values c−, k−, and

h− are referred to as chart parameters. The upper-sided CUSUM chart based on the

generalized variance |S| with head start value c+ is a plot of the points
(
t, C+

t

)
, where

C+
0 = c+ and C+

t = max
{

0, C+
t−1 + |St| − k+

}
,

for t = 1, 2, 3, . . ., where k+ > 0. The chart is a plot of the points
(
t, C+

t

)
for

t = 1, 2, 3, . . .. The chart signals at the first sampling stage t in which C+
t ≥ h+ ≥ 0.

The head start value c+ is selected to be in the interval [0, h+). The two-sided CUSUM

chart based on the generalized variance |S| is the chart in which the points
(
t, C−t

)
and

(
t, C+

t

)
are plotted on the same graph. Note that setting h− and h+ both to zero

in the two-sided CUSUM |S| results in a Shewhart |S| chart with LCL = k− and

UCL = k+. That is the Shewhart chart is a special case of the CUSUM chart.
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Healy (1987) used what he called “rescaling” to obtain an equivalent form of

the chart in the sense that the charts either both signal or not at each time t. One

rescaling of the lower and upper CUSUM |S| charts is accomplished by defining

C∗−t =
∣∣(n− 1) Σ−10

∣∣C−t and C∗+t =
∣∣(n− 1) Σ−10

∣∣C+
t .

The CUSUM statistics and chart parameters for this “rescaled” chart become

C∗−0 = c∗− and C∗−t = min
{

0, C∗−t−1 +
∣∣(n− 1) Σ−10 St

∣∣− k∗−} and

C∗+0 = c∗+ and C∗+t = max
{

0, C∗+t−1 +
∣∣(n− 1) Σ−10 St

∣∣− k∗+}
with

c∗− =
∣∣(n− 1) Σ−10

∣∣ c−, k∗− =
∣∣(n− 1) Σ−10

∣∣ k−,

h∗− =
∣∣(n− 1) Σ−10

∣∣h−, c∗+ =
∣∣(n− 1) Σ−10

∣∣ c+,

k∗+ =
∣∣(n− 1) Σ−10

∣∣ k+, and h∗+ =
∣∣(n− 1) Σ−10

∣∣h+.

If the in-control covariance matrix Σ0 is unknown, then the rescaling is done by

replacing Σ0 with S0. Note that we can express

∣∣(n− 1) Σ−10 St
∣∣ =

∣∣Σ−10 Σ
∣∣ ∣∣(n− 1) Σ−1St

∣∣ = λ2
∣∣(n− 1) Σ−1St

∣∣ =

λ2Wt,

when parameters are known, where Wt = |(n− 1) Σ−1St|. In the parameters esti-

mated case, we see that∣∣∣(n− 1) S
−1
0 S
∣∣∣ = mp (n− 1)p

∣∣Σ−10 Σ
∣∣ (∣∣m (n− 1) Σ−10 S0

∣∣)−1 ∣∣(n− 1) Σ−1S
∣∣

= mp (n− 1)p
(∣∣m (n− 1) Σ−10 S0

∣∣)−1 (λ2 ∣∣(n− 1) Σ−1S
∣∣)

= mp (n− 1)pW−1
0

(
λ2Wt

)
=

(
W0

mp (n− 1)p

)−1 (
λ2Wt

)
,
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where W0 =
∣∣m (n− 1) Σ−10 S0

∣∣. We see that replacing mp (n− 1)pW−1
0 with 1 in the

parameters estimated case gives the parameters known case.

Another CUSUM chart that could be used to monitor for a change in the process

generalized variance is a CUSUM chart based on the ln (|S|) or equivalently the

ln
(∣∣(n− 1) Σ−10 S

∣∣) if Σ0 is known or ln
(∣∣∣(n− 1) S

−1
0 S
∣∣∣) when Σ0 is unknown. The

lower and upper CUSUM ln (|S|) charts are defined by

C−0 = c− and C−t = min
{

0, C−t−1 + ln (|St|)− k−
}

and

C+
0 = c+ and C+

t = max
{

0, C+
t−1 + ln (|St|)− k+

}
.

Each of these charts are equivalent to a CUSUM ln
(∣∣(n− 1) Σ−10 St

∣∣) chart when

Σ0 is known and a CUSUM ln
(∣∣∣(n− 1) S

−1
0 St

∣∣∣) when Σ0 is estimated by S0. This

can be seen to hold, for example, for the upper one-sided CUSUM ln (|St|) chart by

observing that the statistic C+
t can be expressed as

C+
t = max

{
0, C+

t−1 + ln
(∣∣(n− 1) Σ−10 St

∣∣)− (k+ + ln
(∣∣(n− 1) Σ−10

∣∣))} .

= max
{

0, C+
t−1 + ln

(∣∣(n− 1) Σ−10 St
∣∣)− k∗+}

Defining

k∗+ =
(
k+ + ln

(∣∣(n− 1) Σ−10

∣∣)) ,

the upper one-sided CUSUM ln
(∣∣(n− 1) Σ−10 St

∣∣) chart is defined by the sequence

C+
0 = c+ and C+

t = max
{

0, C+
t−1 + ln

(∣∣(n− 1) Σ−10 St
∣∣)− k∗+}

for t = 1, 2, 3, . . .. This would hold for the lower one-sided chart and the charts with

estimated parameters. Note that

ln
(∣∣(n− 1) Σ−10 St

∣∣) = ln
(
λ2
∣∣(n− 1) Σ−1St

∣∣)
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Other CUSUM charts for monitoring for a change in the process covariance

matrix have been proposed. A chart derived by Healy (1987) after rescaling is based

on the CUSUM statistics

Ci = max
{

0, Ci−1 +
∑n

j=1
(Xi,j − µ0)

T Σ−10 (Xi,j, − µ0)− k
}

,

where k = pnc ln (c) / (c− 1) and 0 ≤ C0 < h. This chart was designed specifically to

detect a change in Σ from Σ0 to cΣ0 for c > 0 given. Pignatiello, Runger, and Korpela

(1986) proposed using the CUSUM chart to monitor for a change in the mean vector

to monitor for a change in the covariance matrix. Crosier (1986) proposed using the

CUSUM chart based on the CUSUM statistics

Ci = max

{
0, Ci−1 +

√∑n

j=1
(Xi,j − µ0)

T Σ−10 (Xi,j, − µ0)− k
}
,

when n = 1 without the restriction Healy (1987) placed on the chart parameter k. It

is not difficult to show that all the CUSUM charts discussed in this section have as a

special case a Shewhart chart.

4.2 Run Length Distribution

The run length T of a CUSUM chart is the first sampling stage t in which the chart

first signals a potential out-of-control process. The three most commonly used meth-

ods for evaluating the run length distribution are (1) simulation, (2) approximating

the chart as a discrete state Markov chain, and (3) expressing a parameter of the run

length distribution, such as the ARL, as the solution to an integral equation. Champ

and Rigdon (1991) demonstrated that the Markov chain and the integral equation

approach for the CUSUM X chart are equivalent.

Champ, Rigdon, and Scharnagl (2001) derive various integral equations whose

exact solutions are parameters of the run length distribution. Recall that the lower
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and upper one-sided CUSUM |S| chart when Σ0 is known are defined by the sequences

of statistics

C−0 = c− and C−t = min
{

0, C−t−1 + |St| − k−
}

and

C+
0 = c+ and C+

t = max
{

0, C+
t−1 + |St| − k+

}
with k−, k+ > 0 and control limits h− ≤ 0 and h+ ≥ 0 for t = 1, 2, 3, . . .. It is

convenient to use the following notation.

pr−
(
t
∣∣c− ) = P

(
T− = t

∣∣C−0 = c−
)

and

pr+
(
t
∣∣c+ ) = P

(
T+ = t

∣∣C+
0 = c+

)
,

where T− and T+ are the run lengths of the lower and upper one-sided CUSUM

charts, respectively. The distribution of the run length of both the lower and upper

one-sided CUSUM |S| charts can be determined iteratively using integral equations

determined from the results in Champ, Rigdon, and Scharnagl (2001). We have

pr−
(
1
∣∣c− ) = 1− F|S|

(
h− − c− + k−

)
and.

pr−
(
t
∣∣c− ) =


pr− (t− 1 |0)F|S| (h

− − c− + k−)

+
∫ 0

h−
pr− (t− 1 |y ) f|S| (y − c− + k−) dy,

if − k− ≤ c− ≤ 0;

1 +
∫ k−+c−

h−
pr− (t− 1 |y ) f|S| (y − c− + k−) dy, if h− < c− < −k−,


and

pr+
(
1
∣∣c+ ) = 1− F|S|

(
h+ − c+ + k+

)
and.

pr+
(
t
∣∣c+ ) =


pr+ (t− 1 |0)F|S| (h

+ − c+ + k+)

+
∫ h+
0

pr+ (t− 1 |y ) f|S| (y − c+ + k+) dy,
if 0 ≤ c+ ≤ k+;

1 +
∫ h+
k+−c+ pr

+ (t− 1 |y ) f|S| (y − c+ + k+) dy, if k+ < c+ < h+,


for t > 1. The integral equations whose exact solution is the average run length
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ARL− of the lower one-sided chart is

ARL−
(
c−
)

=


1 + ARL− (0)F|S| (k

− − c−)

+
∫ 0

h−
ARL− (y) f|S| (y − c− + k−) dy,

if k− ≤ c− ≤ 0;

1 +
∫ k−+c−

h−
ARL− (y) f|S| (y − c− + k−) dy, if h− < c− < k−.

 .

For the upper one-sided chart, the average run length ARL+ is the exact solution to

the integral equation

ARL+
(
c+
)

=


1 + ARL+ (0)F|S| (k

+ − c+)

+
∫ h+
0

ARL+ (y) f|S| (y − c+ + k+) dy,
if 0 ≤ c+ ≤ k+;

1 +
∫ h+
k+−c+ ARL

+ (y) f|S| (y − c+ + k+) dy, if k+ < c+ < h+.

 .

Knoth (1998) gives a method for solving integral equation of this form.

Woodall (1983) proved that for CUSUM charts the tail probabilities could be

approximated by a geometric distribution. The tail probabilities pr− (t∗− + t |c− )

and pr+ (t∗+ + t |c+ ) for “large” value of t∗− and t∗+ are approximated by

pr−
(
t∗− + t

∣∣c− ) ≈ (θ̂−)t pr− (t∗− ∣∣c− ) and

pr+
(
t∗+ + t

∣∣c+ ) ≈ (θ̂+)t pr+ (t∗+ ∣∣c+ ) .

It follows that the average run lengths can be approximated by

ARL−
(
c−
)
≈
∑t∗−

t=1
t× pr−

(
t
∣∣c− )+ θ̂−pr

(
t∗−
∣∣c− )

 t∗−

1− θ̂−
+

1(
1− θ̂−

)2
 and

ARL+
(
c+
)
≈
∑t∗+

t=1
t× pr+

(
t
∣∣c+ )+ θ̂+pr

(
t∗+
∣∣c+ )

 t∗+

1− θ̂+
+

1(
1− θ̂+

)2
 .
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Woodall (1983) shows that

E
(
T−2

∣∣c− ) ≈∑t∗−

t=1
t2 × pr−

(
t
∣∣c− )

+ θ̂−pr
(
t∗−
∣∣c− )

 (t∗−)
2

1− θ̂−
+

2t∗− − 1(
1− θ̂−

)2 +
2(

1− θ̂−
)3
 and

E
(
T+2

∣∣c+ ) ≈∑t∗+

t=1
t2 × pr+

(
t
∣∣c+ )

+ θ̂+pr
(
t∗+
∣∣c+ )

 (t∗+)
2

1− θ̂+
+

2t∗+ − 1(
1− θ̂+

)2 +
2(

1− θ̂+
)3
 .

The standard deviation of the run length distributions can then be approximated by

SDRL−
(
c−
)
≈
√
E (T−2 |c− )− [E (T− |c− )]2 and

SDRL+
(
c+
)
≈
√
E (T+2 |c+ )− [E (T+ |c+ )]2.

In the case in which γ ≤
∑t∗−

t=1 pr
− (t |c− ) (γ ≤

∑t∗+

t=1 pr
+ (t |c+ )), then the 100γth

percentage point of the distribution of T− (T+) can be determined exactly. For the

case in which γ >
∑t∗−

t=1 pr
− (t |c− ) (γ >

∑t∗+

t=1 pr
+ (t |c+ )), then the percentage point

T−n,p,λ2,α,τ,1−γ (T+
n,p,λ2,α,τ,1−γ) can be approximated by

T−c−,1−γ ≈ t∗− − 1 +

ln

((
(1−θ̂−)

(∑t∗−
t=1 pr

−(t|c− )−γ
)

pr(t∗−|c− )

)
+ θ̂−

)
ln
(
θ̂−
) and

T+
c+,1−γ ≈ t∗+ − 1 +

ln

((
(1−θ̂+)

(∑t∗+
t=1 pr

+(t|c+ )−γ
)

pr(t∗+|c+ )

)
+ θ̂+

)
ln
(
θ̂+
)

Woodall (1983) gives a method for checking how accurate the approximations of

θ̂− and θ̂+ are for the respective values of t∗− and t∗+. For each choice of t∗− and

(t∗+) approximate ARL− (c−) (ARL+ (c+)) using each of the following values for θ̂−
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(θ̂+):

pr− (t∗− |c− )

pr− (t∗− − 1 |c− )
and

1−
∑t∗−

t=1 pr
− (t |c− )

1−
∑t∗−−1

t=1 pr− (t |c− )

(
pr+ (t∗+ |c+ )

pr+ (t∗+ − 1 |c+ )
and

1−
∑t∗+

t=1 pr
+ (t |c+ )

1−
∑t∗+−1

t=1 pr+ (t |c+ )
).

If these approximations are not “close” choose a larger value for t∗− and (t∗+).

The lower and upper one-sided CUSUM ln
(∣∣∣(n− 1) S

−1
0 S
∣∣∣) charts are defined

by the sequences

C−0 = c− and C−t = min
{

0, C−t−1 + ln
(∣∣∣(n− 1) S

−1
0 S
∣∣∣)+ k−

}
and

C+
0 = c+ and C+

t = max
{

0, C+
t−1 + ln

(∣∣∣(n− 1) S
−1
0 S
∣∣∣)− k+}

with k−, k+ > 0 and control limits h− < 0 and h+ > 0. Evaluating the run length

properties of this chart requires a conditional approach by first conditioning on the

random variable

U0 = ln
(∣∣(n− 1) Σ−10 S0

∣∣) .

Recall that the distribution of U0 was studied in Chapter 2. It is convenient to

represent the probability mass function of the run length distribution of lower and

upper one-sided CUSUM ln
(∣∣∣(n− 1) S

−1
0 S
∣∣∣) charts using the notation

pr−
(
t
∣∣c−, u) = P

(
T = t

∣∣C−0 = c−, U0 = u
)

and

pr+
(
t
∣∣c+, u) = P

(
T = t

∣∣C+
0 = c+, U0 = u

)
.

Since the support of the statistic ln
(∣∣∣(n− 1) S

−1
0 S
∣∣∣) is the reals, then the prob-

ability mass functions of the charts can be determined iterately by

pr−
(
1
∣∣c−, u0 ) = FU

(
h− − c− − k− + u0 − θ

)
and

pr−
(
t
∣∣c−, u0 ) = pr− (t− 1 |0, u0 )

[
1− FU

(
−c− − k− + u0 − θ

)]
+

∫ 0

h−
pr−

(
t− 1

∣∣c−1 , u0 ) fU (c−1 − c− − k− + u0 − θ
)
dc−1 .
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for the lower one-sided chart and by

pr+
(
1
∣∣c+, u0 ) = 1− FU

(
h+ − c+ + k+ + u0 − θ

)
and

pr+
(
t
∣∣c+, u0 ) = pr+ (t− 1 |0, u0 )FU

(
−c+ + k+ + u0 − θ

)
+

∫ h+

0

pr+
(
t− 1

∣∣c+1 , u0 ) fU (c+1 − c+ + k+ + u0 − θ
)
dc+1 .

for the upper one-sided chart (see Champ, Rigdon, and Scharnagl (2001)), where

U = ln
(∣∣(n− 1) Σ−1S

∣∣) and θ = ln
(
mp (n− 1)p λ2

)
.

Recall that the distribution of U was studied in Chapter 2. As it turns out, the

probability mass function describing the distribution of run lengths T− and T+, re-

spectively, of the lower and upper one-sided CUSUM charts in the known parameters

case are described by removing the variable u0 from the previous sequences of integral

equation and replacing θ with ln (λ2).

Approximate solutions to the probability mass functions for the lower and up-

per one-sided CUSUM charts make use of Gaussian quadrature and the method of

Woodall (1983) for approximating the tail probabilities. To illustrate, consider the

upper one-sided CUSUM chart. Making the transformation

c+1 =
h+

2
(x+ 1) with dc+1 =

h+

2
dx.

We can then express the probability mass function describing the distribution of T+

by

pr+
(
1
∣∣c+, u0 ) = 1− FU

(
h+ − c+ + k+ + u0 − θ

)
and

pr+
(
t
∣∣c+, u0 ) = pr+ (t− 1 |0, u0 )FU

(
−c+ + k+ + u0 − θ

)
+

∫ 1

−1
pr+

(
t− 1

∣∣∣∣h+2 (x+ 1) , u0

)
fU

(
h+

2
(x+ 1)− c+ + k+ + u0 − θ

)
h+

2
dx.

Using the abscissas (nodes) and weight factors for η-point Gaussian integration using

Legendre polynomials, we obtain an iterative system of matrix equations that can be
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used to approximate the probability mass functions at the nodes

c+i =
h+

2
(xi + 1)

for i = 1, . . . , η. Letting c+0 = 0, this sequence of systems of equations have the form

p1 =



pr+
(
1
∣∣c+0 , u0 )

pr+
(
1
∣∣c+1 , u0 )
...

pr+
(
1
∣∣c+η , u0 )


=



1

1

...

1


+



FU
(
h+ − c+0 + k+ + u0 − θ

)
FU
(
h+ − c+1 + k+ + u0 − θ

)
...

FU
(
h+ − c+η + k+ + u0 − θ

)


and

pt = Bpt−1,

where

bi,j =

 FU
(
−c+i + k+ + u0 − θ

)
, if j = 0;

fU
(
c+j − c+i + k+ + u0 − θ

)
h+

2
wj, if j = 1, . . . , η,

for i = 0, 1, . . . , η. Similarly, we can obtain a sequence of system of equations that can

be used to approximate the probability mass function of the lower one-sided CUSUM

chart.

Defining the (η + 1)× 1 vector M+ by

M+ =



E
(
T+
∣∣c+0 , u0 )

E
(
T+
∣∣c+1 , u0 )
...

E
(
T+
∣∣c+η , u0 )


=



ARL+
(
c+0 , u0

)
ARL+

(
c+1 , u0

)
...

ARL+
(
c+η , u0

)


,

where E
(
T+
∣∣c+i , u0 ) = ARL+

(
c+i , u0

)
is the average run length of the chart given

C+
0 = c+i and U0 = u0. One can show that

M+ = (I−Q)−1 1.
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Further, define the (η + 1)× 1 vector M+
2 by

M+
2 =



E
(

(T+)
2
∣∣c+0 , u0)

E
(

(T+)
2
∣∣c+1 , u0)

...

E
(

(T+)
2
∣∣c+η , u0)


.

It can be shown that

M+
2 = (I−Q)−1 (I + 2Q) 1.

The components of M+ and M+
2 can be used to obtain vector of run length variances

V
(
T+
∣∣c+0 , u0 )

V
(
T+
∣∣c+1 , u0 )
...

V
(
T+
∣∣c+η , u0 )


=



(
M+

2

)
0
− [(M+)0]

2(
M+

2

)
1
− [(M+)1]

2

...(
M+

2

)
η
−
[
(M+)η

]2


,

where (M+)i and
(
M+

2

)
i

are the respective ith components of the vectors M+ and

M+
2 . Similar results hold for the lower one-sided CUSUM chart.

The run length T of the two-sided CUSUM ln (|(n− 1) Σ−1S|) chart is defined

by

T = min
{
T−, T+

}
.

It is shown in Kemp (1961) that

1

E (T |0, u0 )
≈

1

E (T− |0, u0 )
+

1

E (T+ |0, u0 )

provides a good approximation the average run length of the two-sided CUSUM chart.
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The average run lengths can be approximated by

ARL−
(
c−
)
≈
∑t∗−

t=1
t× pr−

(
t
∣∣c−, u0 )

+ θ̂−pr
(
t∗−
∣∣c−, u0 )

 t∗−

1− θ̂−
+

1(
1− θ̂−

)2
 and

ARL+
(
c+
)
≈
∑t∗+

t=1
t× pr+

(
t
∣∣c+, u0 )

+ θ̂+pr
(
t∗+
∣∣c+, u0 )

 t∗+

1− θ̂+
+

1(
1− θ̂+

)2
 .

Note that both t∗− and t∗+ depend on the value of u0. Again from the results in

Woodall (1983), we have

E
(
T−2

∣∣c−, u0 ) ≈∑t∗−

t=1
t2 × pr−

(
t
∣∣c−, u0 )

+ θ̂−pr
(
t∗−
∣∣c−, u0 )

 (t∗−)
2

1− θ̂−
+

2t∗− − 1(
1− θ̂−

)2 +
2(

1− θ̂−
)3
 and

E
(
T+2

∣∣c+, u0 ) ≈∑t∗+

t=1
t2 × pr+

(
t
∣∣c+, u0 )

+ θ̂+pr
(
t∗+
∣∣c+, u0 )

 (t∗+)
2

1− θ̂+
+

2t∗+ − 1(
1− θ̂+

)2 +
2(

1− θ̂+
)3
 .

Hence, the standard deviation of the run length distributions can then be approxi-

mated by

SDRL−
(
c−, u0

)
≈
√
E (T−2 |c−, u0 )− [E (T− |c−, u0 )]2 and

SDRL+
(
c+, u0

)
≈
√
E (T+2 |c+, u0 )− [E (T+ |c+, u0 )]2.
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The percentage points of the run length distribution can be approximated by

T−c−,1−γ,u0 ≈ t∗− − 1 +

ln

((
(1−θ̂−)

(∑t∗−
t=1 pr

−(t|c−,u0 )−γ
)

pr(t∗−|c−,u0 )

)
+ θ̂−

)
ln
(
θ̂−
) and

T+
c+,1−γ,u0 ≈ t∗+ − 1 +

ln

((
(1−θ̂+)

(∑t∗+
t=1 pr

+(t|c+,u0 )−γ
)

pr(t∗+|c+,u0 )

)
+ θ̂+

)
ln
(
θ̂+
)

Note that both θ̂− and θ̂+ are also functions of u0.

The unconditional probability mass functions for the run length distributions in

the parameters estimated case are given by

pr−
(
t
∣∣c− ) =

∫ ∞
−∞

pr−
(
t
∣∣c−, u0 ) fU0 (u0) du0 and

pr+
(
t
∣∣c+ ) =

∫ ∞
−∞

pr+
(
t
∣∣c+, u0 ) fU0 (u0) du0.

In general, if ξ− (c− |u0 ) and ξ+ (c+ |u0 ) are parameters of the distributions of T− and

T+, then there unconditional values are

ξ−
(
c−
)

=

∫ ∞
−∞

ξ−
(
c− |u0

)
fU0 (u0) du0 and

ξ+
(
c+
)

=

∫ ∞
−∞

ξ+
(
c+ |u0

)
fU0 (u0) du0.

4.3 Conclusion

We have discussed the use of integral equations in analyzing the run length distribu-

tion of both the CUSUM |S| and ln (|S|) both with Σ0 known and estimated. The

analytical method for evaluating the integral equations for the CUSUM |S| requires

using the method developed by Knoth (1998). We do not provide this analysis in this

thesis. The method for analyzing the CUSUM ln (|S|) envolve Fredholm equations

that can be well approximated by Gaussian quadrature. The run length properties

of this chart were obtained with Σ0 known and estimated.
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CONCLUSION

5.1 General Conclusions

It has been demonstrated in the literature that control charting procedures designed to

monitor for a change in the process mean vector of a multivariate quality measurement

are affected by changes in both the process mean vector and covariance matrix. In

the univariate case, it has been recommended that a control chart for monitoring

the process variance be used and examined if there is a signal on the chart from

monitoring the mean to see if the variance may have changed. If not and the process

is out-of-control, then it is most likely due to a change in the process mean. A similar

strategy should be used when there are several quality measurements on an item.

While simulation can be used to study the run length properties of a chart under a

given model, a more accurate study can be done using analytical methods. We have

outlined a method using integral equations to study the performance of the CUSUM

|S| and ln (|S|) charts each of which the Shewhart chart as a special case.

5.2 Areas for Further Research

We are interested in continuing our study the integral equation method for analyz-

ing the run length distribution of the the CUSUM |S| and ln (|S|) charts under the

independent multivariate normal model. There are several methods that have been

proposed in the literature for monitoring for a change in the process covariance ma-

trix under the independent normal model. We plan to provide a comparison of these

methods both when the process in-control covariance matrix Σ0 is known and when

it is estimated from a Phase I study. Two other areas also interest us: how well

the charts perform under multivariate non-normal model and when the multivarite
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quality measurements on items are autocorrelated.
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